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Abstract

In this paper, we propose a family of specification-based coverage testing criteria
for Coloured Petri Nets (CPNs). CPNs are an extension of Petri Nets with the
capability of expressing, defining and handling datatypes and structured values. The
main approaches used for testing and validation of CPNs based on specifications are
simulation and analysis of properties. However, these approaches do not essentially
provide a mechanism for quantifying the testing activity, compromising the testing
quality assessment. The coverage criteria family proposed in this paper aims at com-
plementing this scenario by providing mechanisms either to evaluate the adequacy
of test sequences (e.g., sequences generated by simulation) or to guide the generation
of adequate test sequences with respect to a given criterion. The underlying model
to derive the requirements of the testing criteria is the occurrence graph. The
concepts and criteria presented in this paper are supported by a prototyping tool.
Some examples are provided to illustrate the main ideas.
Keywords: Coloured Petri Nets, Testing Criteria, Software Quality

1. Introduction

Outstanding as one of the most important software quality assurance activities, soft-
ware testing is also one of the most expensive and most unsystematic. Moreover, despite
the continuous and successful efforts of both academy and industry to devise methods and
mechanisms to aid in this task, a general lackness of supporting tools can be observed.
A crucial issue in this activity is the establishment of a testing strategy to be applied
during software development and maintenance that trades off cost and efficacy in revealing
critical errors. Since the earlier the errors are detected in the life cycle, the less onerous
is the process of removing them, specification testing is an effective way of reducing the
development costs. The specification testing aims at validating the system specifications
against the requirements, as earlier as possible.

The authors would like to thank the Brazilian funding agencies FAPESP, CAPES and CNPq for their
support to this research.



Two main research issues posed in the testing area are 1) how to select test cases and
2) how to assure that a program P or a specification S has been tested enough. These
issues have been addressed by the establishment of testing criteria, which systematize the
requirements to be concerned with in the testing and embody the desirable features of a
“good” test case suit.

For safety critical applications, errors can produce disastrous consequences. Therefore,
the use of formal techniques is strongly recommended, if not mandatory. Reactive Systems
(RSs) are a class of systems whose main feature is their interaction with the environ-
ment reacting to stimuli. Typical examples of RSs are metro control, patient hospital
monitoring, and communication protocols. Concerning these systems, software quality
is even more relevant, for failures can provoke economic and/or human losses, making
specification and testing activities much more critical. In this context, state transition
based specification techniques, such as Finite State Machines (FSMs) [11], Statecharts
[13] and Petri Nets [22], have been used for the specification of the behavioral aspect of
these systems. Testing and validation of state transition based system specifications are
done, in general, by reachability analysis [20, 22], simulation [14] and by test sequences
generation methods [2, 9, 23, 26].

Coloured Petri Nets (CPNs) are a formal technique that has been intensively employed
in the specification of systems in which the concurrency and parallelism among processes
play an important role in the overall behavioral aspects [17, 18]. CPNs have well defined
syntax and semantics, allowing analysis of the dynamic aspects of the model. The
components of the system are modeled by a set of hierarchical pages, expressing the
synchronization, parallelism and causal dependence or independence. According to Harel
[14], the consistence and completeness verification of a model does not necessarily avoid
the occurrence of logical errors. Simulation allows to observe how the model behaves, while
it reacts to the occurrence of pre-defined or randomly generated events [17]. Analysis of
properties is another alternative and allows evaluation of dynamic properties of the model,
as deadlock freeness, marking reachability and validity of event sequences. However, the
quality of the testing activity is by itself an issue in the software development process and
neither simulation nor property analysis provides direct mechanisms for quantifying the
testing and validation activities.

Considering software testing in general, one way to quantify the quality of a test case
suit (and, thus, the testing activity) is to use coverage measures based on a testing crite-
rion. Therefore, complementing current CPN validation approaches, we propose a CPN
Coverage Criteria Family (CPNCCF) for validation of CPN based specifications. These
criteria provide mechanisms both to evaluate test sequences (e.g. sequences generated by
simulation) and to guide the generation of by-construction-adequate test sequences (with
respect to the criteria). These criteria provide a coverage measure to quantify the testing
activity and thus contribute to the improvement of the quality of this activity in the
context of specifications. Application of these coverage criteria is done using a behavioral
representation of the CPN called occurrence graph [17]. The occurrence graph shows the
possible global states and the paths — sequences of markings — that can occur in a CPN.

This paper is organized as follows. In Section 2 related works are discussed. In
Section 3 the basic concepts of CPN that are the basis for understanding the criteria
proposed herein are presented. In Section 4 we define the coverage criteria and illustrate
the application of the coverage criteria to assess the quality of a specification testing
activity. Concluding remarks are presented in Section 5.



2. Related Work

Motivated by the fact that the traditional testing techniques are not adequate
for testing some features introduced by concurrent/parallel programming such as
non-determinism and concurrency, many researchers have developed specific testing
techniques addressing these issues [3, 5, 6, 19, 23, 24, 27–33].

Yang and Chung [33] introduced the path analysis testing of concurrent programs.
Given a program, two models are proposed:

(i) task flowgraph — corresponds to the syntactical view of the task execution behavior
and models the task control flow; and

(ii) rendezvous graph — corresponds to the run-time view and models the possible
rendezvous sequences among tasks.

An execution of the program will traverse one concurrent path of the rendezvous graph
(C-route) and one concurrent path of the flowgraph (C-path). A method called controlled
execution is presented to support the debugging activity of concurrent programs. They
pointed out three research issues to be addressed to make practical their approach: C-path
selection, definitive test generation and test execution.

Taylor et al. proposed a set of structural coverage criteria for concurrent programs
based on the notion of concurrent states and on the concurrency graph [30]. Five crite-
ria are defined: all-concurrency-paths, all-proper-cc-histories, all-edges-between-cc-states,
all-cc-states and all-possible-rendezvous. The hierarchy (defined by the subsumption
relation [8, 34]) among these criteria is analyzed. They stress that every approach based
on reachability analysis would be limited in practice by state space explosion. They
mentioned some alternatives to overcome the associated constraints.

In the same vein of Taylor and colleagues’ work, Chung et al. [3] proposed four
testing criteria for Ada programs: all-entry-call, all-possible-entry-acceptance, all-entry-
-call-permutation and all-entry-call-dependency-permutation. These criteria focus the
rendezvous among tasks. They also present the hierarchy among these criteria.

Koppol and Tai introduced an incremental approach to structural testing of concurrent
programs based on the hierarchy of processes. They claimed to alleviate the state explo-
sion problem besides other advantages. Their underlying model is the Labeled Transition
Systems (LTS) [19] that in fact is the reachability graph of each task of the concurrent
program.

In another line of work, aiming at demonstrating that, with some extensions, sequential
test data adequacy criteria are still applicable to parallel program testing, Yang et al.
extended the data flow criterion all-du-path [25] for parallel programs [32]. A Parallel
Program Flow Graph is constructed and is traversed to obtain the du-paths. All du-paths
that have definition and use of variables related to parallelism of threads constitute test
requirements to be exercised. Threads are independent sequences of execution within a
parallel program. The della pasta tool (Delaware Parallel Software Testing Aid) automates
their approach.

Probert and Guo [24] introduced the approach E-MPT (Estelle-directed Mutation-ba-
sed Protocol Testing) that applies Mutation Testing [4] to validate the behavior of Estelle
specifications. In fact, their approach addresses the validation of the Extended Finite
State Machines defined by the specification. Two mutation types are defined: major



mutation — which tests the basic structures of Estelle — and minor mutation — which
tests the correctness of the operations associated to the transitions. The generation of the
mutant specifications is based on a Finite Complete Set of Alternatives, which possesses,
for each element that can suffer a mutation (e.g., variables, constants and mathematical
operators), its syntactically correct alternatives based on the specification under testing.

Souza et al. [28] extend the work of Probert and Guo, defining a mutation operator
set for Estelle, which can be taken as a fault model for this technique. The mutation
operator set takes in consideration the intrinsic features of Estelle, such as: parallelism,
communication and dynamic structures. They are divided in three categories: Module
Mutation, Interface Mutation and Structure Mutation. A strategy for application of the
Mutation Testing is proposed, making possible to conduct the validation activity, giving
priority for specific types of errors.

Fabbri et al. defined Mutation Testing to validate specifications based on Finite State
Machines (FSMs) [5], Statecharts [7] and Petri Nets [6]. For each specification technique
a mutation operator set has been defined inspired in the error classification suggested by
Chow [2]. For the Statecharts technique, abstraction strategies were proposed to allow
the selection of its basic components — EFSM-Extended Finite State Machines — at
each hierarchical level. The mutation score defines a coverage measure for assessing the
quality of a given test suite.

Souza et al. proposed coverage testing criteria for both specifications based on Stat-
echarts — Statechart Coverage Criteria Family (SCCF) [29] — and specifications based
on Estelle — Estelle Coverage Criteria Family (ECCF) [27]. These criteria emphasize
intrinsic features of each specification technique and are based on control-flow information.
SCCF and ECCF criteria can be used either to evaluate test sequences or to guide the
generation of test sequences with respect to a given criterion. Reachability tree is the
underlying model used to derive the requirements of these testing criteria. A well-known
problem related with reachability tree is the state explosion. Some approaches to minimize
this limitation can be used during the construction of these trees, in order to reduce their
size to a manageable size [29]. These approaches are considered during the construction
of statechart reachability tree [20] and estelle reachability tree [27].

In summary, all the works above stress the relevance of providing coverage measures for
concurrent and parallel programs. For instance, the relevance of this kind of information
in the context of communication protocols has been discussed by Petrenko and Bochmann
[23]. The testing coverage criteria family proposed in this article is based on the works
discussed above, in the same vein of the criteria defined by Taylor et al. [30], Souza et
al. [27, 29] and Chung et al. [3], but in the context of Coloured Petri Nets, addressing its
specific features.

3. Coloured Petri Nets

Coloured Petri Nets are a formal technique for system description, with a strong
mathematical basis, specially suitable for modeling systems with discrete events [15].
Among the main features of this technique are:

• the distributed description of conditions in contrast to other techniques (e.g., Finite
State Machines);

• the explicit representation of causal dependence or independence of the system
elements; and



• the appealing graphical representation of the system and its dynamic aspects.

The CPNs extend the ordinary Petri Nets [21, 22] by adding capabilities for defining
data types and manipulating values of these types. For historical reasons, the types in a
CPN are called “colours”, to contrast with the ordinary Petri Nets in which all the values
are indistinguishable.

A CPN is a bipartite graph whose nodes are divided up in two disjoint sets: the places
P (that usually represent the passive elements of the system) and the transitions T (that
represent the active elements). Each place is associated with a colour and can contain
multi-set1 values of this colour. An arc is an edge in the graph that links a place p ∈ P to
a transition t ∈ T (called an input arc) or transition t to place p (called an output arc).
The arc can be annotated with an expression that can be composed by variables, values
and operations. The expression annotated in an arc must, when evaluated, generate
a multi-set of values from the colour of the adjacent place, assigning values to all its
variables, if any.

A marking is a specific association of each place with a multi-set of elements from its
respective colour and denotes a particular configuration of the CPN. A binding is a pair
of a transition t and an assignment s of values to all variables, if any, that appear in any
arc adjacent to t. In a given marking m, a binding b = (t, s) is enabled if the multi-set
resulting from evaluating the expression annotated in every input arc from the place p to
t with the assignment s is less than multi-set associated with p in m. A binding b that is
enabled in m can be fired, yielding another marking m′ (denoted by m[b〉m′). m′ is related
to m in such a way that, for every input arc from a place p to t, the multi-set resulting
from evaluate the annotated expression with s is removed from p, and, conversely, for
every output arc from t to a place p, the resulting multi-set is included into p.

One of the most appealing features of CPN is its graphical representation. Figure 1
presents an example of the graphical representation of a CPN. This CPN was extracted
from [15] and models a (simplified) Distributed Data Base. It is composed by nine states
(represented by ellipses) and four transitions (represented by rectangles). The transitions
are: Update and Send Messages (SM); Receive a Message (RM); Send an Acknowledgment
(SA); and Receive all Acknowledgments (RA). The colour and initial contents of each place
is positioned near the corresponding ellipse, in italics and in upright font, respectively.
The annotations of each arc are near the respective arc.

The database is composed by n sites (with n ≥ 3). Each site has its own copy of the
data. After changing its copy, a site sends a message to all the others and waits for an
acknowledgment message. When it receives all the acknowledgment messages, the system
returns to the original state. The colour DBM = {d1, d2, . . . , dn} represents the set of
sites. The colour MES = {(s, r) ∈ DBM × DBM | s 6= r} represents all the messages
that can be sent among the sites. Finally, the colour E = {e} has a single element that is
employed to switch between active (i.e., any site can make a change) and inactive (i.e., a
site made a change and is waiting the acknowledgment messages). The variables that occur
in this example are r and s. The auxiliary function Mes : DBM → 2MES maps each site
to the set of the other sites, i.e., ∀d ∈ DBM , Mes(d) = {(d, d′) ∈ MES | d′ 6= d}. In the

1Informally, a multi-set can be thought of as a set which allows multiple occurrence of the same
element. For example, 1‘e+2‘b is a multi-set in which the element e occurs once and the element b occurs
twice. The relational comparison of two multi-sets is made by a elementwise comparison the quantity of
each element in both multi-sets.
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Figure 1: An Example of a Coloured Petri Net.

initial marking, the enabled bindings are (SM, 〈s = d1〉), (SM, 〈s = d2〉), (SM, 〈s = d3〉)
and (SM, 〈s = d4〉).

In order to ease the definition and manipulation of large CPNs, a hierarchical tree of
CPN pages can be used. A CPN page can be thought of as a simple CPN whose meaning,
however, depends on other sub- and/or super-pages. The linking between a page and
its sub-page is made through hierarchical transitions and port places. A hierarchical
transition is associated with another page. Every place with arcs from or to a hierarchical
transition is a port place. A hierarchical transition should associate a place in the subpage
(called, socket place) to each of its port places. The pair of socket/port places should be
compatible, that is, should have the same colour.

The semantics of a hierarchical CPN is the same of a non-hierarchical CPN, regarding
that every pair of socket/port places behaves as if both are the same place. In other
words, the contents of both places are always the same. This implies that, whenever an
element is added to (respectively, removed from) either place, the same element is added
to (respectively, removed from) the other place.

4. CPN Coverage Criteria Family (CPNCCF)

The efficacy of the testing and validation activities depends greatly on the quality
of the test case suite employed. As pointed out before, from this viewpoint, there are
two important questions that can be posed: “How to select test cases?” and “How to
assure that a program or a specification has been tested enough?” The latter is usually
addressed by taking in consideration coverage measures based on testing criteria.

A testing criterion allows the systematization of the testing activity, providing mech-
anisms either to select a test case suite or to measure the adequacy of a given one.
Some researchers have explored the definition of testing criteria to validate specifications,
mapping the concepts of criteria defined for the program level to the specification level
[5, 6, 24, 27, 29, 31]. Fabbri et al. [5, 6] and Probert and Guo [24] explore the use of
mutation testing, while Ural and Yang [31] explore the use of data-flow testing concepts.



Souza et al. [27, 29] propose a coverage Criteria for Statecharts and Estelle, respectively. In
the same vein, this paper presents the CPN Coverage Criteria Family for validation of CPN
based specification. These criteria emphasize intrinsic features of the CPN technique, as
causal dependency and independency. CPNCCF is based on the control flow criteria
[1, 25] and provides mechanisms to assess whether the specification satisfies the system’s
requirements. For instance, using these criteria the following questions can be addressed:

• Have all possible interleaving of markings been reached?

• Have all possible parallelism among markings been activated?

• Have all casual dependency (and independency) been exploited?

Next we define some concepts that will be used to define the CPNCCF criteria.

Path is a finite sequence of markings P = 〈m0, . . . ,mk〉, k > 1, such that the first mark-
ing is the initial marking m0, and for each pair of marking mi, mi+1, with 0 ≤ i < k,
there exists a binding bi that is enabled in mi and mi[bi〉mi+1.

Simple path is a path P = 〈m0, . . . ,mk〉 such that all markings in the path, except
possibly the first and the last, are distinct, i.e., ∀j, i 0 < i ≤ k ∧ 0 ≤ j < k such
that i 6= j → mi 6= mj.

Loop-free path is a simple path P such that all the markings are distinct, i.e.,
∀j, i 0 ≤ i, j ≤ k such that i 6= j → mi 6= mj.

The minimum coverage desirable for systems specified by CPN is to exercise all
markings and all transitions. Thus, two coverage criteria are defined:

Definition 1 The criterion all-markings requires that all markings of a CPN be reached
at least once by a test sequence.

Note that in the case of unbounded CPNs, this criterion is infeasible, since infinitely
many markings can exist.

Definition 2 The criterion all-transitions requires that all transitions of a CPN be fired
at least once by a test sequence, regardless the binding.

Additionally, since the same transition can be fired with distinct assignment (i.e.,
distinct bindings), the next coverage criterion is defined to consider this situation.

Definition 3 The criterion all-bindings requires that all bindings be fired at least once
by a test sequence.

Note that in the case of CPNs with variables whose colours are infinite, this criterion
is infeasible, since infinitely many bindings can exist.

Chow has shown that these criteria are not appropriate to reveal typical errors of
finite state machine based on specification [2], and, made the necessary analogy, are not
suitable for typical errors of CPNs as well. Therefore, we define other “stronger” criteria.

Definition 4 The criterion all-paths requires that all paths be reached at least once by a
test sequence.



Observe that, in general, the all-paths criterion is not applicable because infinite paths
may exist. Therefore, definitions 5, 6, and 7 introduce more rigorous criteria than the
criteria all-markings, all-transitions and all-bindings, but less costly than the criterion
all-paths. These criteria establish some constraints to the selection of paths.

Definition 5 The criterion all-simple-paths requires that all simple paths are traversed
at least once by a test sequence.

Definition 6 The criterion all-loop-free-paths requires that all loop-free paths be tra-
versed at least once by a test sequence.

Definition 7 The criterion all-paths-k-markings requires that all paths containing at
most k repetitions (with k ≥ 2) of each marking be traversed at least once by a test
sequence.

These coverage criteria establish test requirements that need to be exercised by a test
sequence to be considered adequate with respect to these criteria. A test sequence set
T is adequate in relation to a given test criterion C (noted by Cadequate) if T satisfies or
executes every test requirements imposed by C [35].

4.1. CPNCCF Property Analysis

There are three meaningful bases against which test adequacy criteria can be com-
pared: cost, effectiveness and strength. From the theoretical point of view, strength can be
analyzed by the subsumption relation [25]. In this section, based on subsumption relation
[25], we analyze the hierarchy among the CPNCCF criteria. According to Zhu [35], the
subsumption relation is perhaps the property that we know best about adequacy criteria,
although not all of them can be easily placed in the hierarchy, such as specification-based
criteria. Zhu has also shown that under certain circumstance the subsumption relation
can provide information to compare the effectiveness of the criteria. We consider the
addressing of this aspect at the specification level to be a contribution aiming at the
comparison of specification testing criteria. A criterion C1 subsumes a criterion C2 if for
any set of paths P that satisfies C1 implies P would also satisfy C2, for any specification
S. C1 strictly subsumes C2 if C1 subsumes C2 but C2 does not subsume C1. C1 and C2 are
incomparable if C1 does not subsume C2 and C2 does not subsume C1 [25].

Theorem 1 Considering the criteria proposed in this paper, the following relation hold:

(1) all-paths strictly subsumes all-paths-k-markings.

(2) all-paths-k-markings strictly subsumes all-simple-paths.

(3) all-simple-paths strictly subsumes all-loop-free-paths.

(4) all-bindings strictly subsumes all-transitions.

Proof 1 All these relations are proved almost in the same way. For sake of space, we do
not include all the proofs in this paper. Consider relation (3) to show the reasoning to
prove these relations. Let P1 be a set of path that satisfies the all-simple-paths criterion,
e.g., P1 is all-simple-pathsadequate. Thus, by definition, P1 contains all possible paths



whose markings are all distinct, excepting, eventually, the first and last ones. Now,
let P2 be all-loop-free-pathsadequate. Thus, by definition, P2 contains all possible paths
whose markings are all distinct. Therefore, it can be verified that P2 ⊆ P1. It may
be concluded that P1 is also all-loop-free-pathsadequate, i.e., the all-simple-paths criterion
subsumes the all-loop-free-paths criterion. On the other hand, P2 does not satisfy the
all-simple-paths criterion because. Consider a path p whose first and last markings are
the same. Therefore, p 6∈ P2 and the all-loop-free-markings criterion does not subsume
the all-simple-paths criterion.

4.2. CPNCCF Criteria: Establishing Testing Requirements

The test requirements established by the CPNCCF criteria are obtained from the
occurrence graph (OG) [16, 18]. The OG summarizes the possible sequences of firing
from the initial marking m0. An OG is a graph whose nodes are the reachable marking
of the CPN and whose edges are the bindings that lead from one marking to another.
Formally, the graph G = (N, E) is the occurrence graph for a CPN C if and only if,

• m0 ∈ N (i.e., the initial marking of C is a node of the graph);

• for every m ∈ N and every binding b enabled in m such that m[b〉m′, then m′ ∈ N
and (m, b, m′) ∈ E; and conversely,

• for every (m, b, m′) ∈ E, m[b〉m′.

A problem that severely hinders the usage of occurrence graphs is the so called
state explosion problem. The state explosion problem occurs when the number of nodes
increases exponentially, as the lengths of the sequences increase. In some cases, the
number of nodes can be infinite, especially with unbound CPN or with CPN that has
colour with infinite number of elements. To overcome the state explosion problem, there
are some approaches that reduce the occurrence graph, such as Equivalence Classes and
Stubborn Sets. The Equivalence Classes employs the concept that some markings are,
in some sense, similar to each other [18]. These markings can, indeed, be thought of as
equivalent. Instead of constructing an occurrence graph whose nodes are every reachable
marking, the nodes of the occurrence graph represent the classes of equivalent markings.
In order to apply this approach, it is necessary to define an equivalence relation for the
set of markings and an equivalence relation for the set of bindings. Such relations are
dependent both on a particular CPN and on the properties which the user may want to
consider. Note that the equivalence relation can be defined in such a way that an infinite
number of markings (respectively, bindings) is represented by a single equivalence class.
Therefore, the problem of unbound CPNs (i.e., CPNs whose set of reachable markings is
infinite) can also be coped with proper equivalence relations.

The Stubborn Sets are sets of enabled bindings that are mutually independent, i.e.,
bindings that can be fired in any order, reaching the same marking. In this approach,
instead of considering all the possible combinations of these bindings, only an element,
called stubborn set is included in the graph.

Figure 2 presents the occurrence graph of CPN in Figure 1 with n = 3. In this example,
neither Equivalence Classes nor Stubborn Sets were employed. For the sake of space,
the markings are represented in a condensed way, indicating only the list of those sites
that have a message addressed to them in the places Sent, Received and Acknowledged,



Figure 2: Occurrence Graph.

respectively [18]. For example, (-,-,-) represents that all sites are in Inactive and (2,3,-)
represents that site d1 is in Waiting, site d2 is in Inactive and d3 is in Performing.
Analogously, (23,-,-) denotes a marking in which d2 and d3 are Inactive and d1 is Waiting.
It can be verified that the contents of all the other places can be derived from this
condensed information. Analogously, the bindings are condensedly represented by the
acronym of the transition and the sites assigned to the variables.

To illustrate the use of the OG in the implementation of the CPNCCF criteria, we will
consider the all-markings and all-loop-free-paths criteria. The requirements established
by the all-markings criterion correspond to the set of markings in the OG (i.e., the set of
nodes). For the all-loop-free-paths, the testing requirements are obtained traversing the
OG and collecting all paths that are loop free. The other criteria can be implemented in
a similar way.

Table 1 presents the number of testing requirements established by each of the cri-
terion of CPNCCF for the CPN in Figure 1, as well as some examples of them. These
requirements can be checked against the OG in Figure 2.

In order to illustrate how the occurrence graph can be reduced and the impact of this
reduction in the testing requirements, consider the application of Equivalence Classes to
this example. The equivalence relation for markings is defined such that two markings are
considered equivalent if, and only if, there exists a bijective function ϕ : DBM → DBM
that can “convert” one marking in the other. For example, the marking (2,3,-) is equiv-
alent to the marking (1,2,-), since the latter can be obtained from the former by means
of the bijection function that maps d1 into d3, d2 into d1 and d3 into d2. The equivalence
relation for bindings is defined analogously. Intuitively, these equivalence relations mean
that two markings are equivalent if they differ only in the names of the DBMs. The
reduced occurrence graph is presented in Figure 3. It can be noted that the graph is
fairly smaller than the one presented in Figure 2.



Table 1: Subset of the Test Requirements (tr) for the CPN of Figure 1.

Criteria Number of Test Requirements and Some Examples

all-paths ∞ tr = {〈(-,-,-), (12,-,-), (1,2,-), (-,12,-), (-,1,2), (-,-,12), (-,-,-),
(13,-,-), (1,3,-)〉, 〈(-,-,-), (23,-,-), (3,2,-), (3,-,2)〉, . . . }

all-paths-k-
-markings∗

1102 tr = {〈(-,-,-), (23,-,-), (3,2,-), (3,-,2), (-,3,2), (-,-,23), (-,-,-),
(23,-,-), (3,2,-), (3,-,2), (-,3,2)〉, 〈(-,-,-), (23,-,-), (3,2,-), (-,23,-),
(-,3,2), (-,-,23), (-,-,-), (13,-,-), (3,1,-), (-,13,-), (-,1,3), (-,-,13)〉,
. . . }

all-simple-paths 76 tr = {〈(-,-,-), (23,-,-), (3,2,-), (3,-,2), (-,3,2), (-,-,23), (-,-,-)〉,
〈(-,-,-), (23,-,-), (2,3,-), (-,23,-), (-,3,2), (-,-,23)〉, . . . }

all-loop-free-paths 58 tr = {〈(-,-,-) (23,-,-) (2,3,-)〉, 〈(-,-,-) (13,-,-) (3,1,-) (3,-,1) (-,3,1)
(-,-,13)〉, 〈(-,-,-) (23,-,-) (3,2,-) (3,-,2)〉, . . . }

all-transitions 4 tr = {SM, RM,SA,RA}
all-bindings 18 tr = { “RA,1”, “RA,2”, “RA,3”, “RM,1,2”, “RM,1,3”,

“RM,2,1”, “RM,2,3”, “RM,3,1”, “RM,3,2”, “SA,1,2”,
“SA,1,3”, “SA,2,1”, “SA,2,3”, “SA,3,1”, “SA,3,2”, “SM,1”,
“SM,2”, “SM,3” }

all-markings 28 tr = {(-,-,-), (23,-,-), (13,-,-), (12,-,-), (3,2,-), (2,3,-), (3,-,2),
(-,23,-), (-,3,2), (-,-,23), (-,2,3), (2,-,3), (3,1,-), (1,3,-), (3,-,1),
(-,13,-), (-,3,1), (-,-,13), (-,1,3), (1,-,3), (2,1,-), (1,2,-), (2,-,1),
(-,12,-), (-,2,1), (-,-,12), (-,1,2), (1,-,2) }

∗ With k = 2.

Figure 3: Occurrence Graph Reduced with Equivalence Classes.



Table 2: Subset of the Test Requirements (tr) for the CPN of Figure 1 with
Equivalence Classes.

Criteria Number of Test Requirements and Some Examples

all-paths ∞ tr = {〈(-,-,-), (12,-,-), (1,2,-), (-,12,-), (-,1,2), (-,-,12), (-,-,-), (13,-,-),
(1,3,-)〉, 〈(-,-,-), (23,-,-), (3,2,-), (3,-,2)〉, . . . }

all-paths-k-
-markings∗

27 tr = {〈(-,-,-), (23,-,-), (3,2,-), (3,-,2), (-,3,2), (-,-,23), (-,-,-), (23,-,-),
(3,2,-), (3,-,2), (-,3,2)〉, 〈(-,-,-), (23,-,-), (3,2,-), (-,23,-), (-,3,2),
(-,-,23), (-,-,-)〉, . . . }

all-simple-paths 11 tr = {〈(-,-,-), (23,-,-), (3,2,-), (3,-,2), (-,3,2), (-,-,23), (-,-,-)〉, 〈(-,-,-),
(23,-,-), (2,3,-), (-,23,-), (-,3,2), (-,-,23)〉, . . . }

all-loop-free-paths 9 tr = {〈(-,-,-) (23,-,-) (2,3,-)〉, 〈(-,-,-) (23,-,-) (3,2,-) (3,-,2)〉, . . . }
all-transitions 4 tr = {SM, RM,SA,RA}
all-bindings 6 tr = {“RA,1”, “RM,2,1”, “RM,3,1”, “SA,2,1”, “SA,3,1”, “SM,1”}
all-markings 7 tr = {(-,-,-), (23,-,-), (3,2,-), (2,3,-), (3,-,2), (-,23,-), (-,3,2), (-,-,23),

(-,2,3), (2,-,3) }

∗ With k = 2.

Table 2 presents the number of testing requirements, taking into account the equiv-
alence relations. The cardinality of the sets of test requirements are sensibly more
manageable than in the case where no equivalence relation were considered. However,
it will not be sensible to possible errors that are dependent on a particular DBM.

4.3. CPNCCF Criteria: Adequacy Analysis and Test Set Generation

The testing requirements can be used for two distinct but related purpose: i) to guide
the generation of the test sequences or ii) to evaluate the adequacy of the test sequence
set in relation to the corresponding coverage criterion. In this paper, we address the use
of CPNCCF as a coverage criteria. We have developed a prototyping tool for supporting
this task. This tool, named T esCCCPN , is part of a large environment we are developing
to supporting the testing and validation of CPNs with the coverage criteria of CPNCCF.

The overall schema of execution is presented in Figure 4. Before being able to execute
T esCCCPN , the CPN is input to an external module, named cpn-ml2sml (step a), which
compiles it, generating SML code [12] for the simulation/execution of the net (step b).
The CPN SML code is an intermediate representation of the CPN which embodies the
firing semantics. The CPN SML code is, then, linked to T esCCCPN (step c).

One of the functionality of T esCCCPN is the generation of the occurrence graph. The
occurrence graph is used internally to calculate the testing requirements. The tool can
output the graph (step f), so that the user can inspect it. Currently, T esCCCPN outputs
the graph in digraph format of GraphViz [10]. GraphViz is a powerful tool for drawing
graphs and is able to generating several different kinds of image (e.g., JPEG, PNG, EPS)2.

The T esCCCPN can be controlled (step d) with data about the testing criteria the
user is interested in, as well as equivalence relations, if any. The equivalence relations
must be input as SML functions that determine whether two markings (respectively, two
bindings) are equivalent or not. There are two possible execution mode:

2The occurrence graphs in Figures 2 and 3 were generated in this way.
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Figure 4: Overall of the Execution Schema of T esCCCPN .

(i) the set of test cases is input (step e) and the coverage data is output (step h). The
coverage data include how many testing requirements are defined by a given criterion,
how testing requirements were exercised by the test cases, and, if requested, which
testing requirements were not exercised.

(ii) no input is furnished and a set of test cases is yielded (step g). In this case, the
tool will produce a set of test cases that is, by construction, adequate to a given
criterion.

5. Concluding Remarks

Our main contribution is the definition of a structural coverage criteria family for the
Coloured Petri Nets, named CPN Coverage Criteria Family (CPNCCF). To our knowledge
this is the first effort to provide coverage criteria to assess the quality of the testing
and validation activities in the context of CPN specifications. The inclusion relation
among these criteria has been addressed providing information for the establishment of
an incremental testing strategy for CPN specifications.

The CPNCCF testing requirements are derived based on the occurrence graph. This
information can be used to assess, considering a given criterion, how complete the set
of test sequences is, by comparing the number of testing requirements that were derived
with the number of testing that were exercised. Moreover, it can be used to generate test
sequences.

It should be observed that the adequate test set obtained to test and validation the
specification is in fact a mechanism to conduct the conformance testing for an imple-



mentation under test. In this scenario it would be worthwhile to further investigate the
relationship between these abstraction levels: specification and implementation.

Two other aspects that need to be further explored are the cost and the effectiveness
of the CPNCCF criteria family. The cost of the application evaluates the necessary effort
to apply the criterion while the effectiveness evaluates the capability of the criterion in
revealing errors. These aspects are currently under investigation.

The evolution of our work on this subject is directed to three lines of research:

• To conduct empirical studies to evaluate the cost and benefits of the proposed
criteria. Although the preliminary results we presented in this paper indicates
that the criteria can be used in practice, it is very important to collect empirical
evidences of its effectiveness in revealing errors in real, industrial-scaled case studies.
Currently, we are identifying such case studies.

• To conduct theoretical and empirical studies to compare the proposed criteria with
other CPN validation techniques (e.g., Mutation Testing).

• To incorporate supporting to Stubborn Sets in the T esCCCPN . Currently, it sup-
ports only Equivalence Classes as an approach to reduce the size of occurrence graph
and to avoid the state explosion problem.

• To allow that the equivalence relations be input as functions defined in terms of
elements from the CPN model. Currently, to input an equivalence relation in the
T esCCCPN , the user must have knowledge of the SML internal representation of the
CPN.

• To investigate the impact of different equivalence relations in the cost and effec-
tiveness of the criteria. The usage of a proper equivalence relation can drastically
reduce the size of the occurrence graph and, thus, the number of testing require-
ments. However, it actually builds an abstraction of the system and may lose some
information that may be useful to reveal errors.
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