
Early Verification of Software Behavior in a Time Interval
Framework

Paulo Sérgio Muniz Silva

Departamento de Engenharia de Computação e Sistemas Digitais
Escola Politécnica da Universidade de São Paulo

Av. Prof. Luciano Gualberto, 158, trav. 3 05508-900 São Paulo SP, Brazil
e-mail: paulo.muniz@poli.usp.br

Abstract

Verification of software behavior in early moments of the development process is not
an easy task. Typically, software engineers draw diagrams to reason about the software
functional behavior, for example, drawing Message Sequence Charts (MSCs). Not
always does the intended behavior described by MSCs correspond to their actual
behavior. To help the verification of the actual behavior of MSCs, this paper describes
an interpretation of (basic) MSCs in a temporal framework that formally represents the
qualitative, and possibly imprecise, temporal information conveyed in MSCs. The
framework is an algebra of binary relations on time intervals, and provides rules of
reasoning about the temporal information. The interpretation provides a polynomial-
time solution to the verification problem and lays the foundations of a model checking
tool.

Keywords: formal verification and validation, requirements model checking, temporal
reasoning.

1. Introduction

Verification of the software system behavior when software engineers work on the
requirements or analysis viewpoints is not an easy task. In early moments of software
development, software engineers largely draw diagrams to reason about the behavior of the
software that will be built. For example, when working with use case models [12], from the
analysis viewpoint, software engineers typically draw sequence diagrams [24] to depict the
realization of scenarios for the use cases flows of events, which show interactions between
domain objects. With the exception of real-time software engineers, the majority of software
engineers do not accomplish the verification of the temporal properties of these diagrams,
even if the solution for the software system that will be built requires distributed and
concurrent architectural styles. An important fact that contributes to this situation is that
traditional verification and validation tools are not of much help when faced with the partial
information available at these early stages [9]. How to rigorously verify the temporal behavior
of software systems initially defined in these intuitive diagrams?

The aforementioned sequence diagram is based on the Message Sequence Chart (MSC)
artifact [24], which is a well-known visual and intuitive tool largely used to model the
behavior of systems, representing sequences of events exchanged between system
abstractions. Nowadays, it is adopted within a wide range of system and software developing
methods. The International Telecommunication Union (ITU) formally defined an MSC
standard [11]. We are interested in a particular interpretation of MSCs that analyzes their
temporal behavior in a pure qualitative and intuitive manner, without assigning any timing

values or considering any underlying architectural constraints, while preserving their intuitive
simple drawings. Our motivation stems from the fact that when intuitively describing the
behavior of the problem domain events, we often reason qualitatively. For example, we
usually say: “X sends the message M2 to Y after receiving the message M1 from Z”, instead
of assigning particular time values to the sending and the receiving events. Also important is
that these kinds of events last a certain time, allowing us to say: “X sends the message M4 to
W during the reception of the message M3 from Z”. In other words, we are solely interested
in the purely qualitative temporal analysis of the software behavior and would like to have a
straight semantics to capture this qualitative, and often imprecise, temporal information
conveyed in the diagrams.

An appropriate temporal ontology that directly supports these temporal notions is Allen's
time interval theory [1]. Allen's theory was developed in the context of the so-called ‘Naive
Physics’ with its common-sense representations, by taking the notion of the interval of time as
a primitive one. It has been popular in natural language understanding [2], planning [3],
knowledge representation [30], and in other fields of AI research. Allen's theory is an algebra
of binary relations on intervals, carrying qualitative temporal information and allowing a
formal reasoning about such information. Our interpretation of MSCs is defined within such a
time framework.

On the other hand, software requirements can be viewed as a descriptive theory of an
application domain [25] and MSCs are a useful and simple tool to model the temporal
properties of this descriptive theory. Our proposal is to present a particular interpretation of
MSCs that supports the generation of consequences of their temporal properties, in such a
manner that we can formally check the potential conflicts between the intended and the actual
behavior in Allen's temporal framework, from the requirements or analysis viewpoints. The
verification process shall completely disregard the architectural constraints on the
computational solution that will be built, to be consistent with the basic assumption that the
verification is performed from the requirements or analysis views, and not from the design
view. Lastly and importantly, the presented formal model lays the foundation of a model
checking tool. This verification tool will help the verification process, automatically checking
for conflicts between the actual semantics of the temporal behavior of an MSC and its
intended behavior modeled by a software engineer.

A preliminary version of these ideas appeared in [19]. The present paper completely
reformulates the original interpretation of MSCs, simplifies the interpretation and, most
important, proposes a tractable solution for the verification problem, overcoming the
complexity limitations of the former model. Section 2 summarizes the verification
methodology. Section 3 presents the proposed interpretation of MSCs. Section 4 presents two
simple worked examples. Section 5 presents some conclusions and our current related
research.

Related Work. MSCs have been extensively analyzed in the last years. Current trends in
the analysis of MSCs take various approaches: process algebra [10, 16, 17] and varieties of
model checking [4, 5, 6, 7, 13], to mention just a few. Studies working with partially ordered
event structures derived from MSCs [20, 21] are of special interest. However, these partially
ordered structures are studied from the design view. Our encoding in the form of Allen's
theory is another model for the semantics of the MSC that makes no assumption about
architectural or design constraints (for example, it does not make any assumption about the
semantics of message passing, e.g. first in first out). The complexity of the solution for the
verification problem is similar to that later related works, but it presents the outcomes in the

form of qualitative temporal relations, as the first intuitions about the functional requirements
behavior are used to be.

2. The Verification Methodology

Firstly, we will present a brief overview of MSCs, quoting [5]. MSCs are a graphical
representation that shows message exchanges between concurrent process abstractions within
a system. Figure 1(a) shows a basic MSC [11], the MSC type we will use as a model for the
intended software system behavior.

Each vertical line has a start and an end symbol, and represents processes or autonomous
agents (P1, P2 and P3). Each horizontal arrow describes a message sent from one process to
another (a, b and c). The tail of an arrow corresponds to the event of sending a message,
whereas the head corresponds to its receipt. Communication is one-to-one and asynchronous,
and control flows independently within each process from the start symbol to the end symbol.
In each process, the events are temporally ordered from top to bottom. The system terminates
when all processes have terminated.

The behavior of an MSC is the set of sequences of sent and received messages, i.e., MSCs
represent the intended behavior by the order of the exchanged messages between processes.
The intended order does not necessarily represent the actual semantics of the MSC. Conflicts
are likely to happen. For example, it is not hard to see that there is a scenario for the MSC of
Figure 1 in which message c arrives earlier than message a at process P1, conflicting with the
intended order.

Allen's temporal structure [1] captures two aspects of particular interest: the strict relative
temporal knowledge (e.g. “X happens before Y”, “X happens during Y”, etc.) and the
uncertainties of the information about the relationship between two events in time. The
temporal structure is a simple and linear model of time. The original theory has the time
interval as a primitive. Five axioms of the temporal structure and a complete set of thirteen
intuitive binary relations between intervals - the Allen's basic relations - are defined. Figure
1(b) depicts these relations.

Figure 1: A Basic MSC and Allen's Basic Interval Relations

a

b

c

P1 P2 P3

x
y

y
x

y
x

x
y

y
x

y
x

x
y

x before y

x meets y

x overlaps y

x during y

x starts y

x finishes y

x equals y

x after y

x met-by y

x overlapped-by y

x contains y

x started-by y

x finished-by y

(a) (b)

a

b

c

P1 P2 P3

a

b

c

P1 P2 P3

x
y

y
x

y
x

x
y

y
x

y
x

x
y

x before y

x meets y

x overlaps y

x during y

x starts y

x finishes y

x equals y

x after y

x met-by y

x overlapped-by y

x contains y

x started-by y

x finished-by y

x
y

y
x

y
x

x
y

y
x

y
x

x
y

x before y

x meets y

x overlaps y

x during y

x starts y

x finishes y

x equals y

x after y

x met-by y

x overlapped-by y

x contains y

x started-by y

x finished-by y

(a) (b)

The verification methodology for a basic MSC is based on the following steps:

1. Produce the basic Message Sequence Chart that models an application domain
intended behavior. The model results from the analyst's effort, and an adequate
available tool can support MSCs drawings.

2. Translate the MSC into a labeled MSC [4], defined in section 3. A model checking
tool may carry out this translation automatically.

3. Provide an interpretation based on a time interval framework for the resulting (step 2)
structure. In section 3 we present the interpretation model. The interpretation builds a
network structure with nodes denoting time intervals and edges denoting temporal
relations between time intervals. The network structure constitutes the descriptive
theory of the intended behavior. A model checking may carry out this step
automatically.

4. Analyze the resulting interpretation. The network built in phase 3 is a generative
system1. Its solution provides all the consequent temporal scenarios, which may show
hidden and occasionally undesirable behaviors unforeseeable upon the making of the
original MSCs. In other words, a model checking tool solves the network
automatically and the analyst can verify if there are conflicts between the actual
semantics of an MSC and its visual order. The analysis uses only the intuitive Allen's
basic relations. Finally, the detected undesirable behavior needs to be validated with
stakeholders to evaluate if it actually is a problem to the future system that will be
built.

3. The Interpretation of MSCs

We will define a formal structure, the basic labeled MSC, which captures the essential
properties of the basic MSC [11]. We borrow the definition of the labeled MSC from [4], and
define some required additional details2.

Definition 1 Let P = {P1,…,Pn} be the set of processes, and M be the set of messages. Let the
label !(i, j, a) denote the event “process Pi sends the message a to process Pj”. Let the label
?(i, j, a) denote the event “process Pi receives the message a from process Pj”. Define the set
LS = {!(i, j, a) | i,j ∈ {1,…,n} ∧ a ∈ M} of send labels, the set LC = {?(i, j, a) | i, j ∈ {1,…,n}
∧ a ∈ M} of receive labels, the set L = LS ∪ LC as the set of event labels, and the set LN of
next process event labels. A basic labeled MSC over processes P is defined by:

• A set E of events partitioned into a set S of sending events and a set C of receiving
events.

• A mapping p : E � {1,…,n} that maps each event to a process on which it occurs.

• A bijective mapping f : S � C between sending and receiving events, matching each
sending event with its corresponding receiving event.

��

�
�A generative system [25] is a theory consisting of a set of axioms and rules of inference capable of

generating consequences of the theory��
�
�In [19] we took a completely different approach defining an intermediate structure to describe an MSC, the

Message Flow Graph (MFG) [13]. We abandoned that approach since the MFG introduces a further complexity
and requires the modeling of inessencial elements for our purposes.�

• A bijective mapping ne : E � E that maps each event on a process to its consecutive
event on the same process. Each process event is connected to a unique consecutive
event in the same process. This mapping is called next process event.

• A mapping l : E � L that labels each event such that l(S) ⊆ LS and l(C) ⊆ LC. For
consistency of labels, for all s ∈ S, if l(s) = !(i,j,a) then p(s) = i and l(f(s))= ?(i, j, a)
and p(f(s))=j.

• A mapping h : E × E � LC, which labels the next process events on each process Pi.

For each i ∈ {1,…,n}, there is a total order �i on the events of process Pi, that is, on the
elements of p-1(i), such that the transitive closure of the relation � � �i∈{1,…,n}�i � {(s, f(s)
| s ∈ S} is a partial order on E. This partial order is called visual order.

The total order �i denotes the temporal order of the events of process Pi. The partial order
� denotes the visual order of the MSC, enforcing the notion that “messages cannot travel back
in time”, and expresses the intended temporal behavior of the MSC.

The partial order corresponding to the MSC of Figure 1 is depicted in Figure 2, where the
nodes are sending and receiving events, and the edges are messages and next process events.

Figure 2: The partial order of the MSC of Figure 1

The interpretation of a basic labeled MSC is realized in a time interval framework.

Definition 2 A time interval X is represented as a tuple (x-, x+), such that x-
� x+, where x- and

x+ are interpreted as points in a real line3. An interval interpretation I-interpretation is the
mapping of time intervals to pairs of distinct real numbers such that the beginning of an
interval is strictly before the end of the interval [22].

Definition 3 Let I be the set of all mutually exclusive basic relations {b, bi, m, mi, o, oi, s, si,
d, di, f, fi, eq}, where b stands for before, bi for after, m for meets, mi for met-by, o for
overlaps, oi for overlapped-by, s for starts, si for started-by, d for during, di for contains, f for
finishes, fi for finished-by, and eq for equals. The relation between two time intervals is any

��

�
�In Allen's original ontology [1], the intervals are primitive objects. They are not conceived in terms of their

endpoints. For reasons that will become apparent right away, we will not follow that interpretation as we did in
[19] but the classical approach which defines the timeinterval by their endpoints.�

a

b

c

p1

p2

p3

?(2,1,a) !(2,1,a)

!(2,3,b)

?(2,3,b)

!(3,1,c)?(3,1,c)

a

b

c

p1

p2

p3

?(2,1,a) !(2,1,a)

!(2,3,b)

?(2,3,b)

!(3,1,c)?(3,1,c)

subset of I, representing a disjunction of the basic relations. The disjunction of all basic
relations is denoted by � and the empty relation is denoted by �.

Allen's framework constitutes an algebra: the Allen's interval algebra. The algebra is based
on the notion of relations between pairs of intervals. Under the I-interpretation, we can
express the basic relations in terms of endpoint relations. For example, the relation
X overlaps Y is equivalent to x-

� y-, x-
� y+, x+

� y-, x+
� y+. In order to define our

interpretation, we have to consider the properties of Allen's interval algebra and of interval
relations’ networks.

Definition 4 Allen's Interval Algebra IA is the algebra with underlying set 2I (the power set of
I), unary operator converse (denoted by ∪), binary operator intersection (denoted by ∩) and
binary operator composition (denoted by �). The intersection can be expressed as the set-
theoretic intersection of the sets of basic relations. The composition is the union of the
component-wise composition of the basic relations [22]. Allen provides a composition table
for the basic relations [1]. Let r and s be relations between two intervals. The following
expressions hold:

∀X, Y (X r∪ Y ⇔ Y r X)

∀X, Y (X (r ∩ s) Y ⇔ X r Y ∧ X s Y)

∀X, Y (X (r � s) Y ⇔ ∃ Z(X r Z ∧ Z s Y)).

For example, we write {d, o, s} to denote the disjunction of basic relations d, o and s.
Therefore, {d, o} ⊂ {d, o, s}. Also, if X and Y are intervals and X {d, o, s} Y, then
Y {di, oi, si} X. The proposed semantics of a labeled MSC interprets messages and next
process event edges as time intervals, called message and process intervals, respectively.
They are naturally defined in terms of the I-interpretation, i.e., by their endpoints. Sending
and receiving events end a message interval, whereas a process interval is ended by any two
consecutive events in a process. For the sake of simplicity, we will express the endpoint
relations of these time intervals in terms of basic relations.

Definition 5 In a basic labeled MSC we have two types of time intervals: the message interval
and the process interval.

• Define the mapping u : E � ℜ, where ℜ is the set of real numbers. The message
interval is the tuple (a, b), such that a

� b, where a, b ∈ ℜ, and for an s ∈ S, if
 u(s) = a then u(f(s)) = b.

• Define the mapping v : E � ℜ. The process interval is the tuple (a, b), such that a � b,
where a, b ∈ ℜ,, and for e1, e2 ∈ E and (e1, e2) ∈ ne, if v(e1) = a then v(e2) = b.

The visual order, which expresses the intended temporal behavior of a basic MSC, relates
messages with each other through processes. Messages are sent and received by processes.
Therefore, the relative occurrence of messages in the time dimension is determined by the
order in which they are performed in processes. We can define the following fundamental
patterns of relationships between a message interval and a process interval, depicted in Figure
3, where the symbol '*' denotes any process, the symbol '1' denotes the process of reference
(“this process”), and the symbol 'ip' denotes the label of the next process event on the process
of reference.

Definition 6 In the visual order of every basic labeled MSC there are six patterns of
relationships between message and process intervals, depicted in Figure 3. A fundamental

reasonable assumption is that a sending event is a controlled event in a process, which is only
issued when a preceding event has occurred [5]. As a consequence, the visual order is not
supposed to be guaranteed between pairs of receiving events, since they are not controlled
events in a process. Patterns 5a and 5b (Figure 3) are a consequence of this assumption that
prevents their merging into patterns 1 and 3, respectively.

Figure 3: Basic patterns of a labeled MSC

The interpretation of the basic patterns means the evaluation of the relative positions
between a message interval and the process interval. The essence of the behavior
representation in an MSC are messages, therefore we are primarily interested in the relative
positions of messages intervals. We proceed with the interpretation as follows: we fix the
position of the process interval and vary the relative position of the message interval with
respect to the process interval. Obviously, the mutual positions shall respect the patterns
configurations. The comparison of the resulting mutual positions between the intervals with
Allen's basic interval relations of Figure 1b gives the interval relations. Let ia be the message
interval delimited by the sending and the receiving events of message a, and let ip be the
process interval delimited by events of the next process event p. It is easy to see that:

• Pattern 1. The message interval ia meets the process interval ip, i.e., ia {m} ip.

• Pattern 2. The message interval ia starts, or equals, or is-started-by the process
interval ip, i.e., ia {s, si, eq} ip.

• Pattern 3. The message interval ia finishes, or equals, or is-finished-by the process
interval ip, i.e., ia {f, fi, eq} ip.

• Pattern 4. The message interval ia is-met-by the process interval ip, i.e., ia {mi} ip.

• Patterns 5a and 5b. As a consequence of definition 6, they present unknown temporal
information, i.e. they may contain any interval relation, or ia � ip.

ia

ip

?(*,1,a)

!(1,*,m)

!(*,1,a)

ia

ip

!(1,*,a)

!(1,*,m) or ?(*,1,m)

?(1,*,a)

ia

ip

!(1,*,m)

?(*,1,a) !(*,1,a)

ia

ip

!(*,1,a) ?(*,1,a)

!(1,*,m) or ?(*,1,m)

ia

ip

?(*,1,a)

?(*,1,m)

!(*,1,a)

ia

ip

?(*,1,m)

!(*,1,a)?(*,1,a)

Pattern 1 Pattern 2 Pattern 3

Pattern 4 Pattern 5a Pattern 5b

ia

ip

?(*,1,a)

!(1,*,m)

!(*,1,a)

ia

ip

!(1,*,a)

!(1,*,m) or ?(*,1,m)

?(1,*,a)

ia

ip

!(1,*,m)

?(*,1,a) !(*,1,a)

ia

ip

!(*,1,a) ?(*,1,a)

!(1,*,m) or ?(*,1,m)

ia

ip

?(*,1,a)

?(*,1,m)

!(*,1,a)

ia

ip

?(*,1,m)

!(*,1,a)?(*,1,a)

Pattern 1 Pattern 2 Pattern 3

Pattern 4 Pattern 5a Pattern 5b

The set of message and process intervals from a labeled MSC, and the binary relations
between each pair of them, constitute a network where the nodes are messages or process
intervals and the edges are the interval relations corresponding to the basic pattern with which
the message and process intervals match. We call this network the Interval Calculus Network
(ICN). Figure 4 illustrates the derivation of an ICN from the labeled MSC of Figure 1, where
ia, ib and ic, denote the message intervals to the messages a, b and c, respectively; and ip1,
ip2 and ip3 denote the process intervals to the next process events p1, p2 and p3 of processes
P1, P2 and P3, respectively. Walking through all pairs of relations in the visual order of the
MSC, we derive the following interval relations in the resulting ICN: ia � ip1, from pattern
5a; ia {s, si, eq} ip2, from pattern 2; ib {mi} ip2, from pattern 4; ib {m} ip3, from pattern 1; ic
{mi} ip3, from pattern 4; ic � ip1, from pattern 5b.

Figure 4: The resulting ICN

The ICN is a network of binary constraints whose edges are temporal relations between
nodes. Let us define the Interval Algebra Network (IA network). The following definition is
quoted from [28].

Definition 7 A network of binary constraints [18] is defined as a set X of n variables
{x1, x2,…, xn}, a domain Di of possible values for each variable, and binary constraints
between variables. A binary constraint Cij, between variables xi and xj, is a subset Cij ⊆ Di ×
Dj. For networks built on Allen's framework, it is required that (xj, xi) ∈ Cji ⇔ (xi, xj) ∈ Cij. An
instantiation of the variables in X is an n-tuple (X1, X2,…, Xn), representing the assignment of
Xi ∈ Di to xi. A consistent instantiation of a network is an instantiation of the variables such
that the constraints between variables are satisfied. A network is inconsistent if no consistent
instantiation exists.

An IA network is a network of binary constraints where the variables represent time
intervals and the binary constraints between variables are represented implicitly by
disjunctions of the basic relations.

Proposition 1 The ICN derived from a labeled MSC is an IA network.

Proof. Let M and N denote the sets of message intervals and process intervals, respectively.
Definition 5 states that their elements are time intervals. The ICN is a set of variables
{x1, x2,…,xn} with possible values taken from the domain D = M ∪ N, that is, the values of the
xi are time intervals. The relations between the ICN variables are disjunctions of basic
relations, since the derivation process of the ICN relations is carried out in accordance with
the basic patterns, delivering interval relations. Consequently, the ICN is an IA network. �

{s, si, eq}
ia ip2 ib

{mi}

{mi}

{m}

�

�

ip1 ip3ic

{s, si, eq}
ia ip2 ib

{mi}

{mi}

{m}

�

�

ip1 ip3ic

The fundamental reasoning problems in an IA network are [27]: find a scenario that is
consistent with the information provided, and find the feasible relations between all pairs of
intervals. We are interested in finding the feasible relations between all pairs of intervals
mostly, that is, in finding the deductive consequences of the temporal knowledge represented
in an MSC.

Definition 8 A basic relation r ∈ W is feasible with respect to a network W if and only if there
exists a consistent instantiation of the network where r is satisfied [27]. Given an IA network
W, the set of feasible relations between two variables xi and xj in the network is the set
consisting of all and only the r ∈ W that are feasible. The minimal network representation w,
of a network W, is the network for which wij is the set of feasible relations between variables
xi and xj in W, for every i, j = 1,…, n. Determining the feasible relations in W can be viewed
as determining the deductive consequences of the temporal knowledge.

Constraint satisfaction techniques are used to solve the reasoning problem. For the IA
network, finding a consistent scenario and finding the feasible relations are NP-complete
problems and intractable in the worst case [27, 28]. In fact, Allen's algorithm [1] is an
approximation solution for the network in the full algebra (IA Algebra). Subsequent research
has focused on designing more efficient algorithms or identifying tractable special cases of
the full algebra for which there are exact solutions [8, 14, 28]. The full IA algebra contains
213 = 8192 possible relations between intervals. Subclasses of the IA algebra are obtained by
considering their subsets giving 28192 subclasses [8]. In many applications the full algebra is
not necessary and restricted classes of interval algebras have an exact solution to the temporal
network4.

We claim that the binary constraints of solved ICNs are a tractable subset of the IA
algebra underlying set. In other words, we claim that the solution for the reasoning problems
of the ICN is exact and tractable in polynomial time. In order to prove it we need some other
definitions.

Definition 9 Quoting [22], let a formula X {r1,…, rn} Y be called an interval formula. Such a
formula is satisfied by an I-interpretation � for some i, 1 � i � n. Finite sets of interval
formulas are denoted by Θ. The set Θ is I-satisfiable if and only if there exists an
I-interpretation � that satisfies every formula of Θ. Such a satisfying I-interpretation � is
called an I-model of Θ. If an interval formula φ is satisfied by every I-model of Θ, φ is
logically implied by Θ, written Θ �i φ.

The verification task requires the finding of the set of feasible relations between the
intervals in an ICN. Finding a consistent scenario in an IA network is another way of saying
whether there exists an I-model of Θ (abbreviated ISAT). Finding the feasible relations
between all pairs of intervals is another way to say whether there exists the strongest implied
relation between each pair of intervals X, Y, i.e., the smallest set R such that Θ �i X R Y
(abbreviated ISI). It is a known fact [29] that ISAT(IA) is NP-complete, and also that ISAT
and ISI are equivalent under polynomial Turing-reductions. This equivalence also extends to
subclasses of IA, provided they contain all basic relations [22]. We are concerned about
polynomial-time ISI mostly. Let us investigate if all possible binary constraints of solved ICN
networks are a special tractable case of the IA algebra.

��

�
�The approach taken in [19] was intractable, since we worked in the full algebra.�

Given a set Θ, we can generate the least subalgebra containing the relations r such that
r ∈ Θ and which is closed under converse, intersection and composition, computing the
closure with respect to conjunction and transitivity, for the set Θ of generating relations [22].
Closures can be computed using, for example, the aclose tool [23]. The resulting
subalgebra is polynomially equivalent to the original class with respect to satisfiability.

Definition 10 Let SAB ⊆ IA. The I-closure of SAB, denoted by CI(SAB), is the least
subalgebra of IA containing SAB and which is closed under converse, intersection and
composition.

Proposition 2 Let SAB ⊆ IA. The ISAT(SAB) is polynomial if and only if ISAT(CI(SAB)) is
polynomial.

Proof. See [22]. �

Definition 11 Let SAC ⊆ IA be the algebra that can be translated into relations between the
endpoints of the intervals using only the relations comprised by the Continuous Point Algebra
(PAC) [28]. SAC has the underlying set {�, {�}, {�, �}, {�}, {�}, {�, �}, {�, �, �}}, and
operators converse, intersection and composition. SAC is also known as Continuous
Pointizable Interval Algebra.

Proposition 3 Any path consistency algorithm [1, 15] finds ISAT(SAC) exactly and
consequently ISI(SAC) in polynomial time.

Proof. See [28].�

Now we can define the subalgebra SAICN, which meets all the requirements for the binary
constraints of the ICN, and prove that it is a tractable special case of the IA algebra.

Definition 12 Let SAB ⊆ IA be the subset of relations {{m}, {mi}, {s, si, eq}, {f, fi, eq}, �}
which are allowed to occur in the translation of a labeled MSC into an ICN. We define the
subalgebra SAICN, the least subalgebra of IA containing SAB computed by the closure
CI(SAB), and which is closed under operators converse, intersection and composition.

The underlying set of SAICN, generated by the aclose tool [23], is enumerated in the
appendix and contains all possible relations that occur in the binary constraints of solved ICN
networks. We claim that our verification problem of an ICN (the ISI problem) is exact and
tractable.

Proposition 4 Any path consistency algorithm exactly finds ISI(SAICN) in polynomial time.

Proof. Let Θ be the set of interval formulas of SAICN. It can be shown by inspection that
Θ ⊂ SAC (the underlying set of SAC is enumerated in [28]). As Θ contains all the basic
relations, ISAT and ISI are equivalent under polynomial reduction. By Propositions 2 and 3
our claim immediately follows. �

Now, we can define the ICN network formally.

Definition 13 Let T be the set of intervals. Let LT be the set of interval labels. Let R be the set
of the interval relations of SAB. Let LR be the set of ICN interval relation labels, whose
members denote the interval relations of SAB. The ICN is a network defined by:

• A set M of message intervals and a set N of next process event intervals that partition
the set T.

• A bijective mapping h : M � N between message and next process event intervals.

• A mapping z : T �� LT that labels each interval.

• A mapping r : T ×�T ��LR that labels each relation between intervals. r is called an
interval relation.

• If there is an interval relation between two nodes with a particular set of relations, its
converse interval relation is the set whose elements are the converse of each element
from the former set.

4. Simple worked examples

We will present two simple worked examples: the verification of the familiar MSC of Figure
1 and an example taken from [26].

The MSC of Figure 1. By applying our methodology to the MSC of Figure 1 we have:

− Step 1 The produced MSC is depicted in Figure 1.

− Step 2 The partial order of the labeled MSC is depicted in Figure 2.

− Step 3 The resulting ICN is depicted in Figure 4.

− Step 4 Solve the resulting ICN.

In the step 4, we are interested in computing the strongest implied relation between all
intervals (ISI). To solve the ICN, we apply a path consistency algorithm described in the
literature, for example in [14, 28], which usually requires O(n2) time (n is the number of
intervals) for the computation of the Continuous Pointizable Interval Algebra (SAC). Here, we
used the path consistency routines of the software tool solve [23] and found the following
relations between messages a, b and c: R1 is ia {b, di, o, m, fi} ib; R2 is ia {b, di, o, m, fi} ic;
R3 is ib {b} ic.

For the sake of simplicity, let !message denote a sending event of a message in a process
and ?message denote a receiving event of a message in a process. The visual order of the
MSC requires that: ?a � ?c, !a � !b and ?b � !c. Expressing the interval relations in terms of
endpoint relations, the interval relations R1 and R3 guarantee !a � !b and ?b � !c, respectively.
However, interval relation R2 does not guarantee ?a � ?c. In fact, the basic interval relation
di ∈ R2 says that ?c � ?a, which contradicts the intended behavior expressed in the visual
order. Of course, a stakeholder should evaluate if ?a coming after ?c is a problem for the
application. If he or she concludes that this scenario must be avoided, the analysis could be
carried further and investigate how we could guarantee the intended visual order in the system
specification, for example, by specifying an adequate queuing model to the underlying
architecture of the system that will be built.

Another example. A more interesting example is taken from [26]. Figure 5(a) depicts an
MSC that specifies the general intended behavior for a simple system that controls employees
entering a secure building. If we assume that the Door, the Security System and the Camera
are autonomous systems, and the communication between them is asynchronous, we have a
specification flaw. Figure 5(b) shows the correspondent partial order, without the event labels
for the sake of space economy, and Figure 5(c) shows the resulting ICN.

Solving the ICN with the path consistency algorithm, we find the following interesting
relations: istartRecording {b, di, o, m, fi} iunlock, and istopRecording {bi, d, oi, mi, f}
istartRecording. The interval relation istartRecording {di} iunlock does not guarantee that the
camera records when an employee enters the building (the reception of the unlock message

occurs before the reception of the startRecording message). The interval relation
istopRecording {d} istartRecording says that the Camera stops recording before it starts
recording! To overcome this situation, while preserving the asynchronous model requirement,
we could modify the MSC by adding a message sent by the Camera that signals the Security
System upon the receipt of the startRecording message. Only after that does the Security
System send the unlock message to the Door. If we solve the modified MSC, we find
istartRecording {b} iunlock and istopRecording {bi} istartRecording that guarantee the
intended behavior.

Figure 5: A simple secure building control MSC, its visual order and ICN

5. Conclusions

In this paper, we have presented a framework to formally verify the behavior of a software
system from the requirements view, where traditional verification and validation tools work
under great difficulties. Our approach focused on the temporal properties of simple and
traditional MSCs in a purely qualitative manner, requiring neither extensions to the charts nor
consideration to the underlying architecture of the system that will be built. The latter is of
particular importance, since we are placed in the requirements viewpoint. Based on the
verification results, software engineers have a rich set of alternatives to be considered in the
design of the most appropriate underlying architecture that guarantees the software intended
behavior. We proved that the present interpretation is made in a tractable subclass of the
Allen's full algebra and that the verification task is exact and is carried out in polynomial
time. The present interpretation is a guide to the making of a model checking tool.

userID

Door

startRecording

unlock

closed

stopRecording

Security System Camera
userID

d1

unlock

closed
d2

ss1

ss2

ss4

startRecording

startRecording

c1

{s, si, eq}

iuserID id1 iunlock

{mi}

{m}

�

iss2

id2

{mi}

iclosed

iss4
{mi}

{m}

�

{mi}

istartRecording istopRecording

{mi}

{s, si, eq}

{f, fi, eq}

ic1

iss1

(a) (b)

(c)

userID

Door

startRecording

unlock

closed

stopRecording

Security System Camera

userID

Door

startRecording

unlock

closed

stopRecording

Security System Camera
userID

d1

unlock

closed
d2

ss1

ss2

ss4

startRecording

startRecording

c1

userID

d1

unlock

closed
d2

ss1

ss2

ss4

startRecording

startRecording

c1

{s, si, eq}

iuserID id1 iunlock

{mi}

{m}

�

iss2

id2

{mi}

iclosed

iss4
{mi}

{m}

�

{mi}

istartRecording istopRecording

{mi}

{s, si, eq}

{f, fi, eq}

ic1

iss1

{s, si, eq}

iuserID id1 iunlock

{mi}

{m}

�

iss2

id2

{mi}

iclosed

iss4
{mi}

{m}

�

{mi}

istartRecording istopRecording

{mi}

{s, si, eq}

{f, fi, eq}

ic1

iss1

(a) (b)

(c)

Currently, we are working on two goals: (1) the integration of metric temporal reasoning
(quantitative timing constraints) in our qualitative model to benefit from the expressive power
of both approaches, also worked out in polynomial time; (2) the managing of MSC
composition (multiple MSCs) through High-Level MSCs [11], used to describe more complex
behaviors.

Appendix

The underlying set of subalgebra SAICN with its 30 elements is:

{�, {eq}, {b}, {bi}, {d}, {di}, {o}, {oi}, {m}, {mi}, {s}, {si}, {f}, {fi}, {b, o, m},
{bi, oi, mi}, {d, o, s}, {di, oi, si}, {b, d, o, m, s}, {bi, di, oi, mi, si}, {eq, s, si}, {d, oi, f},
{di, o, fi}, {bi, d, oi, mi, f}, {b, di, o, m, fi}, {eq, f, fi}, {eq, d, di, o, oi, s, si, f, fi},
{eq, bi, d, di, o, oi, m, s, si, f, fi}, {eq, bi, d, di, o, oi, mi, s, si, f, fi}, �}.

Acknowledgments. Thanks to Nebel and Bürckert [23] for making available the software
tools used in this paper.

References

[1] Allen, J. F. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832-843, 1983.

[2] Allen, J. F. Towards a general theory of action and time. Artificial Intelligence, 23(2),
123-154.

[3] Allen, J. F. Temporal reasoning and planning. In Allen, J. F. and Kautz, H. A. and
Pelavin, R. N. and Teneberg, J. D., editors, Reasoning about Plans, pages 1-67. Morgan
Kaufmann, 1991.

[4] Alur, R., Etessami, K. and Yannakakis, M. Inference of message sequence charts. In
22nd International Conference on Software Engineering, pages 304-313, 2000.

[5] Alur, R., Holzmann, G. J. and Peled, D. An analyzer for message sequence charts. In
Margaria, T. and Steffen, B., editors, Tools and Algorithms for the Construction and
Analysis of Systems, number 1055 in LNCS, pages 35-48. Springer-Verlag, 1996.

[6] Alur, R. and Yannakakis, M. Model checking of message sequence charts. In CONCUR
'99: Concurrency Theory, Tenth International Conference, number 1664 in LNCS, pages
114-129. Springer-Verlag, 1999.

[7] Ben-Abdallah, H. and Leue, S. Expressing and analyzing timing constraints in message
sequence chart specifications. Technical Report 97-04, Department of Electrical and
Computer Engineering, University of Waterloo, 1997.

[8] Drakengren, T. and Jonsson, P. Eight maximal tractable subclasses of Allen's algebra
with metric time. Journal of Artificial Intelligence Research, 7:25-45, 1997.

[9] Holzmann, G. Early fault detection tools. In Margaria, T. and Steffen, B., editors, Tools
and Algorithms for the Construction and Analysis of Systems, number 1055 in LNCS,
pages 1-13. Springer-Verlag, 1996.

[10] ITU-T. Recommendation Z.120 Annex B: Algebraic semantics of message sequence
charts. ITU-TS, Geneva, Swiss, April 1995.

[11] ITU-T. Recommendation Z.120. Message sequence charts (MSC'96). ITU-TS, Geneva,
Swiss, April 1996.

[12] Jacobson, I. et al. Object-Oriented Software Engineering - a Use Case Driven Approach.
Addison-Wesley Publishing Co., London, 1992.

[13] Ladkin, P. B. and Leue, S. Interpreting message flow graphs. Formal Aspects of
Computing, 7(5):473-509, 1995.

[14] Ladkin, P. B. and Maddux, R. On binary constraint problems. Journal of the ACM,
41(3):435-469, 1994.

[15] Mackworth, A. K. Consistency in networks of relations. Artificial Intelligence, 8:99-118,
1997.

[16] Mauw, S. and Reniers, M. A. An algebraic semantics of basic message sequence charts.
The Computer Journal, 37(4):269-277, 1994.

[17] Mauw, S. and Reniers, M. A. Operational semantics for MSC'96. Computer Networks
and ISDN Systems, 31(17):1785-1799, 1999.

[18] Montanari, U. Networks of constraints: fundamental properties and applications to
picture processing. Information Science, 7:95-132, 1994.

[19] Muniz Silva, P. S. Extended message sequence charts with time-interval semantics. In
Proceedings of the Fifth International Workshop on Temporal Representation and
Reasoning, pages 37-44, Sanibel Island, FL, USA, 1998.

[20] Muscholl, A. and Peled, D. Message sequence graphs and decision problems in
Mazurkiewicz traces. In Proceedings of MFCS, number 1672 in LNCS, pages 81-91.
Springer-Verlag, 1999.

[21] Muscholl, A. and Peled, D. and Su, Z. Deciding properties for message sequence charts.
In Proceedings of FoSSaCS'98, number 1378 in LNCS, pages 226-242. Springer-Verlag,
1998.

[22] Nebel, B. and Bürckert, H-J. Reasoning about temporal relations: a maximal tractable
subclass of Allen's interval algebra. Journal of the ACM, 42(1):43-66, 1995.

[23] Nebel, B. and Bürckert, H-J. Software for machine assisted analysis of Allen's interval
algebra. Available from ftp.informatik.uni-freiburg/documents/papers/
ki/allen-csp-solving.programs.tar.gz, 1995.

[24] OMG. OMG Unified Modeling Language Specification - version 1.4. Object
Management Group, Inc., USA, September 2001.

[25] Turski, W. M. and Maibaum, T. S. The specification of computer programs. Addison-
Wesley Publishing Co., London, 1987.

[26] Uchitel, S. Incremental Elaboration of Scenario-Based Specifications and Behaviour
Models Using Implied Scenarios. PhD thesis, Imperial College of Science, Technology
and Medicine. University of London, Department of Computing, 2003.

[27] van Beek, P. G. Reasoning about qualitative temporal information. Artificial
Intelligence, 58:297-326, 1992.

[28] van Beek, P. G. and Cohen, R. Exact and approximate reasoning about temporal
relations. Computational Intelligence, 6(3):132-144, 1990.

[29] Vilain, M. B. and Kautz, H. A. Constraint propagation algorithms for temporal
reasoning. In Proceedings of the Fifth National Conference of the American Association
for Artificial Intelligence, pages 366-382, Philadelphia, PA, USA, 1986.

[30] Weida, R. and Litman, D. Terminological reasoning with constraint networks and an
application to plan recognition. In Nebel, B., Swartout, W. and Rich, C., editors,
Principles of knowledge representation and reasoning: Proceedings of the Third
International Conference, pages 282-293, Cambridge, MA, USA, 1992.

