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Abstract 

Verification of software behavior in early moments of the development process is not 
an easy task. Typically, software engineers draw diagrams to reason about the software 
functional behavior, for example, drawing Message Sequence Charts (MSCs). Not 
always does the intended behavior described by MSCs correspond to their actual 
behavior. To help the verification of the actual behavior of MSCs, this paper describes 
an interpretation of (basic) MSCs in a temporal framework that formally represents the 
qualitative, and possibly imprecise, temporal information conveyed in MSCs. The 
framework is an algebra of binary relations on time intervals, and provides rules of 
reasoning about the temporal information. The interpretation provides a polynomial-
time solution to the verification problem and lays the foundations of a model checking 
tool. 

Keywords: formal verification and validation, requirements model checking, temporal 
reasoning.  

1. Introduction 

Verification of the software system behavior when software engineers work on the 
requirements or analysis viewpoints is not an easy task. In early moments of software 
development, software engineers largely draw diagrams to reason about the behavior of the 
software that will be built. For example, when working with use case models [12], from the 
analysis viewpoint, software engineers typically draw sequence diagrams [24] to depict the 
realization of scenarios for the use cases flows of events, which show interactions between 
domain objects. With the exception of real-time software engineers, the majority of software 
engineers do not accomplish the verification of the temporal properties of these diagrams, 
even if the solution for the software system that will be built requires distributed and 
concurrent architectural styles. An important fact that contributes to this situation is that 
traditional verification and validation tools are not of much help when faced with the partial 
information available at these early stages [9]. How to rigorously verify the temporal behavior 
of software systems initially defined in these intuitive diagrams? 

The aforementioned sequence diagram is based on the Message Sequence Chart (MSC) 
artifact [24], which is a well-known visual and intuitive tool largely used to model the 
behavior of systems, representing sequences of events exchanged between system 
abstractions. Nowadays, it is adopted within a wide range of system and software developing 
methods. The International Telecommunication Union (ITU) formally defined an MSC 
standard [11]. We are interested in a particular interpretation of MSCs that analyzes their 
temporal behavior in a pure qualitative and intuitive manner, without assigning any timing 



values or considering any underlying architectural constraints, while preserving their intuitive 
simple drawings. Our motivation stems from the fact that when intuitively describing the 
behavior of the problem domain events, we often reason qualitatively. For example, we 
usually say: “X sends the message M2 to Y after receiving the message M1 from Z”, instead 
of assigning particular time values to the sending and the receiving events. Also important is 
that these kinds of events last a certain time, allowing us to say: “X sends the message M4 to 
W during the reception of the message M3 from Z”. In other words, we are solely interested 
in the purely qualitative temporal analysis of the software behavior and would like to have a 
straight semantics to capture this qualitative, and often imprecise, temporal information 
conveyed in the diagrams. 

An appropriate temporal ontology that directly supports these temporal notions is Allen's 
time interval theory [1]. Allen's theory was developed in the context of the so-called ‘Naive 
Physics’ with its common-sense representations, by taking the notion of the interval of time as 
a primitive one. It has been popular in natural language understanding  [2], planning [3], 
knowledge representation [30], and in other fields of AI research. Allen's theory is an algebra 
of binary relations on intervals, carrying qualitative temporal information and allowing a 
formal reasoning about such information. Our interpretation of MSCs is defined within such a 
time framework. 

On the other hand, software requirements can be viewed as a descriptive theory of an 
application domain [25] and MSCs are a useful and simple tool to model the temporal 
properties of this descriptive theory. Our proposal is to present a particular interpretation of 
MSCs that supports the generation of consequences of their temporal properties, in such a 
manner that we can formally check the potential conflicts between the intended and the actual 
behavior in Allen's temporal framework, from the requirements or analysis viewpoints. The 
verification process shall completely disregard the architectural constraints on the 
computational solution that will be built, to be consistent with the basic assumption that the 
verification is performed from the requirements or analysis views, and not from the design 
view. Lastly and importantly, the presented formal model lays the foundation of a model 
checking tool. This verification tool will help the verification process, automatically checking 
for conflicts between the actual semantics of the temporal behavior of an MSC and its 
intended behavior modeled by a software engineer. 

A preliminary version of these ideas appeared in [19]. The present paper completely 
reformulates the original interpretation of MSCs, simplifies the interpretation and, most 
important, proposes a tractable solution for the verification problem, overcoming the 
complexity limitations of the former model. Section 2 summarizes the verification 
methodology. Section 3 presents the proposed interpretation of MSCs. Section 4 presents two 
simple worked examples. Section 5 presents some conclusions and our current related 
research. 

Related Work. MSCs have been extensively analyzed in the last years. Current trends in 
the analysis of MSCs take various approaches: process algebra [10, 16, 17] and varieties of 
model checking [4, 5, 6, 7, 13], to mention just a few. Studies working with partially ordered 
event structures derived from MSCs [20, 21] are of special interest. However, these partially 
ordered structures are studied from the design view. Our encoding in the form of Allen's 
theory is another model for the semantics of the MSC that makes no assumption about 
architectural or design constraints (for example, it does not make any assumption about the 
semantics of message passing, e.g. first in first out). The complexity of the solution for the 
verification problem is similar to that later related works, but it presents the outcomes in the 



form of qualitative temporal relations, as the first intuitions about the functional requirements 
behavior are used to be. 

2. The Verification Methodology  

Firstly, we will present a brief overview of MSCs, quoting [5]. MSCs are a graphical 
representation that shows message exchanges between concurrent process abstractions within 
a system. Figure 1(a) shows a basic MSC [11], the MSC type we will use as a model for the 
intended software system behavior.  

Each vertical line has a start and an end symbol, and represents processes or autonomous 
agents (P1, P2 and P3). Each horizontal arrow describes a message sent from one process to 
another (a, b and c). The tail of an arrow corresponds to the event of sending a message, 
whereas the head corresponds to its receipt. Communication is one-to-one and asynchronous, 
and control flows independently within each process from the start symbol to the end symbol. 
In each process, the events are temporally ordered from top to bottom. The system terminates 
when all processes have terminated. 

The behavior of an MSC is the set of sequences of sent and received messages, i.e., MSCs 
represent the intended behavior by the order of the exchanged messages between processes. 
The intended order does not necessarily represent the actual semantics of the MSC. Conflicts 
are likely to happen. For example, it is not hard to see that there is a scenario for the MSC of 
Figure 1 in which message c arrives earlier than message a at process P1, conflicting with the 
intended order. 

Allen's temporal structure [1] captures two aspects of particular interest: the strict relative 
temporal knowledge (e.g. “X happens before Y”, “X happens during Y”, etc.) and the 
uncertainties of the information about the relationship between two events in time. The 
temporal structure is a simple and linear model of time. The original theory has the time 
interval as a primitive. Five axioms of the temporal structure and a complete set of thirteen 
intuitive binary relations between intervals - the Allen's basic relations - are defined. Figure 
1(b) depicts these relations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Basic MSC and Allen's Basic Interval Relations 
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The verification methodology for a basic MSC is based on the following steps: 

1. Produce the basic Message Sequence Chart that models an application domain 
intended behavior. The model results from the analyst's effort, and an adequate 
available tool can support MSCs drawings. 

2. Translate the MSC into a labeled MSC [4], defined in section 3. A model checking 
tool may carry out this translation automatically.  

3. Provide an interpretation based on a time interval framework for the resulting (step 2) 
structure. In section 3 we present the interpretation model. The interpretation builds a 
network structure with nodes denoting time intervals and edges denoting temporal 
relations between time intervals. The network structure constitutes the descriptive 
theory of the intended behavior. A model checking may carry out this step 
automatically.  

4. Analyze the resulting interpretation. The network built in phase 3 is a generative 
system1. Its solution provides all the consequent temporal scenarios, which may show 
hidden and occasionally undesirable behaviors unforeseeable upon the making of the 
original MSCs. In other words, a model checking tool solves the network 
automatically and the analyst can verify if there are conflicts between the actual 
semantics of an MSC and its visual order. The analysis uses only the intuitive Allen's 
basic relations. Finally, the detected undesirable behavior needs to be validated with 
stakeholders to evaluate if it actually is a problem to the future system that will be 
built. 

3. The Interpretation of MSCs 

We will define a formal structure, the basic labeled MSC, which captures the essential 
properties of the basic MSC [11]. We borrow the definition of the labeled MSC from [4], and 
define some required additional details2. 

Definition 1 Let P = {P1,…,Pn} be the set of processes, and M be the set of messages. Let the 
label !(i, j, a) denote the event “process Pi sends the message a to process Pj”. Let the label 
?(i, j, a) denote the event “process Pi receives the message a from process Pj”. Define the set 
LS = {!(i, j, a) | i,j ∈ {1,…,n} ∧ a ∈ M} of send labels, the set LC = {?(i, j, a) | i, j ∈ {1,…,n} 
∧ a ∈ M} of receive labels, the set L = LS  ∪ LC as the set of event labels, and the set LN of 
next process event labels. A basic labeled MSC over processes P is defined by: 

• A set E of events partitioned into a set S of sending events and a set C of receiving 
events. 

• A mapping p : E � {1,…,n} that maps each event to a process on which it occurs. 

• A bijective mapping f : S � C between sending and receiving events, matching each 
sending event with its corresponding receiving event. 

����������������������������������������

�
�A generative system [25] is a theory consisting of a set of axioms and rules of inference capable of 

generating consequences of the theory��
�
�In [19] we took a completely different approach defining an intermediate structure to describe an MSC, the 

Message Flow Graph (MFG) [13]. We abandoned that approach since the MFG introduces a further complexity 
and requires the modeling of inessencial elements for our purposes.�



• A bijective mapping ne : E � E that maps each event on a process to its consecutive 
event on the same process. Each process event is connected to a unique consecutive 
event in the same process. This mapping is called next process event. 

• A mapping l : E � L that labels each event such that l(S) ⊆ LS and l(C) ⊆ LC. For 
consistency of labels, for all s ∈ S, if l(s) = !(i,j,a) then p(s) = i and l(f(s))= ?(i, j, a) 
and p(f(s))=j. 

• A mapping h : E × E � LC, which labels the next process events on each process Pi. 

For each i ∈ {1,…,n}, there is a total order �i on the events of process Pi, that is, on the 
elements of p-1(i), such that the transitive closure of the relation � � �i∈{1,…,n}�i � {(s, f(s)  
| s ∈ S} is a partial order on E. This partial order is called visual order. 

The total order �i denotes the temporal order of the events of process Pi. The partial order 
� denotes the visual order of the MSC, enforcing the notion that “messages cannot travel back 
in time”, and expresses the intended temporal behavior of the MSC. 

The partial order corresponding to the MSC of Figure 1 is depicted in Figure 2, where the 
nodes are sending and receiving events, and the edges are messages and next process events. 

 

 

 

 

 

 

 

 

Figure 2: The partial order of the MSC of Figure 1 

The interpretation of a basic labeled MSC is realized in a time interval framework. 

Definition 2 A time interval X is represented as a tuple (x-, x+), such that x-
� x+, where x- and 

x+ are interpreted as points in a real line3. An interval interpretation I-interpretation is the 
mapping of time intervals to pairs of distinct real numbers such that the beginning of an 
interval is strictly before the end of the interval [22]. 

Definition 3 Let I be the set of all mutually exclusive basic relations {b, bi, m, mi, o, oi, s, si, 
d, di, f, fi, eq}, where b stands for before, bi for after, m for meets, mi for met-by, o for 
overlaps, oi for overlapped-by, s for starts, si for started-by, d for during, di for contains, f for 
finishes, fi for finished-by, and eq for equals. The relation between two time intervals is any 
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�
�In Allen's original ontology [1], the intervals are primitive objects. They are not conceived in terms of their 

endpoints. For reasons that will become apparent right away, we will not follow that interpretation as we did in 
[19] but the classical approach which defines the timeinterval by their endpoints.�
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subset of I, representing a disjunction of the basic relations. The disjunction of all basic 
relations is denoted by � and the empty relation is denoted by �. 

Allen's framework constitutes an algebra: the Allen's interval algebra. The algebra is based 
on the notion of relations between pairs of intervals. Under the I-interpretation, we can 
express the basic relations in terms of endpoint relations. For example, the relation  
X overlaps Y is equivalent to x- 

� y-, x- 
� y+, x+ 

� y-, x+ 
� y+. In order to define our 

interpretation, we have to consider the properties of Allen's interval algebra and of interval 
relations’ networks. 

Definition 4 Allen's Interval Algebra IA is the algebra with underlying set 2I (the power set of 
I), unary operator converse (denoted by ∪), binary operator intersection (denoted by ∩) and 
binary operator composition (denoted by �). The intersection can be expressed as the set-
theoretic intersection of the sets of basic relations. The composition is the union of the 
component-wise composition of the basic relations [22]. Allen provides a composition table 
for the basic relations [1]. Let r and s be relations between two intervals. The following 
expressions hold:  

∀X, Y (X r∪ Y ⇔ Y r X) 

∀X, Y (X (r ∩ s) Y ⇔ X r Y ∧ X s Y) 

∀X, Y (X (r � s) Y ⇔ ∃ Z(X r Z ∧ Z s Y)). 

For example, we write {d, o, s} to denote the disjunction of basic relations d, o and s. 
Therefore, {d, o} ⊂ {d, o, s}. Also, if X and Y are intervals and X {d, o, s} Y, then  
Y {di, oi, si} X. The proposed semantics of a labeled MSC interprets messages and next 
process event edges as time intervals, called message and process intervals, respectively. 
They are naturally defined in terms of the I-interpretation, i.e., by their endpoints. Sending 
and receiving events end a message interval, whereas a process interval is ended by any two 
consecutive events in a process. For the sake of simplicity, we will express the endpoint 
relations of these time intervals in terms of basic relations. 

Definition 5 In a basic labeled MSC we have two types of time intervals: the message interval 
and the process interval. 

• Define the mapping u : E � ℜ, where ℜ is the set of real numbers. The message 
interval is the tuple (a, b), such that a  

� b, where a, b ∈ ℜ, and for an s ∈ S, if 
 u(s) = a then u(f(s)) = b. 

• Define the mapping v : E � ℜ. The process interval is the tuple  (a, b), such that a  � b, 
where a, b ∈ ℜ,, and for e1, e2 ∈ E and (e1, e2) ∈ ne, if v(e1) = a then v(e2) = b. 

The visual order, which expresses the intended temporal behavior of a basic MSC, relates 
messages with each other through processes. Messages are sent and received by processes. 
Therefore, the relative occurrence of messages in the time dimension is determined by the 
order in which they are performed in processes. We can define the following fundamental 
patterns of relationships between a message interval and a process interval, depicted in Figure 
3, where the symbol '*' denotes any process, the symbol '1' denotes the process of reference 
(“this process”), and the symbol 'ip' denotes the label of the next process event on the process 
of reference. 

Definition 6 In the visual order of every basic labeled MSC there are six patterns of 
relationships between message and process intervals, depicted in Figure 3. A fundamental 



reasonable assumption is that a sending event is a controlled event in a process, which is only 
issued when a preceding event has occurred [5]. As a consequence, the visual order is not 
supposed to be guaranteed between pairs of receiving events, since they are not controlled 
events in a process. Patterns 5a and 5b (Figure 3) are a consequence of this assumption that 
prevents their merging into patterns 1 and 3, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Basic patterns of a labeled MSC 

The interpretation of the basic patterns means the evaluation of the relative positions 
between a message interval and the process interval. The essence of the behavior 
representation in an MSC are messages, therefore we are primarily interested in the relative 
positions of messages intervals. We proceed with the interpretation as follows: we fix the 
position of the process interval and vary the relative position of the message interval with 
respect to the process interval. Obviously, the mutual positions shall respect the patterns 
configurations. The comparison of the resulting mutual positions between the intervals with 
Allen's basic interval relations of Figure 1b gives the interval relations. Let ia be the message 
interval delimited by the sending and the receiving events of message a, and let ip be the 
process interval delimited by events of the next process event p. It is easy to see that: 

• Pattern 1. The message interval ia meets the process interval ip, i.e., ia {m} ip. 

• Pattern 2. The message interval ia starts, or equals, or is-started-by the process 
interval ip, i.e., ia {s, si, eq} ip. 

• Pattern 3. The message interval ia finishes, or equals, or is-finished-by the process 
interval ip, i.e., ia {f, fi, eq} ip. 

• Pattern 4. The message interval ia is-met-by the process interval ip, i.e., ia {mi} ip. 

• Patterns 5a and 5b. As a consequence of definition 6, they present unknown temporal 
information, i.e. they may contain any interval relation, or ia � ip. 
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The set of message and process intervals from a labeled MSC, and the binary relations 
between each pair of them, constitute a network where the nodes are messages or process 
intervals and the edges are the interval relations corresponding to the basic pattern with which 
the message and process intervals match. We call this network the Interval Calculus Network 
(ICN). Figure 4 illustrates the derivation of an ICN from the labeled MSC of Figure 1, where 
ia, ib and ic, denote the message intervals to the messages a, b and c, respectively; and ip1, 
ip2 and ip3 denote the process intervals to the next process events p1, p2 and p3 of processes 
P1, P2 and P3, respectively. Walking through all pairs of relations in the visual order of the 
MSC, we derive the following interval relations in the resulting ICN: ia � ip1, from pattern 
5a; ia {s, si, eq} ip2, from pattern 2; ib {mi} ip2, from pattern 4; ib {m} ip3, from pattern 1; ic 
{mi} ip3, from pattern 4; ic � ip1, from pattern 5b. 

 

 

 

 

 

 

 

 

Figure 4: The resulting ICN 

The ICN is a network of binary constraints whose edges are temporal relations between 
nodes. Let us define the Interval Algebra Network (IA network). The following definition is 
quoted from [28]. 

Definition 7 A network of binary constraints [18] is defined as a set X of n variables  
{x1, x2,…, xn}, a domain Di of possible values for each variable, and binary constraints 
between variables. A binary constraint Cij, between variables xi and xj, is a subset Cij ⊆ Di × 
Dj. For networks built on Allen's framework, it is required that (xj, xi) ∈ Cji ⇔ (xi, xj) ∈ Cij. An 
instantiation of the variables in X is an n-tuple (X1, X2,…, Xn), representing the assignment of 
Xi ∈ Di to xi. A consistent instantiation of a network is an instantiation of the variables such 
that the constraints between variables are satisfied. A network is inconsistent if no consistent 
instantiation exists.  

An IA network is a network of binary constraints where the variables represent time 
intervals and the binary constraints between variables are represented implicitly by 
disjunctions of the basic relations. 

Proposition 1 The ICN derived from a labeled MSC is an IA network.  

Proof. Let M and N denote the sets of message intervals and process intervals, respectively. 
Definition 5 states that their elements are time intervals. The ICN is a set of variables  
{x1, x2,…,xn} with possible values taken from the domain D = M ∪ N, that is, the values of the 
xi are time intervals. The relations between the ICN variables are disjunctions of basic 
relations, since the derivation process of the ICN relations is carried out in accordance with 
the basic patterns, delivering interval relations. Consequently, the ICN is an IA network. � 
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The fundamental reasoning problems in an IA network are [27]: find a scenario that is 
consistent with the information provided, and find the feasible relations between all pairs of 
intervals. We are interested in finding the feasible relations between all pairs of intervals 
mostly, that is, in finding the deductive consequences of the temporal knowledge represented 
in an MSC.  

Definition 8 A basic relation r ∈ W is feasible with respect to a network W if and only if there 
exists a consistent instantiation of the network where r is satisfied [27]. Given an IA network 
W, the set of feasible relations between two variables xi and xj in the network is the set 
consisting of all and only the r ∈ W that are feasible. The minimal network representation w, 
of a network W, is the network for which wij is the set of feasible relations between variables 
xi and xj in W, for every i, j = 1,…, n. Determining the feasible relations in W can be viewed 
as determining the deductive consequences of the temporal knowledge.  

Constraint satisfaction techniques are used to solve the reasoning problem. For the IA 
network, finding a consistent scenario and finding the feasible relations are NP-complete 
problems and intractable in the worst case [27, 28]. In fact, Allen's algorithm [1] is an 
approximation solution for the network in the full algebra (IA Algebra). Subsequent research 
has focused on designing more efficient algorithms or identifying tractable special cases of 
the full algebra for which there are exact solutions [8, 14, 28]. The full IA algebra contains  
213 = 8192 possible relations between intervals. Subclasses of the IA algebra are obtained by 
considering their subsets giving 28192 subclasses [8]. In many applications the full algebra is 
not necessary and restricted classes of interval algebras have an exact solution to the temporal 
network4. 

We claim that the binary constraints of solved ICNs are a tractable subset of the IA 
algebra underlying set. In other words, we claim that the solution for the reasoning problems 
of the ICN is exact and tractable in polynomial time. In order to prove it we need some other 
definitions. 

Definition 9 Quoting [22], let a formula X {r1,…, rn} Y be called an interval formula. Such a 
formula is satisfied by an I-interpretation � for some i, 1 � i � n. Finite sets of interval 
formulas are denoted by Θ. The set Θ is I-satisfiable if and only if there exists an  
I-interpretation � that satisfies every formula of Θ. Such a satisfying I-interpretation � is 
called an I-model of Θ. If an interval formula φ is satisfied by every I-model of Θ, φ is 
logically implied by Θ, written Θ �i φ. 

The verification task requires the finding of the set of feasible relations between the 
intervals in an ICN. Finding a consistent scenario in an IA network is another way of saying 
whether there exists an I-model of Θ (abbreviated ISAT). Finding the feasible relations 
between all pairs of intervals is another way to say whether there exists the strongest implied 
relation between each pair of intervals X, Y, i.e., the smallest set R such that Θ �i X R Y 
(abbreviated ISI). It is a known fact [29] that ISAT(IA) is NP-complete, and also that ISAT 
and ISI are equivalent under polynomial Turing-reductions. This equivalence also extends to 
subclasses of IA, provided they contain all basic relations [22]. We are concerned about 
polynomial-time ISI mostly. Let us investigate if all possible binary constraints of solved ICN 
networks are a special tractable case of the IA algebra. 

����������������������������������������

�
�The approach taken in [19] was intractable, since we worked in the full algebra.�



Given a set Θ, we can generate the least subalgebra containing the relations r such that  
r ∈ Θ and which is closed under converse, intersection and composition, computing the 
closure with respect to conjunction and transitivity, for the set Θ of generating relations [22]. 
Closures can be computed using, for example, the aclose tool [23]. The resulting 
subalgebra is polynomially equivalent to the original class with respect to satisfiability. 

Definition 10 Let SAB ⊆ IA. The I-closure of SAB, denoted by CI(SAB), is the least 
subalgebra of IA containing SAB and which is closed under converse, intersection and 
composition.  

Proposition 2 Let SAB ⊆ IA. The ISAT(SAB) is polynomial if and only if ISAT(CI(SAB)) is 
polynomial.  

Proof. See [22]. � 

Definition 11 Let SAC ⊆ IA be the algebra that can be translated into relations between the 
endpoints of the intervals using only the relations comprised by the Continuous Point Algebra 
(PAC) [28]. SAC has the underlying set {�, {�}, {�, �}, {�}, {�}, {�, �}, {�, �, �}}, and 
operators converse, intersection and composition. SAC is also known as Continuous 
Pointizable Interval Algebra.  

Proposition 3 Any path consistency algorithm [1, 15] finds ISAT(SAC) exactly and 
consequently ISI(SAC) in polynomial time.  

Proof. See [28].� 

Now we can define the subalgebra SAICN, which meets all the requirements for the binary 
constraints of the ICN, and prove that it is a tractable special case of the IA algebra. 

Definition 12 Let SAB ⊆ IA be the subset of relations  {{m}, {mi}, {s, si, eq}, {f, fi, eq}, �} 
which are allowed to occur in the translation of a labeled MSC into an ICN. We define the 
subalgebra SAICN, the least subalgebra of IA containing SAB computed by the closure 
CI(SAB), and which is closed under operators converse, intersection and composition.  

The underlying set of SAICN, generated by the aclose tool [23], is enumerated in the 
appendix and contains all possible relations that occur in the binary constraints of solved ICN 
networks. We claim that our verification problem of an ICN (the ISI problem) is exact and 
tractable. 

Proposition 4 Any path consistency algorithm exactly finds ISI(SAICN) in polynomial time.  

Proof. Let Θ be the set of interval formulas of SAICN. It can be shown by inspection that  
Θ ⊂ SAC (the underlying set of SAC is enumerated in [28]). As Θ contains all the basic 
relations, ISAT and ISI are equivalent under polynomial reduction. By Propositions 2 and 3 
our claim immediately follows. � 

Now, we can define the ICN network formally. 

Definition 13 Let T be the set of intervals. Let LT be the set of interval labels. Let R be the set 
of the interval relations of SAB. Let LR be the set of ICN interval relation labels, whose 
members denote the interval relations of SAB. The ICN is a network defined by:  

• A set M of message intervals and a set N of next process event intervals that partition 
the set T. 

• A bijective mapping h : M � N between message and next process event intervals. 



• A mapping z : T �� LT that labels each interval. 

• A mapping r : T ×�T ��LR that labels each relation between intervals. r is called an 
interval relation. 

• If there is an interval relation between two nodes with a particular set of relations, its 
converse interval relation is the set whose elements are the converse of each element 
from the former set. 

4. Simple worked examples 

We will present two simple worked examples: the verification of the familiar MSC of Figure 
1 and an example taken from [26].  

The MSC of Figure 1. By applying our methodology to the MSC of Figure 1 we have:  

− Step 1 The produced MSC is depicted in Figure 1. 

− Step 2 The partial order of the labeled MSC is depicted in Figure 2. 

− Step 3 The resulting ICN is depicted in Figure 4. 

− Step 4 Solve the resulting ICN. 

In the step 4, we are interested in computing the strongest implied relation between all 
intervals (ISI). To solve the ICN, we apply a path consistency algorithm described in the 
literature, for example in [14, 28], which usually requires O(n2) time (n is the number of 
intervals) for the computation of the Continuous Pointizable Interval Algebra (SAC). Here, we 
used the path consistency routines of the software tool solve [23] and found the following 
relations between messages a, b and c: R1 is ia {b, di, o, m, fi} ib; R2 is ia {b, di, o, m, fi} ic; 
R3 is ib {b} ic. 

For the sake of simplicity, let !message denote a sending event of a message in a process 
and ?message denote a receiving event of a message in a process. The visual order of the 
MSC requires that: ?a � ?c, !a � !b and ?b � !c. Expressing the interval relations in terms of 
endpoint relations, the interval relations R1 and R3 guarantee !a � !b and ?b � !c, respectively. 
However, interval relation R2 does not guarantee ?a � ?c. In fact, the basic interval relation  
di ∈ R2 says that ?c � ?a, which contradicts the intended behavior expressed in the visual 
order. Of course, a stakeholder should evaluate if ?a coming after ?c is a problem for the 
application. If he or she concludes that this scenario must be avoided, the analysis could be 
carried further and investigate how we could guarantee the intended visual order in the system 
specification, for example, by specifying an adequate queuing model to the underlying 
architecture of the system that will be built. 

Another example. A more interesting example is taken from [26]. Figure 5(a) depicts an 
MSC that specifies the general intended behavior for a simple system that controls employees 
entering a secure building. If we assume that the Door, the Security System and the Camera 
are autonomous systems, and the communication between them is asynchronous, we have a 
specification flaw. Figure 5(b) shows the correspondent partial order, without the event labels 
for the sake of space economy, and Figure 5(c) shows the resulting ICN.  

Solving the ICN with the path consistency algorithm, we find the following interesting 
relations: istartRecording {b, di, o, m, fi} iunlock, and istopRecording {bi, d, oi, mi, f} 
istartRecording. The interval relation istartRecording {di} iunlock does not guarantee that the 
camera records when an employee enters the building (the reception of the unlock message 



occurs before the reception of the startRecording message). The interval relation 
istopRecording {d} istartRecording says that the Camera stops recording before it starts 
recording! To overcome this situation, while preserving the asynchronous model requirement, 
we could modify the MSC by adding a message sent by the Camera that signals the Security 
System upon the receipt of the startRecording message. Only after that does the Security 
System send the unlock message to the Door. If we solve the modified MSC, we find 
istartRecording {b} iunlock and istopRecording {bi} istartRecording that guarantee the 
intended behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A simple secure building control MSC, its visual order and ICN 

5. Conclusions  

In this paper, we have presented a framework to formally verify the behavior of a software 
system from the requirements view, where traditional verification and validation tools work 
under great difficulties. Our approach focused on the temporal properties of simple and 
traditional MSCs in a purely qualitative manner, requiring neither extensions to the charts nor 
consideration to the underlying architecture of the system that will be built. The latter is of 
particular importance, since we are placed in the requirements viewpoint. Based on the 
verification results, software engineers have a rich set of alternatives to be considered in the 
design of the most appropriate underlying architecture that guarantees the software intended 
behavior. We proved that the present interpretation is made in a tractable subclass of the 
Allen's full algebra and that the verification task is exact and is carried out in polynomial 
time. The present interpretation is a guide to the making of a model checking tool. 
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Currently, we are working on two goals: (1) the integration of metric temporal reasoning 
(quantitative timing constraints) in our qualitative model to benefit from the expressive power 
of both approaches, also worked out in polynomial time; (2) the managing of MSC 
composition (multiple MSCs) through High-Level MSCs [11], used to describe more complex 
behaviors. 

Appendix 

The underlying set of subalgebra SAICN with its 30 elements is: 

{�, {eq}, {b}, {bi}, {d}, {di}, {o}, {oi}, {m}, {mi}, {s}, {si}, {f}, {fi}, {b, o, m},  
{bi, oi, mi}, {d, o, s}, {di, oi, si}, {b, d, o, m, s}, {bi, di, oi, mi, si}, {eq, s, si}, {d, oi, f},  
{di, o, fi}, {bi, d, oi, mi, f}, {b, di, o, m, fi}, {eq, f, fi}, {eq, d, di, o, oi, s, si, f, fi},  
{eq, bi, d, di, o, oi, m, s, si, f, fi}, {eq, bi, d, di, o, oi, mi, s, si, f, fi}, �}. 

Acknowledgments. Thanks to Nebel and Bürckert [23] for making available the software 
tools used in this paper.  
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