

Using the Temporal Versions Model in a Software Configuration
Management Environment

Fabrício Ávila da Silva, Raquel Vieira Coelho Costa,
Nina Edelweiss, Clesio Saraiva dos Santos

Instituto de Informática – Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500 – Bloco IV – Porto Alegre, RS, Brazil

CEP 91501-970 – Caixa Postal: 15064
{ favila, raquelc, nina, clesio} @inf.ufrgs.br

Abstract. Temporal Versions Model (TVM) is an object-oriented data model with
versioning facilities, allowing revisions and project alternatives, and temporal
features, used to maintain the history of the system evolution. This paper presents
TVM under a Software Configuration Management (SCM) perspective, compares
this model with available SCM tools, and describes why TVM is adequate to be
used as the basis of an SCM environment. A modeling example and the
implementation of TVM on a commercial Database Management System
(DBMS), which is an ongoing work, are also presented.

Key words. Software Configuration Management, Temporal Versions Model,
object-oriented modeling.

1 Introduction

Versioning of software components have always been one the most important issues
addressed by Software Configuration Management (SCM) tools and researchers. In the last
decades, the basic concepts about it were defined and well formalized, although some new
approaches and techniques have been proposed recently.

Temporal Versions Model is an object-oriented data model with versioning facilities,
implementing the most traditional and natural strategies for entities versioning. The model
also presents temporal features, which have not been implemented before in SCM
environments. The union of these characteristics constitutes a model with unique qualities,
allowing versioning of objects and, within each version, the keeping of all modifications done
on its dynamic attributes and relationships.

The paper is structured as follows. Section 2 presents the reasons TVM is being proposed to
be used in an SCM environment. The model is introduced in section 3, according to
configuration management concepts. Section 4 briefly compares TVM to version models
found in available SCM tools. A modeling example is shown in Section 5. Some details about
TVM implementation on a commercial DBMS are presented in Section 6, and in Section 7
there are some concluding remarks.

2 Motivation

Software Configuration Management (SCM) is the software engineering area responsible for
controlling the evolution of complex systems. Formally, it is the discipline based on which
developers can maintain under control the evolution of large and complex software systems
[1]. A software configuration management system represents one of the most important
aspects involved in any software development process. Currently, a typical SCM system
should provide services in the following areas [2]:

Managing a repository of components: the system must store several types of software
components, in a safe and efficient way. This area includes versioning, product modeling and
complex objects management.

Help engineers in their usual activities: SCM systems must provide engineers with right
objects in the right place. This item refers to workspace control, besides also considering
compilation and derived objects control.

Process control and support: defines what has to be done on which object (a process
model), and the utilized mechanisms to help or force the usage of this model.

This paper is focused on the first case, where the concepts of versioning, product space, and
their integration are important issues to be considered.

The first configuration manager systems, like RCS [3] or its successor CVS [4], applied the
versioning concepts on single files, and used different techniques for building composite
components and configurations (like selecting determined files based on tags recorded with
them). Files are individually versioned, making very difficult the building of complex objects.
This approach is not adequate to completely support software development, because it does
not consider system components in a proper manner nor the other artifacts involved in the
development process, like test reports and software documentation. Even today, commercial
SCM systems only capture the files and directories that represent a software product, barely
storing relationships and dependencies between them [5, 6]. A weak data model raises lots of
problems, like the treatment of configurations and versions as “something” special and not
first-class entities, making impossible for them to play roles directly in relationships [2].

These issues fostered a number of works about advanced version and data models,
including [7, 8, 9, 10, 11, 12, 13]. Some approaches define methods for versioning every
entity stored in the repository, including attributes, relationships and configurations. These
works, among others, proposed interesting solutions, but from a practitioner point of view,
they are too complicated or inefficient, providing more power than actually needed [5].

It has been pointed out in the last years that a not so complex data model should be used,
supporting typed objects, relationships, attributes, and a uniform manner of identifying
uniquely components and its versions in the repository [14, 15]. In the Component-Based
Software Development paradigm (CBSD), for example, users see each component as a
primitive item, which may be implemented as a set of files. Management of composite
components and relationships between them is a basic task for an SCM environment tailored
for CBSD [16].

So far there is no commercial database able to support such advanced models [5]. TVM is a
conceptual model considered as a solution for the problems presented above, and its
implementation within a commercial database system can provide the basis for the
development of an efficient SCM environment.

3 Temporal Versions Model

TVM (Temporal Versions Model) [17, 18] is an extension of Golendziner’s Versions Model
[19], incorporating temporal features. Its main characteristics are presented here. It is an
object-oriented model with versioning and temporal characteristics, allowing users to store
project alternatives (object versions) and, for each one of these alternatives, the history of its
dynamic attributes and relationships.

Various versioned object-oriented models have been proposed, as well as temporal ones,
for example [11] and [20], respectively. The union of both properties provides the user a more
flexible and powerful data model, which can be used in an SCM system to represent software
product, project workers and all the software artifacts, like documentation and system
requirements.

The main concepts of data and version models for configuration systems have been
formalized in several works [2, 21, 12, 22]. TVM will be described concerning these topics,
facilitating the comparison between TVM and some available SCM tools presented in Section
4.

3.1 Product Space

The product space describes the software under development with its structure and
components, not taking into account if they are versioned or not. TVM can be considered a
domain-independent model, since its object-oriented features allow the modeling of any kind
of software artifact – documentation, source code, project plan, etc.

The software product can be visualized as the classes’ instances and its relationships, which
can be of two types: association and aggregation. Dependencies between modules (objects)
are represented by association relationships, whose names and cardinalities can be defined by
the user to customize the software representation. The aggregation relationship allows the
construction of composite objects. Figure 1 illustrates a software product represented in TVM.

Fig. 1. A sample of a software product in TVM.

3.2 Version Model

The version model defines the software objects that can be versioned, the way versioning is
implemented and the manner the versions are arranged.

TVM supports state-based versioning, where each version represents a state of the
versioned object. The model does not define differences between two versions, at least
conceptually. TVM provides extensional versioning, where all versions are explicitly stored
and can be retrieved at any time.

Fig. 2. Versions graph in TVM.

The version space is defined by a version graph, where each node is a version and the edges
represent the derivation relationship. It is, in fact, a directed acyclic graph, since TVM
supports the merge operation (the creation of a new version derived from two predecessors).
Revisions (a version created in order to supersede its predecessor) and variants (project
alternatives or collaborative work supporters, which create branches) are treated uniformly.
Versions of the same instance of a class are kept together in a versioned object that holds
common properties and information about its associated versions. The creation of a version
from an object yet without versions causes this object to become the first version and the new
one is derived from it. Figure 2 presents a graphical example of the possible instances in a
TVM application. There are a non-versioned object and a versioned object, with its respective
versions.

Fig. 3. TVM statuses diagram.

During its lifetime, a version can assume different statuses (working, stable, consolidated
and deactivated). Transitions between them and the respective events are presented in Figure
3. The versions’ immutability property is guaranteed by constraints associated to each one of
these statuses. When created, a version assumes the status working, meaning that it can be
modified, queried, removed, and derived. A derivation creates a new working version and
automatically promotes its predecessor to stable, in order to avoid modifications that would
compromise the history of the object. In the stable status, the version can be derived,

promoted to consolidated, queried, and removed (if there is no successor), but cannot be
modified. Once consolidated, a version can be queried and derived, but cannot be modified
nor removed. There are no physical removals predicted in TVM; the remove operation moves
the version to the deactivated status and finishes its lifetime. In this status, the version can
only be queried or restored.

3.3 Version Model and Product Space Integration

Non-versioned objects and versioned ones can coexist in the same database. Figure 4 presents
the TVM class hierarchy. The model allows the definition of two application class types:

• Non temporal nor versionable application class, defined as subclass of Object; used to

model classes in which time and version concepts are not necessary. It also allows the
integration with other models that do not present versioning and temporal features.

• Temporal and versionable application class, defined as subclass of TemporalVersion.
Its instances are versions and its attributes and relationships can be defined as static or
temporal. The temporal aspects will be discussed in a forward section.

Fig. 4. TVM classes hierarchy.

Non-versioned objects, versioned ones and versions themselves can be directly manipulated
or queried, since the model identifies them in a uniform manner. The OID (Object Identifier)
is a structure that contains the following information:

< Ent i t y i dent i f i er , Cl ass i dent i f i er , Ver si on number >

This structure allows the existence of several objects composing the same entity, since the
class identifier and version number guarantee the OID uniqueness. This approach allows the
construction of relationships between non-versioned objects and versions directly (static
reference) or, yet, versioned objects (dynamic reference, where the version to be used is
defined as the current one).

TVM implements total versioning, admitting that an object at any level of the composition
hierarchy be versioned (in contrast to component versioning, where only atomic objects can
be versioned).

TVM supports two kinds of inheritance: inheritance by refinement and inheritance by
extension, presented in [23]. The former is the traditional one, corresponding to the is-a
relationship between objects. The latter allows the description of an entity in several levels of
the hierarchy, and an object at any of these levels can be versioned. The union of the objects
of these different levels represents the complete modeled entity.

Figure 5 presents an example that evidences the differences between the different
inheritance types in TVM. Inheritance by refinement (a) consists in deriving an object from
the leaf element of the modeling hierarchy. This object stores the properties declared in its
own class, as well as the ones defined in its ascendant class. On the other hand, inheritance by
extension (b) determines that all attributes’ values will be stored at the level in which they
were declared, being these properties shared by every descendent objects that might exist.

In this example, imagine that an employee is hired and, some time after that, he is promoted
to manager. The utilization of inheritance by refinement implies in deleting the employee and
creating a new object to represent him, this time an instance of the class manager. This is not
a good solution, since the employee existed previously in the base and had its own identifier,
generated automatically by the system. If inheritance by extension had been used from the
beginning, the new object of the class manager would simply be linked to its ascendant,
created from the class employee. The union of the objects from both classes represents the
complete entity, in this case an employee who is also a manager.

Fig. 5. Inher itance by refinement (a) and inher itance by extension (b).

A configuration is a set of different objects’ versions that together make up a complex
object. For instance, one can combine a specific version of each system module in order to
make up a complete software product. In TVM, the user executes the operation
getConfiguration on a version (called base version) to produce a configured version for it.
Then, one version for each existing ascendant in the inheritance by extension hierarchy is
selected (by expressions or pre-defined criteria), as well as one version for each object in the
aggregation hierarchy. For every chosen version, a new one is derived, called a configured
version, with its own OID. Thus, versions and configurations are treated uniformly in TVM,
since a configuration is nothing else but a set of versions connected by relationships. The
complete software product (or a component, depending on the abstraction level the
configuration was created) can be retrieved by means of applying the method
getCompleteObject on the configured version. Figure 6 presents an example of a
configuration, before (a) and after (b) its creation. Supposing the user solicits the construction
of a configuration using the version a1, an instance of class A, he has to choose one of the

versions from the aggregate class, B. In this case, b1 was chosen, then two new versions, c1
and c2, are derived from the selected ones.

Fig. 6. A configuration, before (a) and after (b) its creation.

3.4 Temporal Features

Temporal aspects have not been yet well explored by currently available SCM systems, and
that is one of the main contributions in using TVM within a software configuration
management environment.

In TVM, time is associated to objects, versions, attributes and relationships, allowing the
storage of all components evolution in a system, whether they are versioned or not. Each
version has its own timeline, so that an object can have several valid versions at the same
time. This feature is called branched time, because in the same object there can be several
lines of evolution.

An attribute or relationship in a TemporalVersion class must be defined as static or
temporal. Static attributes and relationships behave as traditional ones, which means that any
update in their contents will overwrite the previous values. Modifications are only stored by
means of versioning. On the other hand, updates made on temporal attributes and
relationships of a single version are stored, allowing the system to keep all the modifications
performed on the object. The definition of attributes and relationships as static or temporal is
under user responsibility, during the modeling phase. A class may hold attributes and
relationships of both types.

The temporal variation is discrete, and temporality is represented through intervals (sets of
consecutive equidistant time instants). TVM supports two time dimensions – to every
temporal data stored is associated a bitemporal timestamp, which contains:

• Valid time: defining when the described fact becomes effective in reality;
• Transaction time: informing when the new value was defined in the database.

There are some temporal integrity rules considered by the model, concerning the objects

lifetimes and the operations executed on temporal information (insert and update).

TVM does not define rules for object physical exclusion, since it aims to keep the whole
application history. The model allows only logical exclusion, when any open valid or
transaction time receives the same final time value defined for the object.

A deeper discussion on temporal issues can be found in [24] and [25].

3.5 Query Language

In order to extract data from a TVM base, a query language called TVQL – Temporal
Versioned Query Language – was defined [26]. It is based on SQL, in a way that static
elements and temporal versioned ones may be treated uniformly. A query whose contents
does not hold any restriction or clause concerning a temporal or versioning characteristic will
return, by default, the current values stored in the last versions of each object, behaving,
therefore, as a traditional SQL query. Just as in SQL, a common TVQL query is composed of
the basic structure: SELECT <l i s t of r ows> FROM <l i s t of t abl es> WHERE <condi t i ons>.
Of course all the SQL operators (+, –, in, between), aggregation clauses (count, sum), and
other reserved words (group by, order by) can also be used in TVQL statements.

In order to return temporal values, the special clauses EVER and PRESENT may be used.
EVER can appear after SELECT (to return as the query results the complete history of
modifications made on the selected attributes) or WHERE (to consider not only current
values, but everything stored in the base). A query like the following: SELECT EVER (…)
WHERE PRESENT (…), returns historic values according to current values. Each temporal
attribute (or relationship) has some temporal properties associated to it, for example viInstant
and vInterval (Valid Initial Instant and Valid Interval). These properties can be referenced in
WHERE clause to get valid values at specific instants or intervals, as well as they can appear
in SELECT clause to return the period during which some information were valid.

If the objective is considering all the versions stored in the base, the key word VERSIONS
must appear after the correspondent table name. The user can, yet, use several properties in
order to reference specific versions or to get other information. For example, the property
currentVersion returns the version defined as the current one, as well as versionCount
provides the quantity of versions stored in the referenced object.

Naturally, temporal and versioning characteristics can be combined in the same statement,
building more complex queries. Some examples will be presented in the section 5.

4 TVM and SCM Tools

An extensive study about version models in SCM environments and a correspondent
taxonomy for classifying them is presented in [21]. We present here the TVM features
concerning this taxonomy, comparing this model with some of the available SCM tools
analyzed in that paper. Some concepts described in [21] are not taken into account in our
analysis because they do not apply to TVM, as, for example, the intensional versioning
aspects. As a conceptual model, TVM does not specify anything about the implementation of
delta algorithms.

The following features are used to compare TVM to SCM tools.

Object Management. Most SCM systems use a file system to manage the software objects
(RCS, Aide de Camp, DSEE, ClearCase). An SCM tool implemented on TVM will obviously
use a database system.

Product Space Domain. TVM applies to a general domain, since the model supports the
representation of any kind of object. Some SCM environments deal only with specific types
of software objects, like Gandalf and POEM.

Product Space Granular ity. TVM, just as almost all the analyzed systems, deals with both
granularity levels, coarse and fine.

Relationships. According to the taxonomy, relationships can be of two types: composition
and dependency. Every tool cited in [21] supports compositions, but some of them do not take
dependencies into account, like RCS and PCL. TVM, as an object-oriented data model,
provides the aggregation relationship explicitly. Dependencies are represented by associations
with names and cardinalities customized by the user, so that any kind of relationships can be
modeled.

Version Space Structure. The version space can be represented by a version graph or a grid.
Some tools support both, like Adele, but most of them uphold just one. TVM uses a version
graph.

Version Set. TVM utilizes the most traditional approach, supported by almost every tool,
called extensional versioning. The intensional versioning approach is also used by several
systems, for example ICE and ClearCase.

Version Specification. The state-based strategy is found in almost every tool, as well as in
TVM. A few systems implement the change-based approach, for instance Asgard and Aide de
Camp.

Granular ity of Versioning. Component versioning means that only atomic objects can be
versioned (RCS and Inscape). TVM supports total versioning, where all levels of the
composition hierarchy can be put under version control. A few tools use the product
versioning approach, for example PIE and COV.

TVM consolidates twenty years of research and practice by supporting the basic principles
of a version model, like state-based versioning and extensional versioning. Its version space is
represented by a version graph and its domain is not specific for determined types of software
components. Composition and dependencies between objects are achieved through the use of
aggregation and relationships, respectively.

Instead of classical systems, like RCS [3], based on the check-out/check-in model, the
versions in TVM are created explicitly by the user, through the operation derive. The statuses
assumed by a version during its lifetime provides immutability in a different approach; while
in the working status, a version can be freely modified, and TVM will not create a new
version until the user commands it. Once stable, a version can no longer have its attributes
modified, guaranteeing the immutability property.

In TVM, the version model is built into the data model, like in DAMOKLES [8] and Adele
[7]. A commercial DBMS is being extended to support the model characteristics, providing
all the benefits a database can provide to an SCM environment, like durability of changes and
transaction facilities.

The control of temporal dimension in SCM systems is usually underestimated [7]. In TVM,
the complete history of changes made on an attribute (or relationship) can be stored by
defining it as a temporal one. The possibility of recording the whole history of modifications

done on a single version during its lifetime is a facility not offered by traditional SCM
systems. Using TVM, the user do not have to add a version when he only wants to keep track
of his modifications. A developer can work on a single version for a long time and derive a
new revision from it when its code is stable (this approach is supported by the statuses
diagram). His work will be stored by the system and any past state of the version can be
retrieved using the temporal facilities offered by the model. These features allow the
aggregation of conceptual meaning to each revision created in the versions graph. For
example, each revision in a project may represent the work of a developer (considering that
two or more professionals may work in the same artifact), or each revision may represent a
new functionality added to the object. In traditional systems, a functional update made on a
software element is usually represented as several revisions in order to maintain the object
evolution during its development. Using TVM, only one version will be stored by the system
and the history of modifications is held through temporal facilities associated to object’s
attributes and relationships. With this approach in mind, a developer can construct a versions
graph clean and well organized, creating revisions and variants only when there is a logical
reason for doing so.

 The utilization of versions and time in a single project modeling is exemplified in the next
section. Besides that, TVM automatically associates temporal information to every version
and versioned object created.

5 A Modeling Example

Table 1 presents the symbols defined to represent graphically, in a class diagram, the
TemporalVersioned classes and its temporal attributes and relationships.

Table 1. Symbols defined for graphical representation.

Symbol Meaning

 The associated class is temporal and versionable

<<Temporal>> The associated relationship is temporal

<<T>> The associated attribute is temporal

<<extension>> Inheritance by extension

Figure 7 presents an example of an SCM project modeled in TVM. The software product

under development is represented by the class SoftwareProduct, which is an aggregation of
instances of the Module class. A component is composed by several files (class File), and a
set of components (class Component) makes up a module. The Documentation class holds
information about the other artifacts involved in the software development, like system
requirements and product manual. This example does not specify anything about the
documentation components in order to not make it too complex. These classes are naturally
TemporalVersioned, because their instances will be versioned during the software
development process.

The classes ProjectManager, Programmer and Analyst are subclasses of Employee, which
is TemporalVersioned because some of its attributes may be temporal ones, for instance
email. Besides that, its relationships are defined as Temporal, in order to maintain the history
of changes; for example, one programmer can begin the construction of a module and another
one may substitute him later. The project manager is responsible for the software product (the
highest level in the software hierarchy), and the analyst formalizes the documentation.

Fig. 7. Example of a software project in TVM.

Most of the classes’ attributes are not shown in the figure to simplify the visualization of
the classes and their relationships. The class Developer holds information about other
companies whose components are used in the software product, supporting the reuse of
elements (a basic requirement for component-based software development). The class Client
has a relationship with SoftwareProduct, indicating who ordered the software development.
Developer and Client are regular classes (non temporal nor versionable) because there is no
need to store modifications made on its instances, since they represent real world entities that
do not belong to the software project.

In this example, the files are represented as first-class objects, and a component is
composed of a set of files. The same result could be obtained (from a conceptual point of
view) if the files were defined as attributes of the Component class. This situation shows that
TVM is a generic model; an SCM environment can personalize the way of representing
software and other system objects.

TVM does not specify any mechanism for controlling the access to specific objects in the
base. However, an SCM environment built on top of the model could use information about
employees to administrate the system users and their rights.

Fig. 8. Component class.

An example concerning instances evolution from this classes diagram can demonstrate
some of the TVM features when applied to software development. Figure 8 presents the
Component class with some attributes that were hidden in the previous classes diagram. The
properties name, function, system, and language behave as in the traditional way. Considering
an object whose status is working, these attributes can be freely modified without storing their
historic values. The property comments, on the other hand, is defined as temporal. This way,
every update will be kept by the system, recording all the comments made by the
programmers during the object’s life time.

Figure 9 presents Component class’ three instances, and all versions of the InterfaceHM
(interface human-machine) object. This component was developed to be reused in several
software projects, so that it holds a version for each operational system. The comment
attribute is not shown in the figure because its value varies within a single version.

The version number 2 (OID = 3,6,2) was derived from the first one, whose attributes system
and language hold the null value (since this version is only a base for development), and
implements the component in C++ for the Windows 2000 operational system. For Windows
XP, two different versions were developed: one in C++ e the other one in Java, both derived
from Windows 2000 version because they share some characteristics. After a while, the
version in Java received an important improvement, consequently creating a new version from
it. The seventh version was developed under the same circumstances, but for the Linux
operational system.

The utilization of TVQL provides the user a simple way of getting the desired version of a
component, without worrying about the version’s number or its position in the version graph.
For example, the following query returns the component’s version developed for Windows
2000:

SELECT *
FROM Component . ver si ons
WHERE syst em = ‘ Wi ndows2000’

Fig. 9. InterfaceHM object’s versions

Two versions were developed for the Windows XP operational system, each one in a
different programming language. In order to obtain the version in C++, the following query
must be executed:

SELECT *
FROM Component . ver si ons
WHERE syst em = ‘ Wi ndowsXP’ AND l anguage = ‘ C++’

The query below obtains all the versions currently under development. In this situation, it
would return the versions 6 (3,6,6) and 7 (3,6,7), since they were not promoted yet to state
stable.

SELECT *
FROM Component . ver si ons
WHERE i sWor ki ng

To get the whole history of stored values in the comments attribute of any version, the
following query might be used:

SELECT EVER comment s
FROM Component . ver si ons

Obviously, this query would not be very useful, since it returns every registered value in
any component developed at any time. The user should, then, combine temporal and
versioning features, building a query like the one below. It returns the history of modifications
made on the comments attribute during the development of the component for Linux:

SELECT EVER comment s
FROM Component . ver si ons
WHERE syst em = ‘ Li nux’

These examples show that temporal characteristics and traditional versioning techniques
can be combined to provide a new dimension to software development, simplifying
visualization and understanding of the development process.

6 Implementation of TVM on a Commercial Database

TVM is defined as a conceptual model, allowing future adaptation to different database
systems. To validate this approach, a prototype on IBM DB2 is being implemented, which
allows the main operation of TVM. This project is based on some works concerning temporal
databases implementation, for example [27].

One of the reasons that contributed for choosing this DBMS is the fact that it is the most
similar to the SQL-92 pattern concerning its support for temporal data types. Besides, another
strong characteristic of DB2 is its extensible architecture, through the extenders facilities.
These extenders explore the object-relational features of DB2, including new functionalities
for various application domains. Each extender defines new data types, offering functions to
create, update and delete data. The extension of TVM for DB2 is called TVM Extender and
consists of a set of mechanisms (UDTs – User Defined Types, UDFs – User Defined
Functions, triggers, stored procedures and constraints) and metadata that maps the model
hierarchy and manages the time and version aspects of data.

The TVM Extender supports the model’s main features. In a first version of this extender,
configuration concepts are not included, as well as inheritance by extension, for not making it

too complex. As these aspects are independent of the model core, their future insertion will
not damnify the basic operation of the system.

enable TVM
Extender

classes
specification

data
manager

data
queries

UDTs, UDFs
and metadata

generation

use of UDFs
defined by the

Extender

INSERT / UPDATE /
DELETE and UDFs for

temporal attributes

UDFs to realize
queries over temporal

and version data

Extender

Fig. 10. TVM Extender and its interactions with the user .

As DB2 just allows extending SQL by user-defined functions, it is not possible to modify
the SELECT syntax itself, as in TVQL. It is necessary to define UDFs that return values
regarding temporal and version concepts, that can be used in SELECT, FROM or WHERE
clauses.

Figure 10 illustrates TVM Extender functions and their respective interactions with the
user. Although it executes actions on DB2, the extender seems to work inside the database
from the user’s point of view.

7 Concluding Remarks

Temporal Versions Model is an object-oriented model with temporal and versioning features.
TVM consolidates the research developed about versioning in the last twenty years, with a
simple understanding and very flexible model. The temporal features allow the control of
modifications made on a single version, keeping the whole history of changes on dynamic
attributes and relationships, independent from the versioning aspects.

A Software Configuration Management system built on top of TVM can use the resources
provided by the model and personalize objects and relationships to represent the development
of software products in a simple and efficient way. The facilities introduced by the temporal
characteristics have never been properly explored by SCM tools before; they offer very
interesting features concerning the storage of modifications without creating explicit new
revisions of a software component.

This paper presented the main features of TVM based on configuration management
concepts, facilitating a comparison of the model with available SCM tools. A modeling
example has also been shown.

A prototype is being developed within a commercial DBMS in order to test the main
characteristics of the model. A complete environment with class specification facilities and an
interface to TVQL (TVM’s query language) is also under development.

DB2

References

[1] Tichy, W. F.: Tools for software configuration management. In: Proc. of the Int.
Workshop on Software Version and Configuration Control, Grassau, January
(1988).

[2] Estublier, J.: Software Configuration Management: A Road Map. In: Finkelstein, A.
(ed.): The Future of Software Engineering (supplementary Proc. for 22nd Int. Conf.
on Software Engineering), Limerick, Ireland, ACM Press (2000) 279-289.

[3] Tichy, W. F.: RCS – A System for Version Control. Software – Practice and
Experience, 15 (1985) 637-654.

[4] Berliner, B.: CVS II: Parallelizing Software Development. In: Proc. of the 1990
Winter USENIX Technical Conference. Washington, DC (1990).

[5] Estublier, J.: Impact of the Research Community On the Field of Software
Configuration Management. Software Engineering Notes vol. 27 no. 5. ACM Press.
New York, NY (2002) 31-39.

[6] Frühauf, K., Zeller, A.: Software Configuration Management: State of the Art, State
of the Practice. In: Estublier, J. (ed.): Proc. of the 9th Int. Symposium on System
Configuration Management, SCM-9. Toulouse, France (1999).

[7] Estublier, J., Casallas, R.: The Adele Configuration Manager. In: Tichy, W. F. (ed.):
Configuration Management, Trends in Software vol. 2. Wiley. New York, NY
(1994) 99-134.

[8] Dittrich, K., Gotthard, W., Lockemann, P.: DAMOKLES, a Database System for
Software Engineering Environments. In: Conradi, R., Didriksen, T. M., Wanvik, D.
H. (eds.): Proc. of the Int. Workshop on Advanced Programming Environments.
LNCS 244, Springer-Verlag (1986) 353-371.

[9] Boudier, G., Gallo, F., Minot, R., Thomas, I.: An Overview of PCTE and PCTE+.
In: Proc. ACM/SIGSOFT Software Engineering Symposium on Practical Software
Development Environments. Boston (1988) 248-257.

[10] Munch, B.P.: Versioning in a Software Engineering Database – The Change
Oriented Way. Ph.D. Thesis. NTNU Trondheim. Norway (1993).

[11] Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The ObjectStore Database System.
Comm. of the ACM, 34(10) (1991) 50-63.

[12] Conradi, R., Westfechtel, B.: Towards a Uniform Version Model for Software
Configuration Management. In: SCM-7 Workshop. Springer LNCS 1235 (1997) 1-
17.

[13] Zeller, A., Snelting, G.: Unified Versioning through Feature Logic. ACM
Transactions on Software Engineering and Methodology, 6(4) (1997) 397-440.

[14] Conradi, R., Westfechtel, B.: SCM: Status and Future Challenges. In: Estublier, J.
(ed.): Proc. of the 9th Int. Symposium on System Configuration Management, SCM-
9. Toulouse, France (1999).

[15] Weber, D.W.: Requirements for an SCM Architecture to Enable Component-Based
Development. 10th Int. Workshop on Software Configuration Management, SCM-
10. Toronto, Canada (2001).

[16] Mei, H., Zhang, L., Yang, F.: A Software Configuration Management Model for
Supporting Component-Based Software Development. Software Engineering Notes
vol. 26 no. 2. ACM Press. New York, NY (2001) 53-58.

[17] Moro, M.M., Saggiorato, S.M., Edelweiss, N., Santos, C.S.: Adding Time to an
Object-Oriented Versions Model. In: Proc. of 12th Int. Conf. on Database and
Expert Systems Applications – DEXA 2001. Lecture Notes in Computer Science,
vol. 2113. Springer-Verlag. Berlin (2001) 805-814.

[18] Moro, M.M., Saggiorato, S.M., Edelweiss, N., Santos, C.S.: A Temporal Versions
Model for Time-Evolving Systems Specification. In: Proc. of the 13th Int. Conf. on
Software Engineering & Knowledge Engineering – SEKE01. Buenos Aires,
Argentina (2001) 252-259.

[19] Golendziner, L.G., Santos, C.S.: Versions and Configurations in Object-Oriented
Database Systems: A Uniform Treatment. In: Proc. of the 7th Int. Conf. Manag. of
Data. Pune, India (1995) 18-37.

[20] Kakoudakis, I., Theodoulidis, B.: The Tau Temporal Object Model. Timelab
Technical Report, Department of Computation. UMIST, UK (1996).

[21] Conradi, R., Westfechtel, B.: Version Models for Software Configuration
Management. ACM Computing Surveys – CSUR, vol. 30. ACM Press. New York,
NY (1998) 232-282.

[22] Dart, S.: Concepts in Configuration Management Systems. In: Proc. of 3rd Int.
Workshop on Software Configuration Management. Trondheim, Norway. ACM
Press. New York, NY (1991) 1-18.

[23] Biliris, A.: Modeling Design Object Relationships in PEGASUS. In: Proc. Data
Engineering. Los Angeles, USA (1990) 228-236.

[24] Tansel, C.G.: Temporal Databases – Theory, Design and Implementation.
Benjamin/Cummings, Redwood City (1993).

[25] Zaniolo, C.: Advanced Database Systems. Morgan Kaufmann Publishers. San
Francisco (1997).

[26] Moro, M.M., Zaupa, A.P., Edelweiss, N., Santos, C.S.: TVQL – Temporal
Versioned Query Language. In: Proc. of the 13th Int. Conf. on Database and Expert
Systems Applications – DEXA 2002. Aix en Provence, France. LNCS 2453 (2002)
618-627.

[27] Snodgrass, T.: Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann (2000).

