Data Flow Based Integration Testing *

Printo R. S. VILELA!
Josk C. MALDONADO?
MARIO JINO3

ITelcordia Technologies, Inc. - formerly Bellcore
445 South Street,
Morristown — NJ 07960, USA
vilela@research.telcordia.com

2ICMC-USP
1465 Dr. Carlos Botelho ave.,
Sao Carlos - SP 13560-970, Brazil

jcmaldon@icmc.sc.usp.br

SDCA/FEEC/Unicamp
400 Albert Einstein ave.,
Campinas — SP 13083-970, Brazil

jino@dca.fee.unicamp.br

Abstract

An approach to extend Structural Unit Testing Criteria to the Integration Testing
is presented. The approach is based on the concept of Potential Uses, which basically
states that a data flow association exists between a definition of a variable and every
point reachable from that definition through a definition-clear subpath, even without an
explicit usage of the variable — it is called a potential data flow association. A practical
procedure to implement the approach, based on testing information generated during

unit testing, is also presented.

KEY WORDS: Software Testing, Data Flow, Integration Testing.

*Partially supported by Fapesp, CNPq, CAPES and Fulbright.
Copyright 1999 Telcordia Technologies, Inc.
All rights reserved.

1 Introduction

Integration testing and unit testing are meant to test different aspects of the software.
Even if unit testing were applied to the furthest possible extent and the behavior of a
module M was guaranteed to be correct for its entire input domain, as far as M is used
with other units a communication protocol is established and this communication still
needs to be tested.

During development, programs must be examined in order to check whether they do
what they are supposed to and do not do what they are not supposed to. For that matter
the program must be accompanied by a description or specification stating what is correct
and what is incorrect.

When testing, the consistency of the program is examined through a subset of the
input domain. It is generally impossible to use the entire input domain to test the program
and the subset used is much smaller than the entire set. What is implicitly assumed is
that if the program performs well on the selected subset it will perform well on the entire
set. Actually this is one of the weak points of testing, since the reliability of the statement
on the quality of the program depends on the adequacy of the selected test data set. Thus,
a key problem of program testing is the selection of the test data set and its quality.

There are two well known strategies for selecting test data: black boz (or functional)
testing and white boz (or structural) testing. On Functional Testing test data is derived
exclusively from the specification; specially observed are the functions and sub-functions
of the program, the domain and sub-domains and the function’s range. On Structural
Testing test data is derived from the analysis of the program structure, paths, subpaths,
data flow, and the expressions and data values.

Data Flow based Testing is a structural testing technique which concentrates on the
analysis of data flow information to derive testing requirements. The basic idea is to reduce
the number of required paths by looking at those subpaths that start on a statement where
a value of a variable is set or changed and finally reach a statement where this value is
used or is available to be used .

Many data flow based selection criteria are known today. However, most of them are
meant to be applied for unit testing. Extending these criteria to integration testing is the
main concern of many researchers; and, as well, the major concern of this work.

According to Pressman [9], Integration Testing is a systematic technique for construct-
ing tests to uncover faults associated with interfacing. The objective is to take unit-tested
modules and build a program structure that has been dictated by design. A question fre-
quently raised is why further testing is necessary, if all the individual modules have been

validated. Still according to Pressman, the problem is “putting them together” — interfac-

!The variable definition is alive at the end of the subpath.

ing. Data can be lost across an interface; one unit can have an inadvertent, adverse affect
on another; sub-functions, when combined, may not produce the desired major function;
individually acceptable imprecision may be magnified to unacceptable levels; global data
structures can present problems.

Several “evolutions” of unit testing to integration testing have been proposed. Func-
tional Testing is directly applicable since the functional specification of the software is
available; Structural Testing requires some adaptations. In this work two approaches to
integration testing are discussed and compared.

The basic idea behind any data flow based approach for integration testing is to use
data flow information to help define interprocedural subpaths that must be executed in
order to satisfy certain criteria. They basically differ on the way such information is
gathered and used, or on the way programs and data flow information are modeled.

This paper presents a family of data flow based criteria to the integration testing
of programs called the Integration Potential Uses Criteria; this family is based on the
concept of potential uses, the criteria is described on Section 3.2. Section 2 presents a
terminology used to define the criteria.

Some notions on the implementation of the criteria are presented on Section 4.

2 Terminology

A module, in this context, is either a main program or a single subprogram and has only
one entry and one exit point. A module is represented by a directed graph that describes
the possible flow of control through the module.

A control flow graph or program graph of a module M is a directed graph G(M)=(N, E -
Nin, Nout), Where N is the set of nodes, E C N x N is the set of edges, n;, € N is called
the entry node, and n,,; € N is called the ezit node. Each node in the program graph
is associated to a block of statements within the module that are always executed to-
gether; that means, when one statement of the block is executed every other statement
within the same block is also executed, in the given order. The edges on the program
graph represent possible control flow between two diferent blocks. On the definition of
the Integration Potential Uses Criteria it is assumed that each procedure call forms its
own block.

A program graph defines the paths within a module. A subpath in G(M) is a finite,
possibly empty, sequence of nodes p = (n1,ns, - -+, njp) > such that for all 7, 1 < i <| p |,
(nis,niz1) € E. A subpath formed by the concatenation of two subpaths p; and p, is
denoted by p; - p2. An initial subpath is a subpath whose first node is the entry node n;,.

A final subpath is a subpath whose last node is the exit node n,,;. A path is an initial

2| s | denotes the number of elements in the sequence s.

subpath and a final subpath. The set of all paths in G(M) is denoted by PATHS(M).

A loop of a program graph G(M) is a subgraph of G(M) corresponding to a looping
construct in module M. All loops have single entry and single exit nodes and they are
not part of the loop. Distinctions are made among the several types of subpaths that
visit loops. A cycle is a subpath of length > 2 that begins and ends with the same node.
A cycle (n) - p- (n) such that the nodes of p are distinct and do not include n is called a
simple cycle. A subpath that is a simple cycle or cycle free is called a simple subpath.

The occurrences of variables in a program can either be a definition or a use. Let x be
a variable in a module M, a definition of x is associated with each node n in G(M) that
contains a statement fragment that can assign a value to z; this definition is denoted by
d,(M,z). The set of variables for which there is a definition associated with a particular
node n in G(M) is denoted by DEFINED(M,n). A use of z is associated with each node
n or edge (n,m) in G(M) that contains a statement fragment that can access the value
of z.

A variable use is a computation use, denoted by c-use,(M,z), iff the use of vari-
able z in node n directly affects the computation being performed or allows someone
to see the result of a previous definition. A variable use is a predicate use, denoted by
P-use(,, ,,,) (M, z), iff the use of variable x in (ni,ns) directly affects the flow of control
within the program. Notice that the c-use is associated with a node and the p-use is
associated with an edge. A definition-clear subpath with respect to (wrt) a variable z is
a subpath p such that for all nodes n in p, z ¢ DEFINED(M,n).

A node i has a global definition of a variable x if there is a definition of = in 7 and
there is a definition-clear subpath from some node or some edge with a c-use or a p-use
of z. A c-use of z in j is a global c-use if there is no definition of x in the same node
preceding the c-use.

A subpath (ny) - ¢ - (nj,ng) in module M is a DU-Path wrt a variable z iff there is a
global d,,, (M, z) and: (1) there is a global c-use,, (M, z) and (ny) - ¢- (nj,ny) is a simple
(8, 2) and () g-(ny)
is cycle free with g - n; definition-clear wrt . The same definition of DU-Path applies if

subpath with g-n; definition-clear wrt z; or (2) there is a p-use,,_ ,,,
the subpath ¢ involves a procedure call and the c-use and p-use are of the corresponding
formal parameter of x.

A program P is represented by a direct multigraph CG(P) = (N, €, s), where modules
are associated with nodes n € N and the possible control flow between modules are
associated with edges e € £ C N x N. Since CG is a multigraph, there may be more
than one edge between two nodes, if there is at least one edge between M; and M, there
is a connection between M; and M,. Every node in the graph can be reached from node
s called the root node. CG representing a program P is called a callgraph. Each edge
e € & represents a pair (M;,, Ms,), 0 < i < k, one of the k calls to module M, in module

M;. Module M, is the calling module and M, is the called module. The set of all paths
between two modules M; and M, of CG(P) is denoted by iPATHS(M;, Ms). The set of
all paths in the callgraph CG(P) is denoted by CG_PATHS(P).

A path selection criterion for unit testing, or simply an unit criterion, is a predicate
that assigns a truth value to any pair (M;,II), where M; is a module and II is a subset
of PATHS(M,). A pair (My,II) satisfy an unit criterion C iff C'(My, I)=true. A path
selection criterion for integration testing, or simply an integration criterion, is a predicate
that assings a truth value to any pair (P, ¥), where P is the program and V¥ is a subset of
CG_PATHS(P); if the integration criterion is pairwise, a pairwise integration criterion it
is a predicate that assigns a truth value to any triple (M;, My, ®), where M; and M, are
modules and (M7, M,) is a multi edge in CG(P), the callgraph of program P, and ® is a
subset of iPATHS(M,, M). A triple (M, My, ®) satisfy a pairwise integration criterion
C iff C(My, My, ®)=true.

The corresponding formal parameter of an actual parameter x through a call ¢ is
denoted as formal.(x). To simplify the definitions let consider that for a global variable
x, formal.(x) maps the variable to itself; formal.(x) = x.

The node in module M; where the call ¢ occurs is denoted by n.. The set of variables
used as input or output on a call ¢ of module M; to module M; is denoted as: in, =
the set of actual parameters or global variables used as input in the call ¢ of module M;
to module My; out. = the set of actual parameters or global variables used as output
in the call ¢ in module M; to module M,. The set of all in, U out, is generally called
communication variables.

A path selection criterion C; subsumes a criterion Cy iff every pair (My,1I), (P, ¥)
or triple (Mj, My, ®) that satisfies C; also satisfies Cy. Two criteria are equivalent, in
terms of subsumption relation, iff each subsumes the other. A criterion C; stricly sub-
sumes a criterion Cy iff C'; subsumes Cy but Cy does not subsumes C. Two criteria are

incomparable, in terms of subsumption relation, iff neither criterion subsumes the other.

3 Integration Testing Criteria
3.1 The Linnenkugel and Miillerburg Criteria

Linnenkugel and Miillerburg [5] worked on the adaptation of a set of well-known testing
criteria for unit testing to define similar criteria, based on control and data flow analysis,
for integration testing.

Their integration model also represents a program by a callgraph. The approach
concentrates on analyzing relations and interfaces between modules. The relations are
determined by the call statements in the modules and the interfaces by the data used by
both, the calling and the called modules. For testing interfaces they adapted the Data

Flow Testing Criteria defined by Rapps and Weyuker [10].
They define a set of criteria based on callgraphs in a similar way as the control flow
criteria are defined based on the control flow graph.

Testing Relations, Based on Callgraphs:
o All-Modules requires that every module is executed at least once.

This criterion is the analogous of All-Nodes defined for program graphs and, as its
unit testing counterpart, is possibly the simplest Integration Testing Criteria. It requires
that every module in the program is executed at least once, regardless of the complexity
or possible combination of module calls within the program.

The good thing is that it is easy to implement, understand and use, but it adds little
value on establishing the goodness of a test set. The following example illustrates these
aspects. Suppose a program is composed of four modules, a main module, a sort module
and two modules that call the sort module. The sort module receives an array of numbers,
a minimal — min and a maximal — maz number, and returns a sorted array containing

elements that are greater than min, but less than maz.

MAIN
A B
SORT

Figure 1: Problems with All-Modules

Considering Figure 1, suppose module A calls sort correctly — sort (array,min,max),
but in module B there is a fault, the call inverts maz and min and the statement looks
like this sort (array,max,min). Notice that this fault is not easily detected during unit
testing, since both module B and sort could have been implemented by different teams
each of which having access only to the specification of the other module ? (that in this
case was misinterpreted).

A test case (or a set of test cases) that executes the sequence (main, A, sort) and
(main, B) would satisfy the All-Modules criteria but would not force the execution of (B,

sort) not allowing the fault to be detected.

3Beizer [1] classifies this type of fault as 6126 - Parameter Sequence Fault.

e All-Relations require that the calling relation between modules is executed at least

once.

Since the callgraph is a multi-graph there may be more than one edge between two
modules, corresponding to more than one call from one module to another; this criterion
requires the execution of at least one of such edges. This criterion minimizes the problems
with the first one, since it requires every “relation” between modules to be executed,
that means at least one call between every two modules must be executed at least once.
Although minimized, the problem still exists; suppose there are several calls between B
and sort and just one is defective, if this is not the call executed by the set of test cases
that satisfies All-Relations then the fault would still not be detected.

o All-Multiple-Relation requires that every call between modules is executed at least

once.

This is the analogous of All-Edges defined for program graphs, it requires the execution
of every call from one module to another within the program, it is the last criterion of
this category. This criterion would at least give a chance for the fault presented on the
example to be exposed. But still it is not guaranteed, since the test case chosen to execute
the defective call could have an empty array as the correct result, in this case the fault
would still not be detected.

The following set of criteria were also defined by Linnenkugel and Miillerburg, they

go a little further on the concept of traversing a path through the whole program.

o All-Simple-Call-Sequences requires that every sequence of (descending) calls without

repetition of calls is executed at least once.

e All-Loop-Iteration-Call-Free-Sequences requires that every sequence of (descending)

calls without repetition of loops is executed at least once.

e All-Call-Sequences requires that every sequence of (descending) calls is executed at
least once.

Since those criteria do not consider the data flow through the program they are not
sufficient to test the interface between modules. The natural evolution, imitating what
happened to the unit testing criteria, is to use data flow information and define a new
set of Integration Testing Criteria. For that matter the authors defined the following set
of criteria, considering the interface between each pair of modules (M;, Ms) within the

program:

Testing Interfaces, Based on Data Flow:

INT-All-Defs requires for every call the execution of a definition-clear subpath wrt

each communication variable from each relevant definition to some reference.

e for each z € in, a def-clear subpath from each d,,(M;,x) to some node n
with a c-use,, (Ms, formal.(x)), or to some edge (n,n') with a p-use, (M2, for-

mal.(z)), has to be executed, and

e for each = € out, a def-clear subpath from each d,,(Ma, formal.(z)) to some
node m with a c-use,, (M1,), or to some edge (m, m') with a p-use,,) (M1, x),
has to be executed.

The INT-All-Defs criterion is the basic data flow based integration criterion defined.
The idea is that if a variable receives a value, then at least one use of this variable must
be exercised. This criterion does not provide much improvement over the control flow
based criteria previously presented. The next step is to consider each pair definition - use
individualy.

INT-All-Uses requires for every call the execution of a definition-clear subpath wrt

each communication variable from each relevant definition to every c-use and every p-use.

e for each x € in. a def-clear subpath from each d,,(M;,z) to each n-
ode n with a c-use,(M,, formal.(z)), and to each edge (n,n') with a

p-use, . (Mz, formal.(z)), has to be executed, and

e for each x € out, a def-clear subpath from each d,(Ms, formal.(z)) to each
node m with a c-use,,, (M1,), and to each edge (m, m') with a p-use,, - (M1, T),

has to be executed.

The INT-All-Uses criterion requires that an interprocedural subpath from each com-
munication variable definition to each c-use and each p-use be executed. It is an interesting
criteria, but when the number of possible subpaths between a definition and a use is con-
sidered it is easy to see that a lot of testing possibilities are been neglected. Since the
number of possible subpaths that can cover a given association is potentially infinite, a
DU-Path if considered on the definition of the next criterion as a way to improve the
previous criterion but keeping the number of required elements finite.

INT-All-DU-Paths requires for every call the execution of every simple cycle or cycle
free definition-clear subpath wrt each communication variable from each relevant defini-

tion to every c-use and every p-use.

e for each x € in, every du-path from each d,,(Mi,z) to each node n with a
c-use, (Ma, formal.(z)), and to each edge (n,n') with a p-use, (Mo, for-
mal.(z)), has to be executed, and

e for each x € out, every du-path from each d,,(M,, formal.(z)) to each node
m with a c-use,,(Mj,), and to each edge (m, m') with a p-use,, ,,)(M1, 7),

has to be executed.

3.2 The Integration Potential Uses Criteria

A variety of Data Flow Based Testing Criteria have been defined in the past few years |3,
4, 8, 10, 11, 6]; previous approaches on Integration Testing are based on the Family of
Criteria proposed by Rapps and Weyuker [10]: they define that a data flow association
exists between a definition and a further use of a variable. Maldonado, et al. [7, 6] modified
this concept and defined a potential data flow association introducing a family of data
flow criteria called the Potential Uses Criteria. The set of criteria defined in this section
is an extension of the Potential Uses Criteria to the integration testing, they are called
the Integration Potential Uses Criteria.

The approach used to define and apply the criteria is called pairwise because it con-
siders the modules in pairs to derive integration testing requirements. The “pairwise”
approach supports any incremental integration strategy, e.g. bottom-up, top-down and
sandwich, provided that each increment is performed with a pair of modules. An ex-
tension to more than two units integration is feasible, but it is not the concern of this

work.
INT-All-Potential-Uses:

e for each z € in, a def-clear subpath from each d,,(M;i,z) to each node
n and to each edge (n,n') with a potential use of formal.(x)), has to be

executed, and

e for each = € out, a def-clear subpath from each d,(Ms, formal.(x)) to
each node m and to each edge (m, m') with a potential use of z, has to be

executed.

The first Integration Potential Uses criterion defined is similar to the previously de-
fined INT-All-Uses the basic diference is that now a actual usage of the variable is not
required on establishing a interprocedural data flow association, it is only necessary that

the variable is alive at a reachable point to make the association be required.
INT-All-Potential-Uses/DU:

e for each = € in, a potential DU-Path from each d,,(M;,z) to each node
n and to each edge (n,n') with a potential use of formal.(x)), has to be

executed, and

e for each z € out. a potential DU-Path from each d,(My, formal.(x)) to
each node m and to each edge (m, m') with a potential use of z, has to be

executed.

This criterion changes a little bit the way the DU-Path concept is been used. Instead

of requiring every such subpaths it requires just one to cover an association.
INT-All-Potential-DU-Paths:

e for each z € in, every potential DU-Path from each d,,(M;, x) to each node
n and to each edge (n,n') with a potential use of formal.(x)), has to be

executed, and

e for each x € out, every potential DU-Path from each d,,(Ms, formal.(z))
to each node m and to each edge (m, m') with a potential use of z, has to

be executed.

This criterion is similar to the INT-All-DU-Paths but again does not look for the
explicity occurrence of a variable usage to establish the association.

3.3 Example

The following example is used to illustrate some of the differences between the family of
criteria presented on the previous section.

Considering the program on Figure 2 and the INT-All-Uses criterion presented on
the previous section, the list of associations required, supposing the call from compress
to putrep on node 5 and variable n, would be from the definitions d;(compress,n),

dy(compress,n) and di; (compress,n), through the call ¢5 to the set of uses:
® p-use, 3 (putrep, formalc,(n)),
e p-use(, 1y (putrep, formalg(n)),
e p-use 4 (putrep, formale(n)),
e p-use 5 (putrep, formalc(n)),
® p-use g (putrep, formalg(n)),
® p-useg ig) (putrep, formal(n)),
e c-usey(putrep, formal.(n)), and

o c-useg(putrep, formale(n)).

Compress() Putrep(n,c)
int ny laste, ¢ (1) inti;

n=1;
lastc = getchar(); ! while(n>=THRESH)|
((c == WARNING)&& (1>0))

while (lastc != ENDFILE) putchar(WARNING);

if(n < MAXREP)

if ((c = getchar()) == ENDFILE)

(4) if (n>1)llastc== WARNING)) (8) if (c == lastc)
G putrep(n,lastc); @ putchar(lastc); 9 n if (n> 1)||(lastc == WARNING))

\i putrep(n,lastc);

Figure 2: Program Example

e putchar(n-1+'A’) e putchar(MAXREP-1+'A’);

putchar(c);
n=n-MAXREP,

]

putchar(lastc);

for(i=n; i >0; i--)

G putchar(c);
(10

This is a very simple example, but even then the INT-All-Potential-Uses criterion
would require, besides all the associations required by INT-All-Uses, associations from
the listed three definitions to the potential uses of variable formal.,(n) on nodes 5 and
9. One could argue that these two nodes would be executed by a test set that satisfies
INT-All-Uses, well that’s true, but the explicity association between one of the variable
definitions in compress to the potential use on node 5 in putrep is not required by
INT-All-Use, therefore if formal.,(n) was not used on the boolean expression on the if

statement on node 3, the execution of node 5 would not be required.

3.4 Property Analysis

In this section some properties of the criteria presented in the previous section are inves-

tigated.

3.4.1 Subsumption Relation

The subsumption relation [10] has been used to establish a software testing criteria hier-
archy based on the criteria strength. It reflects how easily a test set satisfies a criterion
C5 considering that it has satisfied a criterion C;.

The subsumption hierarchy presented on [10] defines the relationship for the unit
testing criteria. In this section the same relationship is analyzed for the integration

testing criteria. It is assumed that the relations that were not valid for the unit testing
criteria remain not valid for the integration testing criteria. Informally it is so because
the set of required elements defined by an integration testing criteria is a subset of the
required elements defined by the equivalent unit testing criteria if the call sites in the
calling module were substituted by the called module code. Consequently it is possible
to produce every counter-example needed to prove the not subsumes relations.

To prove the hierarchy presented on Figure 3 it is assumed that every call statement in
the program involves at least one communication variable, which are both parameters or
global variables. An important difference between the hierarchy presented on [10] for the
unit testing criteria and the one presented on Figure 3 for the integration testing criteria
is that the Linnenkugel and Miillerburg’s data flow integration testing criteria do not
subsumes the All-Multiple-Relations criterion, while the unit testing equivalents subsume
All-Edges the equivalent for All-Multiple-Relations on the unit testing. Therefore these
criteria do not guarantee the execution of every call statement within the program. The

following two theorems are presented to demonstrate this characteristic.

Theorem 3.1 The INT-All-Uses criterion and the All-Multiple-Relations are incompa-

rable.

Proof: Let’s show that INT-All-Uses does not subsumes All-Multiple-Relations. 1t is
assumed that in. is not empty, so let’s say in. = {x} where c is the call statement from a
module M; to a module M,. Suppose that there are no uses of formal.(z) in M, and no
uses of x in M, reachable from ¢, in this case there will be no interprocedural associations
between M; and M, and INT-All-Uses will not require ¢ to be executed, which shows
that INT-All-Uses does not subsumes All-Multiple-Relations.

Notice that one can argue that the absence of a variable usage may be a fault; this is
an important aspect since programs under test are not considered to be fault free. The

situation described above may very well occur in real programs.
Theorem 3.2 The INT-All-Potential-Uses criterion subsumes All-Multiple-Relations.

Proof: 1t follows from the proof of Theorem 3.1 that criteria that require the explicitly
occurrence of a variable use to establish a interprocedural data flow association, such as
INT-All-Uses and INT-All-Defs, do not subsume All-Multiple-Relations criterion. The
INT-All-Potential-Uses criterion does not require the explicitly occurrence of a variable
usage to establish an interprocedural association; consequently, considering in. not empty
for every call ¢ within the program, there will ever be a interprocedural association through
c and INT-All-Potential-Uses criterion subsumes All-Multiple- Relations.

iPath Testing

INT-All-Potential-DU-Paths

/ INT-All-Potential-UsesDU

INT-All-DU-Paths

N

INT-All-Potential-Uses

SN

INT-All-Uses All-Multiple-Relations
INT-AII-C-Used/ INT-All-P-Uses/
Some-P-Uses Some-C-Uses

INT-All-Defs

Figure 3: The Subsumption Relation for Integration.

4 Implementation Notions

4.1 Unit Testing

POKE-TOOL [2] is a tool that implements the potential uses criteria for the unit level
testing of programs. It has a multi-language architecture based on the usage of an inter-
mediate language and it is currently configured for C, Pascal, COBOL, FORTRAN and

Clipper.

POKE-TOOL

Source
Code

Intermediate
Language Code

i

Program Graph

Data Flow
Information

it

Unit Level
Required
Elements

Instrumented
Code

1

Figure 4: Information Generated by POKE-TOOL.

The tool accepts the source code as input and generates the intermediate language

code, the program graph, data flow information, the list of required elements for unit
testing according to the chosen criterion and the instrumented version of the source code,
Figure 4. These information are gathered by a static analysis of the code and the activities
involved on this step are classified as the static phase of the tool.

The dynamic phase comprehends the compilation and execution of the instrumented
version of the source code. This execution generates the paths traversed through the

program, which are used to identify the required elements already covered.

4.2 Reusing Unit Testing Information

The strategy used to implement the Integration Potential Uses Criteria is presented in
this section. This strategy is based on “information reuse”, since it takes advantage of the
testing information derived during unit testing to achieve integration testing requirements.

The “information reuse” strategy is based on the idea that an integration testing
requirement, such as an interprocedural association or an interprocedural subpath, is
represented as a combination of unit testing requirements. Thus, the strategy takes ad-
vantage of the previous effort applied on computing unit testing requirements to establish
the integration testing requirements.

During the application of unit testing on the program the following set of tasks is

performed:

1. Instrument the code;
2. Analyze the code to abstract unit testing requirements;
3. Execute the instrumented code;

4. Evaluate the executed paths to determine satisfied requirements.

When performing integration testing, a new task must be included: 2.1) Combine the
unit testing requirements to establish integration testing requirements; and Task 4 must
be modified to evaluate against the integration requirements.

Only those unit testing requirements that have interprocedural meaning are used to
derive integration requirements; this is the case of requirements involving communication
variables and requirements involving the calling node. Figure 5 shows an example of the
kind of testing requirements that are of interprocedural interest. Observe on the example
that only 8 associations of all 40 from compress() are of interest to interprocedural analy-
sis 4. These associations involve the set of variables {n, lastc} used as actual parameters

on the calling statements to putrep() on nodes 5 and 11; they must be combined with

“Notice that these associations are required by the Potential Uses Criteria [6] and consequently an
explicit usage of the defined variable is not required to establish an association.

Compress()

(%d: n, lastc
(2)

Putrep(n,c)

putrep(n,|a

List of Associations
for putrep()

1) <1,(8,10).{n,c}>
2)<1,98){nc}>
3) <1,(8,9).{n.c}>
4) <1,(35),{nc}>
5) <1,(6,2).{c}>

6) <1,(4,6) {n,c}>
7) <1,(34).{nc}>

— 4.

1) <1,(2,16) {nastc}>
2) <1,(20,12) {n,lastc}>
<1,(10,11) {n astc} >
<1,(14,15) { n,lastc} >
9) <1,(4,5){n/lastc} >
10) <3,(10,12) {c}>

21) <9,(8,9).{n}>

24) <9,(4,5).{n}>
28) <11,(10,11) {n} >

S|«

8) <6,(8,10).{n}>
9) <6,(9.8).{n}>

10) <6,(8,9).{n}>
11) <6,(5,6) {n}>
12) <6,(3,5).{n}>
13) <6,(4,6).{n}>

32) <11,(4,5){n}>
14) <6,(34).{n}>
35) <15,(10,11) {lastc} > 15) <7,(8,10) {i}>

36) <15,(14,15) {lasic} >
37) <15,(89) {lastc}>

40) <15,(4,5) {lastc} >

16) <7,(89){i}>
17) <9,(8,10) {i}>
18) <9,(8.9){i}>

Partial list of associations for compress()

Figure 5: Selecting Integration Testing Requirements.

the set of 7 associations of all 18 from putrep(). These associations involve the formal

parameters on putrep() and the initial node, representing its interface with compress().
A schema representing the approach is shown on Figure 6. With this basic definition

a number of different Integration Testing Criteria are implemented, basically by varying

the strength with which the combined requirements are created.

ModueA | | ModueB |
] Unit Testing 27| Unit Testing h j
‘| Requirements |/ ‘| Requirements | g
i § . B E

(Module A) X (Module B)

Integration Testing
Requirements AxB

Bunsa] Buoieibew|

™= Unit Testing y Unit Testing < |
Req. from A Req. from B

Figure 6: Integration Testing Requirements.

5 Conclusion

A Family of Integration Data Flow Testing Criteria was defined, it is called the Integration
Potential Uses Criteria. The criteria are similar to those defined by Linnenkugel and
Miillerburg, but differ on the way the interprocedural data flow association is established.
Our approach incorporate the concept of potential uses. This small difference promotes a
significante difference on the characteristis of the criteria. The analysis of the subsumption
relation of these criteria reveled that Integration Potential Uses Criteria includes the All-
Multiple- Relations criterion therefore enforcing a basic characteristic of testing criteria.

A initial analysis on the implementation of the criteria defined what was called in-
formation reuse. Basically it can be described as an attempt to reduce the integration
testing cost by taking advantage of unit testing information; the difference is that the
unit testing requirements from each unit are now required to be executed in combination
with other unit’s requirements according to the pairwise approach.

A further study of the applicability of such strategy is still needed. How scalable it
is when considering large programs? Empirical studies to define the cost and complexity
of the approach are necessary. Testing tools are essential support for undertaking such
empirical studies, and the development of the tool to implement the proposed criteria is

essential to the evolution of this work.

References

[1] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New Work, 1990.

[2] M. Chaim. Poke-tool — uma ferramenta para suporte ao teste estrutural de pro-
gramas baseado em andlise de fluxo de dados. Dissertacdo de Mestrado, DCA/FEE/-
UNICAMP, Campinas — SP, Brasil, Abril 1991.

[3] P. Herman. A data flow analysis approach to program testing. Australian Computer
Journal, 8(3), November 1976.

[4] J. Laski and B. Korel. A data flow oriented program testing strategy. IEEE Trans.
Soft. Eng., SE-9(3), May 1983.

[56] U. Linnenkugel and M. Miillerburg. Test data selection criteria for (software) in-
tegration testing. In First International Conference on Systems Integration, pages
709-717, Morristown, New Jersey, April 1990. Systems Integration Conference.

[6] J. Maldonado. Critérios potenciais usos: Uma contribui¢do ao teste estrutural de
software. Tese de Doutorado, DCA-FEE-UNICAMP, Campinas — SP, Brasil, Julho
1991.

[7] J. Maldonado, M. Chaim, and M. Jino. Selecdo de casos de testes baseada nos
critérios potenciais usos. In II Simpdsio Brasileiro de Engenharia de Software, pages
24-35, Canela, RS, Brazil, October 1988. In Portuguese.

[8] S. Ntafos. On required element testing. IEEE Trans. Soft. Eng., SE-10(6), November
1984.

[9] R. Pressman. Software Engineering: A Practitioner’s Approach. McGRAW-HILL,
1992.

[10] S. Rapps and E. Weyuker. Selecting software test data using data flow information.
IEEE Trans. Soft. Eng., SE-11(4), April 1985.

[11] H. Ural and B. Yang. A structural test selection criterion. Information Processing
Letters, 28:157-163, 1988.

