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Abstract

A testing criterion is a predicate to be satisfied and generally addresses two important
questions related to: 1) the selection of test cases capable of revealing as many faults as possible;
and 2) the evaluation of a test set to consider the test ended. Studies show that fault based
criteria, such as mutation testing, are very efficacious, but very expensive in terms of the number
of test cases. Mutation testing uses mutation operators to generate alternatives for the program
P under test. The goal is to derive test cases to producing different behaviours in P and
its alternatives. This approach usually does not allow the test of interaction between faults
since the alternative differs from P by a simple modification. This work explores the use of
Genetic Programming (GP) to derive alternatives for testing P and describes two GP-based test
procedures for selection and evaluation of test data. Experimental results show the GP approach
applicability and allow comparison with mutation testing.

1 Introduction

Genetic Programming (GP) is a recent research area in the field of Evolutionary Compu-
tation. The term was introduced by Koza [15] based on the idea of Genetic Algorithms
[13] and on concepts of Darwin’s Evolution Theory [4].

GP has the goal of inducing computer programs from examples to solve a given prob-
lem. It has been applied to a large number of problems in many areas of Artificial
Intelligence and Engineering [1].

In the Software Engineering area, the software test activity has also gained attention
during the last decades. This activity is very important to assure the quality of the prod-
uct being developed and in general consumes a lot of effort. The main goal of testing is to
generate test data to reveal as many faults as possible, since is not always possible deter-
mine all the faults of a program and to prove its correctness. The complete automation
of the test activity has some theoretical limitations, such as: infeasible paths, equivalent
programs, coincidental correctness, missing paths, etc.

To guide and systematise the test activity, different testing criteria and tools were
proposed to help the tester mainly in two tasks: selection and evaluation of test data
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sets [21]. The first task is related to the choice of the best points, with high probability
of reveal faults. The second one is associated to the following question: How to know
whether a program has been enough tested?

The testing criteria are predicates to be satisfied to stop testing, that is, to consider
the program tested enough. The existent criteria consider different aspects to select test
data and to establish the test requirements. Functional criteria consider the program
specification and functionalities. Structural criteria consider the program source code
and implementation. They are: control and data-flow based criteria [16, 21]. Fault-based
criteria consider the common faults in programming. The best known fault-based criteria
is Mutation Analysis [6].

Mutation Analysis establishes for a program P, being tested, a set of mutant programs
that differ from P by only a simple modification. The goal is to derive a test case to kill all
the generated mutants. To kill a mutant, the test case must to produce different results
for P and its mutant. In that case, the mutant is considered dead. A score, given by
the number of dead and generated mutants helps the tester to evaluate the used test set.
Each transformation in P is described by a mutation operator. An operator is defined
according to the programming language and usually transforms statements, variables or
constants in the program.

The mutation testing is based on two assumptions: 1) “competent programmer hy-
pothesis” [6]: programmers do their programs very similar to the correct program, ac-
cording to a specification; and 2) “coupling effect” [6]: assumes that complex faults are
detected by analysing simpler faults.

Mothra [5] and Proteum [8] are examples of tools that support mutation testing.
Most mutation testing tools and approaches [7, 14] assume only necessary conditions for
discovering faults; that is, to reveal a fault is necessary to produce only an intermediate
different state in the program and in its alternative, after the modified statement. This is
assumed because determining sufficient conditions, which are the conditions to produce
different final states, is undecidable (task related to the term coincidental correctness).
However, Morell [19] points out that these assumptions ignore the global effect of faults
or interactions of modifications in the program.

All the testing criteria present advantages and weaknesses; hence, studies addressing
their complementary aspects are mandatory [16, 25, 26]. These studies are usually based
on three factors [26]: 1) cost: related to the number of necessary test cases; 2) efficacy:
the ability to reveal the faults; and 3) strength: related to the difficulty of satisfying a
criterion, given that another one has already been satisfied. This last factor is related to
the inclusion relation amongst criteria. Structural criteria and mutation testing are the-
oretically incomparable and only empirical studies can point out the relationship among
these criteria, in practice [26].

Some empirical studies show that Mutation Analysis (MA) is more efficacious but
more expensive than structural criteria. The cost of MA application is on the number
of required executions and on the number of necessary test cases. There are different
strategies to apply MA and to reduce its costs. We can mention Randomly Select X%
Mutation, Constrained Mutation, etc [17]. They consider different aspects but all of them
use the mutation operator approach.

This work presents an approach based on GP to derive alternatives for testing a
program P. This approach, named Genetic Programming Based Test (GPBT), like a test
criterion, has the goal of helping the tester in the selection and evaluation of test data
sets. The idea is to produce the alternatives by using GP instead of mutation operators.
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The alternatives do not necessarily differ from P by a simple modification. They can be
a combination of more than a mutant and allow the test of interactions between faults.

To apply GPBT is indispensable the use of a tool. Hence, to support GBPT we
implemented a tool named GPTesT (Genetic Programming Based Testing Tool) [10].
Results of an experiment using GPTesT are also presented. They are analysed according
to the above mentioned factors: cost, efficacy and strength. They show the applicability of
GPBT. The generated test data were also submitted to Proteum for comparison against
the mutation operator approach. GPBT allows a reduction in the number of required
alternatives and test cases.

The paper is organised as follows. Section 2 shows testing aspects and related works.
Section 3 contains an overview of GP: main algorithm, genetic operators and a description
of Chameleon, a GP tool, used by GPTesT and to illustrate GPBT. Section 4 introduces
the GP based testing approach. It describes, through examples, two GP-based procedures,
that are usually supported by a test criterion and tool: selection and evaluation of test
cases. Section 5 presents results from the use of GPTesT and Proteum. Finally, Section
6 concludes the paper and discuss future work.

2 Software Test Criteria

Test executes a program with the goal of finding an unrevealed fault. In this sense, input
data must be derived for a program P being tested and the selection of these test data is a
very important task. Other question related to the testing activity is to known whether a
program has being tested enough or how to evaluate a data test set T. These two aspects
are discussed by Rapps and Weyuker in [21].

To guide the test activity and answer the above questions, different testing criteria
were proposed. Functional criteria use functional specification of a program to derive test
cases. Structural criteria derive test cases based on paths in the control-flow graph of the
program. The best known structural criteria are control-flow and data-flow based criteria
[16, 21]. Fault-based criteria derive test cases to show the presence or absence of typical
faults in a program, based on common errors in the software development process. The
best known fault-based criterion is Mutation Analysis [6].

This work focuses fault-based testing, and the Mutation Analysis criterion will be
described in more detail. Mutation Analysis considers two assumptions: 1) the hypothesis
of the competent programmer: “Programmers do their programs very similar to the
correct program”; and 2) coupling effect: “Tests designed to reveal simple faults can also
reveal complex faults”. It is also based on a set of mutation operators. The mutant
is represented by a single mutation in the original program established by a mutation
operator.

All mutants are executed using a given input test case set T. If a mutant M presents
different results from P, it is said to be dead, otherwise, it is said to be alive. In this case,
either there are no test cases in T that are capable to distinguish M from P, or M and P are
equivalent. Our goal must be to find a test case set able to kill all non-equivalent mutants.
The Mutation Score (MS), obtained by the relation between the number of mutants killed
and the total number of non-equivalent mutants generated, allows the evaluation of the
adequacy of the used test case set. The number of equivalent mutants generated is not
determined automatically; it is obtained interactively as an entry from the tester, since
the equivalence question is, in general, undecidable [6].
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In the literature, there are many testing tools. However, the complete automation of
testing activity is not possible due to many testing limitations: infeasible paths, equivalent
mutants, etc. In general, there is no algorithm to generate a test set that satisfies a given
criterion. It is not even possible to determine if such set exists [12]. In spite of these
limitations, there are in the literature many works addressing test data generation for
satisfying testing criteria. Most recent studies have been exploring Genetic Algorithms
[18].

Proteum [8] and Mothra [5] are examples of testing tools based on mutation testing.
Proteum has a set of 71 mutation operators and supports test of C programs. Mothra
supports testing of Fortran programs.

Theoretical and empirical studies comparing criteria have been conducted based mainly
on three factors [26]: 1) cost: it is related to the number of test cases required to satisfy
the criterion; 2) efficacy: the ability to reveal faults; 3) strength: it is related to the diffi-
culty of satisfying a criterion, given that another one has been satisfied. This last factor
is related to the inclusion relation among criteria.

A criterion C; includes a criterion Cy (Notation: C; — Cy) if, for every program,
every test data set which satisfies C also satisfies C5. If neither C; includes C5 nor Cs
includes Cy, C; and Cy are incomparable [21].

Functional, structural and fault-based criteria are considered complementary, because
they can reveal different types of faults. The data-flow based criteria are stronger than
control-flow based criteria, that is, they include control-flow based criteria [16, 23, 21].
Structural Criteria and Mutation Analysis are theoretically incomparable and only em-
pirical studies can point out the relationship among these criteria [26].

There are a great number of empirical studies [16, 26], comparing different criteria with
respect to the mentioned factors [26]. Those studies show that Mutation Analysis is the
most efficacious, that is, it has a greater probability of revealing faults, but it is the most
expensive in terms of necessary test cases. Other disadvantages are the number of required
executions and the existence of equivalent mutants. To reduce the MA costs, different
strategies were proposed. We can mention Randomly Select X% Mutation, Constrained
Mutation, etc [17]. They consider different aspects but all of them use the mutation
operator approach.

Structural criteria, as data-flow based criteria, also have their disadvantages: learning
their used concepts is not very easy, and they usually require infeasible elements [23],
that is a similar limitation to the equivalence problem. Other limitation inherent to the
testing activities and mainly to the structural technique is missing paths. A missing
path should exist in the program because it corresponds to a functionality that should be
tested, however it is absent. Structural testing derives test cases based on the code and
this problem can be not detected. The program triangle [20], presented in Figure 1a, has
three integer inputs a,b,c. They correspond to the sides of a triangle. The input must
be given in a decreasing order. If this does not happen, the result is -1 (given by the
variable class). If the numbers do not represent the sides of a triangle, the result is 0. If
they really represent a triangle, the result is 1, 2, 3, 4, 5 respectively indicating that the
input triangle is equilateral, isosceles, right, obtuse and acute angled. Figure 1b presents
the control-flow graph of the program and the paths to be executed. Suppose that the
path 1 3 4 18 19 is missing. The test “be or not be a triangle” was not implemented. It
is possible to execute all the paths in the graph and not to reveal the fault.

The mentioned limitations hinder the complete automation of the testing activity.
Since there is no general procedure to determine infeasible paths or equivalent mutants.
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void triangle(a,b,c)

int a,b,c;
{ int class;
float as,bs,cs;

1 if ((a<b) || (b<c))

2 class = -1; ®)

3 else

3 {if (c<=0)

4 class = 0;

5 else

5  {if((al=b) && (b!=c))

6 as = a*a;

6 bs = b*b;

6 CS = c*c;

6 if (as==bs +as)

7 class = 3;

8 else

8

8 if (as<bs+cs)

9 class = 4;
10 else
10 class = 5;
11
12
13 else
13 {if ((a=b)&&(b=c)
14 class = 1;
15 else b) Control Flow Graph
15 class =2
16 }
17 }
18

19 }printf("%d", class);
a) Code

Figure 1: A Missing Path Example

3 Genetic Programming Background

Darwin’s Natural Selection Theory [4] shows that, in nature, the individuals that better
adapt to the environment that surrounds them have a greater chance to survive. They
pass their genetic characteristics to their descendents and consequently, after several gen-
erations, this process tends to select naturally individuals, eliminating the ones that do
not fit the environment. Genetic Programming (GP) is a field of the Evolutionary Com-
putation, that applies the concepts of evolution to automatically inducing programs. It
was introduced by John Koza [15], based on the idea of Genetic Algorithms presented by
John Holland [13].

Instead of a population of beings, GP works with a population of computer programs.
The goal of the GP algorithm is to naturally select, through recombination of “genes”, the
program that better solves a given problem. A special heuristic function called fitness is
used to guide the algorithm in the process of selecting individuals. This function receives
a program and returns a number that shows how close this individual is to the desired
solution.

First, an initial population of computer programs is randomly generated. After that,
the GP algorithm enters a loop that is executed, ideally, until a desired solution is found.
Each run of this loop represents a new generation of computer programs that substitutes
the previous one. This process is repeated until a solution is found or until the maximum
number of generations is reached.

The tool Chameleon [22] illustrates, in this paper, the use of GP for software test-
ing. Chameleon implements the grammar-oriented approach and evolves C programs. It
represents the programs using grammar-based derivation trees. Through the evolution
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process, genetic operators recombine programs by making modifications directly on their
derivation trees. In reproduction, no change is made: the individual is simply replicated
to the next generation. It is equivalent to the asexual reproduction of beings. Mutation
is the addition of a new segment of code to a randomly selected point of the program.
This operation helps to maintain diversity in the population.

Crossover is the operator that truly performs recombination of computer programs.
This operation takes two parents to generate offspring. A random point of crossover is
selected on each parent and the sub-trees below these points are exchanged. It is equivalent
to the sexual reproduction of beings. When grammars are used, the crossover operator is
restricted and only allows the exchange of tree branches that have been generated using
the same production rule.

Consider the problem of calculating the common minimum multiple of two given num-
bers (¢cmm problem). Chameleon finds, among other, the solution presented in Figure 2.
To execute Chameleon the user needs to give the grammar correspondent to the problem
and an initial configuration I of parameters. Figure 3 shows the used initial configuration
I of parameters, including the grammar adopted to the ¢mm problem. The parameters
are related to the genetic operations as mutation and crossover rates; to the number of
runs and size of population; to the derivation tree; and to the name of a file (in this
example ¢cmm.dat, that contains a set T of training cases. These training cases are used
to calculate the fitness value of each individual and describe the expected program output
for some input data. The number of runs can be used to end the process. The individual
(or program) with better fitness value is selected. The selection can also be random.

cmm (int X, int Y)
{ int A=X, B=Y, R=1;
if (Y!=0){
do {
R=Y;
Y=X%Y;
X=R;
} while (Y!'=0)
}
else {
X=0;
}
return (A*B)/R;}

Figure 2: A Possible Solution for the cmm Problem

4 Genetic Programming Based Test

Test has the goal of generating input values (test data) from a program. Genetic Pro-
gramming has the goal of evolving (or generating) programs from input values. We can
observe that there is a symmetry between test and GP. Several authors [2, 3, 24| have
pointed out this fact by theoretically comparing induction and testing. Based on such
symmetry, this section shows how genetic programming can be used to test programs
presenting two testing procedures. They show that GP, like a test criterion, helps the
tester to answer two test questions: how to select a test case set and how to evaluate a
given test set.
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[begin]

[parameters]

population size=500

number of runs=10

tournament size = 10

maximum depth for initial random programs = 15
maximum depth during the run = 30
crossover rate = 90

mutation rate = 0

elitist = N

threshold = 0.01

[compiler]

cl -nologo -G6 -MT -Fepop.exe
[result-producing branch]

terminal set = {X,Y}

function set = {%, !=, *, /}

output variable = Z

[result-producing branch productions]
<code> -> <def> <prog> <result>

<def> -> float R=1, A=X, B=1Y;
<result> -> Z = (A<op>B) <op> <var>;
<prog> -> if (<expc>) {<progi>} else {<atr>}
<progl> -> do {<bloco>} while (<expc>);
<bloco> -> <exp>

<bloco> -> <bloco> <exp>

<exp> =-> <var> = <var> <opm> <var>;
<exp> => <var> = <var>;
<expc> -> <var> <opc> <cte>
<atr> => <var> = <cte>;
<opm> => %

<op> => %

<op> ->/

<opc> - 1=

<var> -> X

<var> ->Y

<var> -> R

<cte> -> 0

[fitness cases]
source -> cmm.dat
[end]

Figure 3: Initial Configuration for Chameleon

Test Data Selection Procedure

Input: a program p to be tested,
an initial configuration I to a GP tool
Output: a set A of alternative programs,
a test data set T

A 0; T+ 0
while tester decision is to continue
a < GPtool(I); /* T e I*/
if (a ¢ A)
A +—A U {a};
if (3¢) | p(t) # a(t)
T+ TU{t};
else
E + EU {a};
end

Initially A and T are empty. In each iteration of the loop, the GP tool generates
an alternative program a. The tester must generate a test data t capable of producing
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different outputs when executes p and a. If such test data ¢ exists it is included on T,
otherwise, a is included in the set E of equivalent programs. The test set T is included in
the initial configuration I after an iteration. It is necessary to verify whether an alternative
a has not already been included in A, because a GP tool can select a program more than
once. In that case, the tester can decide whether a new test data is generated. The tester
is also responsible for stopping the loop iteration.

Test Data Evaluation Procedure

Input: a program p to be tested,
a finite set A of alternative programs generated by a GP tool,
a test data set T
Output: a coverage score St
A’ A; E « 0
repeat for each t € T
repeat for each a € A’
if p(1) # a(f)
A’ A’- {a};
repeat for each a € A’

if (A1) | p(t) # a(t)

E+ EU{ a}
St = (#A - #A")[(#A - #E);
return Sp;

The evaluation procedure executes the program p under test and all the alternatives in
the set A, generated by the GP tool, for each test case ¢ in the test set T, being evaluated.
If p and a produce different results, a is dead and it is excluded. In a second step, the tester
identifies the equivalent programs of A. At the end, A’ contains only alive no equivalent
programs and a score St for T is calculated, similarly to the mutation testing.

4.1 Examples

This section illustrates the execution of the procedures using the factorial program (Fig-
ure 4). Chameleon generated all the alternatives. Table 1 shows the main parameters of
Chameleon’s initial configuration / and Figure 5 presents the used grammar G. During
Chameleon execution, two actions can be adopted: 1) to run Chameleon during a fixed
number of generations and to consider all generated population of programs as alterna-
tives; 2) to run Chameleon and to choose only a program from the generated population.
The choice can be random or can use the fitness case. The first action was adopted to
present the evaluation procedure and, the second, to present the example for the selection
procedure.

Table 1: Main Parameters - Initial Configuration

Population size 1000
Number of runs 100
Tournament size 2
Maximum tree depth for random programs | 10
Maximum tree depth during the run 15
Crossover rate 80%
Mutation rate 10%
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int factorial(int x)

{ int y,i;
y=1; i=1;
while (i<=x)
{

y = y*i;
i=i+1;
}

return(y);?}

Figure 4: Program factorial

<code> :: = y = <kte>; while (<expb>) {<stmts>}
<stmts> ::= <stmt> <stmts>

<stmts> ::= <stmt>

<stmt> ::= <var> = <var> <opa> <kte>;

<stmt> 1= <var> = <var> <opa> <vra>;

<expb> ::= <var> <opb> <kte>

<var> i=x | y

<opb> =< | >

<opa> = ok | 4+

<kte> ::=1 10

Figure 5: Grammar to Factorial Problem
Using GP for Testing Selection

T € I and initially T = 0.

* First iteration of the loop: Chameleon(G,I) is run. The following alternative is
chosen.

al(int x)

{ int y;
y = 0; while(x > 0) {x=y*xy; y=vy - 1;}
return (y);

}

The tester derives a data test ¢ such al(t) # p(t); t and al are included respectively
in 7 and A. After this, 7= {0} and A = {al}.

* Second iteration of the loop: Chameleon(G,I) is run. The following alternative a2
is chosen (note that a2 satisfies T).

a2(int x)

{ int y;
y =1; while(x >0 ) {x =y -1; y=y * x;}
return (y);

}

The tester derives a data test ¢ such a2(t) # p(t); t and a2 are included respectively
in T and A. After this, T = {0,1} and A = {al,a2}.
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* Third iteration of the loop: Chameleon(G,I) is run. The following alternative is
chosen.

a3(int x)

{ int y;
y=1; while(x<0) {x=x-x; y=x-1y; }
return (y);

}

The tester derives a data test ¢ such a3(t) # p(t); t and a3 are included respectively
in T and A. After this, T = {0,1,2} and A = {al,a2,a3}.

* Fourth iteration of the loop: Chameleon(G,I) is run. The following alternative is
chosen.

a4 (int x)

{ int y;
y = 1; while(x > 1) {y =x * 1; x=x-1; }
return (y);

}

The tester derives a data test t such a4(t) # p(t); t and a4 are included respectively
in T and A. After this, T = {0,1,2,3} and A = {a1,a2,a3,a4}

Now the user decides to finish the loop. The solution is given by the sets 7T and A.
A criterion that can be used to take this decision is that whether all the alternatives are
equivalent to p, after a given number of generations. The alternative a9, presented below,
is equivalent to p.

ab (int x)

{ int y;
y = 1; while(x > 1) {y =x * y; x=x-1; }
return (y);

}
Using GP for Evaluating a Test Data Set

The GP-based approach can be used as a criterion to assess the quality of a test data
set. For example, consider two test sets 77={0,1,2} and 7,={0,1,2,3}, and the question:
Which set is better?

We can answer the question using the set of alternatives A = {al, a2, a3, a4, a5},
generated by GP/Chameleon, and choosing the set with the greatest score S. Executing
the second procedure for both test sets, and being F determined by the tester, the results
are:

T;: Initially A= A and E = (.

At the end, E = {a5} and S,= 0.75.

Ty: Initially A’= A and E=( .
At the end, F = {a5} and Sp,= 1.

Analysing the results, the test set 715 is considered adequate and “better” than T}
according to A. S, is greater than St .
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5 Evaluating GPBT

As observed in Section 3, the complete automation of a testing criterion is impossible
due to many testing limitations. Considering these limitations, a tool, named GPTesT
(Genetic Programming-based Testing Tool) [10] was implemented to support the GPBT
approach, described in last section. GPTesT uses Chameleon to derive the alternatives.

This initial version of GPTesT allows the unit testing of programs in C language.
GPTesT, as well Chameleon, is oriented to C functions, where only a C function is tested
at each time. All the results are saved in files, which are in a directory. To generate
the executable alternatives, GPTesT uses the compilation command from I (Chameleon
configuration). More details about GPTesT implementation are in [10].

This section describes an experiment accomplished with GPTesT. The goal is to eval-
uate GPBT and to allow comparison against mutation testing using Proteum operators.
This experiment was first described in [9, 11]; here with the perspective of strength anal-
ysis, we add a new step (Step 6).

5.1 Description of the Experiment

We used four programs described in Table 2. The same steps were followed using Proteum
and GPTesT; they are next:

Table 2: Programs Used for GPBT Evaluation

Programs Description
cmm prints the common minimum multiple
of two given numbers
fat prints the factorial of a given number
max prints the largest of its three inputs
cmd prints the common maximum divisor of

two given numbers

1. generation of the alternatives: we use all the operators available in Proteum. GPesT
uses the alternatives generated by Chameleon with the basic configuration presented
on Table 3. This configuration was used for all programs, however, the grammar
and the initial training cases are dependent on the specific problems.

Table 3: Main Chameleon Parameters

Population size 500
Number of runs 100

Tournament size 7

Maximum tree depth for random programs | 30
Maximum tree depth during the run 60
Crossover rate 90%

Mutation rate 0%
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. generation of test cases and submission to Proteum and GPTesT: two different
testers generated the sets. So, the test cases submitted to the tools are not the
same.

. execution of the program under test and its alternatives: as a result an initial score
were obtained.

. identification of equivalent programs: the equivalence was manually determined.

. generation and submission of additional test cases: the final scores were obtained.
Table 4 presents the results obtained for both tools. For example, for program fat,
Chameleon generated 814 alternatives, but GPTesT discarded 412. There are not
anomalous alternatives in this set, as well, equivalent. The adequate set to kill
all the alternatives has 5 test cases, that is, all of them are effective and really
contribute to increase the score (in this test set is not included the training set of
configuration I). Proteum generated 272 mutants, 0 anomalous, but we identified
29 equivalent mutants; it was also necessary 5 test cases.

. strength analysis: the GP adequate test sets were submitted to Proteum to analyse
the difficult of satisfying the Mutation Analysis criterion. Proteum scores obtained
using GP sets are in Table 5. The Proteum adequate test sets were submitted to
GPTesT and the results are also presented. This table shows the number of test
cases from the adequate test sets that were effective for both tools.

Table 4: Main Results from GPTesT and Proteum

Program Tool # Alternatives # Active # Anomalous | # Equivalent | # Effective
Generated Alternatives Test Cases
fat GPTesT 814 402 0 0 5
Proteum 272 272 0 29 5
max GPTesT 170 115 0 7 6
Proteum 527 527 0 74 28
cmm GPTesT 525 44 0 0 4
Proteum 551 551 0 40 16
cmd GPTesT 464 152 0 0 7
Proteum 397 397 0 33 14
Total GPTesT 1973 713 0 7 22
Proteum 1747 1747 0 176 63

Table 5: Strength Analysis

Program GP in Proteum Proteum in GPTesT
Score | #Effec. TC | Score | #Effec. TC
fat 0.94 5/5 1 3/5
max 0.72 5/6 1 6/28
cmm 0.90 4/4 1 2/16
cmd 0.90 s 1 7/14
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5.2 Analysis of the Results

e Number of Alternatives: the total number of alternatives generated by GPTesT is
greater than Proteum. However, if we consider only active alternatives, that is, no

anomalous and different alternatives, Proteum generated 2 times more alternatives
than GPTesT.

e Generation of Alternatives: to generate alternatives by GPTesT, the tester has
to give the grammar associated to the problem and the training test cases for
Chameleon. The quality of the generated alternatives is dependent on this tester
task. We observed that this task is very important and consumes more effort that
to choose the mutations operators in Proteum. Chameleon is grammar-oriented,
hence, if the grammar does not appropriately describe the problem, the competent
programmer hypothesis will be not considered and maybe all the generated alter-
native will be dead with only one test case. This fact did not happen during our
studies, the alternatives generated by Chameleon are very close to the solution.

e Number of Test Cases: for any program, GPTesT required a lower number of test
cases than Proteum, even for fat program that presents a greater number of GPTesT
alternatives. The total number of effective test cases required by Proteum is 2.5
times greater.

e Anomalous Alternatives: both tools has a mechanism to discard anomalous from
the set of generated mutants.

e Equivalent Mutants: GPTesT generated only 1% of the equivalent alternatives.
Proteum generated 11%. The determination of equivalent mutants represents a lot
of work and effort spent with Proteum.

e Runtime: GPTesT and Proteum execute in different environments and operational
systems. Hence, we do not compare the runtime. Proteum generates a greater
number of alternatives, so the bottleneck is on the time for executing the mutants.
The GPTest bottleneck is associated to Chameleon execution, because the number
of alternatives is lower.

e Efficacy: during the experiment we found an error. Many programs do not consider
negative inputs. This fact was pointed out by both tools. However, we intend to
conduct other experiments with incorrect versions to evaluate this factor.

e Strength Analysis: all the GP strengths in Proteum except for program maz are
high. A possible reason for this is that the program maz presents the greatest
difference in the number of alternatives and necessary test cases. In that case,
Proteum generates 4.5 more mutants than GPTesT, and requires 4.6 more test
cases. Other point to be observed is that only a test case in the GP adequate test
sets were not effective in Proteum.

The Proteum adequate test sets, in other hand, always killed all the non equivalent
GPTesT alternatives, and with a lower total number of test cases (18) than the total
number used by the tester (22). This fact points out the validity of the coupling
effect hypothesis. The simple faults described by the Proteum operators are capable
of describe the composed faults described by the alternatives genetically derived.
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6 Conclusions

This work explored the use of Genetic Programming (GP) in the software test activity.
An approach for software test based on GP is presented. The approach is similar to Mu-
tation Analysis criterion but the concepts of evolution are used instead mutant operators.
The mutation operator approach generates mutants that differ from P by only a simple
modification. GPBT tests interactions between faults and permits the combination of two
or more mutants as only one alternative. The mutation operators available, for example,
in Proteum and Mothra tools can not derive all the alternatives used in the example of
Section 4.1.

This paper described two testing procedures that show how the GPBT can be used
to help the tester in the task of selection and/or evaluation of a test data set. They are
a basic requirement supported by most test criteria and tools.

The test data selection procedure has the advantage of considering the test sets given
by the user during the alternative generation process. This reduces the number of anoma-
lous and alive alternatives, and consequently the effort spent in the test. The initial
population may be very different from the correct program, and Chameleon executions
depend on the grammar and the training test cases given by the user. The user decides
how much the hypothesis of the competent programmer should influence the alternative
generation. However, this fact is not a disadvantage. The effects of a missing path de-
crease because the code is not used to derive the alternatives. This is also an advantage
during the maintenance phase. All alternatives continue valid. The user decides whether
other alternatives will be generated. For the operator mutation approach and structural
criteria, all the required elements must be generated again.

GPBT is independent of the language or paradigm used for the program being tested.
GPTesT uses Chameleon and C language, however, can easily extend to support the
use of other tools and paradigms found in the literature, for instance, that evolve LISP
programs.

With respect to the test data evaluation procedure, there is an important point to be
analysed. The score is strongly based on the set of alternatives A, which is an input to
the procedure. Different scores are generated if different sets of alternatives are consid-
ered. Obviously the mutation score also depends on the used mutation operator, but the
dependence is different here. Two executions of Chameleon do not guarantee the genera-
tion of the same alternative set, even using the same initial configuration. This must be
considered when evaluating test data sets and should be evaluated in future experiments.
It is not a disadvantage, because it can be used as another factor to compare test data
sets.

The results from the experiment show the GPBT applicability. We observed a re-
duction in the number of generated alternatives and test cases. Both adequate test sets
revealed the problem with negative numbers. This points out that the lower GPBT cost
did not influence the efficacy maybe due to an alternative be a combination of one or
more mutants. However, we intend to evaluate the factor efficacy in future experiments.
Other result is related to the percentage of equivalent programs: 1% for GPTesT against
11% for Proteum. Determining equivalent mutants is a tedious task that consumes a lot
of effort. In out experiment GPBT decreased this effort.

The GPBT score in Proteum is around 0.9 for most programs. We used all the
operator in Proteum. Most recent studies determined a set of essential operators in
Proteum to establish a MA strategy with lower costs. Other experiments with this and
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other strategies, mentioned in Section 2 should be conducted with the goal of evaluating
strength and efficacy.

Similar to other testing tools found in literature, GPTesT has some limitations. This
happens due to the undecidibility related to the equivalence between programs and to the
generation of test cases. However, in a future work we will extend GPTesT with mecha-
nisms to reduce these limitations. The mechanisms are heuristics to determine equivalent
alternatives and genetic algorithms to automatically generate test cases, helping the tester
during the procedures exemplified in this paper.

Chameleon evolves simple programs and this is a current GPTesT limitation. In spite
of this, GPBT and GPTesT are as promising as the GP field. New advances in GP will
contribute to improve GPTesT and to increase the GPBT applicability. For instance,
Chameleon is being now extended to support evolution of sub-programs. This will allow
GPTesT extension to support integration test.
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