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Abstract

This paper discusses the formalization effort of object-oriented design metrics

definitions and presents some concrete examples, developed upon the UML meta-model. The

Object Constraint Language (OCL), a part of the Unified Modeling Language (UML)

standard, is used in the formalization. The combination of the UML meta-model and OCL

allows unambiguous metrics definition, which in turn helps increasing tool support for object-

oriented metrics extraction. This formalization renders possible the comparisons among

different sets of metrics, as well as it may be used to establish a common vocabulary among

different stakeholders. As consequence, the precision of the metrics collection increases,

contributing to the overall quality of the Software Engineering process.

1. Introduction

The lack of formalization has been felt for a long time in the object-oriented modeling
area [1, 2]. For instance, in the first well-known book [3] on the subject of metrics for the
object-oriented paradigm most proposed metrics were defined in natural language. As an
improvement, some authors have used a combination of set theory and simple algebra to
express their metrics [4-7], but the mathematical background may not be easy to grasp.

Consider, for example, the measure of distance δM, defined by Poels [8] as the average
distance between the object types of two different non-empty dynamic conceptual schemes.
The notion behind this metric may be defined and interpreted in many ways, according to
distinct viewpoints. What is a distance? Which are the conditions for measurement? Is the
distance expressed by some degree of dissimilarity?

To avoid the ambiguity generated by the informal definition, Poels presents the
mathematical development of the measure as follows:
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where:
MP and MQ are non-empty dynamic conceptual schemes;
MP ∆ MQ = ∅ ⇔ (∀ P ∈ MP, ∃ Q ∈ MQ : δ(P, Q) = 0) ∧ (∀ Q ∈ MQ, ∃ P ∈ MP : δ(Q, P) = 0);
cardinality(MP) = I; cardinality(MQ) = J;
Pi ∈ MP i = 1, …, I; Pj ∈ MQ j = 1, …, J.

The above definition can be used for both scalar and vector representations of the
measure δ (Pi, Qj) – second and third definitions respectively. However, inferring the meaning
of this formula, even knowing each of the components involved, is not an easy nut to crack.

The previous examples show that two problems can arise from the formality degree
used to define metrics, namely the informal (or natural language) definition problem and
mathematical formal definition problem [9]. The former can generate diverge results, as
people using metrics can interpret them in several ways. The latter requires a strong
mathematical background to cope with the expressions complexity, which most of software
practitioners may not have.

In this work, we propose an approach for defining design metrics that combines
understandability and formality. Our approach is verified and validated for sake of correction
and for guaranteeing the quality of the formalizations. The remaining part of this article is
organized as follows. In section 2, the Object Constraint Language is briefly introduced. In
section 3, the formalization of metrics is explained and exemplified for the MOOD2 metrics
set [10]. Section 4 shows the architecture that supports the ideas being proposed. Finally,
section 5 outlines our conclusions and further work.

2. Formalization using the Object Constraint Language (OCL)

Several attempts have been made to combine accuracy and non-ambiguity with object-
oriented modeling. The most recent and promising approach, which bridges formal methods
with object-orientation is called OCL - Object Constraint Language, and it is a part of the
UML standard, published by the OMG (Object Management Group) [11].
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OCL is a formal, yet simple notation, to be used jointly with UML diagrams and
whose syntax has some similarities to those of object-oriented languages such as Smalltalk,
C++ or Eiffel. It is underpinned by mathematical set theory and logic, as it happens with
formal languages, but it was designed for usability and to be easily grasped by anybody
familiar with object-oriented modeling and UML notation in particular. OCL allows
expressing three kinds of constraints on parts of object-oriented models: invariants, pre-

conditions and post-conditions.
Invariants are constraints representing conditions that must be met by all instances of

the class, during their existence. Their context is, therefore, a class. Pre-conditions are
constraints that must be true for an operation to be executed and they traduce the obligations
to be fulfilled by the object requiring the service. Post-conditions are constraints that must be
true when the operation ends its execution and they traduce the obligations to be fulfilled by
the object that offers the service. The context of both pre and post-conditions is an operation,
as in the followings extracts from the simple model of figure 1:

Figure 1 – A simple example

In the context1 of the Person, self refers to an instance of Person. In the expression
self.age, self is an instance of the type Person. The invariant self.age > 18 states that a person
to be employed cannot be under aged (the minimum age in this case is 18).

In the post-condition example, the property age refers to the feature of Person after
completion of operation. The property age@pre refers to the value of the feature age of the
Person before the execution of the operation birthdayHappens.

The pre-condition on the operation hireEmployee exhibits one example of navigation
through a diagram association. It means that a Person can only be employed by the Company

if he/she is not already employed by the Company.
OCL constraints are free of side effects. This means that the state of the objects does

not change by the application of an OCL expression. Expressions can range from simple
comparisons (e.g. an attribute having an upper limit) to complex navigations in a class
diagram through their associations.

Constraints convey a number of benefits, including precision and design
documentation, resulting in better (unambiguous) communication among the involved parts,
such as designers, users, programmers, testers and managers and, since OCL is a typed
language, it is possible to check constraints for validity during modeling.

                                                
1  In this article, the context of the expression is written in underlined letters.

Person::birthdayHappens( )

post: age = age@pre +1

Company:: hireEmployee(p : Person)

pre: not employee -> includes (p)

 birthdate : Date
 age : Integer

 isEmployed : Boolean

 birthdayHappens() : Integer

Person

 name : String
 numberOfEmployees :

                                    Integer

 hireEmployee() : Set

Companymanager

employee

managedCompanies

employer

0 .. *

0 .. *0 .. *

Person

self.age > 18
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3. Formalization of Object-Oriented Metrics

In order to achieve precision into design, designers have to understand the semantics
of the modeling concepts, usually held by a meta-model. A meta-model is a language for
describing models, which explains the semantics of model objects and their relationships. For
instance, the UML meta-model [12] is the description of UML elements, produced with the
UML notation itself [13].

In this work we use the UML meta-model as a basis for the extraction of quantitative
data (metrics), which are formalized with OCL. Even when expressed mathematically, some
metrics may be ill defined.

The ill definition problem may happen due to two reasons:
i) Metrics definitions are usually presented without the corresponding context, that is,

without expressing which is the corresponding meta-model where the entities of
interest and their interrelationships are expressed;

ii) Metrics definition is done without an underlying formal specification approach that
uses the former meta-model as the contextual input. This formal specification should
specify under which conditions the metrics are applicable.

Figure 2 – Part of the UML Meta-Model Core Package
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We formalized the set of the MOOD2 metrics [10, 14] using the GOODLY [14, 15]
and the UML meta-model as background. Now, we want to formalize other sets using the
UML meta-model. As an example, we present the formalization of two metrics.

The parts of the UML meta-model illustrated in figures 2 and 3 are used to produce
and validate around 100 auxiliary functions that are used to express the metrics. The
limitations on the metric applicability are defined with OCL pre-conditions, while the metric
result is defined as an OCL operation (or as an OCL post-condition).  Two examples are
demonstrated below, for the metrics OHF (Operations Hiding Factor) and AIF (Attribute
Inheritance Factor) [10].

To calculate the metrics, several auxiliary functions are created. These functions are
part of a general library that can be used in the formalization of other metrics.

Figure 3 – Part of the UML Meta-Model Model Management Package

OHF was originally defined as “the quotient between the sum of the invisibilities of all

operations defined in all classes in the current specification and the total number of

operations defined in the specification”. The invisibility of one operation is the percentage
from the total number of classes belonging to the specification where the operation in context
is not visible. On one hand, when one operation is public, its invisibility is null. If all the
operations are public, the numerator goes to zero, that is OHF( ) = 0. On the other hand, when
one operation is private, its invisibility is unitary. If all the operations are private the
numerator turns equal to the denominator and OHF( ) = 1.
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To calculate OHF, the auxiliary functions TC, TOD, OD, definedOperations,
definedFeatures, allClasses, contents, allOperations, allFeatures, parents, OSV and OVN are
necessary. They are explained and formalized below.

Name TC – Total Classes

Informal Definition Total number of Classes in the Package.

Formal Definition Package:: TC( ): Integer

=  allClasses( ) -> size( )

Name TOD – Total Operations Defined

Informal Definition Total number of defined Operations in the Package.

Formal Definition Package:: TOD( ): Integer

= allClasses( ) -> iterate ( elem: Class; acc: Integer = 0 |

       acc + elem.OD( ) )

Name OD – Operations Defined

Informal Definition Number of Operations defined in the Classifier.

Formal Definition Classifier:: OD( ): Integer

= definedOperations( ) -> size( )

Name definedOperations

Informal Definition Set of Operations that belong to the current Classifier. Excludes inheritance.

Formal Definition Classifier:: definedOperations( ): Set( Operation )

= self.definedFeatures( ) -> select ( f | f.oclIsKindOf ( Operation ) )

         -> collect ( f |  f.oclAsType ( Operation ) ) -> asSet

Name definedFeatures

Informal Definition Set of Features defined in the Classifier. Excludes inheritance.

Formal Definition Classifier:: definedFeatures( ): Set( Operation )

=  self.feature -> asSet

Name allClasses

Informal Definition Set of all Classes belonging to the current Package.

Formal Definition Package:: allClasses( ): Set( Class )

= self.contents( ) ->

         iterate ( elem: ModelElement; acc: Set (Class) = oclEmpty ( Set ( Class ) )

                    | elem.oclIsTypeOf ( Class ) implies

                acc -> union ( acc -> including ( elem.oclAsType ( Class ) ) ) )
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Name contents

Informal Definition Set containing the ModelElements owned by or imported by the Package.

Formal Definition Package:: contents( ): Set( ModelElement )

=  self.ownedElement -> union ( self.importedElement )

Name allOperations

Informal Definition Set containing all Operations of the Classifier itself and all its inherited

Operations.

Formal Definition Classifier:: allOperations( ): Set( Operation )

=  self.allFeatures( ) -> select(  f | f.oclIsKindOf ( Operation ) ) ->

                    collect ( f | f.oclAsType ( Operation ) ) -> asSet

Name allFeatures

Informal Definition Set containing all Features of the Classifier itself and all its inherited Features.

Formal Definition Classifier:: allFeatures( ): Set( Feature )

= self.feature -> asSet -> union ( self.parents( ) ->

                   collect ( g | g.oclAsType ( Classifier ).allFeatures( ) )

                   -> flatten -> asSet )

Name parents

Informal Definition Set containing all direct parents of the Element.

Formal Definition GeneralizableElement:: parents( ): Set( GeneralizableElement )

= self.specialization -> collect ( c | c.child ) -> asSet( )

                   -> excluding ( self )

Name OSV – Operation to Specification Visibility

Informal Definition Percentage of Classes in the considered Package where the Operation can be

accessed (excludes the class where the operation is declared).

Formal Definition Package:: OSV( o: Operation ): Percentage

= (  self.OVN ( o ) – 1 )  / (  self.TC( ) – 1 )

pre: self.TC( ) > 1

Comments The pre-condition states that at least one more Class must exist, besides the one

where the Operation is declared.
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Name OVN – Operation Visibility Number

Informal Definition Number of Classes in the considered Package where the Operation can be

accessed.

Formal Definition Package:: OVN( o: Operation ): Integer

= self.allClasses( ) -> iterate ( elem: Class; acc: Integer = 0 |

                                                  if elem.OCV ( o ) then

                                                          acc + 1

                                                  else

                                                         acc

                                                  endif )

Name OCV – Operation to Classifier Visibility

Informal Definition Indicates if a Classifier can access the Operation.

Formal Definition Classifier:: OCV( o: Operation ): Boolean

self.allOperations( ) -> exists (

      ( o.owner = self ) or

      ( o.visibility = #public ) or

      ( ( o.visibility = #protected ) and

      ( self.ascendants( ).oclAsType( Classifier ).allOperations( ) -> includes( o ) ) ) )

             or ( ( self.allOperations( ) = oclEmpty( Set ( Operation ) ) )

             and ( o.visibility = public ) )

Comments One Classifier can access the Operation “o” when:

- It is the owner of the Operation;

- The Operation is public;

- The Operation is protected and belongs to one ascendant of the current

Classifier;

- It has no Operation. If the “o” is public, all Classes in the Package can

access it, even empty Classes (that, in pratice, do not exist).

Finally, using these functions we can define the metric OHF as follows:

Name OHF – Operations Hiding Factor

Informal Definition Quotient between the sum of the invisibilities of all Operations defined in all

Classes in the current Package and the total number of Operations defined in the

Package.

Formal Definition Package:: OHF(): Percentage

=  allClasses( ).allOperations( ) -> asSet( )

                                -> iterate ( elem: Operation; acc: Real=0 |

                                               acc + 1 – self.OSV( elem ) )  / self.TOD( )

pre: self.TC( ) > 1

pre: self.TOD( ) > 0
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AIF was originally defined as the “quotient between the number of inherited attributes

in all classes of the specification and the number of available attributes for all classes of the

current specification”. The set of available attributes of one class is the union of the locally
defined ones with the inherited attributes, but not redefined or cancelled. When there is no
effective inheritance (there are no hierarchies) or when all the attributes are redefined, the
numerator becomes null and AIF( ) = 0. When the specification has only classes without their
own attributes, but with some inherited ones, then the numerator becomes equal to the
denominator and AIF( ) = 1.

To calculate AIF, the auxiliary functions TAA, AA, availableAttributes, newAttributes,
definedAttributes, inheritedFromAllAttributes, inheritedAttributes, inheritedFromAllFeatures,
inheritedFeatures, TAI and AI are necessary. The metric also requires the functions
allClasses, definedFeatures and parents above explained.

Name TAA – Total Attributes Available

Informal Definition Total number of available Attributes in the Package.

Formal Definition Package:: TAA( ): Integer

= allClasses( ) -> iterate( elem: Class; acc: Integer = 0 |

       acc + elem.AA( ) )

Name AA – Attributes Available

Informal Definition Number of Attributes that may be associated to instances of the Classifier.

Formal Definition Classifier:: AA( ): Integer

= availableAttributes( ) -> size( )

Name availableAttributes

Informal Definition Attributes that may be applied to instances of the Classifier.

Formal Definition Classifier:: availableAttributes(): Set( Attribute )

= newAttributes( ) -> union ( inheritedFromAllAttributes( ) )

Name newAttributes

Informal Definition Attributes defined in the Classifier that are not overriding inherited ones.

Formal Definition Classifier:: newAttributes( ): Set( Attribute )

= definedAttributes( ) – inheritedFromAllAttributes( )
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Name definedAttributes

Informal Definition Set of Attributes defined in the Classifier.

Formal Definition Classifier:: definedAttributes( ): Set( Attribute )

= self.definedFeatures( ) -> select ( f | f.oclIsKindOf (Attribute) ) ->

         collect ( f | f.oclAsType (Attribute) ) -> asSet

Name inheritedFromAllAttributes

Informal Definition Attributes that the current Classifier inherits, until the top of the hierarchy.

Formal Definition Classifier:: inheritedFromAllAttributes( ): Set( Attribute )

= self.inheritedAttributes( )

         ->  union ( self.inheritedFromAllFeatures( )

               -> select (  f | f.oclIsKindOf ( Attribute )

                    -> collect (  f | f.oclAsType ( Attribute ) ) -> asSet )

Name inheritedAttributes

Informal Definition Number of direct inherited Attributes.

Formal Definition Classifier:: inheritedAttributes( ): Set( Attribute )

= self.inheritedFeatures( ) -> select (  f | f.oclIsKindOf ( Attribute )

         -> collect ( f | f.oclAsType ( Attribute ) ) -> asSet

Name inheritedFromAllFeatures

Informal Definition Features that the current Classifier inherits, until the top of the hierarchy.

Formal Definition Classifier:: inheritedFromAllFeatures( ): Set( Attribute )

=  self.inheritedFeatures( ) -> union ( self.parents( ) ->

          collect ( p | p.oclAsType( Classifier ).inheritedFromAllFeatures( ) )

                    -> flatten -> asSet)

Name inheritedFeatures

Informal Definition Direct inherited Features from the Classifier.

Formal Definition Classifier:: inheritedFeatures( ): Set( Attribute )

post: result =  self.parents( ) -> iterate( elem: GeneralizableElement;

                       acc: Set( Feature ) = oclEmpty( Set( Feature ) ) |

           acc -> union ( elem.oclAsType( Classifier ).definedFeatures( ) ) )
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Name TAI – Total Attributes Inherited

Informal Definition Total number of Attributes inherited in the Package.

Formal Definition Package:: TAI( ): Integer

= allClasses( ) -> iterate ( elem: Class; acc: Integer = 0 |

        acc + elem.AI( ) )

Name AI – Attributes Inherited

Informal Definition Number of all inherited attributes.

Formal Definition Classifier:: AI( ): Integer

= inheritedFromAllAttributes( ) -> size( )

AIF is then, formalized as:

Name AIF – Attributes Inheritance Factor

Informal Definition Quotient between the number of inherited attributes in all classes of the package

and the number of available attributes (locally defined plus inherited) for all

classes of the current package.

Formal Definition Package:: AIF( ): Percentage

= self.TAI( ) / self.TAA( )

pre: self.TAA( ) > 0

In a similar way, all the 16 metrics of MOOD and MOOD2 are formalized. Our next
steps consist of formalizing and testing other sets, to finally compare them.

4. An Architecture for Metrics Formalization

The current state of the art for adding precision to object-oriented modeling by the use
of OCL is depicted in figure 4. Commercial UML modeling tools (as Rational Rose [16],
Objectory [17], JDeveloper [18], QuickUML [19], PowerDesigner [20], etc.) provide some
graphic diagram editors that allow building models of systems. The models – represented by
X, Y and Z in the picture – are stored in the tool repository.

Nowadays, modeling tools do not offer facilities for the evaluation of OCL
expressions over the models in the repository. Nevertheless, several tools – like Use [21],
Cybernetic Parser [22], Elixer [23], ModelRun [24], etc – are emerging from undergoing
research projects and can be used to formalize the models, provided that they can be exported
with an appropriate input format to the OCL tools. Typically, a textual file representing the
model is generated by a translator (XML can be used as an example to represent the model).
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Figure 4 – Model Level Architecture

After the file conversion of the model (to a representation that can be understood by
OCL tools), the real instances of the entities in the diagram are created and the model is
populated (i.e., a plenty of objects, corresponding to the entities in the model, are created).
These instances are the base of the assertions that are constructed with OCL. For this process
one workload generator tool (see figure 4) would be of great help because, frequently, the
UML model instances are done “by hand”.

The diagrams that compose the models and their respective objects serve as input to an
OCL evaluation tool, which takes the converted representation of the diagram, the added OCL
constraints and the instances of the model, and evaluate each of the constraints, showing the
results. The OCL evaluator should be capable of verifying if the constraints are broken or not,
for a given workload of user model instances. Moreover, it should evaluate each assertion
separately and to provide feedback on which are the design test cases that meet or break the
constraints.

While the architecture depicted in figure 4 corresponds to a model level evaluation, the
one depicted in figure 5 is related to a meta-model level evaluation.

In the meta-model level architecture, all the functionalities of the model-level are
preserved. Notwithstanding, there are two main additions: one is the introduction of the class
diagrams corresponding to the UML meta-model. Another is the introduction of an automatic
instance generator, which will take the meta-model and automatically generate all the
instances to populate it. Using these features (meta-model and corresponding instances) we
formalize and test several design sets of metrics that can be found in the literature, expressed
as OCL expressions upon the UML meta-model, as shown in the previous section.
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Figure 5 – Meta-Model Level Architecture

A textual version (in XML format for example) of the UML meta-model can be
obtained from a UML meta-model class diagram, using the architecture represented in figure
5.  We developed a meta-model instance generator to instantiate the objects corresponding to
the meta-classes. Currently, we have formalized and tested the validity of the MOOD and
MOOD2 metrics [25, 26].

We plan to formalize other well-known design metrics sets. This effort will help to
clarify the metrics definitions and to assess their suitability to measure UML designs.
Furthermore, the later effort will enable us to propose a quality model for metrics, which will
consequently facilitate the creation of the meta-metrics – metrics that measure metrics
characteristics.  Some examples of those characteristics, still illustrated in an informal way,
are:

- Understandability: the effort required to understand the metric. It is inversely proportional
to the weighted sum of the meta-model classes and associations involved in the metric
definition.

- Efficiency: number of resources necessary to compute the metric. It is inversely
proportional to the computational complexity of the metric calculation algorithm (as
expressed in OCL).

Our work helps improving quality in the models, since it helps developers (at an initial
stage of the software production) to estimate important characteristics of the system while the
quality factors are being evaluated and adapted for getting a better product.
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5. Conclusions and further work

We used the OCL, a part of the UML standard, to define object-oriented design
metrics in a very natural and understandable way. The precision granted by the formality of
OCL comes at a much lower cost, for both practitioners and tool builders, than when using
other formal specification constructs. Since UML became a de facto standard, both in
academia and industry, more and more people are expected to use OCL in their designs and,
as such, to understand its syntax and semantics.

Besides formalizing some metrics sets using the UML meta-model, we also plan to
make a similar effort based upon the OML (OPEN Modeling Language) meta-model. OML
emerged from the OPEN (Object-oriented Process, Environment and Notation)

consortium [32-35]. The latter is supported by a large group of well-known methodologists
such as Brian Henderson-Sellers (author of the MOSES method [31, 32]), Ian Graham (author
of SOMA – Semantic Object Modelling Approach [33]), Donald Firesmith [34] and Jim Odell
[35].

Moreover, we plan to abstract the common characteristics of those sets in order to
build a high level meta-model. The latter will be a framework for describing, classifying and
accessing existing metric sets, as well as a basis for the production of new ones. Our idea is to
introduce a framework that allows practitioners to build new metric sets or improve old ones
and afterwards, to create the meta-metrics-model. We also expect to detect the limitations of
the metrics during the formalization process.

We believe that our efforts can indeed contribute to Software Engineering practical
aspects, providing better tool support for metrics and also to emphasize the importance of
quantitative approaches on industry and academic applications.
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