
146

XVI Simpósio Brasileiro de Engenharia de Software

Towards a Methodology for Requirements Analysis of Data

Warehouse Systems

Fábio Rilston Silva Paim, Ana Elizabete Carvalho, Jaelson Brelaz de Castro

Universidade Federal de Pernambuco, Centro de Informática, Recife, Brazil

{frsp, aesc, jbc}@cin.ufpe.br

Abstract

Few researches have been carried out to provide means of requirements acquisition and

assessment in the novel field of data warehousing. This work proposes a methodology for

requirements specification in the context of data warehouse systems, as a way to accomplish the

peculiar aspects inherent to such systems. Moreover, a case study and its practical contributions

in modeling a strategic information system for the Brazilian Government are presented.

Key words: requirements engineering, methodology, data warehouse, twin peaks.

1. Introduction

Requirements Engineering has focused on the threefold goal of capturing, analyzing and

managing software requirements information, as remarkably noted in [21], [19], [14]. These

overall goals have commonly been revisited every time the dynamics of computer science

grants scientific community with a new technology. Recently forged on this field, Data

Warehouse technology has flourished as a powerful way to extract, integrate and analyze data

from heterogeneous sources. The reason behind this success lies on its great contribution:

making predictions about the (near) future, a feature ever searched for business companies.

However, the multidimensionality [1] inherent to data warehouse applications presents a

new challenge to software requirements analysis. Information in such systems is a matter of

data exploitation and integration under a subject-oriented paradigm, which requires strong

knowledge from both high-level users and software development team. More than ever,

success here depends on building the most precise user requirements specification, as a basis

for assembling an efficient architecture, capable of supporting the strategic organization level

with all information its decision makers might require. In this sense, a methodological

approach is required to guarantee (i) the correct comprehension of user requirements, (ii) a

fine-tuned design phase and (iii) the construction of a dimensional schema that enables

decision makers to perform all necessary analysis. Furthermore, such methodology, allied to

efficient requirements management tools, works as an instrument to trace the changes in user

requirements along the project, and to allow developers to make the proper, on-time

maintenance on the application data model.

In this work we propose a methodology for requirements analysis of data warehouse

systems. Our approach is twofold: (i) defining a phase-oriented methodology to serve as a

guide throughout the data warehouse specification process; (ii) generating a set of artifacts to

collect each aspect of the users demand. Moreover, we describe a practical application of this

approach carried out at SERPRO, a Data Processing Agency of the Brazilian Federal

Government, and its main contributions to the underlying project.

This work is organized as follows. In section 2 we present the basic concepts pertaining

the data warehouse technology. In section 3 we establish a parallel between related works and

147

XVI Simpósio Brasileiro de Engenharia de Software

dimensional

hierarchy
measure

(fact)

attribute 1

attribute 2

attribute 3

attribute 4

attribute 5 D
im

en
si

o
n

1

attribute 1 attribute 2

Dimension2

Dimension3

cell

our present approach. Section 4 discusses the specificities of a decision-support system’s

development process. In section 5 we present our methodology, followed by the case study

reported in section 6. Section 7 summarizes our concluding remarks.

2. Data Warehousing

 The term Data Warehouse was first coined by [11] to describe “a collection of consistent,

subject-oriented, integrated, time-variant, non-volatile data in support of management’s

decisions ”. More than just a collection of data, data warehousing is a defined process

pertaining 3 phases: (a) extracting data from distributed operational sources (mostly legacy

systems); (b) organizing and integrating data consistently into the warehouse; and (c)

accessing integrated data in an efficient and flexible fashion. The main contribution of a data

warehouse relies on its capability of transforming data into strategic information, accessible to

decision-makers in the highest levels of an organization. Such capability is supported by the

use of OLAP (OnLine Analytical Processing) technology [4], which provides final users with

configurable views of data from different angles and on different aggregation levels.

 Fast and flexible OLAP analysis can only be achieved if data are arranged in a

multidimensional form [1] where information is classified according to facts and dimensions.

Facts are numeric or factual data that represents a specific business activity that we wish to

analyze. Dimensions are single perspectives on the data that determines the granularity (the

data detail level) to be adopted for fact representation. Fact units and their values are referred

to as measures. In addition, each dimension is described by a set of descriptive attributes,

which qualify the data content. For instance, in a company whose commercial activity is

devoted to vehicle sales, the sales amount of imported vehicles is a fact, which can be

analyzed through the perspective of the stores that performed sales along the year. The chain

of stores, the car category, and the time (date) of a sale correspond to dimensions. Moreover,

these dimensions can be described in terms of attributes such as name, city and state, for the

store dimension; name and type, for the car category dimension; and finally day, month, and

year, for the time dimension. Still, attributes in a dimension can be arranged as a hierarchical

chain, allowing measures to be assembled (classified or aggregated) along the hierarchy.

Recalling our latter example, name and day represent the lowest granularity level of each

dimensional hierarchy.

Figure 1. Data cube multidimensional metaphor ([3]).

 The data cube metaphor is frequently used to clarify the structural multidimensionality

inherent to data warehouses [3], each cell representing an intersection point between n

dimensions, which holds a measure on which analysis is to be performed (Figure 1).

Furthermore, in order to facilitate the management of the data warehouse assembling process,

148

XVI Simpósio Brasileiro de Engenharia de Software

developers commonly make use of the so-called “divide to conquer” strategy to identify and

deploy meaningful subsets of data, in form of small data warehouses, containing information

related to a certain business activity. These well-defined blocks of strategic information are

referred to as Data Marts, and represent a starting point in an incremental cycle that aims to

deliver the enterprise-wide data warehouse by integrating its independent blocks, one at a

time.

3. Related Works

Few works in the literature attempt to connect Requirements Engineering to Data

Warehouse Systems. Such works conceive requirements analysis as one of a sequence of

phases that compound an entire development lifecycle ([13], [8]). The requirements phase is

introduced as a prior step to conceptual design. Informal techniques for requirements

elicitation, documentation, analysis and validation (not necessarily all together) play a more

significant or incidental role, depending on the particular approach. Besides the heterogeneous

concern regarding each technique, none of these works offer a consistent, fully-fledged

methodology specifically aimed at requirements analysis and management. We discuss here

some works that explore the requirements phase in a more detailed level.

In [9] the operational Entity-Relationship Schema of transactional applications delivers

basic information to determine eligible multidimensional requirements. Business Domain

experts select strategically relevant operational attributes that are classified as dimensions

and/or measures. The resulting requirements are presented in a tabular list of attributes along

with their multidimensional purpose. Supplementary information (integrity constraints,

additional derived requirements) can be added informally in a textual appendix. Although it

innovates by proposing a useful artifact for requirements elicitation (the “tabular listing”), this

approach lacks addressing a reliable requirements acquisition process.

[6] makes use of an Object-Oriented Software Engineering [12] approach to depict the

enterprise goals and objectives, and develops an Object-Oriented Conceptual Framework for

data warehouses development life cycle. Within this framework, business requirements are

described by means of use-cases, which are directed to identify actors (stakeholders); express

behavior between actors and business subprocesses; and thus specify objects in support of the

required dimensional architecture. Despite its complexity and technical-driven sophistication,

the latter approach shows little commitment to a realistic, high-leveled requirements analysis

methodology, whereas it proves to be strictly suited to object-oriented environments. We

argue that our approach is neither dependent of the software language nor it is of the database

logical/physical organization.

For the sake of completeness, one cannot skip looking into the strict field of requirements

engineering to note important techniques like Viewpoint [23], Goal-oriented [22], or Non-

Functional Requirements [24] analysis. They extend the core requirements engineering phases

and go beyond the what-how analytical paradigm to bound requirements to the reasoning

(why) that motivates their specification, as well as to the alternative goals that affect their

allocation into the software-to-be [25]. On the one hand, it seems obvious that the same line

of thought deserves certain attention when developing decision-support systems. On the other

hand, as later discussed in this work, the specificities that make this domain area unique

suggest that applying these techniques to model multidimensional requirements requires

specific reevaluation and tailoring, which are out of the scope of this paper.

4. Data Warehouse Development: Engineering between Peaks

The development of data warehouse systems is rather different than the development of

conventional operational systems [3]. Designing and implementing such an environment is a

149

XVI Simpósio Brasileiro de Engenharia de Software

highly complex engineering task that calls for a methodological support [10], capable of

weaving together architectural and specification requirements. An alternative to reduce the

gap between such apparently distinct requirements is to adopt an iterative process to produce

progressively (and simultaneously) more detailed requirements and design specification, like

the Twin Peaks Development Process proposed in [15]. In fact, requirements analysis in data

warehouse systems cannot be performed without taking into account (multidimensional)

architecture constraints that exert static as well as dynamic influence in the system scope, and

compels developers to focus equally on either of these two “peaks” at any one time. Our

experience supports that the three management principles advocated in the Twin Peaks Model

are proven effective to such modern applications. With regard to the IKIWISI (I’ll know it

when I see it) principle, data warehouse requirements are often clarified when stakeholders

assess the system-to-be by means of prototypes and early schema definitions. Although

componentized units of work (COTS) are not a tendency in data warehouse development,

reuse of early data warehouse requirements can be increasingly valuable to the evolution of a

Data Mart solution. Furthermore, an approach that pinpoints the distinction between data

warehouse core requirements and strict Data Mart ones improves the multidimensional model

integration, and consequently strengthens such architectures against the rapid changes of

system requirements to which they are naturally exposed. Our approach does it so by

emphasizing all the aforementioned aspects.

Nevertheless, in order to better correlate architecture and problem specification, the

following set of concepts needs to be accommodated while performing requirements

engineering in data warehouses:

i) Represent facts and their properties – Facts are central to data warehouses. Analyzing

user requirements implies identification of facts through perceiving the measures behind

user demands;

ii) Distinguish and connect dimensions to facts – dimensions offer the key to understand

fact measures by allowing the user to view data through a specific (mostly strategic) point

of view. Sometimes the analysis of a single user statement gives rise to a number of

candidate dimensions. For instance, the sentence “Monthly sales of individual stock items

in each store” clearly specifies the time, stock and store dimensions, as well as the sales

amount fact. Realizing dimensions and facts (and their correct association) within user

requirements is a leading issue in data warehouse specification, as well as an error-prone

aspect;

iii) Summarizability assurance – a functionally strong requirement of data warehouse

specification is to guarantee the correctness of aggregation results, also known as

summarizability. Problems arise when attributes in a product dimension like “video

system” or “water usage” are not valid for all products. Instead, they depend on a specific

context (washers are products but do not have a video system, whereas video articles

have a video system, but no water usage property). Drawbacks can be avoided by clearly

expressing the constraint requirements regarding aggregation of data, as well as

conforming Data Mart facts and dimensions to the enterprise data warehouse model;

iv) Represent integration with data sources – in a data warehouse environment, data is

collected from several different sources, inside and outside the enterprise environment.

This activity involves not only importing data from all sort of bases, but also uncovering

informal business requirements. Understanding requirements and procedures concerning

integration with data sources is essential for designing a quality decision-support system,

as well as it guarantees that application results do not face inconsistency;

v) Fast track of user requirements changes – an issue of concern in conventional systems

development, keeping track of changes in system requirements assumes an exponential

importance to data warehouse applications. Even sometimes so-called “insignificant

150

XVI Simpósio Brasileiro de Engenharia de Software

Figure 2. Framework

Management

Plan

Business

Domain
Project

Guidelines

User

Needs

Early DataMart

Requirements

 Requirements

Management

Planning

New

Baseline

DataMart

Requirements Release

Accorded

Changes

Data Warehouse

Requirements Updated

Data Warehouse

Requirements

Development

Cycle

 Requirements

Specification

 Requirements

Validation

 Requirements Management Control

changes” can put to test the overall validity of derived data, weakening the decision-

support potential of the application;

vi) High-quality documentation – Unlike conventional systems, whose documentation

sometimes needs to be totally raised up “from the scratch”, developing a data warehouse

always involves developers using pre-existing operational information to define data

integration and querying procedures. Apart from rare exceptions, such legacy

documentation lacks the necessary quality, turning the extraction of technical

requirements from such a material a cumbersome activity. Hence, a high-level

documentation designed to overcome this situation, providing a general interface for

requirements exploitation of information sources, is extremely required.

5. Methodology

The methodology hereby presented is structured in a set of phases (Figure 2). Each phase

follows the abstraction level of the application in depth, as the project requirements are

gathered to form a requirements baseline. Surrounding this process stands a backbone activity

named Requirements Management Control, which performs permanent quality assessment of

requirements changes in background.

Coupled with the above architecture, serving as recording instruments of the facts and

cutting-edge points for the system development, stands a set of document templates proposing

a pre-defined structure for requirements documentation, suitable for registering all aspects of

stakeholders’ needs, and conceiving both the dimensional schema, and the data warehouse

specification. In the sequel we provide descriptions of each methodology phase.

5.1 Requirements Management Planning

Before eliciting requirements, rules for an effective requirements management process

must be defined. Such a policy encompasses general guidelines that will guide the appropriate

application of the methodology. These guidelines concern the acquisition, documentation and

control of selected requirements, and can be defined in terms of business rules, procedures

and processes commonly agreed to clarify the following aspects:

151

XVI Simpósio Brasileiro de Engenharia de Software

Figure 3. Requirements Specification Process

Raw Collected

Requirements

Documentation

Elicitation

Analysis &

Negotiation

Data Mart

Requirements

Baseline
Iterations

Agreed Data Warehouse

Requirements

Conforming

Requirements

(1) Project Objectives. Due to general flexibility provided by the dimensional model and

OLAP tools, users might be tempted to see every possible desire as achievable. On the

other hand, developers tend to see the data warehouse construction through an eminently

technical point of view, designing functionalities that drift apart from user’s real needs. A

balance can be achieved by clearly stating the project objectives among all participants

before it gets started.

(2) Dimensional Requirements Focus. What is the granularity scope in each Data Mart?

What legal constraints restrict multidimensional analysis of data? In which ways would

users like to have data summarized along dimensions? The answers to these and many

other important questions will rule the dimensional modeling, and therefore must be

carefully depicted as general project objectives.

(3) Source Integration Premises. One must define clear rules for data exchanging between

systems, centered in a standard integration layout. Periodicity, data loading priorities and

responsibilities, among other issues, will constitute the core of integration guidelines.

(4) Project Schedule and Management. Stakeholders and the Development Team are

responsible for setting up statements that will undoubtedly point out the project

constraints with regard to deployment time, management evaluation, and project

boundaries. These statements will furthermore be integrated into the Requirements

Management Plan.

The earlier issues do not imply an exhaustive list, to which there might certainly be other

important statements to be added up. Yet, the resulting Requirements Management Plan

describes (a) how system requirements are structured within the data warehouse project, (b)

which artifacts hold the requirements specification, (c) what conditions have been established

to manage the development cycle, and (d) the set of characteristics needed to assure

traceability over requirements.

5.2 Requirements Specification

The success of the requirements engineering process depends on the ability to proceed

from informal, fuzzy individual statements of requirements to a formal specification that is

understood and agreed by all

stakeholders [14]. In data warehouse

development, this process underpins a

cyclic approach of acquisition,

representation and evaluation of

requirements to gradually yield a

project specification. Thus, an iterative

process seems to be more appropriate to

support such working flow. The

initially elicited (raw) Data Mart

requirements traverse a sequence of

iterations in a spiral model (Figure 3),

along which requirements are analyzed,

negotiated within process participants,

registered and conformed to a broader

data warehouse specification. The

product of each iteration is either a set

of more refined requirements to serve as

the entry point for a subsequent iteration, or a final version (baseline) of the Data Mart

specification that truly reflects end user’s perceptions about the target system. As more

152

XVI Simpósio Brasileiro de Engenharia de Software

increasingly refined information is fed back from a previous iteration, the following iteration

tends to be faster and more easy-solving, its product being closer to an agreed requirements

baseline.

Modeling data warehouse systems requires an extra concern with the reuse of earlier

agreed requirements. Because building the whole enterprise data warehouse entails a long

term process of developing and integrating individual Data Marts, the only way to achieve

such integration is to specify common factual and dimensional requirements in a way that

they mean the same thing across all Data Marts. Therefore, recently specified requirements

must conform to the overall data warehouse requirements set to avoid redundancy and

guarantee adherence to the bigger model. Similar rationale can be performed to procedures

and business rules within each Data Mart construction stage. The proper requirements

feedback and conformance at this point is provided by the Conforming Requirements phase.

The following sections describe the (sub)processes that compound the Requirements

Specification activity.

5.3 Requirements Elicitation

This phase aims to implement a process of multidimensional requirements discovering by

communicating with stakeholders. As for conventional systems, the data warehouse elicitation

phase requires application domain, and organizational expertise from both users and systems

analysts. We found the following techniques the most useful for eliciting data warehouse

requirements:

�� Interviews. Ask questions to stakeholders regarding the strategical analysis that are to be

performed, seeking to understand their real needs while taking notes of the obtained

answers. This proceeding is specially indicated to soothe users’ natural inability to

describe in concrete terms their strategic needs. [7] illustrates innumerous examples of

interview sessions suitable for extracting information from stakeholder representatives,

while [13] present good tips on how to plan for the interview;

�� Prototyping. Used within the process as an experimental system, prototypes show

stakeholders how system facilities will aid in decision-making. The prototype simulates

system behavior, and offers stakeholders a valuable opportunity to consolidate their ideas

about system requirements, especially those associated with (architectural)

multidimensional aspects.

�� Scenarios. Working out a set of interaction scenarios aids developers in clarifying and

detailing system requirements, in a use case fashion [12]. Considering that the main

transactions compounding a data warehouse application tend to be identical from project

to project (namely extracting, integrating and accessing data), its use case model will

focus on specifying the business rules, procedures and querying functionalities that make

one project unlike the other. Additionally, use cases enable the reuse of behavior shared

among different Data Mart scenarios.

To all the above techniques, domain experts must work in strict accordance with

requirements engineering, so that not only the necessary but also the correct information is

collected.

5.4 Requirements Analysis and Negotiation

Recently discovered requirements, together with those from earlier negotiation phases are

input to a thorough analysis that aims to check requirements against omissions, conflicts,

overlaps and inconsistencies. Generated documents must be revised for ensuring that

153

XVI Simpósio Brasileiro de Engenharia de Software

specification follows quality standards and major multidimensional constraints, as well as it

holds adequate balance between architectural and conceptual issues.

One important technique applied to support this phase is the Requirements Checklist. By

checklist we imply a list of questions driven to assess each requirement through reading the

requirements documents. The checklist can be implemented as a spreadsheet where the rows

are labeled with the requirements identifiers. Our proposed checklist for data warehouse

requirements is presented below:

Item Description

Automatic

Aggregation

Do all dimensional levels lead to a complete automatic aggregation

approach, in terms of the multidimensional model elaborated?

Facts and

Dimensions

representation

Are all stakeholders’ analytical needs represented in terms of a

multidimensional schema?

Facts and

Dimensions

Connection

Is the entire set of dimensional levels properly associated in all levels to

the basic set of facts being analyzed?

Integration

Completeness

Are all integration requirements and procedures defined as to correctly

incorporate external information into the system?

Documentation

Quality

Do all defined documents serve as tools to accomplish all user needs

under established quality standards?

Unnecessary

Requirements

Do requirements correspond to a user need or serve only as a cosmetic

addition to the system?

Requirements

Ambiguity

Is there ambiguity within requirements, i.e., could any requirement be

read in different ways by different people? What are the possible

interpretations of the requirement?

Requirements

Testability

Are the requirements testable, that is, are they stated in such a way that

tests can be derived, to show that the system meets user requirements?

Requirements

Conformity

Can we truly “drill” across fact tables by navigating through conformed

dimensions without incurring in data loss or inconsistence?

5.5 Requirements Documentation

This phase is at the core of our methodology. The purpose here is to provide a complete,

detailed documentation of the elicited system requirements, in such a way that they become

understandable to all stakeholders. In fact, requirements documentation is produced

throughout the data warehouse development, not being restricted to the documentation phase

(see Figure 4). In our approach we have designed a set of templates to accommodate all data

warehouse functional and non-functional requirements. The templates are meta-documents

that describe their own purpose and appropriate usage, like the example shown in the

Appendix. Following, we present a brief description of each artifact:

�� Requirements Management Plan. Documents management aspects essential to project

regulation, as discussed in Section 5.1 (see Appendix).

�� Project Glossary. Collects and organizes all terminology and concepts specific to the

problem domains envisioned in the overall data warehouse project, thus enhancing the

common understanding of basic terms among all involved parties.

�� Data Warehouse Vision. Describes enterprise data warehouse requirements, including

descriptions of the motivation and problem issues, conformed dimension and facts,

154

XVI Simpósio Brasileiro de Engenharia de Software

 Notation: Rational Unified Process� [RUP]

Figure 4. The Documentation Process.

Data
Warehouse

Vision

(revised)

Data

Warehouse
Rules

(revised)

Project

Glossary
(revised)

�����������
�����������
�����������
�����������

Data Mart

Use Cases
Data

Mart

Vision

Data

Warehouse
NFR

Traceability

Matrices

User

Interface

Prototype

Requirements

Management

Plan (revised)

Requirements Management Planning

Stakeholder

End User

Source

Provider

Requirements

Engineer

System

Analyst

Project

Manager
Revision

Report

Requirements

Specification
Requirements

Validation

Data

Warehouse

Vision

Project

Glossary

Requirements

Management

Plan

Data

Warehouse

Rules

Users

Needs

Business
Application

Domain

project aims and guidelines, stakeholders’ profile, and other general issues concerning the

data warehouse.

�� Data Mart Vision. Collects high-level Data Mart user needs, as well as the features and

actors that support such needs, under a multidimensional viewpoint. Moreover, the

document tackles other important aspects related to Data Mart implementation, such as

internal dimensions and procedures to be attained at each construction stage.

�� Data Mart Use Cases. Detail the procedures required to implement all functionalities

designed for each Data Mart construction phase, representing the possible sequences that

might happen until the final result is achieved.

�� Data Warehouse NFR. Complements the Use Case documents, describing all non-

functional requirements not covered by the use case model, as well as design constraints

and other restrictive factors.

�� Data Warehouse Rules. The aim of this document is to register all business rules that

constrain the enterprise data warehouse (including its constituent Data Marts) conception.

Additionally, according to the volume of rules, distinct subject-oriented documents can

be produced, each one for a set of Data Marts’ rules.

�� Revision Report. A simple report to hold the actions agreed after a requirements

validation session (see section 5.7).

�� Traceability Matrices. Help managing requirements changes, as stated in section 5.8.

155

XVI Simpósio Brasileiro de Engenharia de Software

5.6 Conforming Requirements

Data warehouse projects can only be successful if its definition pieces are sound in two

interleaved dimensions: the subject-driven Data Mart vision and the global enterprise data

warehouse framework. Any attempt to define isolated pieces of the data warehouse that,

afterwards, cannot usefully be tied together, will cause the project to fail. According to [13], if

one hopes to build a data warehouse that is robust and resilient in the face of continuously

evolving requirements, one must adhere to a Data Mart definition on which common

dimensions and facts are conformed among all Data Marts. A dimension is said to be

“conformed” when it means the same thing to every fact table it is attached to. Similarly, a

fact conforms to the overall enterprise model if the same terminology is used across Data

Marts to represent its content.

In our approach, this concept is extended to an utmost level of abstraction where all

common system requirements are conformed. A requirement is conformed if it is identically

the same in each Data Mart vision of the enterprise data warehouse. More than just

multidimensional aspects, conformed requirements respond for every function, characteristic

or constraint to the system development that holds the same reasoning all over the project, and

therefore must be represented in a unique form. In other terms, conforming requirements is

one of the multiple faces of requirements reuse. Conformed requirements bring the following

benefits to the data warehouse specification:

a. Avoid redundancy and ambiguity between requirements that oversees the entire data

warehouse;

b. Allow common dimensional aspects such as dimension tables to be applied to multiple

facts in the same database space;

c. In conjunction with a scenario-based approach, promote reusability of agreed

knowledge in the project, thus enhancing quality;

d. Improve consistency of user interfaces and data content whenever the conformed

model is used;

e. Enable drill-across
1
 operations between Data Marts;

f. Guarantee the required integration among Data Marts, thus enabling the enterprise

multidimensional architecture to work as a whole;

g. Make data warehouse evolution a much easier task;

h. Facilitates adherence to design and organizational standards;

It is a major responsibility of the data warehouse design team to establish, publish,

maintain, and enforce requirements conformance. Following every documentation phase, all

specification documents must be analyzed to carve off those requirements that represent

enterprise data warehouse specificities. Analysts must attempt to recognize requirements

overlapping and similarities, and proceed to adjustments in the specification to conform these

requirements, even promoting requirements to a higher-level documentation artifact if need

be.

5.7 Requirements Validation

Considering a data warehouse application, it is likely that, after completing all the

previously defined phases, some misunderstandings and/or misconceptions regarding the

analytical features to be provided might still remain. Sometimes, neither the user group nor

the development team is confident enough of what the product being delivered is capable of

1 OLAP operation related to retrieving facts from diverse data warehouse visions linked by common dimensions.

156

XVI Simpósio Brasileiro de Engenharia de Software

doing. Review sessions, together with prototyping, prove to be an effective strategy to detect

and remove defects in the target application, before they become part of the delivered Data

Mart package. During the review meeting, the Data Mart final release is presented to all

involved parties, and described in terms of its full multidimensionality.

When problems are located, the validation team must immediately attach a list of actions

in response to each problem, and agree with the actions to be enrolled. The development

process returns to the specification phase where the actions are applied to conform the

requirements documents to the right specification. We argue that it is extremely desirable to

include in this phase external domain experts who have not been involved in the process of

requirements specification. These external reviewers bring a fresh perspective into the project

environment, as they are not bound to preconceived notions about the solution.

5.8 Requirements Management Control

Requirements cannot be managed effectively without traceability. In data warehouse

systems development, traceability and change management must be carried out in both

requirements and architectural spheres. The former investigation field will be concerned with

managing changes to agreed requirements, and its impact to other requirements in the same or

external document. The later will complementarily extend this investigation to the database

architecture, in order to clear up what impact the underlying change will have in the

multidimensional schema. Supporting tools exist for both investigation activities ([17], [5],

[2], [20]). The usage of such instruments becomes mandatory in data warehouse applications

for their development process involves handling large amounts of requirements and database

attributes.

When tracing requirements, Traceability Matrices are the largest used component in

special-purpose tools to show requirements dependencies. Rows and columns of the matrix

represent system requirements. By reading across a row, all requirements on which a specific

requirement depends are shown. A group of different matrices must be defined to support a

complete requirements analysis (ex. user needs versus features; features versus facts; facts

versus dimensional attributes; business rules versus use case steps; and many more).

Discussion groups, requirements version control, web publishing services, and report

generation facilities are among a large range of additional techniques made available by these

tools. On the other hand, changes in the requirements model affect straightforwardly the

database model in both Data Mart and Data Warehouse views, which requires the overall

impacts to be traced. CASE tools can be very supportive in accomplishing this task, as they

offer automated search capabilities to trace the correspondent dimensional requirement in the

database, and discover how many (and at what extent) database components are affected by

the change. These features reduce the effort of evaluating and performing the necessary

maintenance to database table fields, thus preserving the safety of the solution.

6. Case Study

In this section we introduce SAFE
2
, a decision-support system developed by SERPRO,

under the premises of our methodology. SAFE collects and stores client’s information in a

subject-driven perspective to perform complex OLAP queries. Subjects are defined as client’s

core business areas, and modeled by means of single Data Mart solutions. A central fact table

holds real world facts vital to the analysis scenario envisioned for the subject. Attached to

each fact table, a collection of dimension tables compounds star-schema models, which are

2 SAFE is an acronym to “Sistema de Análises Fiscais Estratégicas” (Internal Revenues Strategic Information

System). Due to strong secrecy conditions imposed by our contracted client, we will focus our description on

the system’s general aspects.

157

XVI Simpósio Brasileiro de Engenharia de Software

interconnected through their common dimensions in a complex data warehouse structure, well

known in the domain literature as constellation [16]. The system is built on a three-tiered

architecture. The application server level bridges Java-based interface instances and the

multidimensional repository in between, enabling end users to operate the data warehouse

from whichever point across client’s intranet, on a “24 X 7” basis.

In developing SAFE, a software engineering team was composed of two requirements

engineers and a group of eight developers (including the project leader). The chosen strategy

rested on capturing critical requirements, i.e., those tightly connected to the system

bottlenecks: (a) integration process definition, (b) multidimensionality mapping, and (c) user

needs change control. Then, our approach was to intensively use the processes and artifacts

specified in the methodology to fight back bottleneck points, with special care to requirements

specification and management. On average, two iterations were followed for each Data Mart

development in one-year trial. Following we summarize the lessons acquired during the trial

at each methodological phase:

��Requirements Management Planning. The Plan helped engineers in capturing the system

requirements attributes, from which classification and (mainly) prioritization became

possible. The phase wrapped clients into the novel experience of discussing the data

warehouse inner aspects, objectives and construction guidelines in equality with the

technical team. Such an experience turned out to be a critical step towards avoiding

misconceptions about the product that, in other projects, had been postponed to deal with

in later phases, inevitably incurring in schedule and cost overhead. At the end, not only the

clients’ confidence in the project rose high, but also the so-called gap between client (from

now on, stakeholder) and developer was extremely reduced. The phase also revealed the

need for a glossary of terms, considering the wide range of business domains tackled by

the data warehouse.

��Requirements Specification. Interviews conducted during this phase enabled a high-level

information exchange among stakeholders, to whom evolving prototyped versions added a

broader understanding about the data warehouse capabilities. Likewise, a detailed use case

definition stage allowed engineers to keep focus on real user needs, and hence implement

functionalities to attain at such needs. All gathered requirements were first cataloged onto

instances of the document templates, and later loaded into a RequisitePro
�

 requirements

database, from which they could be easier managed by the project leader. Comparing to

earlier experiences in developing data warehouse solutions, engineering team experts

proved the efficiency of this new approach in correctly representing and conforming

multidimensional elements, integration requirements, and summarizability constraints.

Two types of documents were highlighted in the process: the Vision Documents, providing

sections to neatly register the interleaved association among external sources, facts and

dimensions; and the Traceability Matrices automated by RequisitePro
�

 to facilitate

management activities that, without these instruments, would be considerably harder for

the project leader to achieve. A distinct product of applying our methodology was the

generation of a conformed structure of dimensions (periodicity, organizational level, tax-

payer, tax status, among others) and facts (collected amounts, tax payment quantifiers,

internal revenues amounts, and others) to serve as a backbone for new Data Mart

implementations. Similarly, quality assurance procedures were generalized and applied to

the entire data warehouse development. Iteratively documenting requirements also

generated an efficient basis for future consulting and validation. Developers realized that,

by doing so, they established means for contractual agreement with the clients so that no

specification would undergo implementation without client’s approval.

��Requirements Validation. We note here that clients added a new perspective to the

documents validation, promoting the scheduled review sessions to open Workshops, where

158

XVI Simpósio Brasileiro de Engenharia de Software

requirements documents were discussed among all involved parties, including external

observers, as suggested in our approach. We also note that observers contributed with

unbiased questions that pointed out misconceived (or even forgotten) conceptual and

architectural aspects, which reinforced the importance of such elements in this phase.

Furthermore, information was validated among all parts so that what had been specified

corresponded to what was meant to be implemented. The requirements documents were

then updated and action reports produced to be managed by the project leader.

��Requirements Management Control – The core stages of our methodology generated a

total amount of 4.306 requirements of all sorts. As previously argued in this work, such

amount would result unmanageable without full-automated support. RequisitePro
�

facilities came to rescue in this task, allowing the project leader to evaluate the impacts of

requirements changes to the project, and thus better negotiate the change with the client.

On the architectural side, impacts were analyzed using the Oracle’s Designer 2000
�

, the

project’s official CASE tool, and the results joined up to enrich discussions with the client.

Applying the methodology operated a deep change on the client-developer paradigm.

Clients felt like being part of the construction process for the first time, which helped in the

development of an agreed solution. Moreover, the use of requirements management facilities

increased clients’ perception of requirements changing consequences, and the impact of

continuously changing needs to the project schedule. On the other hand, developers were now

aware of requirements reusability during the development of a data warehouse, looking for

preserving conformance to the enterprise broader model. In spite of the benefits proved, the

trial also revealed some weaknesses in the methodology:

��The large amount of requirements caused traceability matrices to become hard to manage

or visualize, as the associations between requirements grew fast and sparse. Higher-leveled

requirements attributes were introduced to more coarsely relate requirements in each

matrix, but that did not keep the project leader from executing partial analysis, in a number

of steps, to completely estimate the impact of requirements changes.

��More than analyzing the impact of changes, one felt the need of means for controlling the

client’s requests for changing workflow. Processes or instruments to use in support of this

activity are not defined in our present approach.

��The methodology does not treat maintenance projects.

��Considering that SERPRO holds an ongoing process to adhere to SEI’s CMM-Level2,

some consideration about the links between the proposed Requirements Engineering

approach and other CMM Key Process Areas are missing.

Such weak points will be object of specific studies in upcoming versions. For the moment,

however, a final analysis indicates the use of the methodology to aid in the development of

decision-support systems, as demonstrated by the achievement of project schedule, small

incidence of errors, multidimensional characteristics coverage, and a sound client’s

satisfaction with the quality obtained in the delivered product.

7. Conclusions

In this paper we have proposed a methodology for requirements analysis of data

warehouse systems, as an important step towards delivering a quality decision-support

solution. When developing a data warehouse, we must keep track of its inherent

multidimensionality, a complex aspect that makes the development of such systems rather

different than in conventional ones. In addition, data warehouse applications belong to a

159

XVI Simpósio Brasileiro de Engenharia de Software

modern class of systems to which architectural and specification issues have equal status. The

key to address the later aspects is a reliable requirements engineering process, which in this

case claims for a methodological support based on iterative, yet domain-driven steps. Our

approach provides such support with innovative undertaking on documentation, management

and reuse of requirements.

As demonstrated in the case study, the proposed methodology represents a powerful tool

in analyzing and managing data warehouse requirements. It provides means for capturing

users needs and domain knowledge over the analytical problem, while drives development

towards creating an integrated multidimensional solution. Additionally, we presented the

overall benefits in using such methodology as a guide throughout the data warehouse

development, proving that it helps stakeholders to expand and consolidate their knowledge

along with the own evolution of the project.

Among our future works, we intend to update and release new methodology versions

based on the lessons acquired in present and forthcoming trials. We have just started

researches towards defining a framework to largely support reuse of requirements and other

components of pre-existent data warehouse solutions, using domain engineering techniques.

8. References

[1] Abelló, A., Samos, J., Saltor, F. “Benefits of an Object Oriented Multidimensional Data

Model”. Lecture Notes in Computer Science, a. 1944, pg. 141 ff, Proc. of Objects and

Database 2000 (ECOOP Workshop), France, 2000.

[2] Oracle 9iDiscoverer. http://otn.oracle.com/products/discoverer/content.html

[3] Boehnlein, M., Ende, A. U. “Deriving Initial Data Warehouses Structures from the

Conceptual Data Models of the Underlying Operational Information Systems”. Proc. of

Workshop on Data Warehousing and OLAP (DOLAP), Kansas City, MO, USA, 1999.

[4] Codd, E. F., Codd, S. B., Salley, C. T. “Providing OLAP (Online Analytical Processing)

to User Analyst: an IT Mandate”. White paper at http://www.arborsoft.com/OLAP.html,

Arbor Software, 1993.

[5] Telelogic DOORS®/ERS. http://www.telelogic.com/products/doorsers/index.cfm

[6] Firestone, J.M. “Object-Oriented Data Warehousing”. Technical Report, Executive

Information Systems White Paper No.5, 1997.

[7] Giovinazzo, W. Object-Oriented Data Warehouse Design, Prentice Hall, 1
st
 edition,

February, 2000.

[8] Golfarelli, M., Rizzi, S. “Designing the Data Warehouse : Key Steps and Crucial Issues”.

Journal of Computer Science and Information Management, Vol. 2, No. 3, 1999.

[9] Hüsseman, B., Lechtenbörger, J., Vossen, G. “Conceptual Data Warehouse Design”.

Proc. of Intl. Workshop on Design and Management of Data Warehouses (DMDW2000),

Stockholm, Sweden, June, 2000.

[10] Hahn, K., Sapia, C., Blaschka, M. “Automatically Generating OLAP Schema from

Conceptual Graphical Models”. Proc. of Workshop on Data Warehousing and OLAP

(DOLAP), Washington DC, USA, 2000.

[11] Inmon, W. H. Building the Data Warehouse, John Wiley & Sons, 2
nd

 edition, 1996.

[12] Jacobson, I. Object-Oriented Software Engineering, Addison-Wesley, 1992.

[13] Kimball, R., Reeves, L., Ross, M., Thornthwaite, W. The Data Warehouse Lifecycle

Toolkit, New York, John Wiley & Sons, 1998.

[14] Loucopoulos, P., Karakostas, V. System Requirements Engineering, McGraw-Hill,

London, 1995.

[15] Nuseibeh, B. “Weaving The Software Development Process Between Requirements and

Architecture”. Proceedings of ICSE2001 International Workshop: From Software

Requirements to Architectures (STRAW-01), Toronto, Canada, 2001.

160

XVI Simpósio Brasileiro de Engenharia de Software

[16] Raden, N. “Star Scheme 101”. http://members.aol.com/nraden.str.htm

[17] Rational RequisitePro. http://www.rational.com/products/reqpro/docs/datasheet.html

[18] Rational Unified Process: Artifacts Notation. www.rational.com/products/rup/index.jsp

[19] Sommerville, I., Kotonya, G. Requirements Engineering: Processes and Techniques,

Addison-Wiley, 1997.

[20] Popkin’s System Architect. http://www.popkin.com/

[21] Zahran, S. Software Process Improvement, Addison-Wiley, 1998.

[22] Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E. “Exploring Alternatives During

Requirements Analysis”, IEEE Software, January/February, 2001, pp 2-6.

[23] Finkelstein, A., Kramer, J., Nuseibeh, B., Goedicke, M. “Viewpoints: A Framework for

Integrating Multiple Perspectives in Systems Development”, International Journal of

Software Engineering and Knowledge Engineering, 2(10): 31-58, 1992.

[24] Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-Functional Requirements in Software

Engineering, Kluwer Publishing, 2000.

[25] van Lamsweerde, A. “Requirements Engineering in the year 00: A Research

Perspective”. Invited Paper to ICSE’2000, Proc. of the International Conference on

Software Engineering, Limerick, June, 2000.

161

XVI Simpósio Brasileiro de Engenharia de Software

9. Appendix – Example of Requirement Document Template

Revision History

 Date Version Description Author Revised by

Requirements Management Plan

1. Roles and Responsibilities

<identifies the roles and respective responsibilities of those involved in managing the data warehouse

development process.>

2. Procedures and Processes

<describes the processes and procedures to be applied when managing requirement changes,

validating data transformation, and deploying user interface facilities. These regulations must define

behavior to be followed by the roles (users and developers) involved in each stage of the application

development. The list of processes/procedures should be appropriately organized into sections

regarding each stage name, in order to improve readability. The most common stage labels are Data

Extraction, Data Transformation, Database Loading, and User Analysis Generation, but modern

stages of concern nowadays can also be included such as Data Updating and Securing. This section

should also include details on how the Requirements Management Plan itself is to be updated, in a

“Project Management” section.>

3. Artifacts

< enumerates and briefly describes the project artifacts that hold the requirements definition.>

4. Requirements Identification

<describes how requirements items are to be classified, marked, and numbered.>

4.1. Types

<specifies all functional and non-functional requirements types associated with the project.

Common types are Dimension, Fact, Actor, User Need, Feature, Use Case Name, Constraint,

and many more. To facilitate classification, a specific mnemonic must be created to identify each

requirement type (ex.: DIM – Dimension).>

4.2. Attributes

<lists the requirements attributes to be used in evaluating, accompanying, prioritizing and

managing the underlined requirements. Useful attributes are Risk, Effort, Priority, Status, Benefit

and Aggregation Level. Each attribute must be described in terms of a classification range, from a

lower importance level to a higher one (ex.: Priority can be classified into High, Medium and

Low). A brief description must follow each level.>

4.3. Identification Rule

<specifies the numbering rule to be considered for identifying requirements.>

5. Traceability Criteria

<describes any additional rules and guidelines with regard to requirements traceability. Applicable

constraints such as “every approved dimensions must be linked to at least one fact table” must be

described in this section.>

6. Milestones

<enumerates internal and costumer milestones related to the requirements management effort.>

