XVI Simpésio Brasileiro de Engenharia de Software

User Interface Design
for Web Collaborative Systems

Antonio M. da Silva Filho Roberto S. M. de Barros Hans K. E. Liesenberg
Department of Informatics Center of Informatics Institute of Computing
University of Maringa University of Pernambuco University of Campinas
amendes@din.uem.br roberto@cin.ufpe.br hans@ic.unicamp.br
Abstract

Design for cooperation is a challenge. As designers we note that as we are getting
into a new century, several areas have achieved significant breakthroughs. Among
them, it is easy to perceive that Computing and Telecommunications have had an
impact of paramount importance to society as a whole. These technologies have
allowed an increasing integration of research fields, people of various backgrounds
and abilities as well as made the interaction of different cultures possible. As a
result, we have been living in the Internet era with a very large number of Web
sites which can be visited, queried and played with. Application examples are
Digital Libraries, Health Care Information Systems, Physics Collaboratories, and
Web-based entertainments like interactive Web games. Within this context, we are
concerned with the user interface design for such systems and a protagonist-oriented
approach for capturing the user interface design is presented.

1 Introduction

The final years of the 20th century have led the whole society to a digital maelstrom due
to significant breakthroughs achieved in the areas of Computing and Telecommunications.
As time goes on, we are faced with the convergence of these technologies. Such an inte-
gration has made the reshaping of traditional computing possible where most users were
used to work on stand-alone machines. Today the traditional computing is giving way
to the social computing which allows an ever increasing interaction of research fields, in-
volving people of various backgrounds and abilities as well as of different cultures. Social
computing is one of the examples of the Internet era where a very large number of Web
sites can be visited, queried and played with. Schuler [15] says that “social computing
describes any type of computing application in which software serves as an intermediary
or a focus for a social relation”.

We have identified a number of collaborative applications such as: Digital Libraries
[4, 12], Health Care Information Systems [11], Physics Collaboratories [1], and Web-
based Entertainments like multiuser Web games. We call them Web collaborative systems
since it allows different players at different sites to play together in either a health care
information system or a networked Web application. Another example of Web-based
collaborative system is the Digital Agora by Watters et al[22], where the system aims

331

XVI Simpésio Brasileiro de Engenharia de Software

at providing support for active learning in Social Sciences. These examples illustrate
scenarios where performers act cooperatively within a shared working environment.

Nevertheless, the popularity of the Internet has demanded more and more from inter-
active systems designers in the sense that they are concerned with the improvement of
the usability of such systems. These networked systems have specific usability problems
not found earlier on stand-alone machines. Internet browsers hide details of the underly-
ing networks from the user. This leads to unpredictability because without that kind of
information it is difficult to determine whether retrieval commands will be successful. For
example, a remote site failure will prevent the requested information from being delivered
to the user. Additionally, communication bottlenecks can delay the data transmission
between a browser and remote servers. Within this context, we are concerned with the
way designers can capture user interface (UI) design. To tackle this kind of problems, we
present a protagonist-oriented analysis and design approach in order to capture the user
interface designs.

Background issues on analysis and design approaches for social computing are dis-
cussed next. Section 3 presents the protagonist-oriented modeling technique for captur-
ing the user interface design. A case study of a Web collaborative system using our
protagonist-oriented approach is presented in Section 4 and concluding remarks are given
in Section 5.

2 Background Issues

Computer systems are intended to aid people to perform their work. Henceforth, such
systems must be built to satisfy the needs of their users. However, there is no way that
a system can work well with a user group (e.g. a cooperative group) without a deep
understanding of the users in such a group. Computer technology can and has acted as a
direct aid to people at their tasks carried out during work activities. In addition, computer
has changed dramatically the patterns of work and communication in a workplace. Note
that computer technology alone cannot provide the answers when we deal with human
activities. The tasks, the culture, the social structure, and the individual human beings
are all essential components of the job and, unless the computational tools fit seamlessly
in the structure, the result may be failure.

As designers, we need to take all these issues into account. Together with these ob-
servations we note that the transformation of telecommunications, brought about mainly
by a close relationship with computers, is both driving down the cost of communication
and driving up the amount of information that can be exchanged. In this context, we
present a way of how designers can capture the user interface design for social computing
which includes those systems mentioned earlier. Firstly, however, we discussed the two
approaches which have inspired our proposal and, therefore, might also be alternatives in
the design process. They are: Participatory Design and Ethnography-based Design.

2.1 Participatory Design

Participatory Design (PD) is an approach where future users of computer systems partic-
ipate directly with designers in the design process. This approach, pioneered in Scandi-
navia, is widely accepted throughout Europe and has got attention in the USA. Clement

332

XVI Simpésio Brasileiro de Engenharia de Software

and Besselaar [3] give a historical review of the PD approach and identify the ingredi-
ents of PD projects: (i) Access to relevant information; (ii) Independent voice in decision
making; (iii) User-controlled resources: time, facilities, expertise; (iv) Appropriate devel-
opment methods; (v) Organizational/technical flexibility.

On top of the aforementioned issues, Greenbaum [6] discusses three reasons for the
need of PD: from a pragmatic perspective, a theoretical perspective, and a political per-
spective. In the pragmatic perspective, she states that “.. it is generally acknowledged
that approzimately 60 to 80% of all problems can be traced to poor or inadequate re-
quirement specifications. Obuviously, computer systems need to better suit people’s working
practices”. Now, from a theoretical perspective, she says that “since systems developers
and people at workplaces do not experience the same things, this limits how well they can
understand each other’s experiences. One way of getting around this dilemma is to apply
a PD approach to prototyping which emphasizes providing people with hands-on experience
in a work-like setting”. While from a political perspective, she argues that “As systems
developers we have the obligation to provide people with the opportunity to influence their
own lives. We believe it is our professional responsability not only to build systems that
are cost-effective but that also improve the quality of work live”.

2.2 Ethnography-based Design

Ethnography is a technique originally developed by anthropologists where they spend long
periods of time in foreign societies aiming to understand the social mechanisms. Within
a context of design, the major objective is to achieve a thorough understanding of work
practices in order to better support the computer systems design.

This is an approach that has been receiving an increasing interest. By having its
starting point anchored in the Social Sciences and the Humanities, it brings a provoking
and relevant perspective into design. The focus is on the detailed analysis of current work
practices, as viewed by the people who actually do the work. According to Blomberg et
al [2], the four main principles that guide the ethnographic work are:

e First hand encounters: a commitment to study the activities of people in their
everyday settings.

e Holism: a belief that particular behaviors can only be understood in the everyday
context in which they occur.

e Descriptive rather than prescriptive: describe how people actually behave, instead
of how they ought to behave.

e Members’ point-of-view: describe the behavior in terms relevant and meaningful to
the study participants.

The afore-said principles entail that designers should not pre-define any conceptual
framework. Instead, designers are expected to capture the social structure in order to
better support the cooperative work. Moreover, since work is a socially organized activity,
where the actual behavior may differ from the way it is described by whoever does it, it is
mandatory to rely not only on interviews but also on observations of everyday activities
at the workplace where technology is supposed to be inserted. In that sense, it is similar
to the Contextual Design approach (CD) of Holtzblatt and Beyer [7, 8] where design data

333

XVI Simpésio Brasileiro de Engenharia de Software

are gathered by having designers watching people doing their own jobs, interspersing
observation, discussion, and reconstruction of past events.

3 Protagonist-oriented Analysis and Design

Protagonist-oriented analysis and design (PAD) is an approach based on the protagonist
action notation(PAN) to capture the user interface design [19, 20, 16, 18], as shown in

Figure 1.

Requirements Gathering - It is concerned with understanding needs.

documentation work ; i domain
data practice ;terwews information
‘ Requirements ‘
gathering C&P=Contraints
and Problems
early system
description C&P

system protagonist

identification GPM,
usage

presentation <GPM > C&p scemarios ‘ system architectural

aspects model identification

knowledge interaction scenarios Q
development

base
- new scenarios
protagonist

scenarios C&P

representation of the

presentatio
aspects protagonist tasks ,
TCMs
THMs C&P S
PeM architcc:lctlural/ .

model .~ .

HCI design analysis | ____.-~
and enhancement

C&P o
nhanced
specification

: THM
UI design *Il
specification
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [PCM__ |

Figure 1: Protagonist-oriented Analysis and Design.
That is, this

phase aims at understanding the nature of the system to be developed and the required
functionality. Within this context, the main objective is to capture the system’s orga-
nization. In more detail, viewing such an organization as a collection of protagonists.
In addition, this process aims at identifying the role that each protagonist will play. At
the end, the designer is expected to obtain a system description of the system under

development (SUD).
System Protagonists Identification - These protagonists can be both user and system

components depending on decisions of what parts of a working process should or should

334

XVI Simpésio Brasileiro de Engenharia de Software

not be carried out automatically. The designer makes use of the GPM to capture the sys-
tem protagonists playing roles in interaction scenarios. A way of doing that is developing
interaction scenarios involving protagonists.

Interaction Scenarios Development - The designer must describe interaction scenarios
involving the system protagonists in order to identify their goals and tasks. It is worth
observing that all interaction details such as the kind of information exchanged between
protagonists are abstracted out. The focus is on the interactions between protagonists.

System Architectural Model Identification - A system is described in terms of its archi-
tectural model, i.e. the system is in terms of its components or protagonists. It is worth
pointing out that both users and software components can play the role of protagonists.

System Protagonists Task Representation - From the identification of the protagonists
and their interactions at a high abstraction level an architectural model is identified. Such
identification is derived based on the interaction scenarios worked out where each system
protagonist is capable of performing some particular tasks. In that case, the task set for
each protagonist is described by using THMs, TCMs, and PCMs.

Ul design analysis and enhancement - With the PAN, three models task hierarchical
model (THM), task coordination model (TCM) and presentation component model (PCM)
are used to obtain the UI design. Nevertheless, such models need to be analyzed and
enhanced before generating the Ul design specification. Note that all the models are
given at a high abstraction level and so a further refinement is needed before mapping the
UT design specification into Ul software design specification [18]. With that in mind, an
analysis and enhancement of the Ul design is performed where users’ and designer’s views
are combined and detailed. As a result, PAN models are enhanced to generate the Ul
design specification. It is worth observing that THM, TCM and PCM are simply distinct
viewpoints of the same entity, that is the task set of the system protagonists. The main
steps of our protagonist-oriented design approach for Web collaborative systems has been
presented above.

3.1 Protagonist Action Notation

The primary abstraction of the PAN is the protagonist. Protagonists can be either a
user or system components playing major roles in interaction scenarios. The primary
abstraction of the PAN is the protagonist. An interactive system is viewed as a collection
of protagonists interacting with each other, represented by a GPM. Each protagonist can
perform one or more tasks. These tasks and their relationships are described through
the TCM. Additionally, the structure of tasks is captured via the THM. The PAN is
supplemented with the PCM, highlighting the presentation aspects, which provides the
interaction objects (independent of the toolkits) to be used by the dialogue control com-
ponent. Figure 2 shows the models that comprises the PAN. These models are used to
capture the user interface design.

In addition, scenarios are used to better identify how a protagonist is related to another
and to capture the sequencing among the tasks for each protagonist. It is worth observing
that protagonists represent an advance in terms of abstraction, i.e. they may be used by
software engineers to more naturally understand, model, and develop the important class
of interactive systems. Note this section is concerned with the models and resources being
used with PAD. They are TCM, THM and PCM. These models are derived from the GPM
and are part of the PAN. The models are presented in the following subsections.

335

XVI Simpésio Brasileiro de Engenharia de Software

L "| Task Coordination
Model
General Task Hierarchical
Protagonist Model | ..~ . Model
. Presentation
... Component Model

Figure 2: Models of the PAN.

3.1.1 General Protagonist Model (GPM)

GPM is aimed at capturing the protagonists of a SUD. Nevertheless, the requirements
gathering phase precedes the modeling of protagonists as shown in Figure 1. Herein, we
aim at capturing the organization of the system. Specifically, we view such an organization
as a collection of protagonists. In addition, this process aims at identifying the role played
by each protagonist. At the end, the designer is expected to obtain a system description
of the system under development.

The protagonist model is derived from the system description and from scenarios
worked out. The protagonists can be both user and system components depending on
decisions of what parts of a working process should or should not be carried out automat-
ically. To do this, the PAN is used [19]. A specification in the PAN is initially described
through a directed graph (GPM) where the nodes stand for protagonists and the edges
connecting nodes identifying the relationships between the protagonists. Note that to
carry out tasks, interactions between these protagonists must take place. As well, a pro-
tagonist may carry out a task not related to another one. Henceforth, there is a need to
capture not only user actions but also system-generated actions. Thus using a notation
that captures only the user actions constitutes a hindrance to the user interface design
needs. Consequently, a designer needs a notation that allows him/her to capture the whole
interaction picture. The use of the PAN provides the designer with a high abstraction
level notation that allows him/her to document the user interface design requirements.

It is advocated the need to start protagonist-oriented analysis and design at a high ab-
straction level where only the user intentions are captured. This makes the user interface
design easier for handling and upgrading as the refinement process proceeds until detailed
requirements are obtained and implementation decisions are made. User intentions at the
task abstraction level are high-level goals which exist in the user’s conceptual model about
the system. User intentions to reach a goal are described at a high abstraction level with-
out reference to any system presentation feature. For instance, in a file system, delete a
file represents a user intention in the task abstraction level. However, drag a file icon to a
destination (e.g. a trashcan icon), the command rm file or utter the command remove file
are respectively descriptions of low-level user intentions with desktop, command-based,
and natural language interfaces that perform the associated high-level intention.

Note that abstraction is a key principle in any discipline and software engineering is
not an exception. Such a concept together with modularity [13, 14] are used as design
guidelines in the protagonist-oriented approach.

336

XVI Simpésio Brasileiro de Engenharia de Software

3.2 Task Hierarchical Model (THM)

From the identification of the protagonists, their goals and their interactions at a high
abstraction level, the GPM is obtained. Such a model is derived smoothly based on the
interaction scenarios where each protagonist has its major goal identified and is capable
of performing some particular tasks.

With the GPM at hand, a task set for each protagonist is captured via the THM.
Task hierarchical model shows how tasks are hierarchically organized. A task can be
decomposed into sub-tasks as illustrated in Figure 3a. Additionally, each task can consist
of one or more actions. It may also contain procedures with single or multiple actions.
Actions, in turn, might be performed on objects as shown in Figure 3b. The THM is aimed
at describing the hierarchy of tasks for each protagonist. In addition, each protagonist
has a major goal associated with itself. The goal is viewed as a state that the protagonist
aims to achieve.

(Task] sub-task

procedure: action
procedure: action

action
action(object)

(b)

[sub-task] [sub-task j [sub-task]
(a)

Figure 3: Decomposition of a task.

Consider the example of the game so-called tic-tac-toe where the major goal is to
establish a sequence of three pieces. Tic-tac-toe is played with a square board containing
a 3x3 array of positions (3 lines, 3 columns). A move consists of selecting a position
and click on it to mark that position with, e.g., an X or O. To win a game, a player
needs to establish a sequence of three of its own marks (X or O) horizontally, vertically
or diagonally.

Tic-tac-toe is a turn-based game because a player is only allowed to make a move when
it is in his/her turn. Tic-tac-toe requires two players for a game. Note that tic-tac-toe
is a networked Web game, i.e. a multiplayer game which involves two players that are
able to play the game together and interact with each other via their Web connection.
Figure 4 illustrates a scenario where the player X makes a move and the player O updates
the game state. Tic-tac-toe starts out by setting up an empty game board and giving
one of the players the first turn. Once one of the players is enabled (e.g. the player X),
he/she makes his/her move and the play shifts back to the other player. This exchange of
turns continues until a win, loss, or tie takes place. When the game ends, you can start
a new one if there is an opponent or you could play against the computer if an artificial
intelligence (Al) strategy is used. In the latter case a goal is mapped onto tasks of running
the game, waiting your turn, finishing the game, and so on, as shown in Figure 5. Within
each THM, different elements are represented as follows:

e Protagonist goal - viewed as a state that the protagonist aims to achieve. For
example, the protagonist goal of play shown in Figure 5.

e Protagonist task - refers to a defined piece of work, usually of short or limited
duration, assigned to or expected of a protagonist. An example of a task is update
the game state.

337

XVI Simpésio Brasileiro de Engenharia de Software

e Procedure - statement that provides some functionality for the system. It consists
of single or multiple actions. In the task update the game state, a statement that
may be used is get the game status.

e Action - mechanism used to control tasks. It is part of a procedure. The notification
that a player move was made is an example of an action.

e (Object - entity defined by its properties and is associated with one or more actions.
The status of the game is an object.

game state

E Player X] [Player O]

move

Figure 4: GPM for tic-tac-toe.

(PlayerGoaI: play tic-tac-toe

Wait your turn
Finish the game Update the Inform your move
game state to the opponent
J

Figure 5: THM of tic-tac-toe.

-

3.3 Task Coordination Model (TCM)

TCM is part of the PAN and is used to describe how protagonist tasks are related to one
another. Each protagonist has its tasks described through a TCM. TCM is a directed
graph where nodes stand for tasks and edges connecting nodes represent the stimuli that
trigger navigation among tasks. The idea is not only to show the tasks of a protagonist
but also to reveal the relationship among them and to identify its major goal(s), i.e. how
the task coordination for each protagonist takes place.

Moreover, the designer does not conceive this model at once. Initially, he/she identifies
the protagonist goal(s) and tasks, then how they are related to each other and, finally,
what stimuli cause navigation between tasks. In particular, the termination of one task can
motivate a navigation to another task. Also, actions of other protagonists may cause the
navigation between tasks in the TCM. In addition, the directed edges in TCM are labeled
with stimuli caused by the actions performed by protagonists. Protagonist can exchange
action(s) between each other. Additionally, protagonist actions can be performed on
an object. Figure 6 illustrates the TCM for the player. Note that the TCM not only
shows the tasks of the player but also reveals the relationship among them, i.e. how the
coordination takes place.

338

XVI Simpésio Brasileiro de Engenharia de Software

PlayerGoal: play tic-tac-toe opponent paired

Wait your turn
new ga
win, tie or dra our move
state updated
‘ Finish the game
his mov
end of game
& >< Update the game state Inform your move
to the opponent

Figure 6: TCM for player.

3.4 Presentation Component Model (PCM)

The PCM defines how the TCM nodes, i.e. protagonist tasks, of the task coordination
model are presented to the users. It may consist of a collection of Ul objects, also
called widgets, or windows. As well, appearance and behavior of the window should be
consistent. On the one hand, the primary window is the one through which the other
windows in an application are derived. On the other hand, secondary windows are those
generated through a primary window. Windows can be used for different independent
tasks and are an excellent way to allow users to work on more than one part of an
application at once, or even to work within more than one application at a time. For
example, a collection of UI objects can be laid out on a window. A UI object can be
either a primitive Ul object like text or button or a composition of objects. A kind
of composite UI object is a presentation entity/object that depends on the task of the
associated TCM. The most frequently used UI objects are: text, image, audio, button,
video, anchor, and anchored collection. In addition, the presentation object is a Ul object
that depends on the task of a TCM and is the composition of other Ul objects. The Ul
objects (or widgets) are the interface elements that allow to present all the information
handled by the application component and receive the user input through a keyboard or
mouse. These Ul objects are usually provided by toolkits.

Within this context, the callback mechanism can be used by toolkits to carry out the
communication between the widget collection software and the other interactive system
components. A widget invokes a callback whenever the condition associated to the widget
is satisfied. For example, when the instance of a widget(e.g. a button) is created, a
callback is registered for that instance. Henceforth, whenever the user clicks on that
button(condition), a callback is invoked.

Consider the example of the tic-tac-toe posed earlier. In that example, there are four
tasks, i.e. wait your turn, inform your move, update the game state and finish the game.
For each task, a screen shot is shown aiming to highlight the presentation aspects. The
PCM for the player protagonist would show different views of the same window, that is
the board of the game. The major goal of the PCM is to capture the kind of interaction
style(s) associated with the TCM and provide information about the presentation aspects
for the interactive system being developed. Such an information can be in terms of
the PCM which highlights the presentation objects associated with the TCM. It can also
suggest the use of radio-button, check-button, pop-up, and pull-down menus, forms, boxes
or any other graphical interface types such as animation, video, audio and so on.

339

XVI Simpésio Brasileiro de Engenharia de Software

4 Case Study: Web Collaborative System

This section presents an example of a Web collaborative system, called DirectionLeader
- a multiuser Web application - which involves multiple users at different locations. We
start providing background issues on multiuser applications to underlie the presentation
of this case study and then we illustrate the use of our approach to describe interaction
aspects of DirectionLeader.

4.1 Multiuser Applications

Multiuser applications that can be run on multiple machines are also known as Network
application, which means that the applications are capable of enabling multiple users
to play interactively on top of a network. In the case of networked Web applications,
the communication between users is mediated by the Internet. In other words, in a
networked Web application which involves two or more users, users are able to play the
application together and interact with each other via their Web connection in a concurrent
manner. In multiuser applications, the communication design can be affected by the way
the collaborative system progresses, which is determined by the type of the particular
application. Most applications fall into one of two categories:

e Turn-based applications are the ones in which each action in the application is based
on a user’s turn;

e Fwvent-based applications are the ones that are paced by input events that can occur
at any time.

DirectionlLeader is an event-based application because users can make a move at any
time as presented next.

4.2 Designing DirectionLeader

DirectionLeader is a multiuser Web application where the major goal is to lead the direc-
tion of a set of followers that can go to any direction under the leader command. For this
application, we will consider each user as a player.

4.2.1 Describing the System

The system description is as follows. 7 illustrates the screen of our game.

DirectionLeader is played with a rectangular board that may contain up to
64 followers on the workspace. Followers appear on the screen as small balls
at different positions and their move directions are guided by a leader which
identifies each participating player. That is, a leader is protagonized by each
player that can change the follower move direction at his/her will. Thus, each
leader can recruit their followers by making a selection out of 64 available
followers on the system as well as can choose their move direction. They
are identified with a simple binary string and a selection can be made by
pressing buttons until the desired number of followers is attained (see Figure
7). For example, consider a fictitious leader named Bill with four followers

340

XVI Simpésio Brasileiro de Engenharia de Software

given by the binary string 00*1*0. In that case, the followers are: 000100,
001100, 000110, and 001110. The asterisk symbol is used as a wildcard. The
DirectionLeader is a event-based application because every player can make a
move at any time. DirectionLeader can be played with any number of players.
Each player can be run on any machine, that can be either the server’s or
client’s machine. Every follower has a screen location and a direction. When
you click near a follower, it sprouts a little rod and prepares to move in the
direction from where you clicked. The speed at which your followers move
is inversely related to the number of existing followers you have moving at
any time. It is worth observing that the followers you see at your screen are
also seen by any other players at different locations, i.e., the workspace are
shared in real-time among all the involved players. Furthermore, when your
mouse click has affected a follower, the associated name attribute changes and
promptly shows your player name. While players keep making their moves, a
server listens to changes in the direction attribute and when there is a direction
available, it moves the location according to the direction of each tick.

® gill

[}
° Bill
Bill [Bill

Bill: Click near a follower to move it in the direction you wish.

Figure 7: Board of DirectionLeader.

Once the system description is obtained, we identify system protagonists as follows.
We also present the system components and the architectural model of DirectionLeader.

4.2.2 Identifying the System Protagonists

Protagonists are all the components that play roles in an interaction scenario. These
components can be viewed as software components with major functionality roles. In
order to carry out tasks, interactions between these protagonists must occur. In that case,
we need to capture not only user actions but also system-generated actions. Thus using
a notation that captures only user actions constitutes a hindrance to the user interface
design needs. Consequently, a designer needs a notation that allows him/her to capture
the whole interaction picture.

Considering our case study, each player interacts with the corresponding player inter-
face component and notifies his move to all other players involved in the Web collaborative
system. A player is protagonized by a user generally at a different location. When a move
is made, it is sent out to the coordinator that works in background listening to the moves
and propagating them to all the other players. The propagation only takes place when the
moves occur which is a nicer solution differently of a polling approach that causes lots of
unnecessary network traffic. Figure 8 shows the protagonists involved in this system. Note
that we may have any number of players interacting with each other and one coordinator
that does not interfere with the interaction among all participants. The coordinator does

341

XVI Simpésio Brasileiro de Engenharia de Software

the broadcasting of the moves of all the players maintaining the syncronized replicas of
the same workspace on each site. In this case, everyone can see an up-to-date screen view
in real-time. This collaboration is that where everyone knows each other. It allows part-
ners to register and request directly one from another. In that case, each partner has to
know the interfaces of the other partners and, then, requests the service(s) through these
interfaces. This kind of collaborative relationship is the one which requires more from a
designer. To support quick access to the players for the purpose of rendering within a
single view, the status of the players are cached so that a repaint cause no network traffic.

Coordinator

Figure 8: DirectionLeader protagonists.

Figure 8 shows the protagonists identified for DirectionLeader. To do that, we use
PAN (Protagonist Action Notation) to provide the designer with a high abstraction level
notation that allows him/her to document the UI requirements.

4.2.3 Developing Interaction Scenarios

Let us make an assumption that, at a certain time, there are only three players, named Bill,
Jack, and Bob for the purpose of illustration. Each protagonist is capable of performing
particular tasks as given below. Nevertheless, before we present task descriptions for each
protagonist we identify the architectural model of the interactive system. A way of doing
that is developing interaction scenarios involving protagonists. At a high abstraction
level we can characterize an interaction scenario in DirectionLeader as shown in Figure
9. Therein, one of the players, called Jack changes the direction for followers as e.g.
go to Northeast, and this player’s move is propagated by the coordinator to all other
players (Bill and Jack) through the player update action. Additionally, we abstract from
all interaction details such as the kind of information exchanged between protagonists. We
focus on interactions between protagonists.

Player Bill Player Jack

direction|

Player Bob

[ForFollowers
playerUpdate

playerUpdate

Coordinator

Figure 9: Scenario with application protagonists.

342

XVI Simpésio Brasileiro de Engenharia de Software

4.2.4 Identifying the Architectural Model

At this step, we describe the system in terms of their protagonists. Figure 9 gives an idea
of a possible architectural model for the system. It is worth rethinking the client/server
model. The key difference between server and client in a collaborative system is their one-
to-many relationship, like a broadcasting between a single peer and the multiple remote
peers. We called such an architecture as peer-to-peer since it involves peer components
that can either be serving or clienting at any time. Nevertheless, note that all of these
peer components always see an up-to-date view of the shared workspace. To do so, a form
of caching is used to guarantee that synchronized full replicas of the peers are maintained
on each client. So we identify the peer-to-peer architetural model for this system.

4.2.5 Describing DirectionLeader Tasks

From the identification of the protagonists and their interactions at a high abstraction level
an architectural model for DirectionLeader has been identified. Such identification was
derived smoothly based on the used interaction scenario where each protagonist (players
and coordinator) is capable of performing some particular tasks.

Figure 10a illustrates the Coordinator tasks through a TCM. It not only shows the
tasks of the coordinador but reveals as well the existing relationship among them, i.e., how
the task coordination takes place. Figure 10a represents the tasks and their relationships
of only one protagonist, i.e, it describes tasks of and how they are coordinated by the
coordinator protagonist.

Coordinator Player

P{lay_er
. egistered
register on the
coordinator

playerUpdate

change playerUpdate
followers direction
direction
ForFollowers
update
followers attributes

Figure 10: TCM for coordinator and Player.

.

wait
player move endOfApplicatio

followersChoice

wait for player updates or
coordinator-initiated actions

playerUpdate

coordinatorAction
Broadcasted

updatePropagated

oordinatorInitiated

propagate player update
Action

broadcast X
coordinator action

(a) (b)

Note that the designer does not conceive this model on the fly. Initially, he identifies
the tasks, then how the tasks are related to each other, and finally what stimuli cause
navigation between tasks. The users of the system are also involved within this process
as reported in [19]. Furthermore, Figure 10 illustrates that the termination of a task can
motivate a navigation to another one or actions of other protagonists may as well cause
task navigation in the TCM of the coordinator as when it receives a request from a player
for updating the system status.

Directed edges in TCM are labelled with stimuli generated by protagonists. A stimulus
can be passed from one protagonist to another. Additionally, stimuli can carry data
between protagonists. The reader should note that a coordinator does not interfere in an
application. It is in charge of mainly detecting player updates and propagating them to
the other players.

343

XVI Simpésio Brasileiro de Engenharia de Software

The other DirectionLeader protagonist is a player. A player represents a user interface
component which receives actions from its associated user and maps them into moves.
Figure 10b gives the TCM for a player. Note that the main task of the players is to
inform the coordinator about their moves. Each move can either be a follower number
selection or a follower direction change. Moreover, a player needs to reason about the
application in order to carry out a new move.

5 Related Work

Several analysis and design approaches that make use of models have been reported in the
literature. Model-based design has been used to create interface designs represented at a
high abstraction level. Design is described through models by using appropriate notations
which capture aspects related to human-computer interactions. This approach provides a
high abstraction level to represent the design as advocated by Holtzblatt and Beyer [7, 8|.

Within this context, Foley et al [5] describe a User Interface Design Enviroment
(UIDE) that offers facilities for designing the interface, not necessarily for managing the
interaction at runtime. The UIDE comprises (1) an application model which defines the
allowed user actions and their effects on application objects, (2) an interface model that
describes user actions in terms of objects, (3) pre- and post-conditions associated with
actions, and (4) objects that are defined in terms of their attributes. Nevertheless, the
language-based nature of many UIDEs is somewhat oriented towards programmers rather
than human factors experts and the environments do not directly support other aspects
of the design process such as task analysis or scenario modeling.

The Method for USability Engineering (MUSE) is another approach described by
Lim et al [10]. MUSE integrates human factors techniques with the Jackson System
Development (JSD) method. MUSE uses the JSD notation to describe task hierarchies.
It is a complex method, involving many stages, with relations to JSD defined at several
points. In addition, no tool support is provided and the modeling notations are not
specifically designed for their purpose.

Another approach is TRIDENT [21] which is an integrated methodology based on
tasks. It is a modeling approach similar to task knowledge structure (TKS) [9]. TRIDENT
allows automatic generation of user interfaces from abstract models. However, it places
greater emphasis on tool support for the design.

It is worth observing that all these approaches require a greater number of modeling
stages. In addition, note that a model-based approach like ours aims at improving the
support of both the development life cycle and the design analysis. Moreover, an im-
provement in terms of usability and design traceability is achieved since the models of our
approach evolve from user requirements to user interface, that is, a conceptual design. In
other words, our protagonist-oriented approach involves explicitly defining the ideas or
concepts underlying the user interface or a product.

6 Concluding Remarks

This paper presents a protagonist-oriented approach for capturing user interface design.
Target applications are those in the Web collaborative systems context. This emerging
class of application has been a result of the Internet era where a diversity of users and

XVI Simpésio Brasileiro de Engenharia de Software

interaction styles has required more and more from designers. One of our major concerns
was to find out a way of identifying the social scenario where the computer technology can
provide support. A case study involving a Web collaborative system has been presented to
illustrate the application of our protagonist-oriented design approach. Other applications
we have worked out has been reported in [19, 20, 16, 17]. The work presented in this
paper is part of a major project which aims at both mapping a user interface design into
an interface software design [16, 18] and providing an interactive systems development
methodology. Therein, we address the derivation of interface software design from the Ul
design.

7 ACKNOWLEDGEMENTS

The authors would like to thank the financial support from Brazilian Council of Research
(CNPq).

References

[1] D. A. Agarwal, S. R. Sachs, and W. E. Johnston. The Reality of Collaboratories.
Computer Physics Communications, 110(1-3):134-141, May 1998.

[2] J. Blomberg, J. Giacomi, A. Mosher, and P. Swenton-Hall. Ethnographic Field Meth-
ods and Their Relation to Design. D. Schuler and A. Namioka (Eds.): Participatory

Design: Principles and Practices, Lawrence Erlbaum Associates, Publishers, pages
123-155, 1993.

[3] A. Clement and P. Van den Besselaar. A Retrospective Look at the PD Projects.
Communications of the ACM, 36(4):29-37, June 1993.

[4] IEEE Computer. Special Issue on Digital Libraries Initiatives. IEEE Computer,
29(5), May 1996.

[5] J. Foley, W. Kim, S. Kovacevic, and K. Murray. UIDE - An Intelligent User Interface
Design Environment. In J. Sullivan and S. Tyler, editors, Architectures for Intelligent
User Interfaces: Elements and Prot otypes. Addison-Wesley, 1991.

[6] J. Greenbaum. PD: A Personal Statement. Communications of the ACM, 36(4),
June 1993.

[7] K. Holtzblatt and H. Beyer. Contextual Design: Principles and Practice. D. Wizon
and J. Ramey (Eds.): Fields Methods Casebook for Software Design, Wiley Computer
Publishing, pages 301-333, 1996.

[8] K. Holtzblatt and H. Beyer. Contextual Design: Defining Customer Centered Sys-
tems. Morgan Kaufman Publishers, 1998.

[9] P. Johnson. Human Computer Interaction: Psychology, Task Analysis and Software
E ngineering. McGraw-Hill, 1992.

345

XVI Simpésio Brasileiro de Engenharia de Software

[10] K. Y. Lim, J. B. Long, and N. Silcock. Integrating Human Factors with the Jackson
System Development Metho d: An illustrated Overview. Ergonomics, 35(12):1135—
1161, 1992.

[11] Comm. of the ACM. Special Issue on Health Care Information Systems. Communi-
cations of the ACM, 40(8):80-117, Aug 1997.

[12] Comm. of the ACM. Special Issue on Digital Library. Communications of the ACM,
41(4), April 1998.

[13] D. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053-1058, Dec 1972.

[14] D. Parnas, P. C. Clements, and D. M. Weiss. The Modular Structure of Complex
Systems. IEEE Transactions on Software Engineering, 11(3):259-266, Mar 1985.

[15] D. Schuler. Special Section on Social Computing. Communications of the ACM,
37(1):28-80, Jan 1994.

[16] A. M. Silva Filho, R. S. M. Barros, and H. K. E. Liesenberg. Designing User Interface
for Web Interactive Systems. Proceedings of the 8rd IEEE Symposium on Application-
Specific Systems and Software Engineering Technology (ASSET 2000), Richardson,
Tezxas, USA, pages 7-14, Mar 2000.

[17] A. M. Silva Filho, R. S. M. Barros, and H. K. E. Liesenberg. Designing Multiple User
Interfaces for Internet-based Interactive Systems. Proceedings of the French/British
Conference on Human Computer Interaction, Lille, France, pages 17-14, Sept 2001.

[18] A. M. Silva Filho, R. S. M. Barros, and H. K. E. Liesenberg. From HCI Design to
User Interface Software Design: Towards Automatic Derivation. (submitted), 2002.

[19] A. M. Silva Filho and H. K. E. Liesenberg. Capturing Computer-Human Interac-
tion Design via the Protagonist Action Notation. Proceedings of the 18th Brazilian
Computer Society Annual Conference, Belo Horizonte, MG, Brasil, 1:276-296, Aug
1998.

[20] A. M. Silva Filho and H. K. E. Liesenberg. Designing Synchronous User Interface
for Collaborative Applications. Interactive Systems Design with Object Models, N.
Nunes et al (Editors), Springer-Verlag LNCS, 1743, pages 267-287, 1999.

[21] J. Vanderdonckt and F. Bodart. Encapsulating Knowledge for Intelligent Automatic
Interaction Objet cts Selection. Proc. Confererence on Human Factors in Computing
Systems: InterCHI °93, pages 424-429, 1993.

[22] C. Watters, M. Conley, and C. Alexander. The Digital Agora: Using Technology
for Learning in the Social Sciences. Communications of the ACM, 41(1):50-57, Jan
1998.

346

