
408

XVI Simpósio Brasileiro de Engenharia de Software

GREN-Wizard: a Tool to Instantiate the GREN Framework

Rosana T. V. Braga1

Paulo Cesar Masiero2

{rtvb,masiero}@icmc.usp.br

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo – Campus de São Carlos

Abstract

The GREN-Wizard, a tool to instantiate the GREN framework to particular
systems in the business resource management domain, is presented in this paper.
It was built based on a pattern language for the same domain, called GRN, which is
used during the instantiation process. The GREN-Wizard automatically generates
all the code needed to adapt the framework to the particular system, according to
the input data supplied by the user. This data consists basically of information
about the patterns of GRN applied to model the particular system, together with
additional attributes included in the classes that compose each pattern.

Keywords: Software reuse, tools, framework instantiation, pattern languages.

1 Introduction

Software patterns and pattern languages aim at reuse in high abstraction levels. Software
patterns try to capture the experience acquired during software development and synthesize it
in a problem/solution form [8]. A pattern language is a structured collection of patterns that
build on each other and can be systematically applied to produce complete applications. It
represents the temporal sequence of decisions that led to the complete design of an application,
so it becomes a method to guide the development process [6].

Object-oriented software frameworks (from now on called simply frameworks), allow the
reuse of large software structures in a particular domain, which can be customized to specific
applications. Families of similar but non-identical applications can be derived from a single
framework. However, frameworks are often very complex to build, understand, and use. Frame-
work instantiation, which consists of adapting it to specific application requirements, is complex
and, most times, requires a complete understanding of its design and implementation details.

Pattern languages and frameworks can be used together to improve reuse even more [5, 4, 3].
Thus, the availability of a pattern language for a specific domain and its corresponding framework
imply that new applications do not need to be built from scratch, because the framework offers
the reusable implementations of each pattern of the pattern language. Therefore, the application
development process may follow the language graph, from root to leaves, deciding on the use of
each specific pattern and reusing its implementation offered by the framework.

In this paper we present the GREN-Wizard, a tool to instantiate the GREN framework to
particular systems in the business resource management domain. The paper is organized as

1Financial support from FAPESP Process n. 98/13588-4.
2Financial support from FAPESP/CNPq.

409

XVI Simpósio Brasileiro de Engenharia de Software

follows. Section 2 presents the GRN pattern language and its associated framework (GREN).
Section 3 introduces the GREN-Wizard and describes its main functionality. Section 4 presents
the concluding remarks.

2 The GRN pattern language and the GREN framework

The tool presented in this work was built to take advantage of the relationship between a
pattern language and its associated framework, as shown in Figure 1. The tool (GREN-Wizard)
was built to support the automatic instantiation of applications using the GREN framework [1].
GREN, by its turn, was built based on the GRN pattern language [2]. Concrete applications can
be generated by instantiating GREN manually or using the GREN-Wizard. In both cases, the
GRN pattern language is first applied to model the system and then the framework is adapted
according to the patterns used.

Used to model
Used to

implement

Supports

Used to automatically

implement

Used to build

Pattern Language

(GRN)

Framework

(GREN)

Wizard

(GREN-Wizard)

Concrete Application

(Ex. VideoRental)

Used to build

Supports

Figure 1: Relationship among pattern languages, frameworks, tools and applications

The GRN pattern language (Gestão de Recursos de Negócios, in Portuguese) was built based
on the experience acquired during development of systems for business resource management.
Business resources are assets or services managed by specific applications, as for example video-
tapes, products or physician time. Business resource management applications include those
for rental, trade or maintenance of assets or services. The GRN pattern language has fifteen
patterns that guide the developer during the analysis of systems for this domain. The first three
patterns concern the identification, quantification and storage of the business resource. The next
seven patterns deal with several types of management that can be done with these resources,
as for example, rental, reservation, trade, quotation, and maintenance. The last five patterns
treat details that are common to the seven types of transactions, as for example payment and
commissions. All GRN patterns have a structure diagram that uses the UML notation. So, each
pattern has participant classes, each of them with attributes, methods and operations. Besides,
a pattern can have alternative solutions depending on the specific context in which it is applied.
So, pattern variants are used to denote each possible solution to the same problem.

The GREN framework was developed to support the implementation of applications mod-
eled using GRN. All the behavior provided by classes, relationships, attributes, methods, and
operations of GRN patterns is available on GREN. Its implementation was done using the Visu-
alWorks Smalltalk [7] and the MySQL DBMS [9] for object persistence. The first GREN version
contains about 150 classes and 30k lines of code in Smalltalk. GREN instantiation consists of
adapting its classes to particular requirements of concrete applications. This is done by cre-
ating subclasses inheriting from GREN abstract classes and overriding the necessary methods.
As GREN has been built based on GRN, its documentation was done in such a way that, by

410

XVI Simpósio Brasileiro de Engenharia de Software

knowing which patterns and variants were applied, it is possible to know which classes need to
be specialized and which methods need to be overridden.

3 The GREN-Wizard

The GREN-Wizard is a tool to support the GREN instantiation. It was designed so that
framework users need only to know the GRN Pattern Language in order to obtain the Smalltalk
code for their specific applications. So, the interaction with GREN-Wizard screens is similar to
using the GRN Pattern Language. The user will be asked what patterns to use, what variants
are more appropriate to the specific application, and which classes play each role in the pattern
variant used. After, several choices will be offered to proceed with the application of other GRN
patterns. The wizard is used in parallel with the pattern language application, i.e., the pattern
language is used to model the system, producing an analysis model and a history of patterns
and variants applied. This information is used to fill in the wizard screens and produce the code
needed to adapt the framework to the particular application.

Figure 2 shows an example of a GREN-Wizard screen. New applications can be created by
clicking in the “New” button (see #1 in Figure 2). The new application will appear in the box
of applications (#2). The first pattern of GRN will appear in the box of the current pattern
being applied (#3). Beginning with the first pattern of the list of applied patterns (produced
during the analysis of the system, using the pattern language), the participating classes of each
pattern are filled in. The pattern variant (#4) has to be chosen accordingly. When the pattern
variant is changed, the participant classes are adapted according to it. It is important to make
sure that all the participants that are really needed in an application are present in the variant
chosen. After filling in all classes, the “Apply Pattern” button (#5) is used to save the current
pattern in a list of applied patterns. The “Attributes” button (#8) can be used to change
attribute names for the class or to add new attributes. Then, the next pattern to apply (#6)
is selected and the “Go” button (#7) is used to make the wizard adapt its screen to the next
pattern chosen. This procedure is followed until the last pattern is filled.

At any time during navigation through the GREN-Wizard, the “Patterns already applied”
button can be used to see a current specification of the patterns that were applied. The texts
of the several parts of the pattern language can also be seen, in case the framework user does
not have it at hand (for example, button #9 shows an introductory text about the pattern
language). Some applications require that GRN be applied in several iterations, probably for
different resources being managed. To do that, the “Reinitialize for another Resource” button
is used. Before being able to generate the concrete application classes, the current application
specification has to be saved, using the “Save” or the “Save as” button. An optional activity is
to specify which reports of the specific application will appear in the Main Window menu. The
final steps are to generate the new classes and the associated code, and to automatically create
the MySQL database.

The GREN-Wizard construction was eased by the fact that GREN had been built based
on GRN. Figure 3 graphically illustrates how the GREN-Wizard works. A database (D1) is
used to store data about the GRN pattern language, i.e., its constituent patterns, their classes
and relationships. Through the GREN-Wizard graphical user interface (GUI), the user supplies
information about the patterns used to model a specific application. This information is stored
in the database (D2) and used by the GREN-Wizard code generator, together with information
about the mapping between GRN and GREN (D3), to automatically produce the classes of the
specific application.

The meta-model of Figure 4 shows part of the GREN-Wizard internal structure. Data about
each pattern, its variants, classes, attributes and relationships are represented by classes of this

411

XVI Simpósio Brasileiro de Engenharia de Software

12

3

4

5

7

6

8

9

Figure 2: Example of the GREN-Wizard screen

GRN Pattern

Language

(D1)

Specific

applications

(D2)

GREN-

Wizard GUI

Mapping between

GRN and GREN

(D3)

Patterns applied

GREN-Wizard

Code-Generator

Application Classes

Figure 3: Illustration of the GREN-Wizard Strucutre

model, as well as some attributes that create a mapping from the pattern to the corresponding
classes in the framework that implements it. For example, the attribute superclassName of
class PatternClass maps the pattern class to the corresponding framework class. This allows

412

XVI Simpósio Brasileiro de Engenharia de Software

the wizard to identify which classes need to be specialized according to the patterns chosen by
the user. Similarly, tables were created to hold information about methods that need to be
overridden in the newly created classes.

The wizard allows the iterative application of the patterns, i.e., the application of one pattern
more than once, and restricts the order of application of each pattern according to the relation-
ship among the patterns established in the database. The definition of the specific database
tables for the new system are also automatically generated and executed by the wizard. So,
after running the wizard, the new application can be executed without additional programming.

AttributeType

idCode

description

initializeString

Pattern

patternNumber

patternName

specName

mandatory
1..1

0..*

+this1..1

nextPatterns

+next0..*

PatternClassAttribute

attributeName

attributeType

attributeLength
isMandatory

1..1

0..*

1..1

0..*

PatternVariant

variantNumber

description

transactionClassNumber

resourceClassNumber

assocTransClassNumber1..*

1..1

1..*

1..1

PatternClassForm

seq

superclassName

specName

addToMenu

1..1

0..*

1..1

0..*

PatternClass

classNumber

className

pluralClassName

superclassName

refCode

canIncludeAttribute

1..*

1..1

1..*

1..1

is related to

1..*1..1 1..*1..1

is equivalent to

1..1

0..*

1..1

0..*

ClassMethod

seq

methodName

methodType
protocolName

preCondition

methodBody

1..10..* 1..10..*

Figure 4: Part of the GREN-Wizard Meta-model

The database denoted by D2 in Figure 3 stores information about each GREN specific
instantiation as, for example, which patterns/variants were applied (and in which order), the
roles played by each class in the patterns, attributes added to pattern classes, etc. As the
wizard is used to build many specific systems, this database grows and can be reused when
similar applications need to be created. For example, having used the wizard to build a library
system, if, in the future, a different library system needs to be created, the wizard can show the
set of patterns to be used in the new system, as well as the attributes that can be added in this
typical application. So, specific knowledge about the domain is stored by the GREN-wizard.

The same rationale used to build the GREN-Wizard can be used to develop tools for other
frameworks that have an associated pattern language, since the idea is general. The fact that
the wizard uses a database to hold the definition of each pattern eases its adaptation to other
frameworks. Only a few attributes of the meta-model presented in Figure 4 are specific to
GREN/GRN, as for example the specName attribute of class Pattern and the protocolName

attribute of class ClassMethod, which are particular of Smalltalk implementation.

4 Concluding remarks

The tool here proposed intends to ease framework instantiation using pattern languages.
Frameworks built using our approach have its architecture influenced by the pattern language,
which eases the creation of a tool to automate its instantiation. Rather than knowing the
framework implementation details, users basically need to know about the pattern language
usage in order to instantiate the framework.

The GREN-wizard guides the user throughout the GRN pattern language, guaranteeing

413

XVI Simpósio Brasileiro de Engenharia de Software

that the correct paths are followed and making the consistency to check whether the applied
patterns make sense. Thus, the framework user knows exactly where to begin and to finish the
instantiation. Also, the instantiation is focused on the functionality required, with a clear notion
of which requirements are attended by each pattern.

Several applications that were manually instantiated using the GREN white-box version were
instantiated using the GREN-Wizard, both to test the wizard and to compare the results. The
applications were: for a video rental system with 32 classes, for a sales system with 16 classes,
for a car repair shop with 22 classes, and for a pothole repair system with 27 classes. The total
number of lines generated by the GREN-Wizard was about 5000. The resulting applications
could be executed properly, with the same functionality of the applications instantiated manually.
The time required to develop these applications using the GREN-Wizard was approximately
half an hour for each of them, while the same application, when instantiated manually using
the white-box version of the framework, took approximately 10 hours. Other case studies are
being conducted to demonstrate how much of the implementation can be achieved by using the
wizard, and the difficulties of using the white-box version of the framework to implement the
functionalities not automatically provided by the tool.

References

[1] R. T. V. Braga. GREN: A framework for business resource management. ICMC/USP – Sao

Carlos, August 2001. Unpublished, Available on August, 2001 at: http://www.icmc.sc.

usp.br/~rtvb/GRENFramework.html.

[2] R. T. V. Braga, F. S. R. Germano, and P. C. Masiero. A pattern language for business

resource management. In 6th Pattern Languages of Programs Conference (PLoP’99), Mon-

ticello – IL, USA, 1999.

[3] R. T. V. Braga and P. C. Masiero. Frameworks construction and instantiation using pattern

languages. In Proceedings of the International Conference on Computer Science, Software

Engineering, Information Technology, e-Business, and Applications, Foz do Iguazu-Brazil,

pages 305–310. ACIS, 2002.

[4] R. T. V. Braga and P. C. Masiero. A process for framework construction based on a pattern

language. In Proceedings of the 26th Annual International Computer Software and Applica-

tions Conference, IEEE Computer Society, to appear, 2002.

[5] D. Brugali and G. Menga. Frameworks and pattern languages: an intriguing relationship.

ACM Computing Surveys, 32(1):2–7, March 1999.

[6] D. Brugali, G. Menga, and A. Aarsten. A Case Study for Flexible Manufacuring Systems,

pages 85–99. Domain-Specific Application Frameworks: Frameworks Experience by Industry,

M. Fayad, R. Johnson, –John Willey and Sons, 2000.

[7] Cincom. Visualworks 5i.4 non-commercial, 2001. Available for download on September 25,

2001 at: http://www.cincom.com.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994.

[9] MySQL. MySQL 3.23 version, 2001. Available for download on September 25, 2001 at:

http://www.mysql.com.

