XVI Simpésio Brasileiro de Engenharia de Software

JaBA: A Java Bytecode Analyzer
A. M. R. Vincenzif, M. E. Delamaro?, A. S. Simiof, W. E. Wong® and J. C. Maldonado'

Instituto de Ciéncias Matematicas e de Computacéo
Universidade de Sao Paulo
Sao Carlos, Sao Paulo, Brazil
{auri, jcmaldon, adenilso}@icmc.sc.usp.br

tFaculdade de Informética SDepartment of Computer Science
Fundao Euripedes Soares da Rocha University of Texas at Dallas
Marilia, Sao Paulo, Brazil Richardson, Texas, USA
delamaro@fundanet.br ewong@utdallas.edu
Abstract

Many existing control-flow and data-flow based techniques for software testing and
program analysis require source code instrumentation. However, this approach
may not be feasible for component-based software as some of its components can
be commercial off-the-shelf products or developed by a third party, and therefore the
corresponding source code is not always available. For programs written in Java,
this problem can be solved by conducting instrumentation directly on bytecode,
instead of on the Java source code. In this paper, we present a Java Bytecode
Analyzer (JaBA), developed to help programmers and testers collect control-flow
and data-flow based information through bytecode instrumentation.

Keywords: bytecode instrumentation, Java Virtual Machine (JVM), software
testing, program analysis.

1 Introduction

Control-flow and data-flow information has been widely used to help software practitioners
with testing, slicing, debugging, program comprehension and performance analysis [2,6, 10, 14,
15]. However, most techniques require instrumentation on the source code to collect the required
information before any analysis can be accomplished. The use of component-based software
development is steadily increasing, following the advancement and widespread use of object-
oriented system design and web-based development. Software components can be commercially
available off-the-shelf, developed in-house, or developed contractually. As a result, the source
code of certain components may not be available all the time because the whole application is
developed in a heterogeneous fashion (multiple teams in different environments). For programs
written in Java, this problem can be solved by conducting instrumentation directly on bytecode
instead of the Java source code.

Since Java bytecode can be viewed as an assembly-like language, tools such as Bytecode En-
gineering Library (BCEL) [3], Coffi [13] and Soot [12] have been developed to provide an object
representation of a Java class file. Although these tools are useful for bytecode manipulation and
optimization, they are designed for a general purpose which is not appropriate, without specific
tailoring, for instrumenting bytecode to collect control-flow and data-flow based information. On
the other hand, BIT (Bytecode Instrumenting Tool) [8] is a tool for bytecode instrumentation by

414

XVI Simpésio Brasileiro de Engenharia de Software

providing a set of classes which allows a probe to be inserted at any point in the bytecode. The
problem with BIT is that it does not handle exceptions. After the instrumentation, information
about the exception handlers is lost and any subsequent execution of the instrumented bytecode
can result in runtime errors. In this paper we present a Java Bytecode Analyzer (JaBA) to
overcome some problems of existing tools and to allow collection of control-flow and data-flow
information directly from Java Virtual Machine (JVM) instructions (i.e., Java bytecode).

The rest of this paper is organized as follows. Section 2 gives an overview of some basic
concepts and terminology. Section 3 presents a description of our tool, J aBA. Conclusions and
future directions are in Section 4.

2 Basic Concepts and Terminology

In this section, we present an overview of some basic concepts and terminology required for
understanding the rest of the paper.

Let C be a class under test and m one of its methods (denoted by C.m). A control-flow graph
(CFG) of C.m shows the possible flow of control when C.m is executed. Each node in the graph
represents an indivisible block of code and, each edge, a possible flow of control, i.e, a decision,
between nodes. A block, also known as a basic block, is a sequence of consecutive statements
or expressions containing no transfers of control except at the end, so that if one element of it
is executed, all are. As a result, not every line of code (i.e., each statement in C.m) needs to be
represented by a different node. An edge from node a to node b implies that b can be executed
after a.

A def-use graph, which represents the flow of data in a method, is an extension of the
corresponding CFG of the same method with additional information about variable definitions
and uses (def-use information). A def of a variable represents the definition of this variable.

A def-use graph can be very useful for data-flow based testing criteria [4,10].

Two other kind of graphs are the interprocedural control-flow graph (ICFG) and the call
graph (CG), which are useful to show how each method is related with each other. More details
about these kind of graphs can be found in [7,11].

In Java, each class is encoded into a class file containing information on inheritance, fields,
methods and other relevant attributes of the class. A Java Virtual Machine (JVM) is used to
interpret/execute the Java bytecode. During the execution, the JVM creates a local stack frame
for every method invocation.

The class file is divided into several parts. In particular, the constant pool and the code
attribute are of much interest to this work. A constant pool has a structure similar to a symbol
table. It contains various string constants, class and interface names, field names, and other
constants that are referred to within the class file [9]. A code attribute contains the JVM
instructions and auxiliary information for a single method, instance initialization method, or
class/interface initialization method [9].

JVM instructions (bytecodes) can be seen as a typical assembly-like language. Streams
of bytecodes can be represented by their mnemonics followed by operand values (if any). A
complete description of each JVM instruction can be found in [9].

The JVM starts up by loading and creating an initial class, which is specified in an
implementation-dependent manner, by using the bootstrap class loader. The JVM then links
the initial class, initializes it, and invokes its public class method void main(String[]). The
invocation of this method drives all further execution. Execution of the JVM instructions con-
stituting the main method may cause linking (and consequently creation) of additional classes
and interfaces, as well as invocation of additional methods [9]. Another important characteristic
of JVM is that it enables users to define their own class loader. Every user-defined class loader

415

XVI Simpésio Brasileiro de Engenharia de Software

is an instance of the abstract class ClassLoader. Applications employ class loaders in order to
extend or replace the way in which the JVM dynamically loads and, thereby, creates classes.

3 The packages in JaBA

To support the instrumentation, understanding and testing of Java programs at bytecode
level, we have worked on the development of a tool named JaBA. Currently JaBA has five pack-
ages: lookup, graph, instrumenter, util and verifier. They are useful mainly to deal with
bytecode instrumentation, aiming at to collect dynamic control-flow and data-flow information
when the bytecode is being executed by the JVM. Moreover, they allow to collect static infor-
mation, such as, the CFG of each method or the ICFG of a given class. The idea is to evolve
this set of packages to provide a complete tool suite for testing Java bytecodes.

Other packages in Java API [5] and BCEL (Bytecode Engineering Library) API [3] are also
used to implement JaBA. Below each one of these packages are described shortly and some
applications are used to illustrate what kind of information can be collected from and inserted
into Java bytecodes.

lookup package

This package provides useful classes to retrieve information from a given Java class file and
other class files which are related to this class. It can also show the inheritance among these
classes and categorize them as “system classes” or “non-system classes.”

The lookup.Lookup provides information of all the classes that have to be loaded in order
to execute a given class file. This set of classes includes both system and non-system classes.

graph package

This package is used to collect information related to nodes, edges, CFG, ICFG, CG, defini-
tions and uses of variables and live variables at each node, as well as the domination relation [1]
between nodes in a CFG. The graph package depends on verifier and util packages to im-
plement its functionality.

instrumenter package
This package is used to instrument the bytecode, aiming at collecting information during
run time. It provides a easier way to insert probes into Java bytecode.

util package
It has one class to help debugging the tool (Debug) and another that implements some utility
methods concerning the use of the JVM instructions (InstructCtrl).

verifier package

It has a set of class to collect information about a method. In this package the JVM method
is read into a graph (a Graph object) where each node is a single instruction. On such a graph,
data on definition and use of variables, method invocation, etc are collected. The CFG class uses
this kind of object to analyze the code and then transform it to a block graph.

3.1 Examples of Applications

To show part of the functionalities provided by these packages, consider the graphical in-
terface depicted in Figure 1(a). This GUI integrates all packages described above. First, after
the user choose the main class file to be tested (in our case, Factorial.class), the lookup
package provide the information shown on the left side of the GUIL From this information the
user can select which class will be instrumented during the execution.

By providing the required argument (a positive integer) and clicking on “GO!”, our class
loader calls the main class file with the respective argument. During the loading process it detects
which class(es) should be instrumented and uses graph and instrumenter packages for both to

416

XVI Simpésio Brasileiro de Engenharia de Software

find each node should be instrumented and inserting the probes on each node, respectively. As
the result, the instrumented bytecode is executed, the normal output is generated (“Factorial
of 5 is 120”) and the trace information (as illustrated in Figure 1(b)) is saved to be further
evaluated.

Number of threads: 1

B C:\Wocuments and Settings\auri\Toals\graph\Graphisbes\sbes. jba

File: ——— Thread Thread[Thread-2,6,]-——
null, 0 >
sbes.Factorial@578073, 1 >
null, 1 >

null,
null,
null,

[Program Packages =y | Mwoided Packages Execuln
© O sbes 1

IC \Documents and .SPmngs\aun\mwﬂva‘lm'ﬂli
D Fattorial

Classpath; EL,

AAANAARA

W N
2%

Class: |shes Factorial

null, 9 >

sbes.Factorial@578073, 0
sbes.Factorial@578073, 2
sbes.Factorial@578073, 1
sbes.Factorial@578073, 2

I Aigumints: |5
S [T Dl

== | Classes ta Instriment Bavsichussnsst |
shes Factoral

AAAAA-
vVVVYy

Run in a new process GO\

sbes.Factorial@578073, 3 >
null, 10 >
null, 11 >
null, 12 >
null, 15 >

AAAAA-

(a) (b)

Figure 1: JaBA: (a) Simple GUI and (b) Sample of trace file.

$ java graph.ClassSummary -all -i sbes.Factorial @
Number of Nodes: 16
0123456789 1011 12 13 14 15
Number of Decisions: 2
Method void main(java.lang.String[]) 14
0 new #2 <Class sbes.Factorial>
3 dup Node 1
4 invokespecial #3 <Method sbes.Factorial()> Start PC: 7: astore_1[76] (1)
7 astore_1 End PC: 10: ifle[158] (3) -> getstatic 7
8 aload 0 Variable uses LQO PC: 8 @ @
9 arraylength Variable definitions LQl PC: 7
10 ifle 83 Children 2 14
Pre-Dominators: 0 1 °
55 aload_1 Post-Dominators: 1 15
56 iload_2 Alive definitions: LQO BK: 0
57 invokevirtual #14 <Method long compute (int)>
60 invokevirtual #15 <Method append(long)> Node 9 ’
63 invokevirtual #16 <Method toString()> Start PC: 55: aload_1[43] (1)
66 invokevirtual #17 <Method println(String)> End PC: 57: invokevirtual[182] (3) 14
69 goto 91 Variable uses Lg2 PC: 56 L@l PC: 55
72 getstatic #7 <Field PrintStream out> Children 10
75 ldc #18 <"Error: positive integer required!!!"> Call to Lsbes/Factorial;.compute (I)
77 invokevirtual #17 <Method println(String)> Variable uses: L@2 PC: 56 L@1 PC: 55
80 goto 91 Children: 10
83 getstatic #7 <Field PrintStream out> Pre-Dominators: 2 51 3 07 4 6 89
86 ldc #18 <"Error: positive integer required!!!"> Post-Dominators: 12 9 10 11 15 '
88 invokevirtual #17 <Method println(String)> Alive definitions: L@2 BK: 4 L@l BK: 1 LQ@O BK: O
91 return

(a) (b) (c)
Figure 2: Sample information provided by graph.CFG

Although not yet integrated in the GUI, the graph package provided more information,
useful for understanding and testing of Java bytecodes. For example, considering the bytecode
of Factorial.main method illustrated in Figure 2(a), Figure 2(b) shows a summary of the total
number of nodes and decisions! for Factorial.main method (16 and 2, respectively) and also
detailed information with respect to each node in the CFG. For example, considering node 1 (a

We consider a node to be a decision node if it has more than one child on the CFG.

417

XVI Simpésio Brasileiro de Engenharia de Software

decision node with children 2 and 14), the set of instructions in this node starts at offset 7 and
ends at offset 10. Local variable number one — referred as L@1 for short — is defined at offset
7 (in the bytecode). The definition of L@0 at node 0 is alive because there is a definition-clear
path with respect to L@0 from node 0 to node 1, and at offset 8 (node 1) there is a use of
L@0. Information about pre- and post-dominators, as defined in [1], are also collected. In our
example, Nodes 0 and 1 pre-dominate node 1, whereas nodes 1 and 15 post-dominate it. All
such information is useful for the the development of control-flow and data-flow based testing
adequacy criteria.

Figure 2(c) presents the graphical representation of Figure 2(b). Each method call generates
one node in the CFG (call node), represented by double circles. To save space, nodes 6 to 11
(call nodes) are not shown in Figure 2(c). Considering a call node (say, node 9), besides the
same information previously mentioned, it is also possible to determine which is the method
being called (compute(I)) and also the class(es) of the objects(s) used to make the call, in the
case of non-static methods. Such information is very useful for building ICFG’s.

4 Conclusion

This paper describes a Java Bytecode Analyzer (JaBA) which provides a set of Java pack-
ages to extract control-flow and data-flow based information directly from Java bytecode. Also
provided is the inheritance relationships among all the classes of a given Java application. In-
formation so collected can be very useful for program testing, debugging, comprehension and
performance analysis.

For example, some of our on-going projects which require a detailed analysis of JVM in-
structions can significantly benefit from using a tool such as J aBA. One project is to construct a
framework for Java mobile agent testing based on techniques for structure testing and program
instrumentation. It has two approaches. A “client-based” approach instruments the agent code
before it is launched, and for this part the instrumentation can be conducted on either Java
source code or bytecode; whereas a “server-based” approach needs to do an instrumentation of
code arriving in a given host. Such instrumentation can only be accomplished on bytecode since
the corresponding Java source code is not available. Another project is to test component-based
software by measuring the code coverage (using a control-flow or data-flow based testing ade-
quacy criterion) of each component before it is integrated into a software system. Since such
a component can be a commercial off-the-shelf product or developed by a third party, we once
again face the same problem as discussed above, namely, the source code is not always available.
As a result, the instrumentation needs to be performed directly on Java bytecode. From these
two projects, we can clearly see the importance of developing a tool such as JaBA to extract
control-flow and and data-flow based information directly from bytecode.

Our next step is to further improve JaBA to make the data collection more robust as well
as develop a friendly graphical user interface. In addition, more features will be included into
JaBA to make it a complete visualization and analysis toolsuite for Java applications to help
programmers and testers work more effectively and efficiently.

References

[1] H. Agrawal. “Dominators, super blocks, and program coverage”. In Proceedings of
the 21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’94), pages 25-34, Portland, OR, January 1994.

[2] The xSuds Team. “Mining system tests to aid software maintenance”. IEEE Com-
puter, 31(7):64-73, July 1998.

418

XVI Simpésio Brasileiro de Engenharia de Software

[3] M. Dahm. Byte code engineering with the bcel api. Technical Report B-17-98, Freie
Universitdat Berlin — Institut fiir Informatik, Berlin — German, April 2001. Avaliable
on-line at: http://bcel.sourceforge.net/ [04-13-2002].

[4] J. R. Horgan and S. A. London. “Data flow coverage and the C language”. In
Proceedings of the Fourth Symposium on Software Testing, Analysis, and Verification,
pages 87-97, Victoria, Canada, October 1991.

[5] C. S. Horstmann and G. Cornell. Core Java 2, volume I - Fundamentals. Prentice
Hall, 2001.

[6] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to as-
sist fault localization. In XXIV International Conference on Software Engineering —
ICSE’2002, pages 467-477, Orlando, FL, May 2002. ACM Press.

[7] W. Landi and B. .G Ryder. A safe approximate algorithm for interprocedural pointer
aliasing. In ACM SIGPLAN’92 Conference on Programming Language Design and
Implementation, pages 235-248, June 1992.

[8] H. B. Lee and B. G. Zorn. BIT: A tool for instrumenting Java btecodes. In USENIX
Symposium on Internet Technologies and Systems (USITS’97), pages 73-82, Mon-
terey, CA, December 1997. USENIX Association.

[9] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley,
2 edition, 1999.

[10] S. Rapps and E. J. Weyuker. Selecting software test data using data flow information.
IEEE Transactions on Software Engineering, 11(4):367-375, April 1985.

[11] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression testing for C++ software.
Software Testing, Verification and Reliability, 10(2):77-109, June 2000.

[12] R. Vallée-Rai. Soot overview/disassembling classfiles. Soot Web Page, March 2000.
Avaliable on-line at: http://www.sable.mcgill.ca/soot/tutorial/ [04/13/2002].

[13] C. Verbrugge. Using Coffi. School of Computer Science — McGill Uni-
versity, Montréal, Québec, Canada, October 1996. Avaliable on-line at:
http://www-acaps.cs.mcgill.ca/~clump/research.html [04/13/2002].

[14] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi. “Locating program
features using execution slices”. In Proceedings of the Second IEEE Symposium on

Application-Specific Systems and Software Engineering Technology, pages 194-203,
Richardson, TX, March 1999.

[15] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. “Effect of test set size
and block coverage on fault detection effectiveness”. In Proceedings of the Fifth
IEEE International Symposium on Software Reliability Engineering, pages 230-238,
Monterey, CA, November 1994.

419

