
426

XVI Simpósio Brasileiro de Engenharia de Software

mudelgen: A Tool for Processing Mutant Operator Descriptions

Adenilso da Silva Simão
Auri Marcelo Rizzo Vincenzi

José Carlos Maldonado
{adenilso,auri,jcmaldon}@icmc.sc.usp.br

Departamento de Ciências de Computação e Estat́ıstica
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo – Campus de São Carlos

Av. Trabalhador Sãocarlense, 400
Cx. Postal 668
CEP. 13560-970

São Carlos — São Paulo

Abstract

Mutation Testing is a testing approach for assessing the adequacy of a set of

test cases by analyzing their ability in distinguishing the product under test from

a set of alternative products, the so-called mutants. The mutants are generated

from the product under test by applying a set of mutant operators, which systemat-

ically yield products with slight syntactical differences. Aiming at automating the

generation of mutants, we have designed a language — named MuDeL — for de-

scribing mutant operators. In this paper, we describe the mudelgen system, which

was developed to support the language MuDeL. mudelgen was developed using

concepts that come from transformational and logical programming paradigms, as

well as from context-free grammar and denotational semantics theories.

Keywords: Mutation Testing, Transformational Paradigms, Denotational Se-

mantics, SML.

1 Introduction

Mutation Testing [4, 6] is a testing approach proposed to assess the quality of a test case
suite in revealing some specific classes of faults. In this sense, Mutation Testing can be classified
among the fault-based testing techniques. It was originally proposed for program testing [6].
The main idea behind Mutation Testing is to employ a set of alternative products (the so-called
mutants) of the product under test (the original product). These mutants are derived from
the original product by including some slight syntactical changes that induces specific faults in
the product. In the Mutation Testing approach, faults are modeled by mutant operators [4].
From an abstract viewpoint, a mutant operator is a function that takes a product as input and
generates a set of products in which the fault modeled by that particular operator is injected.
The expressiveness of the set of faults modeled in the mutant operators has great impact in the
Mutation Testing cost and effectiveness, and, hence, so do the mutant operators themselves.

In order to be able to precisely define mutant operators and to ease mutant generation,
we have designed a language — called MuDeL (MUtant DEscription Language) [11]. The



427

XVI Simpósio Brasileiro de Engenharia de Software

MuDeL language captures the underlying concepts that leaded to the mutant operator defini-
tion. We have implemented the system mudelgen (standing for MuDeL Generator), so that
a MuDeL mutant operator description can be “compiled” into an actual mutant operator,
enabling the mutant operator designer to validate the definition and, potentially, to improve it.
Given a context-free grammar G of a specific language L, the mudelgen builds a program P(G)

for this language. In its turn, given a mutant operator description and the original product, P(G)

compiles the description and generates the mutants. Both MuDeL and mudelgen are designed
with concepts from transformational [9] and logic [3] paradigms, as well as from denotational
semantics theory.

This paper is organized as follows. In Section 2 we present the main features of mudelgen.
The overall structure of mudelgen and the most important implementation aspects are presented
in Section 3. In Section 4 we discuss how the denotational semantics formalism was used
in the validation process of mudelgen. In Section 5 we illustrate a visual tool which allows
the inspection of a mutant operator execution, including some limited debugging capabilities.
Finally, we present some concluding remarks in Section 6.

2 Main Features

Mutation Testing can be, and indeed has been, applied to several different contexts and
languages, ranging from imperative programming languages (e.g. C [5]) to formal specification
techniques (e.g. Petri Nets [12]). Therefore, a mechanism to describe mutant operators should
ideally be able to deal with all, or at least most, of those applications. A common element upon
which we can construct a generic approach is the grammar description of their languages. Indeed,
each of these languages can be characterized by a grammar. In particular, we are concerned
with languages which can be described by context-free grammars [10]. MuDeL can, thus, be
instantiated to a particular grammar; this means that the validity of a mutant description can
only be determined by considering a particular grammar.

A MuDeL description of a mutant operator is basically a set of matching and replacing
operations that are combined in the proper way in order to indicate how portions of the original
product are to be changed [11]. Both matching and replacing operations specify some patterns
which are searched for in the syntax tree. These patterns can include meta-variables. A
meta-variable represents a placeholder for a specific kind of syntax non-terminal symbol.

3 Implementation Aspects

To develop mudelgen, we consider context-free grammars as input data. We have chosen to
employ compiler development tools to manipulate these grammars. We use bison and flex,
which are open source programs similar to, respectively, yacc and lex [8]. Although these tools
ease the task of manipulating grammars, they, on the other hand, restrict the set of grammars
that mudelgen can currently deal with to LALR(1) grammars [1, 8, 10]. The grammar input to
mudelgen is provided in two files: the .y and the .l. The .y file is the context-free grammar,
written in a subset of yacc syntax [8]. The .l file is a lexical analyzer and gives the actual
form of the terminal symbols of the grammar and it is encoded in a subset of the lex syntax [8].
Indeed, these files can be thought of as minimal standard yacc and lex inputs, from which all
so-called semantic actions were stripped off.

Although mudelgen can be regarded as a unique system, it is actually composed by 3 modules,
which are executable programs: treegen, opdescgen and linker. Figure 1 depicts how these
modules are related to each other. It also illustrates the overall execution schema of mudelgen.



428

XVI Simpósio Brasileiro de Engenharia de Software

Figure 1: mudelgen Execution Schema

There are some units that will compose a P(G) that do not actually depend on G. We
embodied these units in the Object Library. The greatest portion of the Object Library

is devoted to the so-called MuDeL Kernel, which is responsible for interpreting the mutant
operator description and manipulate the syntax tree accordingly. The remaining units in the
Object Library allow the communication between the MuDeL Kernel and the external modules
MuDeL Animator and DS Oracle, described in later sections.

The units that depend on the grammar are built by either treegen or opdescgen. Module
treegen analyzes G and generates the units: (i) STP (Syntax Tree Processor), which is responsi-
ble to syntactically analyze a source product P and convert it into a syntax tree, and (ii) Unparse,
which is responsible to convert the mutated syntax trees into the actual mutants. Module
opdescgen analyzes G and generates the unit ODP (Operator Description Processor), which
analyzes a mutant operator description O w.r.t. G and generates an abstract representation of
how to manipulate the syntax tree in order to produce the mutants. Finally, the linker module
will link all these grammar-depending units and the appropriate portion of the Object Library

to generate the program P(G).
The program P(G) can then be run with a source product P and a mutant operator description

O as input data. These input data are processed by STP and ODP, respectively, and handled by
MuDeL Kernel. During its execution, MuDeL Kernel will generate one or more mutated syntax
trees, which are processed by Unparser in order to generate the actual mutants. Unparse can
output the generated mutants in several formats. Currently, the mutants can be (i) sent to
standard output; (ii) stored in SQL databases (e.g. MySQL); or (iii) written to ordinary files
(each mutant in a separate file). Optionally, the DS Oracle can be used to verify whether the
mutants were correctly generated (see Section 4). Moreover, the execution of the program P(G)

can be visually inspected with the MuDeL Animator (see Section 5).



429

XVI Simpósio Brasileiro de Engenharia de Software

4 Denotational Semantics Based Oracle

The number of mutants generated is often very large and manually checking them is very
costly and error-prone. Therefore, the validation of mudelgen is a hard task, due mainly to the
amount of output yielded. To cope with this problem, we adopted an approach that can be
summarized in two steps. Firstly, we employed denotational semantics [2] to formally define the
semantics of MuDeL language. Secondly, supported by the fact that denotational semantics
is primarily based on lambda calculus, we used the language SML [7], which is also based on
this formalism, to code and run the denotational semantics of MuDeL. We implemented an
external module DS Oracle that can be run in parallel with P(G) through the Oracle Interface

in a validation mode. When invoked, the DS Oracle receives the information about a mutant
operator O and derives a denotational function ϕ (in the mathematical sense) that formally
defines the semantics of O. Then, the DS Oracle reads the information about the source product
P and the set of generated mutants M . The mutants in M are compared with the mutants
defined by ϕ. Any identified difference is reported in the discrepancy report D.

It is important to remark that the validation mode has no usefulness for users interested
in mudelgen’s functionalities, since it brings no apparent benefit. However, it is very useful for
validation purpose, since it improves the confidence that the mutants where generated in the
right way. Nonetheless, from a theoretical viewpoint, there is a possibility that a fault in the
implementation be not discovered, due to the fact that the SML implementation also possesses
a fault that makes it produce the same incorrect outputs. However, the probability that this
occurs in practice is very small. Both languages (i.e., C++ and SML) are very different from
one another. Moreover, the algorithms and overall architectures of both implementations are
very distinct. While we employed an imperative stack-based approach in C++, we extensively
used continuation and mappings [2] in SML. Consequently, it is not trivial to induce the same
kind of misbehavior in both implementations. In other words, although none of them is fault
free, the kind of faults they are likely to include is very distinct. With this consideration, we
conclude that the use of denotational semantics and SML was a powerful validation mechanism
for mudelgen.

5 MuDeL Animator

We have also implemented a prototyping graphical interface — called MuDeL Animator —
for easing the visualization of a mutant operator execution. MuDeL Animator was implemented
in Perl/Tk and currently has some limited features that allows to inspect the log of execution,
without being able to interfere in the process. Figure 2 presents the main window of MuDeL
Animator. At the top of the window are the buttons that control the execution of the animator,
such as Step, Exit etc. The remaining of the window is divided up into four areas:
MuDeL Description: In the left bottom area, MuDeL Animator presents the mutant operator

description. A rectangle indicates which line is currently executing. Every meta-variable
is highlighted with a specific color. The same color is used in whichever occurrence of the
same meta-variable throughout all the other areas.

Mutant Tree: In the left top area, the animator shows the syntax tree of the product, reflecting
any changes so far accomplished by the execution. An arrow indicates which node is
currently the context tree. Meta-variable bindings are presented by including the names
of the meta-variables above the respective tree nodes.

Current Product: In the right bottom area, the current state of the product, obtained by
traversing the current state of the Mutant Tree, is presented. The parts in the mutant



430

XVI Simpósio Brasileiro de Engenharia de Software

that correspond to the nodes bound to meta-variables are highlighted with the respective
color.

Pattern Tree: In the right top area, MuDeL Animator shows the tree of the pattern currently
active (i.e. in the current line in MuDeL Description) in the MuDeL Description area.

Figure 2: MuDeL Animator Main Window.

Since MuDeL Animator enables us to observe the execution of a mutant operator description,
it is very useful not only for obtaining a better understanding of the MuDeL’s mechanisms, but
also for (passively) debugging a mutant operator.

6 Concluding Remarks

The efficacy of Mutation Testing is heavily related to the quality of the mutants employed.
Mutant operators, therefore, play a fundamental role in this scenario, since they are used to
generate the mutants. Due to their importance, mutant operators should be precisely defined.
Moreover, they should be experimented with and improved. However, implementing tools to
support experimentation is very costly and time-consuming.

In this paper we briefly described mudelgen, a transformational-based system for generating
mutants from MuDeL mutant operator definitions. MuDeL and mudelgen together form a
powerful instrument in developing and validating mutant operators.

The Mutation Testing requires several functionalities other than just generating mutants,
e.g. test cases handling, mutant execution and output checking. Both MuDeL and mudelgen

are to be used as a piece in a complete mutation tool, either in a tool specifically tailored to
a particular language or in a generic tool — a tool that could be used to support Mutation
Testing application in (ideally) most used languages. Up to now, we have already employed
MuDeL and mudelgen for describing and generating mutants for C programs and for Petri net



431

XVI Simpósio Brasileiro de Engenharia de Software

specifications and we are currently working on mutant operator descriptions for C++ and Java
programs and coloured Petri net specifications.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985.

[2] L. Allison. A Practical Introduction to Denotational Semantics. Cambridge University
Press, Cambridge, U. K., 1986.

[3] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 2 edition,
1990.

[4] A. T. Budd. Mutation Analysis: Ideas, Examples, Problems and Prospects, pages
129–148. Computer Program Testing. North-Holland Publishing Company, 1981.

[5] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An
approach for integration testing. IEEE Transactions on Software Engineering,
27(3):228–247, March 2001.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, 11(4):34–41, April 1978.

[7] M. R. Hansen and H. Rischel. Introduction to Programming using SML.
Addison-Wesley, 1999.

[8] T. Mason and D. Brown. Lex & Yacc. O’Reilly, 1990.

[9] J. Neighbors. The Draco approach to constructing software from reusable compo-
nents. IEEE Transactions on Software Engineering, 10(5):564–574, September 1984.

[10] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[11] A. S. Simão and J. C. Maldonado. MuDeL: A language and a system for describing
and generating mutants. In Anais do XV Simpósio Brasileiro de Engenharia de

Software, pages 240–255, Rio de Janeiro, Brasil, October 2001.

[12] A. S. Simão, J. C. Maldonado, and S. C. P. F. Fabbri. Proteum-RS/PN: A tool to
support edition, simulation and validation of Petri nets based on mutation testing. In
Anais do XIV Simpósio Brasileiro de Engenharia de Software, pages 227–242, João
Pessoa, PB, October 2000.


