XV Simpésio Brasileiro de Engenharia de Software

Using Objects and Patterns to Inplement Domain Ontologies

Giancarb Guizzadi'?
Ricardo deAlmeida Falbo*
José Gongalves Pereirdltto*

Computer Science DepartmenédEral Universityof Espirito Santd
Fernando ferrari Avenue, CEP 29060-900, Vitéria - ES raBl
e_mail: {falbo, 2gonc}@inf.ufes.br

Centre for Telematics andfbrmation Technolog Universityof Twente®
P.Q Box 217, 7500 A&, Erschede, The Netherlands
e mal: guizzad@cs.utwentenl

Abstract
Ontologiesare becoming an imptant mechanis to build infomation systems Nevetheles, there is till
no gstenatic approach b suppott the desgn of such gystens usng ols that are conmon © information
systems developes. In this paper we propo®e an appoach for deliving object fameveorks from domain
ontlogiesand hen we showthe appication ofthis approach n the oftware proces domai.

1. Introduction

An InformationSystemcannot be written without a commitment to a model of a relevant
world, i.e, commitments to etities, popeaties, and relations intha world. Data structures
and piocedures implidatly or explicitly make commitments to adoman ontology [1].

Severa projects in Artificial Intelligence have focused on usingontologes to pomote
knowledg sharing and to substitutethe usual database or object-oriented schema with an
ontology, which offers a semanticallsicher model of the domair2]. This trend has also
aquired followers in the Software Engneering community However, one of the mgor
drawbacks @ a wider use of omloges in this area $ the lack of approachesotinsert
ontologes in a more conventional software development process.

Since the current leadingaradign in Software Enmeeringis theobjecttechnology, we
claim thatwe needa systematic approach to derive object models from ontetom order to
put ontologes in practice. h this paper we propose an approach to derive reusable object
artifacts from domain ontolags. This approach comprises@ectrumof techniquesnamely
a set of mappinglirectives, transformation rules and desgatterns.n section 2, we briefly
discuss some aspects of ontglatpvelopment, including methodanda graphicallanguacg,
and a pasexperience usig themin the softvare process doamn. In secton 3we presenta
formalism to represent ontolieg and a frameworthatimplementghetheoreticafoundation
of this langiage. In section 4, we present our approach to derive ohbjectlels and
frameworks from domain ontolags, showinghow it was appliedn the softwareprocess
domain. In section 5, related works are discussethally, in section 6, we report our
conclusions.
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2. Ontologies

It is impossibleto represent the red world, or even a pat of it, with dl its details. To
represent a phenomenon or part of the world, which we call domamatessaryo focus
on alimited numbe of concepts tha are sufficient and relevant to aede an adbstradion of the
phenomenomn hand. Thus, a central aspect of amydelingactivity consists of developing
conceptualiation: a set of informal rules that constrain the structure of a pieceabty,
which an agnt uses to isolate and argge relevant objects and relatiory |

According to Guarno [4], “an onblogy is a logical theory accouning for the intended
meaning of a formal vocabulary, i.e. its ontologca commitment to a paticular
conceptualiation of the world”. Based on such definition, an ontoljogonsists of concepts
and relations, and their definitions, properties and constraipsegsed asaxioms. An
ontology should not be onlan hierarchyof terms, but a fullyaxomatized theoryaboutthe
domain p].

One of the main benefits of the use of ont@sgin software developmentis the
opportunity to adopt a reuse-based approach to the requiremeniseerigg (RE). In
traditional Software Erigeering for each new application to be buila new
conceptializaton is devebped. Ths reflecs on how lhe RE is currenty employed: for each
new application, an elicitation phase is accomplished almost siiveayg scratch, focusingn
all particularitiesof the system in hand. This approach igrexmelyexpensive since elicitation
is the acivity that requres nost effort in the softvare devedpment Experts are scarce and
costly resources but thewre essential to this activityso they should be better used.
Therefore, it is important to share and reuse the captured knawvledg

In an ontolog-based approach, requirement elicitation and modelcayn be
accomplishedin two sta@s. First, the gneral domain knowledg should be elicited and
specifiedas ontologes. These ontolags, in turn, are used tadigle the second stagof the
RE, when the particularities of a speific gpplication ae consideed. This wg, the sane
ontology can be used tougde the development of several applications, diluthgcostsof
the first stag and allowingknowledg sharingand reuseq].

In [5], we proposed a Graphicalhguage for ExpressingOntologes (LINGO) and a
systematic approach for erigeerng onwbloges. In the RE, the use ofa graphcal
representation is essential in order to fadlitate the communiation bdween requirement
engneers and eerts. h ontolog building such representation is basicaltylanguage
representing a meta-ontology. Hence, this language has basic primitives to epresent adoman
conceptualiation. h its simplest form, itsiotationsrepresenionly conceps and relations
Neverthelesssometypes of relationshave a strongemantics and, indeed, hide engric
ontolog. In such cases, speciai notations have been proposed. This is the strileaiyire
of LINGO and what makes it different from otheraghical representations: amptation
beyond the basic notations for concepts and relations aims to incorporate a Tesnyay
axioms can be automaically generated. These axioms @ncern simply the stucture of the
conceps and are sdiepistemologi@al axioms Figure 1 shows the main notations LINGO
and someof the axoms imposed byhe whole-part relation. Theseiams form the core of
the mereologica theory as presented in [7], nandy theirreflexivity (Al), anti-symery (A3)
and transitivity(A4) axoms denote sufficient and necessprgperties for all kinds of whole-
part relations. Alom (A7) denotes a special kind of part-or relatwith non-sharablgarts
(composition). The remainingxoms complete the theoryy defining suitableontologcal
distinctions.
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Both langiage and method have been used in the development of conmpéernation
systems in areas such asoffware Rocess §], Port Management, Seel Metallurgy, and
Media on DemandManagment[10]. Although they have proven to be useful, we identi#y
great concern from the developers: how to put those onéslag practice,that is, how
ontologes cansupportactualsoftwaredevelopmentdo show our approach to deal with this
problem, we discuss in the ritesubsection the case of a software process ontolog

Aggregation concept relation
L 1
[ QI) ] Ox - partOf(x,x) (A1)
Part 1 Part N Ox,y  partOf(y,x) « wholeOf(x,y) (A2)
Ox,y partOf(y,x) — - partOf(x,y) (A3)
Ox,y,z partOf(z,y) O partOf(y,x) - partOf(z,x) (A4)
Super-type Ox,y disjoint(x,y) — -0z partOf(z,x) O partOf(z,y) (A5)

A x atomic(x) - =0y partOf(y,x) (AB)
Ox,y partOf(y,x) — -0z partOf(y,z) (A7)

Sub-type 1 Sub-type N

Figure 1 — Main notation of LINGO.
2.1. Sofware Process Ontology

In [6], we developed a software process ontplagd used it to promotknowledg
integationin a Software EngneeringEnvironment (SEE). Part of this ontologs presented
in figure 2. In this modd, cardindity constiaints ae usal to speify the numbe of concept
instancesthat can be involved in a relation. The cardinalityO,n) does not impose any
restriction and, for that reason, its noaghically represented. Other cardinalippssibilities
include (0,1), (1,1) and (1,n). M&never used, these cardinalities incorporate newarexto
the model. m figure 2, cardinality(1,n) in the relatioutput implies thd (Da) (activity (a) -
(I5) (output(s ,a)). Cardinality(1,1) stills addshat (Os,a; ,a,) (output(s ,a;)00 output(s ,a;) - a;
= a,). Although the examplespresentedabove represent onlyinary relations, the formalism
usedis expressiveenoudn to model relations of anwrity. Likewise, reflective relations
(relationsbetweeninstances of the same concept) and conditional relations (AND and XOR
tight relations) can also be represented.

Process
Resource Tl,n —’TI—‘
1 .
sub—activityF) Artifact
[ cama | Vi
usage Activity 1n output
A L 1 11
Manage ment Construction Quality Assurance
Activ ity Activ ity Activ ity

Figure 2 — Part of a $ftware Proces Ontology (SPO).

Besidesthe epistemologcal constructs, ontologs exlicitly represent knowledg at a
signification level through the use of formal axioms. Th&e axioms @n be of two types:
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consolidation axiom§CA) andderivation axiomg5]. The former ams © impose conshints
tha must besdisfied for a relation to be consistatly established. The latter intends to
represent declarative knowleglghat is able to derive knowlegldrom thefactualknowledg
represented in the ontolpgDerivation axoms can have root ithe meaningof the concepts
and reétions or n the waythese conceptand relations are structured. When axioms are
defined to show constraintsimposedby the wayconcepts are structured, thaye called
epistemologial axioms (EA). When theydescribe domain siification constraints, thegre
cdled ontologicalaxioms(OA) [5]. Cardinalityconstraints, as discussed aba@examples
of epistemologcal axioms. Several dams were defined in this ontolpgTable 1 shows
someof them, indicating thdr type It is impotant to noti@ tha the axioms (EA4) and(EA5)
are diredly derived bythe usaje of thewhole-pat relation beween activities.

Id Axiom Type
EA1 |(Oa) constructionActivity(a) — activity(a) Epistenologcd
EA2 |(0Oa) managementActivity(a) — activity(a) Epistanologcd
EA3 | (0a) qualityAssuranceActivity(a) — activity(a) Epistenologcd
EA4 | (0a; ,a,,a3) subActivity(a;,a,) O subActivity(a,,as) — subActivity(as,as) | Epistenologca
EAS5 | (Oay,a,) subActivity (a;,a,) — - SsubActivity (a,,a;) Epistenologcd
CA1l |(Oa, s) input(s, a) — artifact(s) O activity(a) Consolidation
CA2 |(Oa,r) usage(r,a) — resource(r) 0 activity(a) Consolidation
OA1l |(0Oa) composedActivity(a) — [Ch; subActivity(a;,a) Ontologcd
OA2 |(Oa, ay, r) (subActivity(a, ,a) O usage(r,a;)) — usage(r,a) Ontologcd

Table 1 — Aioms of the Sftware Proces Ontology.

Since the SEE was implemented usihgects, we had to derive an object model fthm
domain ontolog. This represented a desigoroblem that was informallgolved. More
recently other developers have @erienced the same problem. The methodpofwgsentedn
this paper has been proposed to address this issue, i.e., thstesyatic object-oriented
implementation of domain ontolcss.

3. AHybrid Formalism to Support Ontologies-to-Objeds Mapping

As shown in Table 1, we used first-orderilogs the langage to specifythe axoms of
the formal theory Hrst-order logc is widely known for its expressive power and its
ontologcal neutrdlity, theefore adding minimd ontologcal commitments. Howeer, dueto
the goals of this work, it is convenient to adopt a formalism that lies at an intermediate
abstraction level, between first-order lo@nd object-orientatioror this purposewe useda
hybrid approachbased on pure first-order logy relational theoryand, predominantlyset
theory,

The choice to aeae a language manly based on sé theory was hichly motivaed by an
important issue sd theory is a complementay extensionalpeaspective to the intentional
nature of first-order log and, at the same time, a natural optiora asnceptuaimodelfor
reasoningabout objects. To clarifthis point, the followingexampleis used:let the intention
of the conceptnortal be"A mortal is an aetity whoselife ceases at a point intime'. The bgic
predcat mortal(x) states hat x is amortal and, therefore, the characteristics defined thg
intention of this mwnaept gpplies tox. It dso (mplicitly) staestha xd Mortal, i.e., to thesé of
al the elements of the consideed world to which theintention of the concept applies. h an
objectorienied perspedve, if x is an nstance ofmortal, it means thd x belong to themortal
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class, ie., b the setof al instances oftie consilered wortl that sharethe sane propertes and
the same definition.

Because of these characteristics of set theorypuild a model usinghe proposedset-
basad language is an important stg in a systematic translation bdween the logic and the
object worlds. Moreover, the langge preserves the @xession power of thirst-orderlogic
without addingsignificant ontologcal commitments, therefore, beirgyitable toplay the
same role in the @matization process. iRally, althoudp formal, the langiage is kept as
simple as possble, defining only what is absoltely necessaryo acconplish its gaals. The
odd convergnceof these specific requirements motivated our decision for defamingw set-
based formalism instead of usiag exstent one, such as[3].

The theoreticalfoundationfor our formalism is brieflypresented below. ¥also discuss
how the primitives of this formalism are related to thGO buildingblocks.

3.1 — Theoretical Foundation for a Se-based language

Sets are colecions of 2o or nore ekments whose nembers are umjue andheir order
is immaterial. Sds @an be finite or infinite. Fnite sds with asmdl numbe of dements ae
usually represented byhe enumeration of its members. Otherwise, they representeldy
formation rules or by the ddinition of the charaderistics and propaties tha al its membe's
must have in common (intentionh dur approach, concepts are definedets.For example,
as mentioned before, the statememtl Mortal commits x to the conceptMortal, both
intentiondly and extensiondly.

Another fundamental buildindlock in the ULNGO meta-ontolog is the primitive
relation. This pimitive represents a samantic link tha exists among a se of (one or more)
conceptsln our approach, relations are mapped to th@symous primitive in set theoryn
settheory a n-ary relation can be defined kthe n-tupler = (Cy,C,...C,, p(X1.X2...Xn)), Where
eachc; represents a different set involved in tiedation,andp(x;) is a functonal predcaie
open inn variables that maps each element from the cross-praguetc, x ... C, onto a
boolean value.n this case, the s& (solution set) is the subset of x C, x ... C, whose all
membes e; satsfy the predcat p(e)).

Using the output elation example, shown in kgure 2, we can illustrate the equivdent
desaiption in sé theory: output = ((Activity, Artifact, output(a,s)). For now on, the
propositional functionp(x,y) will be usedas synonym of the the n-tuple that defines the
relation, assuminthat the function is defined in some cross-prodyetC, x ... C,,.

In sd theory, someessentia opeaations ae ddined to epress therelations béween sds
(D - proper-subset an - subsetd - Union; n - Intersecton;\ - setdifferencejd - power set),
properties of sets#(- cardindity) and relations béween sds axd its membas (O -
Membaeship) [11]. In addition to this, thebasic logicd opeators (0 - conjunction;m -
disjuntion{ - exclusive disjunction= - negtion; - - conditional; . - biconditional)and
quantifiers (O - universalim - existentia; M - exists one and onlpne) form the core of the
formalism employed in this work. To etend this core, two additional functions have been
defined:

* Imagem(Im): Let A andB be two sets ana be the set of all binarselationsr tha
exist in our considered universe. The functionhas wo argiments the ebmental A
andRO &, and t returns an etment B'(0 (B). The ekment B” is a membe of a
powersetand,therefore,|it is a set. m this casep' is thesd tha contans d membes
of B to which a is assoated n the conext of the relation R, i.e., therange of a in
respectto R. The functionim can be formallydefined asim:A x & 00 (B), such hat
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[Ma: A, R: &, BO (B) Im(a,R) = B” [ b:B" (a,b)d R*. Converselyfor each elementn
A associted D an ebmentbd B' in relation R, a is also a nember of the range of the
adjunct functionm(b,R), i.e.,[Ma:A, R:®, b:B" (b Im(a,R)) « (ad Im(b,R)). Using the
relation output as an ample, a possible valid imagset could be: Im(Planning,
output) = {Project Plan,Sch edule} and, consequentlym(Schedule, output) = {Planning} .
Extendingthis function definition to n-aryelationsr = {(C;,C,,...,Cp, P(X1,X2,....Xn)}, WE
then haveim:C; x @ _.00(C, x C; ... x C,). It is impotant to noti@ tha Im is a
distributive function, i.elm({ProjectPlan,Sch edule},output) = Im(ProjectPlan, output)d
Im(Schedule, output) . Consequentlywe candefinethe gneral form for this function
asiniid (A) x @ 0 (B).

» Sdection (0): Our second eension to the core formalism is the Relational elg
sdection operator 12]. Relational algbra is aquery procedurallanguage composed
by a set of operations that act on relations. This operator acts on a relaseledyng
tuples hat satsfy a gven predtaie. Snce he assod@tons betveen concegtandtheir
propeties anstituterelations, this opestor can be usal to séect dements within asd
that share a comon feature. Generdly, let A be a set whose members have\eigw
property Let B be the subset @f whose members have the propevtyelated throul
the opeaator op to the expresson z. In relationd algebra terms, B is clled a sdection
of A and his can be formalized asB « oy o, »(A). The operair op can be any
relational or logcal operator, dependiran the tye of the operands.

3.2 — TheSet framework

Figure 3 shows a support framework that glayfundamental role in owntology-to-
Java objects ma@ping process. This famework implements the mathenatical propeties
described bythe theoretical foundation presentaioove.The methodsof the Set class are
summarizd in table 2.

Operation Operation prototype Functionality
[ A. contains (B) Verify if setB is contained in set
= A. equal s (B) Verify if setB is equds to s¢ A
0 A. uni on (B) Returns thesd AT B
n A.intersection (B) Reurns thesé A n B
# A cardinality () Number of eements of seta
{C|cmA} A. subset ("C") Returns thesd C if C is a subset oA
/ A. di fference(B) Returns thedifference beween two ses
M A i n(x) Verify if the eementx belong to sei
+ A. add( x) Adds he ebmentx to thesd A
- A. renmove( x) Removes he eementx from thesd A
Im Set.lm(a,ri) Returns thesd Im(a,rl)
Im Set.ImA ) Returns thesd Im(A,r1) whereA =
{al,..,an}
o Set.sel ect("w', op, "z") Reumns thesdection gy, op »(A)
Table 2— Brief description of the methods implemented by the Set class
The Set class is a gneric container that is able to holdtexsion set$or all kinds of

conceptinstances.To be accesbie, each ramber of a setmust have a umue denifier. The
Set El enent interface deak with this requrement, providing an denificaion mechansm
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throuch the get Key method. Br an instance of anglass to be held in &et, it must
implement the Set El enent interface. Consequenilyhe Set class $ acualy a setof
Set El enent instances. The pmary key for these etmenss is {yped astbj ect , which is
the top-most class in theada hierarchy This is done in order toige the application classes
totd freedom regarding implementaion decisions.

The framework also defines two other clasdesr si st ent Set and Menber Set
both sub-tpes ofSet . Theformer is asd tha is &le to handle its permanent storage in totd
transparencyrom the perspecte of he clss users. Wen he st or e() method is invoked
in aPer si st ent Set , the class peforms theseidization of dl its membes. Theoriginal
state of the obpct (as wdl as heir relations) can be adétwards restred bythe invocaton of
theretri eve() method.

Findly, pasistat sds an be usal as an interesting dternative to implement databases
[10]. Usingthis paradigh, a database can be seen &snaily [J (set of sets), which contains
all the sets astingin the application. Since, in this casachsetwill bea memberof another
sd, they must &so beunivodlly identifiable. The Menber Set is, thus, provided tenable
this situation.

et )

Set (SetElement[] &)
in(SetElement x):boolean
contains (Set s) :hoolean

equals (Zet =) thoolean <>—
union(3et =) :8et

intersection(set s):3et
cardinality( | :int

difference (Jet s):5et

extension| ) :Iterator

SubSet (String subset) :3et
getInstance (Chiect key) :SetElement
add (SetElement =) <<SetElement>>

remove [SetElement 3)
select (3tring prop, 3tring operator, Chject wvalue) :3et
Set.ImiObject o,String relation) :Set

Set.Im(3et s3,53tring relation) :Set getKey| | :Cbiject
equals (SetElement s):boolean
% ~
MemberSet

Merberiet (String id)
MemberSet (String id, SetElement[] e)

PersistentSet

PersistentSet (String a source)

Persistent3et [String a_source, SetElement[] e)
store( ) :void

retrieve| ) :woid

Figure 3 - Framework that implements the mathematical type Set.
4. Using Objects and Rtterns to Implement Domain Ontologies
The problem of consistentlgenerating computationalinfrastructuresfrom conceptual
modelshasbeen known for a longime bythe software engeeringcommunityas the so-

cdled Impedance Mismatch Probleni) [13]. In the scope of this work, the conceptual
models are domain ontologgs and the computational infrastructures are object-oriented
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frameworks. The use of doain onbloges © reaize the domain anaysis acivity in a
software enmeering process contributes with innumerobe&nefits [10]. However, the
impedance mismadch problem is amplified: instexd of peforming just oneste to translae
between two levels of abstradion (concgptud modds to computdiond infrastructures), two
stepsare necessaryThe frst step s © transhte from an onblogical level model (domain
axiomatized theory) to an epstemological conceptal model (conceptal view of chss
diagams) without loosinghe exlicit representation of knowledg The second step ike
translation between the doman model to its omputdiond conaetization - an activity tha, in
domain engeeringterms, is calledlomain design

Our systematic approach to address this two-lelldroblem is composed of a set of
diredives, design paterns and transformaion rules. The diredives ae usel to guide the
mapping from the epistemolagal structures of the domain ontojogconcepts, relations,
properties and roles) to their counterparts in the object-oriented paxadigntrariwise,
desig patterns and transformation rules are applied to the mappoogssof consolidation
and ontologcal axoms, respectively The rational application of these conceptt@bls
supportedby the Set frameworkis able @nerate consonantada implementations for the
ontology axomatizated theory In section 4.2 the mappindirectives are discussed.The
Design Patterns and the transformation rules are presented in sections 4.3 and 4.4. The
following subsection shows the formaltion of the ontologdepicted in figire 2.

4.1 — Ontology brmalization using the set-based language

Thefirst stepin our approach for mappindomain ontologs to objects is the complete
axiomatization of the doman theory using the sd-based formalism. Besides the derivation
(epistemologcal and ontologal) and consolidation @ms, we need definition &ms to
expressconceptsaandrelations.Giventhe model of Fgure 2, the followingdefinition axoms
can be derived. The notational convention use@B) - concept definition amms,and(RD)

- Rdation ddinition axioms.

(CD1) P =Process (CD2) A = Activity (CD3) R = Resource
(CD4) S = Artifact (CD5) M = Manage ment Activ ity
(CD6) C = Construction A ctivity (CD7) Q = Quality Assurance Activity

(RD1) procAggregation = (Process, Activity, procAggregation(p,a))
(RD2) subA ctiv ity = (Activ ity, Activity, SubA ctiv ity (a1,a,))

(RD3) usage = (Resource, Activity, usage(r,a))

(RD4) input = (Artifact, Activity, input(s ,a))

(RD5) output = (Artifact, Activity, output(s ,a))

The following axioms translae the epistemologca (EA) and ontologca (OA) axioms

shown in Thle 1 and thosedeived from cardindity constiints EA6 — EA8) to the Sd-based
formdism:

(EAL) O A (EA2) MO A (EA3) QI A
(EA4)YTay,a5,a3 (afld subA ctiv ity (a,))00 (a1l subA ctiv ity (a3)) — (aj1] subA ctiv ity (az))
(EA5)YTay,a, (aifll subA ctivity (ap)) - (afld subActiv ity (a1))

(EA6)YTI s: Artifact #im(s,output) =1

(EA7Y a:Activ ity #Im(a,output) =21

(EA8)Y p:Process #Im( p,procAggregation) = 1

(OA2)Ta:Activity Compos edActivity(a) « Im(a,subA ctivity) #17
(OA2)Ta:ComposedActivity, r:Resource usage(a,r) « O Im(Im(a,subActivity),usage)

-43-



XV Simpésio Brasileiro de Engenharia de Software

4.2 — Mapping directives

One ddfined the Sd-based axioms, wecan initiate the object mgoping Conepts and
relations are naurally mappel to dasses and assocations in a object modd, respectively.
Propaties of a concept shdl be magpped to dtributes of theclass tha is maping the concept.
Although this approachworks well in most cases, it is worthwhile to point someeptions
that we have found:

 some concepts can be better mapped to attributes atdssin an object model

becausehey do nothave a maningful state in the sense of an ot modet

» someconceptsshouldnot be mapped to an object model because wesg defined

only to clarify some aspect of the ontolgdut theydo not enact a relevardle in an
object model,

» relationsinvolving a conceptthatis mapped to an attribute (or that is not considered

in the mappinyshould not be mapped to the object model.

A class defines a formation rule for its instance and, therefore, can beasden
manipulated as a sah a neta-level archiecure. Consequerty, the classficaion relationsin
the formalism do not require argpecific implementations, i.eglationssuchasam A, are
totdly resolved by the programming language typing mechanism thiough the credion of an
objecta of typeA.

For the mappingf relations, thee are someissue thd still must bedisauss&. Fgure 2
shows a relatioroutput betveen he concep Activity and Artifact. In our approach, this
relation is translated to an association between the correspodimglasses in the object
model and both classes have a methadut (). In this case, with themmvocationof method
out put () in an obgcta; of typeActi vi ty, it is possble o have acces®tal the artfacs
produced bya;. This resulting se is formally speified by the formula Im(al,output)) .
Likewise,the methodinvocation in an artifact instance returns its producer activityor,
Im(s1,output) . The returnedtype of the relation methods depends directlythe cardinality
axioms associated to the relatiororknstance, since in thgcopeof the output relation an
Activity may produce severarifacss, output is magpeal to aSet variable in theActivity
classand,hence, this is the pe returned byhe invocation of the syppnymous method on this
class. Wha a relation ha acardindity axiom imposingan inferior limit equds to 1, this
constraint is reflected in the class constructors enstinmgstablishment of the relation.

Like classification, subsumption does not require adgitional implementation, i.e.,
subtype-of relations amongoncepts can be directtyappedto generalization/specialiation
relations anong classes. An iom like MO A states hat the concepManage mentActivity IS a
subtype of Activity (intentionallyand exensionally. Since all elements contained Nhalso
bdong to thesd A, every Management ectivity (mO M) is an activity as wdl. The subsés ofa
concept are actudly patitions of tha concept inside tha doman. For example, thee is no
element in the set Activity that does not belongeither to ManagementActivity,
QualityAssuranceActivity Or ConstructionA ctivity. For this reason, the concettat represents
a superype is always mapped b an abstctclass.

Finally, the directives consider non-trivial mappsnge.g, n-ary relations, relation
propeties and conditiond relations. At last, theg advise the choice beween primitives to
model a domain entitgGuarino discussion about sortaismporalneutralityandontologcal
rigidity is a gpod example of this 9]).
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4.3 — Consolidation Axions

Consideing consoliddion axioms, we identified two cases to address. Consoliddion
axioms that concern @ object types, do noheed anymapping since we are working with a
strondy typedlanguage — Java. This is the case of asms (CA1) and (CA2), shown in Table
1. Neverthelessthereis another tge of consolidation aams whose purpose is to describe
preconditions that must be satisfied or properties that must hold so that a relation could be
established between two elementsaibples of this tye of axom can befound in the
Mereolog theorypresentedn Figure 1. For a relation to be set between a composition and a
candidate part two properties must hold:ragyetryand exlusiveness (A7). Asymetryis a
propertythat is formed bythe conjunction of the @&ms (Al)and(A3), i.e. theirreflexivity
and ati-symmdry constaints espectively. According to the transitivity axiom (A4) this
propertymust be reified recursivelyn other wordslet x be a composition, for to besd as a
part ofx the followingrelation properties must hold: ¢)cannot be equal tg (i) x cannot be
a part ofy or be a part of angart ofy; (iii) y cannot alreadyave a relation established with
another whole. The followingxom formalizes this property(A8) -0x,y compos ition(x )00 (y

(O partOf(x)) - asymmetric(X,y)II~z (y(O partOf(z)).

Geneally speking this type of consoliddion axioms will have the formmx: X, y:Y ri(x,y)

- (preCondition ;) M (preCondition ;) 00 ... 0D (preCondition ,). This generic form can be
transposed to a pattern that shouldirgntee the evaluation of each of precondition before a
relation can be established. Theufig 4 shows thi€onsolidation Patterron theleft and its
application to the agm (A8) above.

The Consolidéion Pdtern uses thepatern TemplateMethod defined in [L4]. In this case
the template mehod is the methodsetr, and hook methodsre the methods responsithte
evaluatingthe fulfillment of the preconditions.

Public class X Public class Conposition
public bool ean setr; (Y vy) publ i c bool ean set Conposition(Part c)
{ {
bool ean result = fal se; bool ean result= fal se;
if (result = (checkConditiony(...) if asymmetry(c) && exclusiveness(c)
&& checkConditiony(...) ... && {
checkConditiong(...)) resul t =true;
part.add(c);
rq.add(y,); (c.part()).set Conposition(whole);
y.setry(this); }
} return result;
return ok;

public bool ean asynetry(lPart c);
private bool ean checkConditiony(...) public boolean exclusiveness(lPart c);
private bool ean checkConditiony(...) }
private bool ean checkCondition,(...)

}

Figure 4 - The Precondition Pattern

4.3.1 — The Whole-Rrt relation.

The figure 1 presents the theofsnereolog) embodied bya generic whole-partrelation.
Notwithstanding the underlyng axoms implied bythe proposed notation are not well
mapped to agregations in an object model, i.e., UMhotation for agregation does not
guarantee the fulfillment of the imposel constiaints. Sine this thery is vdid in any type of
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whole-partrelations,a generic strateg defining a solution pattern can be modeletyure 5
depicts ourWhole-Part ontologca pdtern. This p#éern is built usingthe PreCondition
pattern described in the previous section andDBegation pattern presented irl4]. By
usingthese paterns theWhol e class s able to guaranee b its assocated concree class(A)
the verification of the suitable set of constraints before a relation betweand its candidate
parts can be established. This service is offered to the concrete class thraudgelegted
method §et Part).

<<BetElementsx
<<IWholex> <<IPart>>
whole{) :Whole part{):Part public hoolean setPart(IPart c)
{ hoolean result= false;

:‘ -_:" if {acyclicity(c) && SpecConstraintic))

\ N {

' g Whole result=true;

: part.add{c);

. I parts:Set {c.part(}) .setWhole {whole) ;

A ,'f whole: Iithole } return result:
xf asymmetry{IPart c):boolean }

hi):B ;"I specConst {IPart c) (boolean o
setB(IPart h) o A p| partDf{Itodo w,IParte c)
:hoolean i part():Set
removel {TPart h) t;' setPart {IPart c)

Y J_' removePart (IPart c)

J;
i
J
/ |
| |
: hggregation Composition

disjoint:Set specConst (IPart c) :hoolean

exclusiveness{IPart c):boolean

af):h
seth{IWhole a)

specConst {TPart c) :hoolean
disjointnes=s{IPart c):boolean
setDisjoint (TWhole w)

Part

whole:Set

h 4

whole () :=zet
setWhole (TWhole w)
removeifhole (TWhole w)

Figure 5 - The Whole-Part pattern (WP)

To be able to derive theet Par t method throulg the usag of thePreCondition patern
anotheraxiom had to be created. The followiagiom exends aiom (A8) to generic whole-
pat relations: (A9) -[Dx,y (y[O partOf(x)) - asymmetric(x,y)D specificConstraint(x,y). For the
Composition relation the predicaspecificConstraint represerg the exclusivenesspropery
(A7). Converselyfor an agregation relation, it must assured thhe partdoesnot aggrecate
anywhole disjoint to this one and therefegeecificConstraint represerg the axom (A5).

The Whol e class § a handkr that maintains a referencéo the parts assocated to this
whole. It also encapsudtes the consadldation axoms of the generic whole-part theory.
Additiondly, it is higarchically divided in two subtasses, nandy Aggregati on and
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Composi t i on, each of hem encapsudting speciic consaldation constaints represermd by
the predcaie specificConstraint in the axiom (A9). One can observenifigure 5 tat the
methodset Part in this dass wa generated by the gpplication of the PreCondition patern
on theaxiom (A9). ThespecConst r ai nt method is declared abstract dassWol e. Its
concrete implementations are provided bie subclasses Aggregation and
Conposi tion.

The nterfacesl Whol e andl Part must beimplemented by the conaete classes (A and
B). The methodswhol e() andpart () on tese nterfaces provile b the concret classes
the accesgo its respedtve handkrs Wol e andPar t ). The guarantee of implementaion of
these methods allows the handlers to perform precondition verification taskenare gvay

4.4 — Ontological Axions

Findly, it is neessay to ma@ ontologca axioms to theobject modé. These axioms are
formalized b answer ¢ the conpetency questons of he ontology. The axiom (0OA1), for
instance,answergo the following queston: for a given composed activity,avhich resources
are usal by this adivity? The solution séfor this quation must beeturned bytheinvocation
of the methodusage() in an obgcta; of the Acti vi ty class. However, for this e of
methods to be derived from ontologl axoms, asetof transformationrules were defined.
These tansfornation rules are presestl bebw.

TOM x: XM y:Y ri(x,y) « YO @O
Im(x, rq):Type =C, such that if # Im(x, r ;) =1 then Type =Y else Type = Set

This rule states:if for eachinstancex of type X, x is engaged with dl instancesy from se
C (and onlyinstances ofthis s¢) in arelation r1, thesd returned bythefundion im(x, r1) will
be exacly C. The type returned byhe method that implements the function in tlegived
class depends on the cardinabfiythe relation. Hence, ¥ is related to onlpne instancef v,
the returned value shall be opsyy, otherwise, it shall be of e Set , in the case a seff v.

TLMx: XM y:Y ri(x,y) « (YO C) (property,(y) operator exp ressio n), such that expressio n =
property,(x)Y 0 constantlO Im(X, r1):Type =0 property(y) operator expression(C)-

Let D be a subset of in which al its elements ha oneof its propeaties sdisfying a
specific relation with an igen eyression. This gxession can denote a propexy x
(instance ofx with which C is assocated through the relation r1) or a constant value. An
exanple of the former case $ presergd as folows: Let the concepHumanResource be a
subtype of Resource. Suppose that an instance of human resource ishysadactivity if:
(i) theresoure is dlocated to thesane processthat the adivity bdongs; (ii) the "experience
requred” to performthe acivity is lower then he "level of experience"propert of the human
resourcenl h:HumanResource, a:Activity usage(h,a) « O level of experience(h) > experience required(a)
(Im(Im(h, allocation), aggregation)).

In this case the sd returned by the fundion Im(h,usage) will be exadly the se& (Im(im(h,
allo cation), aggregation)) after the gpplication of therelationd algebra sdection opeator. Like
in the previousrule, the type returned bythe methodusage() implemented in the class

HumanResour ce depends directlpn the cardinalityf the relation.

T2: Im(x, ry) OO0 x.rq)
T3:ri(x,y) OO0 xrq)
T4: ry(X) OO0 x.rq()
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A relation r1 betveen wo concep X andy is mapel in theclasses thd represent these
conceptdo methodsnamed after the relationoFinstance, tyen an instance, the invocation
x.r1() returns these of objects from Y assocted D x in therelation r1.

T5: A SetTheoryOperation a0 A.SetTheoryOperationimple mentation(a)

This rule deals with the translaion bdween the essential se theory opeaations Gection
3.1) and the correspondimgethod implemented in the Sgass.For instancethe settheory
expressionA n C is ranshted b A. i ntersecti on(C), whereA and Care nstances of
the classSet .

T6: Im(A,ry) OO SetIm(A,"r.")
T7: O property(x) operator property(y)(CJ0 Set.select(property(x),operator, property(y), C)

The rulest6 andT7 pronmote the rephcenent of the methematical funcion Imageand the
Sdection operator bythe correspondent staxes throu@ which they areimplementedn the
Set class. The methodel ect (that implements the seéction operatr) receves as he
operabr parangter aSt ri ng whose value follows the convention described below.

(1) The operands are two objects:eq(al s), Z(not _equal s)
(i) The operands are two basipég: =#, 2(GTET), < (LTET), <(LT), >(GT)
(i)  Theopeaands ae an object and asd: [I(i n),[J(not _i n)

T7: x.ry():Y=C O public class X

public Y ry()
{

}
}

Findly, this last mle diredly translaes the axiom written in its l€t side to the
implementation correspondentrggx in the chosen preagmminglanguage. All thereferences
to the instancex existent in theswpe of se C (to which x belong) are rephced bythe Jva
reserved word hi s, so that references to methods of the same class will be made.

The code fragnent below shows the derivation processtfaaxiom (0A2), and also its
implementation in theAct i vity class.

return C;

(OA2) M a:ComposedActivity, r:Resource usage(a,r) « mIm(Im(a,aggregation),usage)

1. Im(a,usage):Set = Im(Im(a, aggregation),usage) OA2, TO
2. a.usage():Set = Im(a.aggregation(),usage) 1, T2
3. a.usage():Set = Set.Im(a.aggregation(),"usage") 2, T6
4. public class Activity 3, T7

{

public Set usage()
{

}
}
Figure 6 depictsthe classdiagam derived from the process ontolpogresented in ilgure

2. It is important to notice that the cardinalitpnvention used bWML has exactly the
opposite direction to the one usedliNGO. The reasons for that arepéained in p].

return Set.Im(this.aggregation(),"usage");
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<<Interface>> -
IW hole Part Aggregation ~ W hole
whole() : Whole W \\
- Activity ; -
- ~ input Artifact
~ 0..* 0..*
Resource | g » ysage 0.* |input(): Set _
output() : Set input() : Set N
usage() : Set __|usage() : Set 1\/1*output() : Activity
- -~ |\whole() : Whole output -
<<Interface>>| A\~ part() : Part
IPart mo..*
0..*
part() : Part [ ‘ |
ManagementActivity ConstructionActivity QualityAssuranceActivity

Figure 6 — Sftware Proces Framework

5. Related Work

The Rerce progct is an nternatonal colaboratve effort to build a conceptal graphs
workbench 15]. To accomplish interoperation amotige different tools produced ithe
context of the project, a mathematical ontojogvas proposed and a software libraras
derived.The ontology containstaxonomic hierarchies for mathematical objects such as sets,
groups, categries, relations, functions, preorders, partial orders and lattices[1b] a
speificaion for a Sd classis formalized in severa languages (Z, KIF, Conaptud Graphs -
CG) and a set of C++ contracts is derived, showsng/pos-conditions for the operations of
the type. However, due to the focus of this project, the emphasis ike object-oriented
implementationof a CG processomandnot on how to create object-oriented artifacts from a
conceptual model.

Anothe interesting approach to address theimpedance mismach bdween the ontology
and object-oriented abstraction levels is the use of demgerns.In [16] a set of desim
patternsfor constraintrepresentatiomn JavaBeans components is presented and computation
reflecion mechansms are usedd evalat these conshints atrun-rime. Likewise, h [17],
three desig patterns are used to promota implementationfor ontologes representedn
the OKBC knowledg model[18]. In this case, ontologgconcepts are either represented by
reflecion-backedJavaBeansclasses,by an Active ObgctModel (AOM), or by a mxed
approach based ontexdingthe classes from the AOM.

Constaints are equialent to whatwe cal consoldation axoms. These aboms represent
only a subset of the knowledgthat the must benade explicit at the ontologcal level.
Constraints basically define pre-conditionsthat must be satisfied for a relation to be
consistatly established. Our gpproach to implement these axioms isalso based on design
paterns.

Finally, in [19], one finds an approach to create object models such as £ORB and
Java clsses andnierfaces from Geogaphc Informaton Systens (GIS) Ontologes. The
papers sugest the aubmatic generaton of interfaces and DLs from Ontolingua modek.
These interfaces constitute ontology skeletons that are, afterwards, complemented by
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implementation codewritten in Java. Ontolog editors, sut as Ontolingia, have the ability to
creae CGORBA IDL headers aomaticaly, however, m this case, he behavor
implementation for the interface methods would still retyan ad-hoctranslationprocess.
Moreover, interfaces alone are nopeassive enougto incorporatethe knowlede relatedto
all kinds of consolidation aams, let alone, ontolagal derivation aioms.

6. Conclusions

Since Arstotle's theory of subséince (obgcts, things and persons) and adeins
(qualities, events and process) ontasghave been used in philosopdy a foundation for
represanting theories and modés of redity. Thdar man purmposeis to formally make explicit
the semantic distinctions iskent in portion of the world, accountada domain.Hayes [20]
introdued the use of ontologes in Compute Sdence (more speificaly in Artificial
Intelligence). Since then, ontologes have been employed in aeas sut as computdiond
linguistics, knowledg engneering information integation and multi-agent systems. In
addition to that, ontoldgs have been used applicationareassuchas enterprisemodeling
[21] and G5 [19], amongseveral other eamples.

In the software engeering realm, domain ontologs have been used taodel the
foundationoverwhich meta-enviroments can be constructéld Moreover, theycontribute to
the domain engeering phase, promotinga reuse-based practice in the requirements
engneeringlevel [10].

Nevertheless, few of the ontopgonstructionmethodologes lead to executablecode
and, there was still no stematic approach to fullpromote their integtion to the object-
oriented software development practice. oF this reason, most of the object-oriented
implementations of domain ontolieg relyon informal derivation processes.

In this paper a contribution to address this problepresenteda methodolog throud
which object-orientedrameworkscan be sgtematicallyderived from domain ontolags. To
accomplishthis goal, we also proposed a formal representation laage. The mathematical
foundationof this language (set-theory highly contributed to the feasibilitgf our approach.
This is manly dueto its suitdility to bridge the conceptud and implementation abstradion
levels, respectivelyepresented bijrst-order logc axoms and object models.

The derivation methodolggproposed comprises a spectrum of techniques, namely
directives, desig patterns and transformation rules. This paper shHmvstheseconceptual
tools together with the supportinget framework can establish a sound path between our
formally axomatized theories and a related consonant implementaticavanclasses.

We use he Software Proces®ntologyas an eample to illustrate the methodolpdrhe
ontology presengéd was over-smplified due to the lack of space.nl despie of that, the
methodolog hasbeentested in several case studies, mgdrom software proces$[6] to
video on demand managent theories J0]. In all these emeriments,we found the
methodolog effective, mainlybecause of: (i) it@bility to capturethe domainknowledge
without imposingadditional ontologal commitments; (ii) its abilityo successfullyderive
object frameworks capable of answerthg relevant competencyestions.

It is important to notice that our methodojog hichly focused on thestructuralpart of
domainontologes. Consequentlya naturalextensionof this work is to develop an approach
to address the dnamic aspects of domains, i.e. behavioral oniekg
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