

Using Objects and Patterns to Implement Domain Ontologies

Giancarlo Guizzardi1,2

Ricardo de Almeida Falbo1
José Gonçalves Pereira Filho1

Computer Science Department, Federal University of Espírito Santo 1
Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES - Brazil

e_mail: {falbo, zegonc}@inf.ufes.br

Centre for Telematics and Information Technology, University of Twente 2
 P.O. Box 217, 7500 AE, Enschede, The Netherlands

e_mail: guizzard@cs.utwente.nl

Abstract
Ontologies are becoming an important mechanism to build information systems. Nevertheless, there is still

no systematic approach to support the design of such systems using tools that are common to information
systems developers. In this paper, we propose an approach for deriving object frameworks from domain
ontologies and then we show the application of this approach in the software process domain.

1. Introduction

An Information System cannot be written without a commitment to a model of a relevant

world, i.e., commitments to entities, properties, and relations in that world. Data structures
and procedures implicitly or explicitly make commitments to a domain ontology [1].

Several projects in Artif icial Intelligence have focused on using ontologies to promote
knowledge sharing, and to substitute the usual database or object-oriented schema with an
ontology, which offers a semantically richer model of the domain [2]. This trend has also
acquired followers in the Software Engineering community. However, one of the major
drawbacks to a wider use of ontologies in this area is the lack of approaches to insert
ontologies in a more conventional software development process.

Since the current leading paradigm in Software Engineering is the object technology, we
claim that we need a systematic approach to derive object models from ontologies in order to
put ontologies in practice. In this paper we propose an approach to derive reusable object
artifacts from domain ontologies. This approach comprises a spectrum of techniques, namely,
a set of mapping directives, transformation rules and design patterns. In section 2, we briefly
discuss some aspects of ontology development, including a method and a graphical language,
and a past experience using them in the software process domain. In section 3 we present a
formalism to represent ontologies and a framework that implements the theoretical foundation
of this language. In section 4, we present our approach to derive object models and
frameworks from domain ontologies, showing how it was applied in the software process
domain. In section 5, related works are discussed. Finally, in section 6, we report our
conclusions.

XV Simpósio Brasileiro de Engenharia de Software

- 36 -

2. Ontologies

It is impossible to represent the real world, or even a part of it, with all its details. To

represent a phenomenon or part of the world, which we call domain, it is necessary to focus
on a limited number of concepts that are sufficient and relevant to create an abstraction of the
phenomenon in hand. Thus, a central aspect of any modeling activity consists of developing a
conceptualization: a set of informal rules that constrain the structure of a piece of reality,
which an agent uses to isolate and organize relevant objects and relations [3].

According to Guarino [4], “an ontology is a logical theory accounting for the intended
meaning of a formal vocabulary, i.e. its ontological commitment to a particular
conceptualization of the world”. Based on such definition, an ontology consists of concepts
and relations, and their definitions, properties and constrains expressed as axioms. An
ontology should not be only an hierarchy of terms, but a fully axiomatized theory about the
domain [5].

One of the main benefits of the use of ontologies in software development is the
opportunity to adopt a reuse-based approach to the requirements engineering (RE). In
traditional Software Engineering, for each new application to be built, a new
conceptualization is developed. This reflects on how the RE is currently employed: for each
new application, an elicitation phase is accomplished almost always from scratch, focusing on
all particularities of the system in hand. This approach is extremely expensive since elicitation
is the activity that requires most effort in the software development. Experts are scarce and
costly resources but they are essential to this activity, so they should be better used.
Therefore, it is important to share and reuse the captured knowledge.

In an ontology-based approach, requirement elicitation and modeling can be
accomplished in two stages. First, the general domain knowledge should be elicited and
specified as ontologies. These ontologies, in turn, are used to guide the second stage of the
RE, when the particularities of a specific application are considered. This way, the same
ontology can be used to guide the development of several applications, diluting the costs of
the first stage and allowing knowledge sharing and reuse [5].

In [5], we proposed a Graphical Language for Expressing Ontologies (LINGO) and a
systematic approach for engineering ontologies. In the RE, the use of a graphical
representation is essential in order to facilitate the communication between requirement
engineers and experts. In ontology building, such representation is basically a language
representing a meta-ontology. Hence, this language has basic primitives to represent a domain
conceptualization. In its simplest form, its notations represent only concepts and relations.
Nevertheless, some types of relations have a strong semantics and, indeed, hide a generic
ontology. In such cases, specialized notations have been proposed. This is the striking feature
of LINGO and what makes it different from other graphical representations: any notation
beyond the basic notations for concepts and relations aims to incorporate a theory. This way,
axioms can be automatically generated. These axioms concern simply the structure of the
concepts and are said epistemological axioms. Figure 1 shows the main notations of LINGO
and some of the axioms imposed by the whole-part relation. These axioms form the core of
the mereological theory as presented in [7], namely the irreflexivity (A1), anti-symetry (A3)
and transitivity (A4) axioms denote sufficient and necessary properties for all kinds of whole-
part relations. Axiom (A7) denotes a special kind of part-or relation with non-sharable parts
(composition). The remaining axioms complete the theory by defining suitable ontological
distinctions.

XV Simpósio Brasileiro de Engenharia de Software

- 37 -

Both language and method have been used in the development of complex information
systems in areas such as Software Process [6], Port Management, Steel Metallurgy, and
Media on Demand Management [10]. Although they have proven to be useful, we identify a
great concern from the developers: how to put those ontologies in practice, that is, how
ontologies can support actual software development? To show our approach to deal with this
problem, we discuss in the next subsection the case of a software process ontology.

Figure 1 – Main notation of LINGO.

2.1. Software Process Ontology

In [6], we developed a software process ontology and used it to promote knowledge

integration in a Software Engineering Environment (SEE). Part of this ontology is presented
in figure 2. In this model, cardinality constraints are used to specify the number of concept
instances that can be involved in a relation. The cardinality (0,n) does not impose any
restriction and, for that reason, its not graphically represented. Other cardinality possibilities
include (0,1), (1,1) and (1,n). Whenever used, these cardinalities incorporate new axioms to
the model. In figure 2, cardinality (1,n) in the relation output implies that (∀∀∀ ∀ a) (act iv ity (a) →→→→
(∃∃∃∃ s) (output(s ,a)). Cardinality (1,1) stills adds that (∀∀∀ ∀ s,a1 ,a2) (output(s ,a1) ∧∧∧ ∧ output(s ,a2) →→→→ a1
= a2). Although the examples presented above represent only binary relations, the formalism
used is expressive enough to model relations of any arity. Likewise, reflective relations
(relations between instances of the same concept) and conditional relations (AND and XOR
tight relations) can also be represented.

Figure 2 – Part of a Software Process Ontology (SPO).

Besides the epistemological constructs, ontologies explicitly represent knowledge at a
signif ication level through the use of formal axioms. These axioms can be of two types:

Aggregation

Part 1

Part N

 relation

concept

∀ x ¬partOf(x,x) (A1)
∀ x,y partOf(y,x) ↔ wholeOf(x,y) (A2)
∀ x,y partOf(y,x) → ¬ partOf(x,y) (A3)
∀ x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x) (A4)
∀ x,y disjoint(x,y) → ¬∃ z partOf(z,x) ∧ partOf(z,y) (A5)
∀ x atomic(x) → ¬∃ y partOf(y,x) (A6)
∀ x,y partOf(y,x) → ¬∃ z partOf(y,z) (A7)

Super-type

Sub-type 1

Sub-type N

Artifa ct

Resource

Activ ity

input

output usage
1,1

1,n

1,n

 sub-activity

Management
Activ ity

Cons truction
Activ ity

Qualit y Assu rance
Activ ity

Process

XV Simpósio Brasileiro de Engenharia de Software

- 38 -

consolidation axioms (CA) and derivation axioms [5]. The former aims to impose constraints
that must be satisfied for a relation to be consistently established. The latter intends to
represent declarative knowledge that is able to derive knowledge from the factual knowledge
represented in the ontology. Derivation axioms can have root in the meaning of the concepts
and relations or in the way these concepts and relations are structured. When axioms are
defined to show constraints imposed by the way concepts are structured, they are called
epistemological axioms (EA). When they describe domain signification constraints, they are
called ontological axioms (OA) [5]. Cardinality constraints, as discussed above, are examples
of epistemological axioms. Several axioms were defined in this ontology. Table 1 shows
some of them, indicating their type. It is important to notice that the axioms (EA4) and (EA5)
are directly derived by the usage of the whole-part relation between activities.

 Id Axiom Type

EA1 (∀ a) constructionActivity(a) → activity(a) Epistemological
EA2 (∀ a) managementActivity(a) → activity(a) Epistemological
EA3 (∀ a) qualityAssuranceActivity(a) → activity(a) Epistemological
EA4 (∀ a1 ,a2 ,a3) subActivity(a1,a2) ∧ subActivity(a2,a3)→ subActivity(a1,a3) Epistemological
EA5 (∀ a1,a2) subActivity (a1,a2) → ¬ subActivity (a2,a1) Epistemological
CA1 (∀ a, s) input(s, a) → artifact(s) ∧ activity(a) Consolidation
CA2 (∀ a ,r) usage(r,a) → resource(r) ∧ activity(a) Consolidation
OA1 (∀ a) composedActivity(a) ↔ ∃ a1 subActivity(a1,a) Ontological
OA2 (∀ a, a1, r) (subActivity(a1 ,a) ∧ usage(r,a1)) → usage(r,a) Ontological

Table 1 – Axioms of the Software Process Ontology.

Since the SEE was implemented using objects, we had to derive an object model from the
domain ontology. This represented a design problem that was informally solved. More
recently, other developers have experienced the same problem. The methodology presented in
this paper has been proposed to address this issue, i.e., the systematic object-oriented
implementation of domain ontologies.

3. A Hybr id Formalism to Support Ontologies-to-Objects Mapping

As shown in Table 1, we used first-order logic as the language to specify the axioms of

the formal theory. First-order logic is widely known for its expressive power and its
ontological neutrality, therefore adding minimal ontological commitments. However, due to
the goals of this work, it is convenient to adopt a formalism that lies at an intermediate
abstraction level, between first-order logic and object-orientation. For this purpose, we used a
hybrid approach based on pure first-order logic, relational theory, and, predominantly, set
theory.

The choice to create a language mainly based on set theory was highly motivated by an
important issue: set theory is a complementary extensional perspective to the intentional
nature of first-order logic and, at the same time, a natural option as a conceptual model for
reasoning about objects. To clarify this point, the following example is used: let the intention
of the concept mortal be "A mortal is an entity whose life ceases at a point in time". The logic
predicate mor tal(x) states that x is a mor tal and, therefore, the characteristics defined by the
intention of this concept applies to x. It also (implicitly) states that x ∈∈∈ ∈ Mortal, i.e., to the set of
all the elements of the considered world to which the intention of the concept applies. In an
object-oriented perspective, if x is an instance of mor tal, it means that x belongs to the mor tal

XV Simpósio Brasileiro de Engenharia de Software

- 39 -

class, i.e., to the set of all instances of the considered world that share the same properties and
the same definition.

Because of these characteristics of set theory, to build a model using the proposed set-
based language is an important step in a systematic translation between the logic and the
object worlds. Moreover, the language preserves the expression power of the first-order logic
without adding significant ontological commitments, therefore, being suitable to play the
same role in the axiomatization process. Finally, although formal, the language is kept as
simple as possible, defining only what is absolutely necessary to accomplish its goals. The
odd convergence of these specific requirements motivated our decision for defining a new set-
based formalism instead of using an existent one, such as Z [8].

The theoretical foundation for our formalism is briefly presented below. We also discuss
how the primitives of this formalism are related to the LINGO building blocks.

3.1 – Theoretical Foundation for a Set-based language

Sets are collections of zero or more elements whose members are unique and their order

is immaterial. Sets can be finite or infinite. Finite sets with a small number of elements are
usually represented by the enumeration of its members. Otherwise, they are represented by
formation rules or by the definition of the characteristics and properties that all its members
must have in common (intention). In our approach, concepts are defined as sets. For example,
as mentioned before, the statement x ∈∈∈ ∈ Mortal commits x to the concept Mortal, both
intentionally and extensionally.

Another fundamental building block in the LINGO meta-ontology is the primitive
relation. This primitive represents a semantic link that exists among a set of (one or more)
concepts. In our approach, relations are mapped to the synonymous primitive in set theory. In
set theory, a n-ary relation can be defined by the n-tuple R = (C1,C2...Cn, p(x 1,x2...xn)), where
each Ci represents a different set involved in the relation, and p(x i,) is a functional predicate
open in n variables that maps each element from the cross-product C1 ×××× C2 ×××× ... Cn onto a
boolean value. In this case, the set R* (solution set) is the subset of C1 ×××× C2 ×××× ... Cn whose all
members ei satisfy the predicate p(e i).

Using the output relation example, shown in Figure 2, we can illustrate the equivalent
description in set theory: output = ((Activ ity , Artifa ct, output(a ,s)). For now on, the
propositional function p(x,y) will be used as synonym of the the n-tuple that defines the
relation, assuming that the function is defined in some cross-product C1 ×××× C2 ×××× ... Cn.

In set theory, some essential operations are defined to express the relations between sets
(⊆⊆⊆ ⊆ - proper-subset or ⊂⊂⊂ ⊂ - subset; ∪∪∪ ∪ - Union; ∩∩∩∩ - Intersection; \ - set difference; ℘℘℘ ℘ - power set),
properties of sets (# - cardinality) and relations between sets and its members (∈∈∈ ∈ -
Membership) [11]. In addition to this, the basic logical operators (∧∧∧ ∧ - conjunction; ∨∨∨ ∨ -
disjuntion; ⊕⊕⊕ ⊕ - exclusive disjunction; ¬¬¬¬ - negation; →→→→ - conditional; ↔↔↔↔ - biconditional) and
quantifiers (∀∀∀ ∀ - universal; ∃∃∃∃ - existential; ∃∃∃∃ ! - exists one and only one) form the core of the
formalism employed in this work. To extend this core, two additional functions have been
defined:

• Imagem (Im): Let A and B be two sets and ΦΦΦΦ be the set of all binary relations R that
exist in our considered universe. The function Im has two arguments the element a ∈∈∈ ∈ A
and R ∈∈∈ ∈ ΦΦΦΦ, and it returns an element B´ ∈∈∈ ∈ ℘℘℘ ℘ (B). The element B´ is a member of a
powerset and, therefore, it is a set. In this case, B' is the set that contains all members
of B to which a is associated in the context of the relation R, i.e., the range of a in
respect to R. The function Im can be formally defined as: Im:A ×××× ΦΦΦΦ →→→→ ℘℘℘ ℘ (B), such that

XV Simpósio Brasileiro de Engenharia de Software

- 40 -

∀∀∀ ∀ a: A, R: ΦΦΦΦ, B´: ℘℘℘ ℘ (B) Im(a,R) = B´ ↔↔↔↔ ∀∀∀ ∀ b:B´ (a ,b) ∈∈∈ ∈ R*. Conversely, for each element a ∈∈∈ ∈
A associated to an element b ∈∈∈ ∈ B' in relation R, a is also a member of the range of the
adjunct function Im(b,R) , i.e., ∀∀∀ ∀ a:A, R:ΦΦΦΦ, b:B´ (b ∈∈∈ ∈ Im(a,R)) ↔↔↔↔ (a ∈∈∈ ∈ Im(b,R)) . Using the
relation output as an example, a possible valid image set could be: Im(Planning,
output) = {Pro ject Plan,Sch edule} and, consequently, Im(Schedule , output) = {Planning} .
Extending this function definition to n-ary relations R = {(C1,C2,...,Cn, p(x 1,x2,...,xn)}, we
then have Im:C 1 ×××× ΦΦΦΦ →→→→ ℘℘℘ ℘ (C2 ×××× C3 ... ×××× Cn). It is important to notice that Im is a
distributive function, i.e. Im({Pro jectPlan,Sch edule},output) = Im(Pro ject Plan, output) ∪∪∪ ∪
Im(Schedule , output) . Consequently, we can define the general form for this function
as Im: ℘℘℘ ℘ (A) ×××× ΦΦΦΦ →→→→ ℘℘℘ ℘ (B).

• Selection (σσσσ): Our second extension to the core formalism is the Relational Algebra
selection operator [12]. Relational algebra is a query procedural language composed
by a set of operations that act on relations. This operator acts on a relation by selecting
tuples that satisfy a given predicate. Since the associations between concepts and their
properties constitute relations, this operator can be used to select elements within a set
that share a common feature. Generally, let A be a set whose members have a given w
property. Let B be the subset of A whose members have the property w related through
the operator op to the expression z. In relational algebra terms, B is called a selection
of A and this can be formalized as B ←←←← σσσσ(w op z)(A). The operator op can be any
relational or logical operator, depending on the type of the operands.

3.2 – The Set framework

Figure 3 shows a support framework that plays a fundamental role in our ontology-to-

Java objects mapping process. This framework implements the mathematical properties
described by the theoretical foundation presented above. The methods of the Set class are
summarized in table 2.

Operation Operation prototype Functionality
⊇⊇⊇ ⊇ A.contains (B) Verify if set B is contained in set A
= A.equals (B) Verify if set B is equals to set A
∪∪∪ ∪ A.union (B) Returns the set A ∪∪∪ ∪ B
∩∩∩∩ A.intersection (B) Returns the set A ∩∩∩∩ B
A.cardinality () Number of elements of set A

{C | C ⊆⊆⊆ ⊆ A} A.subset("C") Returns the set C if C is a subset of A
/ A.difference(B) Returns the difference between two sets
∈∈∈ ∈ A.in(x) Verify if the element x belongs to set A
+ A.add(x) Adds the element x to the set A
- A.remove(x) Removes the element x from the set A

Im Set.Im(a,r1) Returns the set Im(a,r1)
Im Set.Im(A,r1) Returns the set Im(A,r1) where A =

{a1,..,an}
σσσσ Set.select("w",op,"z") Returns the selection σσσσ(w op z)(A)

Table 2 – Br ief description of the methods implemented by the Set class

The Set class is a generic container that is able to hold extension sets for all kinds of
concept instances. To be accessible, each member of a set must have a unique identifier. The
SetElement interface deals with this requirement, providing an identification mechanism

XV Simpósio Brasileiro de Engenharia de Software

- 41 -

through the getKey method. For an instance of any class to be held in a Set, it must
implement the SetElement interface. Consequently, the Set class is actually a set of
SetElement instances. The primary key for these elements is typed as Object, which is
the top-most class in the Java hierarchy. This is done in order to give the application classes
total freedom regarding implementation decisions.

The framework also defines two other classes: PersistentSet and MemberSet,
both sub-types of Set. The former is a set that is able to handle its permanent storage in total
transparency from the perspective of the class users. When the store() method is invoked
in a PersistentSet, the class performs the serialization of all its members. The original
state of the objects (as well as their relations) can be afterwards restored by the invocation of
the retrieve() method.

Finally, persistent sets can be used as an interesting alternative to implement databases
[10]. Using this paradigm, a database can be seen as a family ℑ (set of sets), which contains
all the sets existing in the application. Since, in this case, each set will be a member of another
set, they must also be univocally identif iable. The MemberSet is, thus, provided to enable
this situation.

Figure 3 - Framework that implements the mathematical type Set.

4. Using Objects and Patterns to Implement Domain Ontologies

The problem of consistently generating computational infrastructures from conceptual

models has been known for a long time by the software engineering community as the so-
called Impedance Mismatch Problem (IM) [13]. In the scope of this work, the conceptual
models are domain ontologies and the computational infrastructures are object-oriented

XV Simpósio Brasileiro de Engenharia de Software

- 42 -

frameworks. The use of domain ontologies to realize the domain analysis activity in a
software engineering process contributes with innumerous benefits [10]. However, the
impedance mismatch problem is amplif ied: instead of performing just one step to translate
between two levels of abstraction (conceptual models to computational infrastructures), two
steps are necessary. The first step is to translate from an ontological level model (domain
axiomatized theory) to an epistemological conceptual model (conceptual view of class
diagrams) without loosing the explicit representation of knowledge. The second step is the
translation between the domain model to its computational concretization - an activity that, in
domain engineering terms, is called domain design.

Our systematic approach to address this two-level IM problem is composed of a set of
directives, design patterns and transformation rules. The directives are used to guide the
mapping from the epistemological structures of the domain ontology (concepts, relations,
properties and roles) to their counterparts in the object-oriented paradigm. Contrariwise,
design patterns and transformation rules are applied to the mapping process of consolidation
and ontological axioms, respectively. The rational application of these conceptual tools
supported by the Set framework is able generate consonant Java implementations for the
ontology axiomatizated theory. In section 4.2 the mapping directives are discussed. The
Design Patterns and the transformation rules are presented in sections 4.3 and 4.4. The
following subsection shows the formalization of the ontology depicted in figure 2.

4.1 – Ontology formalization using the set-based language

The first step in our approach for mapping domain ontologies to objects is the complete

axiomatization of the domain theory using the set-based formalism. Besides the derivation
(epistemological and ontological) and consolidation axioms, we need definition axioms to
express concepts and relations. Given the model of Figure 2, the following definition axioms
can be derived. The notational convention used is: (CD) - concept definition axioms, and (RD)
- Relation definition axioms.

(CD1) P = Process (CD2) A = Act ivity (CD3) R = Resource
(CD4) S = Artifa ct (CD5) M = Management Activ ity
(CD6) C = Cons truction A ctiv ity (CD7) Q = Quality Assurance Activ ity

(RD1) procAggregation = (Process, A ct ivity, procAggregation(p,a))
(RD2) subA ctiv ity = (Activ ity , Activ ity, subA ctiv ity (a 1,a2))
(RD3) usage = (Resource, Act ivity, usage(r,a))
(RD4) input = (Artifact, Activ ity, input(s ,a))
(RD5) output = (Artifact, Activ ity, output(s ,a))

The following axioms translate the epistemological (EA) and ontological (OA) axioms
shown in Table 1 and those derived from cardinality constraints (EA6 – EA8) to the Set-based
formalism:

(EA1) C ⊂⊂⊂ ⊂ A (EA2) M ⊂⊂⊂ ⊂ A (EA3) Q ⊂⊂⊂ ⊂ A
(EA4) ∀∀∀ ∀ a1,a2,a3 (a1 ∈∈∈ ∈ subA ctiv ity (a2)) ∧∧∧ ∧ (a2 ∈∈∈ ∈ subA ctiv ity (a3)) →→→→ (a1 ∈∈∈ ∈ subA ctiv ity (a3))
(EA5) ∀∀∀ ∀ a1,a2 (a1 ∈∈∈ ∈ subA ctiv ity (a2)) →→→→ (a2 ∉∉∉ ∉ subA ctiv ity (a1))
(EA6) ∀∀∀ ∀ s:Artifact #Im(s,output) = 1
(EA7) ∀∀∀ ∀ a:Activ ity #Im(a,output) ≥≥≥≥ 1
(EA8) ∀∀∀ ∀ p:Process #Im(p,procAggregation) ≥≥≥≥ 1

(OA2) ∀∀∀ ∀ a:Activ ity Compos edActiv ity(a) ↔↔↔↔ Im(a,subA ctiv ity) ≠≠≠≠ ∅∅∅ ∅
(OA2) ∀∀∀ ∀ a:ComposedAct ivity, r:Resource usage(a,r) ↔↔↔↔ r ∈∈∈ ∈ Im(Im(a,subAct iv ity),usage)

XV Simpósio Brasileiro de Engenharia de Software

- 43 -

4.2 – Mapping directives

Once defined the Set-based axioms, we can initiate the object mapping. Concepts and
relations are naturally mapped to classes and associations in an object model, respectively.
Properties of a concept shall be mapped to attributes of the class that is mapping the concept.
Although this approach works well in most cases, it is worthwhile to point some exceptions
that we have found:

• some concepts can be better mapped to attributes of a class in an object model
because they do not have a meaningful state in the sense of an object model;

• some concepts should not be mapped to an object model because they were defined
only to clarify some aspect of the ontology, but they do not enact a relevant role in an
object model;

• relations involving a concept that is mapped to an attribute (or that is not considered
in the mapping) should not be mapped to the object model.

A class defines a formation rule for its instance and, therefore, can be seen and
manipulated as a set in a meta-level architecture. Consequently, the classification relations in
the formalism do not require any specific implementations, i.e., relations such as a ∈∈∈ ∈ A, are
totally resolved by the programming language typing mechanism through the creation of an
object a of type A.

For the mapping of relations, there are some issues that still must be discussed. Figure 2
shows a relation output between the concepts Activ ity and Artifa ct. In our approach, this
relation is translated to an association between the corresponding two classes in the object
model and both classes have a method output(). In this case, with the invocation of method
output() in an object a1 of type Activity, it is possible to have access to all the artifacts
produced by a1. This resulting set is formally specified by the formula Im(a1,output)) .
Likewise, the method invocation in an artifact instance s1 returns its producer activity, or,
Im(s1,output) . The returned type of the relation methods depends directly on the cardinality
axioms associated to the relation. For instance, since in the scope of the output relation an
Activ ity may produce several artifacts, output is mapped to a Set variable in the Activity
class and, hence, this is the type returned by the invocation of the synonymous method on this
class. When a relation has a cardinality axiom imposing an inferior limit equals to 1, this
constraint is reflected in the class constructors ensuring the establishment of the relation.

Like classification, subsumption does not require any additional implementation, i.e.,
subtype-of relations among concepts can be directly mapped to generalization/specialization
relations among classes. An axiom like M ⊂⊂⊂ ⊂ A states that the concept ManagementActiv ity is a
subtype of Activ ity (intentionally and extensionally). Since all elements contained in M also
belong to the set A, every Management activity (m ∈∈∈ ∈ M) is an activity as well. The subsets of a
concept are actually partitions of that concept inside that domain. For example, there is no
element in the set Activ ity that does not belong either to ManagementActiv ity,
Qualit yAssu ranceAct iv ity or Cons tructionA ctiv ity . For this reason, the concept that represents
a super-type is always mapped to an abstract class.

Finally, the directives consider non-trivial mappings, e.g., n-ary relations, relation
properties and conditional relations. At last, they advise the choice between primitives to
model a domain entity (Guarino discussion about sortals, temporal neutrality and ontological
rigidity is a good example of this [9]).

XV Simpósio Brasileiro de Engenharia de Software

- 44 -

4.3 – Consolidation Axioms

Considering consolidation axioms, we identif ied two cases to address. Consolidation

axioms that concern to object types, do not need any mapping since we are working with a
strongly typed language – Java. This is the case of axioms (CA1) and (CA2), shown in Table
1. Nevertheless, there is another type of consolidation axioms whose purpose is to describe
preconditions that must be satisfied or properties that must hold so that a relation could be
established between two elements. Examples of this type of axiom can be found in the
Mereology theory presented in Figure 1. For a relation to be set between a composition and a
candidate part two properties must hold: asymmetry and exclusiveness (A7). Asymmetry is a
property that is formed by the conjunction of the axioms (A1) and (A3), i.e. the irreflexivity
and anti-symmetry constraints respectively. According to the transitivity axiom (A4) this
property must be reified recursively. In other words, let x be a composition, for y to be set as a
part of x the following relation properties must hold: (i) x cannot be equal to y; (ii) x cannot be
a part of y or be a part of any part of y; (iii) y cannot already have a relation established with
another whole. The following axiom formalizes this property: (A8) - ∀∀∀ ∀ x,y compos ition(x) ∧∧∧ ∧ (y
∈∈∈ ∈ partOf(x)) →→→→ asymmetr ic(x,y) ∧∧∧ ∧ ¬¬¬¬∃∃∃∃ z (y ∈∈∈ ∈ partOf(z)).

Generally speaking this type of consolidation axioms will have the form ∀∀∀ ∀ x:X, y:Y r1(x,y)
→→→→ (preCondition 1) ∧∧∧ ∧ (preCondition 2) ∧∧∧ ∧ ... ∧∧∧ ∧ (preCondition n). This generic form can be
transposed to a pattern that should guarantee the evaluation of each of precondition before a
relation can be established. The figure 4 shows this Consolidation Pattern on the left and its
application to the axiom (A8) above.

The Consolidation Pattern uses the pattern Template Method defined in [14]. In this case
the template method is the method set r1 and hook methods are the methods responsible for
evaluating the fulfillment of the preconditions.

Public class X
{
 public boolean setr1 (Y y)
 {
 boolean result = false;
 if (result = (checkCondition1(...)
 && checkCondition2(...) ... &&
 checkConditionn(...))
 {
 r1.add(y2);
 y.setr1(this);
 }
 return ok;
 }
private boolean checkCondition1(...)
private boolean checkCondition2(...)
private boolean checkConditionn(...)
}

Public class Composition
{
 public boolean setComposition(Part c)
 {
 boolean result= false;
 if asymmetry(c) && exclusiveness(c)
 {
 result=true;
 part.add(c);
 (c.part()).setComposition(whole);
 }
 return result;
}
public boolean asymetry(IPart c);
public boolean exclusiveness(IPart c);
}

Figure 4 - The Precondition Pattern

4.3.1 – The Whole-Part relation.

The figure 1 presents the theory (mereology) embodied by a generic whole-part relation.
Notwithstanding, the underlying axioms implied by the proposed notation are not well
mapped to aggregations in an object model, i.e., UML notation for aggregation does not
guarantee the fulf illment of the imposed constraints. Since this theory is valid in any type of

XV Simpósio Brasileiro de Engenharia de Software

- 45 -

whole-part relations, a generic strategy defining a solution pattern can be modeled. Figure 5
depicts our Whole-Part ontological pattern. This pattern is built using the PreCondition
pattern described in the previous section and the Delegation pattern presented in [14]. By
using these patterns the Whole class is able to guarantee to its associated concrete class (A)
the verification of the suitable set of constraints before a relation between A and its candidate
parts can be established. This service is offered to the concrete class through a delegated
method (setPart).

Figure 5 - The Whole-Part pattern (WP)

To be able to derive the setPart method through the usage of the PreCondition pattern
another axiom had to be created. The following axiom extends axiom (A8) to generic whole-
part relations: (A9) - ∀∀∀ ∀ x,y (y ∈∈∈ ∈ partOf(x)) →→→→ asymmetr ic(x,y) ∧∧∧ ∧ specif icCo nstrain t(x,y). For the
Composition relation the predicate specif icConstrain t represents the exclusiveness property
(A7). Conversely, for an aggregation relation, it must assured that the part does not aggregate
any whole disjoint to this one and therefore specif icConstrain t represents the axiom (A5).

The Whole class is a handler that maintains a reference to the parts associated to this
whole. It also encapsulates the consolidation axioms of the generic whole-part theory.
Additionally, it is hierarchically divided in two subclasses, namely Aggregation and

XV Simpósio Brasileiro de Engenharia de Software

- 46 -

Composition, each of them encapsulating specific consolidation constraints represented by
the predicate specificConstraint in the axiom (A9). One can observe in figure 5 that the
method setPart in this class was generated by the application of the PreCondition pattern
on the axiom (A9). The specConstraint method is declared abstract on class Whole. Its
concrete implementations are provided by the subclasses Aggregation and
Composition.

The interfaces IWhole and IPart must be implemented by the concrete classes (A and
B). The methods whole() and part() on these interfaces provide to the concrete classes
the access to its respective handlers (Whole and Part). The guarantee of implementation of
these methods allows the handlers to perform precondition verification tasks in a generic way.

4.4 – Ontological Axioms

Finally, it is necessary to map ontological axioms to the object model. These axioms are
formalized to answer to the competency questions of the ontology. The axiom (OA1), for
instance, answers to the following question: for a given composed activity a1, which resources
are used by this activity? The solution set for this question must be returned by the invocation
of the method usage()in an object a1 of the Activity class. However, for this type of
methods to be derived from ontological axioms, a set of transformation rules were defined.
These transformation rules are presented below.

T0: ∀∀∀ ∀ x:X, ∀∀∀ ∀ y:Y r1(x,y) ↔↔↔↔ y ∈∈∈ ∈ C ⇒⇒⇒ ⇒

Im(x, r 1):Type ≡≡≡≡ C, such that if # Im(x, r 1) = 1 then Type = Y else Type = Set

This rule states: if for each instance x of type X, x is engaged with all instances y from set
C (and only instances of this set) in a relation r1, the set returned by the function Im(x, r1) will
be exactly C. The type returned by the method that implements the function in the derived
class depends on the cardinality of the relation. Hence, if x is related to only one instance of Y,
the returned value shall be of type Y, otherwise, it shall be of type Set, in the case a set of Y.

T1: ∀∀∀ ∀ x:X, ∀∀∀ ∀ y:Y r1(x,y) ↔↔↔↔ ((((y ∈∈∈ ∈ C) ∧∧∧ ∧ (property1(y) operator exp ressio n), such that expressio n =
property2(x) ⊕⊕⊕ ⊕ cons tant ⇒⇒⇒ ⇒ Im(x, r 1):Type ≡≡≡≡ σσσσ property(y) operator expression(C).

Let D be a subset of C in which all its elements has one of its properties satisfying a
specific relation with an given expression. This expression can denote a property of x
(instance of X with which C is associated through the relation r1) or a constant value. An
example of the former case is presented as follows: Let the concept HumanResource be a
subtype of Resource. Suppose that an instance of human resource is used by an activity if:
(i) the resource is allocated to the same process that the activity belongs; (ii) the "experience
required" to perform the activity is lower then the "level of experience" property of the human
resource. ∀∀∀ ∀ h:Huma nResour ce, a:Act ivity usage(h,a) ↔↔↔↔ σσσσ level of experience(h) > experience required(a)
(Im(Im(h, allocation), aggregation)).

In this case the set returned by the function Im(h,usage) will be exactly the set (Im(Im(h,
allo cat ion), aggregation)) after the application of the relational algebra selection operator. Like
in the previous rule, the type returned by the method usage() implemented in the class
HumanResource depends directly on the cardinality of the relation.

T2: Im(x , r1) ⇒⇒⇒ ⇒ x.r1()
T3: r1(x,y) ⇒⇒⇒ ⇒ x.r1()
T4: r1(x) ⇒⇒⇒ ⇒ x.r1()

XV Simpósio Brasileiro de Engenharia de Software

- 47 -

A relation r1 between two concepts X and Y is mapped in the classes that represent these
concepts to methods named after the relation. For instance, given an instance x, the invocation
x.r1() returns the set of objects from Y associated to x in the relation r1.

T5: A SetTheoryOperation a ⇒⇒⇒ ⇒ A.SetTheoryOperationImple mentation(a)

This rule deals with the translation between the essential set theory operations (section
3.1) and the corresponding method implemented in the Set class. For instance, the set theory
expression A ∩∩∩∩ C is translated to A.intersection(C), where A and C are instances of
the class Set.

T6: Im(A , r1) ⇒⇒⇒ ⇒ Set.Im(A ," r 1")
T7: σ property(x) operator property(y)(C) ⇒⇒⇒ ⇒ Set.select(pr operty(x),operator , property(y), C)

The rules T6 and T7 promote the replacement of the mathematical function Image and the
Selection operator by the correspondent syntaxes through which they are implemented in the
Set class. The method select (that implements the selection operator) receives as the
operator parameter a String whose value follows the convention described below.

(i) The operands are two objects: = (equals), ≠(not_equals)
(ii) The operands are two basic types: =, ≠, ≥(GTET), ≤ (LTET), <(LT), >(GT)
(iii) The operands are an object and a set: ∈ (in),∉ (not_in)

T7: x.r1():Y ≡ C ⇒ public class X
 {

public Y r1()
 {
 return C;
 }

 }

Finally, this last rule directly translates the axiom written in its left side to the
implementation correspondent syntax in the chosen programming language. All the references
to the instance x existent in the scope of set C (to which x belongs) are replaced by the Java
reserved word this, so that references to methods of the same class will be made.

The code fragment below shows the derivation process for the axiom (OA2), and also its
implementation in the Activity class.

(OA2) ∀∀∀ ∀ a:ComposedAct ivity, r:Resource usage(a,r) ↔↔↔↔ r ∈∈∈ ∈ Im(Im(a,aggregation),usage)

1. Im(a,usage):Set ≡ Im(Im(a, aggregation),usage) OA2, T0
2. a.usage():Set ≡ Im(a.aggregation(),usage) 1, T2
3. a.usage():Set ≡ Set.Im(a.aggregation(),"usage") 2, T6
4. public class Activity 3, T7
 {
 public Set usage()
 {
 return Set.Im(this.aggregation(),"usage");
 }
 }

Figure 6 depicts the class diagram derived from the process ontology presented in Figure
2. It is important to notice that the cardinality convention used by UML has exactly the
opposite direction to the one used by LINGO. The reasons for that are explained in [5].

XV Simpósio Brasileiro de Engenharia de Software

- 48 -

Management Acti vi ty ConstructionActivity QualityAssuranceActivity

W hole
IW hole

whole() : W hole

<<Interface>>

IPart

part() : Part

<<Inte rface>>

Part Aggregation

Resource

usage() : Set

Activity

i nput () : S et
out put () : S et
usage() : S et
w hole() : W hole
part() : Part

0 ..* 0..*0 ..* 0..*us age

0..*
0..*

0..*
0..*

Art ifact

input() : Set
output() : Activity

0..*0..* 0..*0..*
input

1..*1
output

1..*1

Figure 6 – Software Process Framework

5. Related Work

The Peirce project is an international collaborative effort to build a conceptual graphs

workbench [15]. To accomplish interoperation among the different tools produced in the
context of the project, a mathematical ontology was proposed and a software library was
derived. The ontology contains taxonomic hierarchies for mathematical objects such as sets,
groups, categories, relations, functions, preorders, partial orders and lattices. In [15] a
specification for a Set class is formalized in several languages (Z, KIF, Conceptual Graphs -
CG) and a set of C++ contracts is derived, showing pre/pos-conditions for the operations of
the type. However, due to the focus of this project, the emphasis is on the object-oriented
implementation of a CG processor and not on how to create object-oriented artifacts from a
conceptual model.

Another interesting approach to address the impedance mismatch between the ontology
and object-oriented abstraction levels is the use of design patterns. In [16] a set of design
patterns for constraint representation in JavaBeans components is presented and computation
reflection mechanisms are used to evaluate these constraints at run-rime. Likewise, in [17],
three design patterns are used to promote Java implementation for ontologies represented in
the OKBC knowledge model [18]. In this case, ontology concepts are either represented by
reflection-backed JavaBeans classes, by an Active Object-Model (AOM), or by a mixed
approach based on extending the classes from the AOM.

Constraints are equivalent to what we call consolidation axioms. These axioms represent
only a subset of the knowledge that the must be made explicit at the ontological level.
Constraints basically define pre-conditions that must be satisfied for a relation to be
consistently established. Our approach to implement these axioms is also based on design
patterns.

Finally, in [19], one finds an approach to create object models such as CORBA IDLs and
Java classes and interfaces from Geographic Information Systems (GIS) Ontologies. The
papers suggest the automatic generation of interfaces and IDLs from Ontolingua models.
These interfaces constitute ontology skeletons that are, afterwards, complemented by

XV Simpósio Brasileiro de Engenharia de Software

- 49 -

implementation code written in Java. Ontology editors, such as Ontolingua, have the ability to
create CORBA IDL headers automatically, however, in this case, the behavior
implementation for the interface methods would still rely on an ad-hoc translation process.
Moreover, interfaces alone are not expressive enough to incorporate the knowledge related to
all kinds of consolidation axioms, let alone, ontological derivation axioms.

6. Conclusions

Since Aristotle's theory of substance (objects, things and persons) and accidents

(qualities, events and process) ontologies have been used in philosophy as a foundation for
representing theories and models of reality. Their main purpose is to formally make explicit
the semantic distinctions existent in portion of the world, accounted as a domain. Hayes [20]
introduced the use of ontologies in Computer Science (more specif ically in Artif icial
Intelligence). Since then, ontologies have been employed in areas such as computational
linguistics, knowledge engineering, information integration and multi-agent systems. In
addition to that, ontologies have been used in application areas such as enterprise modeling
[21] and GIS [19], among several other examples.

In the software engineering realm, domain ontologies have been used to model the
foundation over which meta-enviroments can be constructed [6]. Moreover, they contribute to
the domain engineering phase, promoting a reuse-based practice in the requirements
engineering level [10].

Nevertheless, few of the ontology construction methodologies lead to executable code
and, there was still no systematic approach to fully promote their integration to the object-
oriented software development practice. For this reason, most of the object-oriented
implementations of domain ontologies rely on informal derivation processes.

In this paper a contribution to address this problem is presented: a methodology through
which object-oriented frameworks can be systematically derived from domain ontologies. To
accomplish this goal, we also proposed a formal representation language. The mathematical
foundation of this language (set-theory) highly contributed to the feasibility of our approach.
This is mainly due to its suitability to bridge the conceptual and implementation abstraction
levels, respectively represented by first-order logic axioms and object models.

The derivation methodology proposed comprises a spectrum of techniques, namely,
directives, design patterns and transformation rules. This paper shows how these conceptual
tools together with the supporting Set framework can establish a sound path between our
formally axiomatized theories and a related consonant implementation in Java classes.

We use the Software Process Ontology as an example to illustrate the methodology. The
ontology presented was over-simpli fied due to the lack of space. In despite of that, the
methodology has been tested in several case studies, ranging from software process [5,6] to
video on demand management theories [10]. In all these experiments, we found the
methodology effective, mainly because of: (i) its ability to capture the domain knowledge
without imposing additional ontological commitments; (ii) its ability to successfully derive
object frameworks capable of answering the relevant competency questions.

It is important to notice that our methodology is highly focused on the structural part of
domain ontologies. Consequently, a natural extension of this work is to develop an approach
to address the dynamic aspects of domains, i.e. behavioral ontologies.

XV Simpósio Brasileiro de Engenharia de Software

- 50 -

References

[1] Chandrasekaran, B., et al., “What are Ontologies, and Why Do We Need Them?”,

IEEE Intelligent Systems, pp. 20-26, January/February 1999.
[2] Valente, A., et al., “Building and (Re)Using an Ontology of Air Campaign Planning”,

IEEE Intelligent Systems, pp. 27-36, January/February 1999.
[3] Guarino, N., “Understanding, building and using ontologies”, Int. Journal Human-

Computer Studies, 46(2/3), February / March 1997.
[4] Guarino, N., “Formal Ontology and Information Systems”, In: Formal Ontologies in

Information Systems, N. Guarino (Ed.), IOS Press, 1998.
[5] Falbo, R.A., et al.; “A Systematic Approach for Building Ontologies”. Proceedings of

the IBERAMIA’98, Lisbon, Portugal, 1998.
[6] Falbo, R.A., et al.; “Using Ontologies to Improve Knowledge Integration in Software

Engineering Environments”, Proceedings of SCI’98/ISAS’98, USA, July, 1998.
[7] Borst, W.N. "Construction of Engineering Ontologies for Knowledge Sharing and

Reuse", PhD Thesis, University of Twente, Enschede, The Netherlands, 1997.
[8] Spivey, J. M. "Understanding Z: A specification language and its formal semantics",

Cambridge University Press, 1988.
[9] Guarino N. "The Ontological Level". In R. Casati, B. Smith and G. White (eds.),

Philosophy and the Cognitive Sciences, Vienna, Hölder-Pichler-Tempsky 1994.
[10] Guizzardi, G. "A methodological approach for reuse-oriented software development

based on formal domain ontologies" (in portuguese), Federal University of Espírito
Santo, Master Thesis, 2000.

[11] Roitman J. "Introduction to modern set theory", Wiley-Interscience, New York, 1990.
[12] Silberchatz, A. et al. "Database System Concepts", 3. ed. McGraw-Hill, 1997.
[13] Woodfield S.N. "The impedance Mismatch between Conceptual Models and

Implementation Environments", International Conference on Conceptual Modeling
(ER'97), Workshop on Behavioral Models and Design Transformations: Issues and
Opportunities in Conceptual Modeling, Los Angeles, California, Nov, 1997.

[14] Gamma E. et al. "Design patterns : elements of reusable object-oriented software",
Addison-Wesley, 1995.

[15] Ellis G; Callaghan S; "A specification of a Set Class in Peirce", online:
http://citeseer.nj.nec.com/29926.html, Oct, 1995.

[16] Knublauch H.; Sedlmayr M.; Rose T., "Design Patterns for the Implementation of
Constraints on JavaBeans", NetObjectDays2000,Erfurt, Germany, 2000.

[17] Knublauch H., "Three Patterns for the Implementation of Ontologies in Java ",
OOPSLA'99 Metadata and Active Object-Model Pattern Mining Workshop, Denver,
CO, USA, 1999.

[18] Grosso W. et al. "Knowledge Modeling at the Milennium (The Design and Evolution
of Protégé-2000)", Knowledge Aquisition Workshop, Banff, Canada, 1999.

[19] Fonseca, F. Egenhofer M. "Knowledge Sharing in Geographic Information System",
In: P. Scheuerman, (Ed.) The Third IEEE International Knowledge and Data
Engineering Exchange Workshop, Chicago, 1999.

[20] Hayes P. "The Naive Physics Manifesto", Expert Systems in Microeletronics age", D.
Ritchie Ed., Edinburgh University Press, 1978, pp 242-270.

[21] Gruninger, M., and Fox, M.S., "The Role of Competency Questions in Enterprise
Engineering", Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory
and Practice, Trondheim, Norway, 1994.

XV Simpósio Brasileiro de Engenharia de Software

- 51 -

