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Abstract 
High assurance architecture-based and component-based software development relies fundamentally on the 
quality of the components of which a system is composed and their configuration. Analysis over those 
components and their integration as a system plays a key role in the software development process. This paper 
describes an approach to develop and assess architecture and component-based systems based on specifying 
software architecture augmented by statecharts representing component behavioral specifications. The 
approach is applied for the C2 style and associated ADL and is supported within a quality-focused environment, 
called Argus-I, which assist specification-based analysis and testing at both the component and architecture 
levels. 

 
 

1. Introduction 

A current trend in software engineering is architecture-based and component-based 
software development, where the high-level structure and behavior of a large software system 
is specified and the system is configured of components and their connections. Quality 
assurance of such a system relies fundamentally on the quality of the components of which 
the system is composed and their configuration. Yet little quality assurance technology exists 
for this architecture-based and component-based software development paradigm.  

To predictably and reliably build complex systems by composing components, 
components must be analyzed not only independently but also in the context of their 
connection to and interaction with other components. Analysis should be coordinated, 
therefore, at the software architecture level of abstraction, where components, connectors, and 
their configuration are better understood and intellectually tractable. Analysis at the level of 
system architecture may address such behavioral qualities as functional correctness, 
performance, and timing (e.g., allowable order of operations, real-time guarantees) as well as 
structural quality. 

To support both structural and behavioral architecture-based analysis, not only must the 
structure of the architectural configuration and the components be specified, as is supported 
by all architecture descriptions languages (ADLs), but also the behavior of those components 
and their interactions must be described. Many ADLs fail to provide a mechanism for 
behavioral semantics. Here, we discuss augmenting ADLs with statechart for specifying 
component behavior. We have defined this integration for C2SADEL, the ADL for C2-style 
architectures, yet we believe the approach is more general and effective with a number of 
ADLs. We support this approach to architecture- and component-based software development 
within a quality-focused environment, called Argus-I, which provides a comprehensive toolkit 
facilitating iterative and evolvable analysis throughout architectural specification and 
implementation. Both structural and behavioral analyses are accomplished by a synergistic 
combination of static and dynamic techniques. 

The remainder of this paper is organized as follows. Section 2 motivates our work, 
while Section 3 discusses related work in component description and architecture-based 
analysis. In Section 4, statecharts are described. The Argus-I environment and its analysis 
capabilities are described in Section 5, while an example is presented in Section 6. Finally, we 
conclude by discussing our philosophical approach as well as future work. 
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2. Motivation 

Perry and Wolf define architecture as follows: “Architecture is concerned with the 
selection of architectural elements, their interactions, and the constraints on those elements 
and their interactions necessary to provide a framework in which to satisfy the requirements 
and serve as a basis for the design” [16]. In the years since this seminal paper, there has been 
much interest in software architecture among researchers, resulting in two notable 
contributions. First, the research community has converged on a set of three fundamental 
elements as forming the basis for discourse about architecture: the component (a unit of 
computation or data storage), the connector (an entity that facilitates communication between 
components) and the configuration (a topological arrangement of components and connectors) 
[11]. Second, the community has demonstrated the importance of architectural styles as 
embodiments of engineering experience, allowing identification and exploitation of structural 
and behavioral commonality among related applications [19]. Apart from these two 
contributions, most research in software architecture has focused on formal specification 
languages, called architecture description languages or ADLs, for describing architectures at a 
high level of abstraction [1, 5, 8, 10, 13, 20, 22], along with simple architectural analysis 
techniques – that is, primarily syntactic analysis applied in isolation to ADL models [11]. In 
fact, there has been relatively little research attempting to fulfill the original vision of Perry 
and Wolf, particularly work that provides means for analyzing an architecture to demonstrate 
that it indeed does provide a framework for satisfying requirements and serving as a 
dependable basis for design. This is one primary motivation for our work. 

To support sophisticated architecture-based analysis, behavioral semantics must be 
considered. In spite of the importance of structural description at both architecture and 
component levels, behavioral specification enables more informative analysis. Although 
architecture-based analysis places stringent new requirements on architecture description 
techniques, it has numerous benefits. For one, it enables explicitly focusing on architectural 
defects rather than relying on other test strategies to detect these defects. Moreover, 
architecture-based analysis can begin much earlier in the development process than usual 
(after implementation and during system integration), thereby detecting defects early in the 
software lifecycle, when they are less costly to fix and more likely to be fixed unerringly. 
Furthermore, since an architecture description can be reused to develop multiple systems, the 
analysis costs, which are high relative to the rest of development, can be amortized across the 
family of systems. 

Each ADL embodies a particular approach to architecture specification. All ADLs 
address structural architecture and component description, although there is a wide variation 
in the behavioral aspects each ADL is able to address, including: functional behavior, timing, 
allocation of resources, performance, fault-tolerance, and so on [2]. 

C2 [13] is a component- and message-based architectural style for constructing flexible 
and extensible software systems. A C2-style architecture is a hierarchical network of 
concurrent components linked together by connectors (or message routing devices) in 
accordance with a set of style rules. The ADL associated with C2, C2SADEL, provides the 
capability to specify component functionality in first-order logic, using invariants and 
operation pre- and post-conditions [12], but there is no provision for explicitly defining 
component behavior.  

The lack of semantic definition in C2 for component behavior limits the prospects for 
enlightening analyses. To face this problem, we integrated statechart semantics to describe 
component behavior with the C2 architectural model. As proposed by Harel [6], statechart 
semantics extend basic finite-state automata with many features, including an instantaneous 
broadcast communication mechanism and the ability to specify timing constraints.  
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We believe that statecharts contribute much added value in this role. In particular, the 
formal semantic theory used for functional behavior description should be simple so as to help 
the software architect rather than hinder him or her with needless confusion. The statechart 
model is fundamentally graphical in form and hence visually appealing, yet unlike many 
graphical design notations, statecharts have a precise formal semantics [6]. Furthermore, both 
sequentiality and concurrency of activities may be represented in a uniform way and real time 
constraints, such as for event and activity scheduling, are easily included. Another strong 
reason is that as part of the Unified Modeling Language (UML) standard defined by Object 
Management Group (OMG) for object-oriented modeling [15], the statechart model is well 
accepted in industry. This facilitates a smooth transition for designing and implementing 
components as object-oriented classes. For all of these reasons, we chose statecharts as the 
modeling notation to integrate with C2, thereby providing a rich abstraction to describe 
software architecture.  

While formal statechart semantics defines component behavior, C2 semantics define the 
topology and relations among components. Architectural behavior is characterized in terms of 
significant events (messages) that take place when components are in determined states. A 
state defines a component’s behavior by how it reacts to certain events – the events it 
produces that pass through the architecture. The combined abstraction allows us to promote 
sophisticated analysis. 

3. Related Work 

Our work is related to other ADLs that describe component behavioral semantics and 
most closely to the analysis capabilities provided for their architectural formalism. Here, we 
overview related work in both areas. 

3.1. Component Specification 

We observe that analysis tools for most existing ADLs tend to view architectures 
statically and current support for dynamic modeling and analysis is scarce. The ability to 
perform more sophisticated analysis of software architecture directly depends on the ability to 
model behavior. To this end, ADLs have employed different specification mechanisms. 
ACME [5] and UniCon [20] allow component behavioral information to be specified in 
property lists, but these have no pre-defined semantics. MetaH [22] allows specification of 
component implementation semantics with path declarations that describe sequencing 
behaviors of objects. Wright [1] defines component semantics using CSP as the underlying 
model. In Rapide [9], each component specification has an associated behavior, which is 
defined via state transition rules that generate partially ordered sets of events (posets). Darwin 
[10] uses the ð-calculus as its underlying semantic model, whereby a system is described as a 
collection of independent processes that communicate via named channels. In more recent 
work [3], Darwin provides for modeling component behavior by labeled transition systems 
(LTSs) described in the FSP specification language. A system is modeled as a collection of 
LTSs, which are interacting finite-state machines. 

It is difficult to argue whether the statechart model is better than CSP, posets, the ð-
calculus, or LTSs to specify component behavior. Statecharts do fit this task well and have 
many advantages, including those described above, especially wider use and acceptance in the 
software industry.  

3.2. Architecture-based Analysis 

Analysis of architectures may be performed statically, without execution, or 
dynamically, at runtime; certain types of analysis can be performed both statically and 
dynamically. Here, we describe some analysis techniques that make use of architectural 
information and are related to our work. 
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Dynamic architecture-based analysis is concerned with demonstrating the software 
architecture’s run-time behavior in response to selected inputs and conditions. Examples of 
dynamic analysis are simulation, testing, debugging, and assertion checking. Dynamic 
analysis techniques require “executing” an architecture in one of two ways: (1) the system 
implemented based on the architecture is run, or (2) the architecture itself is simulated. 
Certain analyses, such as reliability assessment, are more meaningful or only possible on the 
implementation. Such techniques are limited, however, since they are not applicable until the 
system has been implemented. Performing analysis on the architecture itself allows early 
defect detection, which has been shown much more cost-effective than revealing architectural 
defects after they have fully impacted the system implementation. Dynamic analysis is a 
necessary part of software verification, because some qualities are better assessed using 
dynamic techniques and only dynamic techniques can analyze in the operational environment. 

Due to the complexity of software systems, dynamic analysis alone is insufficient to 
verify architecture functionality – that is, the architecture is fully functional or free of defects. 
In fact, all dynamic analysis techniques rely on sampling [25], which means that correctness 
cannot be verified. Static techniques are crucial, therefore, to offset the limitations of dynamic 
analysis. Static architecture-based analysis is concerned with suggesting problems or finding 
defects by examining a software architecture specification without execution. Examples of 
static analysis are data flow, dependence and reachability analysis, and model checking. Static 
analysis techniques are capable of performing consistency and completeness checks over a 
software architecture, demonstrating whether certain properties are satisfied (such as liveness 
and safety properties), and assessing certain concurrent and distributed aspects of an 
architecture (such as the potential for deadlock or starvation). Architectures can also be 
analyzed statically for adherence to design heuristics and style rules. 

3.2.1. Architecture simulation. Simulation is a powerful tool for dynamically analyzing 
complex systems prior to their implementation. Simulation is useful for a wide variety of 
purposes, including detecting defects, optimization, or simply system understanding. Rapide 
[9] supplies this capability. The Rapide simulator runs a user-defined test case over the 
architecture, generating a trace of events together with the causal event history and their 
timing. These traces may reveal defects in dynamic behavior not easily exposed by static 
analyses.  

3.2.2. Architecture-based dependence analysis. Dependence between pairs of elements in 
an architectural configuration can be analyzed either statically or dynamically. The transitive 
closure of direct dependence relationships creates sequences of dependencies, or indirect 
dependence, similar to program slices [24]. Aladdin [21] is a static dependence analysis tool 
that identifies direct relationships based upon input/output, temporal, state-based, and causal 
dependence and implements a technique called chaining for indirect dependence relationships. 
Aladdin has been implemented for Rapide and ACME. 

3.2.3. Architecture-based model checking. Model checking is a static analysis technique 
that constructs a finite model of the system (e.g., from the composite component descriptions 
according to the architecture configuration) and checks it against a set of desired properties – 
standard qualities or specific system requirements. Wright [1] uses FDR [4] (a commercial 
specification-checker for CSP) as the core of its consistency checking tool. Darwin applies the 
compositional reachability analysis technique in TRACTA [3] to analyze behavior of 
concurrent and distributed systems. The LTS of a complete system, computed from those of 
its subsystems, is model checked against desired properties. 

3.2.4. Architecture conformance testing. Testing the system for conformance to its 
architecture helps to ensure that architectural drift has not occurred during system 
implementation and evolution. To ascertain architecture conformance [8], both the aspects of 
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the architecture to be tested and the expected behavior must be identified. This can be done 
via an architecture conformance oracle consisting of a trace specification of expected events 
and their causal and timing relationships. Using such an oracle requires a mapping between 
elements in the architecture specification and those in the implemented system. Rapide 
provides event pattern mappings to define how a system is related to a reference architecture. 
The mapped executions are checked for conformance to the reference architecture’s 
constraints. 

4. Modeling Component Behavior with Statecharts 

There are several works on statechart, and most of them have tried to understand and 
modify the semantics of the original Harel statecharts [6]. In [26], David Harel explains the 
statecharts semantics for situations where some overlapping states exist, which was not 
included in the initial statecharts idea. In [28], Beeck presents a useful comparison of all the 
major variants of statecharts developed till 1994, saying that almost every statecharts variant 
models concurrency by interleaving. In [27], Harel again tries to explain the statecharts 
semantics that they originally implemented in STATEMATE, and which they have modified 
since then to accommodate users' demands. Lilius and Porres [29] discuss the formalization of 
UML statecharts, presenting a clear description of semantics for statecharts in UML. Such a 
description is needed as a reference model for implementing tools for code generation, 
simulation, and verification. We extended UML statecharts [15] to model behavioral 
semantics for architectural components. A statechart represents the sequences of states that a 
component goes through during its life in response to events (incoming request or notification 
messages). A transition is triggered by an event under certain conditions.  

The basic elements 
of a statechart are states, 
composite states, and 
transitions. The following 
paragraphs will introduce 
how these elements are 
used in our approach; refer 
to Figure 1. 

A state represents a 
situation in the life of a component when it satisfies some conditions, may perform some 
actions, and/or waits for some events. An initial state appears in the top-level of a statechart; 
the transition from an initial state may be labeled with an action generated upon component 
creation; otherwise, it must be unlabeled. A final state represents the completion of activity in 
the enclosing state and triggers a transition on the enclosing state labeled by the completion 
event, if such a transition is defined. Reaching the final state firing an action with the keyword 
_Exit means that the application has finished and the system terminates. 

A composite state decomposes a state into two or more concurrent substates or into 
mutually exclusive disjoint substates. A state may only be decomposed in one of these two 
ways. Any substate of a composite state can be decomposed in either way. 

A transition is a relationship between two states indicating that when the specified 
trigger event occurs, the component in the source state to the target state and performs the 
associated action provided that the specified guard is satisfied. When this occurs, the 
transition is said to “fire.”  

An event is an occurrence that may trigger a state transition. Events are related to the 
component interface, more specifically to the messages that arrive at the component and are 
understood by the interface. For example, in the C2 context, events are requests and 
notifications. If a message reaches a component and does not trigger any transition, it is 

Figure 1. Simple Statechart 
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ignored by the statechart. If it triggers more than one transition within the same sequential 
region, only one will fire. An event name may appear more than once per state if the guard 
conditions are different; the choice may be nondeterministic if guard conditions are not 
specified. Predefined triggers denoted by “true” and “else” may be defined for a transition: 
true enables the transition to be taken immediately when the component reaches the source 
state; else enables the transition if there is no transition from the current state to be taken after 
an event arrives at the component.  

A guard condition is a boolean expression written in terms of parameters of the 
triggering event, and attributes or pre/post conditions on the component. The guard condition 
may also involve tests of concurrent states of the current machine, or explicitly designated 
states of some reachable component (for example, elevator “in Moving” and “not in Idle”). A 
simple transition may be extended to include a tree of branches, or decision symbols 
(indicated by the diamond). This is equivalent to a set of individual transitions, one for each 
path through the tree, whose guard condition is the “and” of all of the conditions along the 
path. The predefined guard “else” may be used for at most one outgoing transition; this 
transition is enabled if all the guards labeling the other transitions are false. The “exception” 
guard used to define an internal error condition not identifiable with a logical expression. 

An action is executed if and when a transition fires. It is written in terms of messages 
that the architectural component sends when the transition is fired. The action expression may 
be an action sequence comprising a number of distinct actions including actions that explicitly 
generate events, such as sending notification signals or invoking operations.  

Figure 2 presents a statechart description for an elevator component (used in the larger 
context of an Elevator system in Section 6). There are three concurrent states: Direction, 
State, and Services. “Services” describes those services provided by the component that are 
independent of the current direction or movement. For instance, CallAdded is always sent by 
this component when it receives AddCall. Direction indicates the current elevator direction 
(Up, Down, or Idle). Movement indicates if the elevator is Moving, Stopped with the doors 

 

Figure 2 Elevator Component Statechart 
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Opened, or Closed. The initial state of an Elevator component (just after creation) is (Idle, 
StoppedClosed, Ready).  

5. Argus-I  

In considering the development of Argus-I, we investigated the suitability of various 
analysis techniques for software architectures so as to include a complimentary set. We knew 
in advance that we wanted the toolkit to analyze architectural elements as well as topology, 
which presented us with a broad range of techniques to consider. One outcome of this 
exploration is that Argus-I provides support for numerous analysis techniques, from type 
checking to model checking and simulation. A developer or analyst must pick and choose 
among these techniques by considering the risk associated with the system and the role of 
specific elements in higher risk functions. The magnitude of the analysis effort should be 
commensurate with this risk – that is, while all architectural components should be validated, 
more critical components should be subject to more thorough analysis. Likewise, the size and 
complexity of the software architecture is an important factor in establishing the appropriate 
level of architecture-based analysis. 

Furthermore, we wanted specification and analysis to go hand in hand so as to permit 
the architecture to be incrementally and naturally checked. Argus-I was implemented using 
the framework developed by Argo/UML [18]. This environment integration between Argus-I 
and Argo/UML allows not only easy data exchange but also a more consistent and integrated 
design process, including support for both architecture and detailed object-oriented design 
activities.  

5.1. Argus-I Process 

Although Argus-I does not enforce any specific process, Figure 3 presents guidance to 
understand the interaction between the specification and analysis capabilities inside the 
Argus-I context. 

The developer starts by specifying the architecture and its elements (components and 
connectors). This specification may occur in an incremental fashion through the creation of 
new items or the reuse/evolution of existing components. During this incremental 
specification, the developer should use the available analysis tools to incrementally assess the 
quality of the software architecture.  
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Figure 3. Argus-I Process  
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Specification analysis tools work at both component and architecture levels. At the 
component level, structural and behavioral analyses check component integrity. At the 
architecture level, dependence analysis, model checking, and simulation serve to evaluate the 
architecture specification. 

Argus-I does not explicitly provide support for the coding activity. During 
implementation, however, developers should use the implementation analysis tools to 
incrementally verify not only each component individually but also whether components 
behave as desired when integrated with other components.  

5.2. Architectural Element (Component) Specification Analysis 

Argus-I provides capabilities to evaluate both structure and behavior for individual 
architectural components with structural analysis, model checking and simulation tools. 
These capabilities assist the software architect in improving component behavior 
independently of the configuration.  
Structure Analysis 

During structural analysis, a collection of type checking rules is applied over each 
component specification to determine whether each component is “well” structured. Any parts 
of a component not well specified are presented with an explanation of the rules violated. The 
type-checking rules generally embody common sense inference and consistency rules. For 
instance, interfaces must be mapped to an operation and operations must be mapped to an 
interface. In the current version, type checking rules are enforced during component and 
message type specification. Argus-I can export component specifications to C2SADEL. 
Static Behavior Analysis 

Argus-I analyzes component behavior statically by syntactic and semantic checking of 
statecharts (using critics from Argo/UML [17]) and reachability analysis. Aspects such as 
conflicting transitions (nondeterminism) and consistency between the component interface 
and the state machine are verified. Model checking is applied to further analyze the 
component specification, by translating the statechart specification into Promela (the input 
language of the SPIN verification system [7], using an approach similar to MOCES [14]). 
SPIN is then used to check the logical consistency of the statechart model against proprieties 
expressed in linear time temporal logic. 
Dynamic Behavior Analysis 

Dynamic behavior analysis consists of statechart simulation upon an event trace. The 
user selects a list of events to drive execution. The statechart engine executes and the user can 
follow the triggered transitions and actions to validate the statechart. 

5.3. Architecture (Configuration) Specification Analysis 

We built dependence analysis and simulation tools and integrated model checking into 
Argus-I for architectural analysis. These tools explore structural and behavioral dependence 
among components, validate the configuration through extensive simulations, and verify of 
specific properties using model checking. The results facilitate refining and correcting the 
architecture before the system is implemented. 
Dependence Analysis 

Dependence relationships at the architectural level arise from the connections among 
components and the constraints on their interactions. The core of an architectural style comes 
from how components/connectors are organized. For instance, the structural dependence 
among C2 components are determined by analyzing the characteristics of each component (its 
level in the architectural topology, notifications to which it will react and requests that it can 
send). These characteristics expose control and data dependence. In the C2 style, control 
dependence between two components is not explicit, because components are not aware of 
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which components with whom they interact. Control dependence exits, however, between a 
component that sends a message (request or notification) and any component that understands 
and potentially receives that message. Data dependence in the C2 style is identified by the 
parameters passed in a message by the component that defines the parameter to the 
component that uses it.  
Interface Consistency 

Performing structural analysis over component interfaces and the architecture 
configuration enables detection of architectural defects, such as, interface mismatch, missing 
interfaces and unused services.  
Model Checking 

Model checking can be performed at the architectural level as well as the component 
level. At the architectural level, Argus-I creates a “super statecharts model” integrating all 
components’ statecharts (concurrently) subject to the constraints of the architectural 
configuration. The resultant model is converted to Promela, and SPIN is invoked to check 
desired properties. 
Simulation 

Simulation provides a sophisticated and accurate way for visualizing the functionality of 
a software architecture. By simulating the architectural model, it is possible to detect 
architectural defects, like a component that receives an unexpected event, or a state transition 
that should generate an action but does not. Based on simulation results, the user may 
improve the architecture.  

Another capability provided by Argus-I’s simulation tool is predicting system 
performance by how often each component, message, connector, or component interface is 
invoked for particular simulations.  

Simulation is done by interpreting components’ behavior while following the 
architectural topology – thus, all components’ statechart engines run in parallel. The result is a 
trace, which can be visualized either graphically or textually. A trace may indicate an error, 
which occurs when a component during the simulation receives an unexpected event, or a 
warning, representing an anomalous event that is not definitely erroneous (for example, the 
trace presents a warning when a component accepted an expected message but no effect was 
produced). 

5.4. Component Implementation Analysis 

Argus-I carries out component implementation analysis thought state-based testing 
using DAS-BOOT [23]. Detailed explanation of DAS-BOOT is beyond the scope of this 
paper; due to space limitations we do not consider this activity in the example that follows. 
State-based Component Testing 

DAS-BOOT is a specification-based testing tool that verifies the behavior of a Java 
class based on and against a statechart diagram modeling how objects of that class should 
behave. DAS-BOOT receives as input a Java class to be tested, a state-based specification of 
the class behavior, and a FSM coverage criterion from which it produces as output test driver-
oracles that automatically test the Java class against the component specification according to 
the coverage criterion. 

5.5. Architecture Implementation Analysis 

Architecture implementation analysis can be done in many different ways. We adopted a 
dynamic approach involving execution of the architecture implementation. Although our 
major concern is verifying conformance between architecture specification and 
implementation, the actual behavior of the components can be unpredictable. This 
unpredictability demands support for monitoring and debugging, providing finer control over 
the components and architecture during execution. 
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Debugging and Monitoring 
Architecture-based debugging and monitoring acts at a higher level of abstraction than 

does typical program debugging to control and follow system execution. In the C2 style, this 
abstraction level is well defined by message exchange between components.  

Debugging at the architectural level, the user can validate the sequence of events that 
occurs during execution by visualizing event traces for the architecture as well as for 
individual components. Following event traces, the user can gain better understanding of 
components and architecture misbehavior and, consequently, better reason about the cause of 
architectural defects. 

Utility of this event monitoring is enhanced by enabling the user with further control 
over execution. Argus-I’s debugger provides mechanisms to interrupt messages at pre-
determined points (“breakpoints”), allowing the user to follow execution more carefully and 
control it interactively, and to modify, add or remove messages received by or sent from a 
component. 

Argus-I’s “component inspector” offers capabilities similar to “watch” and “object 
inspector” mechanisms present in program level debuggers. The component inspector enables 
the user to access the internal state of a component so as to understand and verify component 
behavior. The user can browse through the component data structure and modify data values. 

Argus-I facilitates performance analysis by providing the user with statistical measures 
of component and interface usage, based on the number of events exchanged during the 
execution. 
Conformance Verification 

When verifying consistency between specification and implementation at the 
architectural level, both the conformance of the architectural topology as well as the 
conformance of each component and connector of the architecture must be considered. 

Conformance to the architectural topology is based on dynamic configuration 
“enforcement” – i.e., the architecture is dynamically built based on information from the 
specification and its mapping to the implementation. This guarantees that the actual 
architecture topology is consistent with its specified configuration. 

Conformance verification for components is dynamically performed with respect to two 
distinct (but associated) aspects: interface and behavior. As the names suggest, interface 
conformance means the implemented component’s interface is consistent with the specified 
interface, while behavioral conformance means that component behavior satisfies the 
behavior specification (as embodied in the statechart). Checking for both is performed based 
on the messages exchanged and captured during monitored execution.  

Conformance verification identifies all component interfaces not used during execution, 
as well as all used interfaces not specified. This verifies inconsistency/incompleteness in both 
directions, from specification to implementation and vice-versa. For those interfaces that were 
specified and used during execution, any mismatch between specification and implementation 
is identified, including message type, direction, and parameters.  

Behavioral conformance verification is based on parallel execution of all components’ 
statecharts. At runtime, each component instance has a statechart engine that executes based 
upon incoming messages. Incoming messages trigger transitions and outgoing messages are 
compared to the expected effects. At any time, the user can follow the execution history and 
check those messages that were responsible for each step, as well as those messages that were 
not expected/specified in the statechart. 

Conformance verification requires not only monitored execution of the implementation 
but also mapping events in the implementation to the specification. This representation 
mapping must be defined by the user before verification; Argus-I provides support for 
defining the mapping. Implementation must be based on the C2 framework. 
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6. EXAMPLE 

In this section, we illustrate the analysis capabilities of Argus-I within the context of an 
elevator control system. First, we briefly explain the problem context, and then present the 
architecture and components specification. Finally, analyses are performed and discussed. 

6.1. Elevator Problem 

The elevator system assigns elevator cars to attend users’ calls, which are made from 
inside an elevator car or outside on a floor. For an inside call, the user is requesting a specific 
elevator to move to a particular floor and only the specific car is assigned to attend the call. 
For an outside call, the user is requesting an elevator to pick up at a particular floor and the 
system can assign any elevator to attend the call. 

The component types used in this system are: 
• Elevator: represents the model for one elevator car in the system; the number of such 

components determines the number of elevator cars. 

• ElevatorWindow: represents the view for each car. 

• ControlWindow: represents the control view for the building independent of any elevator car. 

• Scheduler: assigns an elevator to attend a user call; if there is no scheduler, all elevator cars 
are assigned to an external call, and after it is attended, outstanding cars are unassigned. 

• Clock: represents the timing of actions; a single clock component in the configuration means 
the system is synchronous; multiple clock components means the system is asynchronous. 

With these components, different architectural configurations can be specified and 
analyzed. Figure 4 shows the simplest architectural configuration in the background. This 
architecture is composed of one ControlWindow (lowest layer), one ElevatorWindow (middle 
layer), one Elevator, and one Clock (highest layer). Since there is only one elevator to attend 
all calls, the Scheduler is not necessary. Other configurations are also considered in this 
section and different analysis results are discussed. 

In Figure 2 (in Section 4), the Elevator behavior is specified using statecharts, where 
concurrent states can be observed. Observe, for instance, that after receiving AddCall (trigger) 
in state (StoppedClosed, Idle, Ready), the Elevator component is supposed to send an event 
CallAdded and transition to state (Moving, Up, Ready).  

 
Figure 4. Architectural configuration for Elevator system and Elevator component interface specification 
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6.2. Component Specification Analysis 

Static structural analysis checks the consistency between component interface 
specification and the structural aspects of it’s behavior specification. This ensures that all 
events referenced in a component’s statechart are defined in the interface specification and 
that each interface defined there is used in the statechart. For instance, it ensures that the 
interface AddCall of the Elevator component has been used as a trigger in the statechart 
model that describes the component behavior.  

Static behavioral analysis over the component employs model checking to determine 
whether a component’s behavior always satisfies user-defined properties. For example, 
suppose the user wants to ensure that an Elevator cannot be in states Moving and Idle at the 
same time; this property is represented as a Promela never clause: 

! [] ! (in_Moving && in_Idle) 
Model checking returns claim violated, meaning that Moving and Idle are not mutually 

exclusive (the states can be active at the same time). This occurs because the guards used fail 
to consider the active states of the component in deciding which transition should fire. 

6.3. Architecture Specification Analysis 

Structural dependence analysis is one capability for analyzing the architectural 
specification. In the C2-style, components have dynamic interfaces, and the “physical” 
connections between components are not based on their interfaces. C2 components can even 
modify their interfaces “on-the-fly”. Dependence analysis, in this context, determines the 
logical dependence between component interfaces. In an architecture configuration with two 
elevators and two clocks, for instance, dependences are shown graphically in Figure 5. 
ControlWindow depends on Elevator for the interfaces AddCall, RemoveCall and 
CallAttended. On the other hand, ElevatorWindow is found to depend on Elevator for the 
interfaces AddCall and CallAttended among others, but not for RemoveCall,. Although both 
ControlWindow and ElevatorWindow show the same connection to Elevator in the 
architectural configuration, further dependence analysis incorporating component structure 
and behavior determines that ElevatorWindow does not recognize RemoveCall. 

Static structural analysis also identifies interfaces that are not used in the architectural 
configuration under analysis. For instance, Elevator provides an interface DistanceToCall, 
that returns the actual distance from the current state of the elevator to the call, considering 
not only the difference between floors but also the call direction and other calls to which the 
elevator must attend. This service is useful for an optimizing Scheduler that considers the 
actual distance before selecting an Elevator to attend to a call. A simpler Scheduler 

 
Figure 5. Dependence analysis of architecture with two elevators 
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component does not need this interface, and it would not be used in the architecture 
configuration.  

At the architecture level, model checking provides more power and more verification 
options than at the component level. Now we can verify whether or not one component can 
reach a state based on the events generated by other components. For instance, suppose the 
user wants to ensure that the Clock component cannot be deactivated when the Elevator is 
moving. The following Promela never clause expresses this property: 

! [] ! (Elevator_in_Moving && Clock_in_Deactivated) 
This property is not violated, thus the desired behavior has been verified. 
Architectural simulation is based on the combined statecharts for all components in the 

architectural configuration. Again, the user provides a sequence of events, this time for the 
entire system. Events are also generated by actions specified in the statecharts and their effect 
propagated through the architecture. The user can reason about the trace of events generated, 
such as that shown in the event graph in Figure 6. In this figure, we see the effect of 
component Elevator2 receiving RemoveCall is to send CallRemoved, which is received by 
ElevatorWindow2, but this message is not understood, so we see a warning arrow. Simulation 
continues until there are no events left, at which point the simulator sends the event “true” for 
all components. After this, if no component generates an event, simulation stops. Otherwise, 
simulation continues as before. This enables determining whether the simulation completes 
(reaches a final state) or reaches a deadlock situation. 

Architectural simulation also provides statistics about the number of events generated 

for each component and for each interface; this information is useful for predictive 
performance evaluation as well as determining where further analysis or optimization might 
be fruitful. For instance, after simulating an architectural configuration with two elevators, we 
might see the following percentage of usage for each component’s interface: 

ControlWindow 26.65%  ElevatorWindow (N) 13.71% 
Elevator (N) 11.51%  Clock (N) 11.45% 

With this information, we identify those components that may be time-critical or 
represent bottlenecks and, consequently, should be subject to further evaluation and 

 
Figure 6. Event Trace Graph generated by Simulation 
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performance improvement. Here, special attention should be given to the ControlWindow 
component. 

6.4. Architecture Implementation Analysis 

Argus-I supports debugging at the architectural level during execution of the 
implemented system. The user can toggle breakpoints for incoming and outgoing messages in 
a component, and also remove, add or even edit messages (modify parameters) when 
execution is stopped. Figure 7 illustrates behavioral conformance verification during system 
execution; here, the user is viewing the Elevator component being verified against its 
behavioral specification in the context of the executing architecture. Verification confirms 
that the actual events the component has received (IN events in the upper left panel) and sent 
(OUT events in the lower left panel) are the same as those specified in the component’s 
statechart. The current possible transition to fire is displayed in the upper right panel, and the 
history of fired transitions recognized from the actual events is displayed in the lower right 
panel.  

7. Conclusions  

There is a noticeable gap between the state-of-the-art and the state-of-the-practice in 
architecture-based analysis techniques. While art (in the research community) is based on 
ADLs and their analysis tools, for the most part practice consists of specifying software 
architectures using widespread design models for which analysis capabilities are extremely 
limited.  

There are basically two distinct approaches to reducing this gap: bringing art-to-practice 
(making software developers use ADLs for specification and their tools for analysis) or 
bringing practice-to-art (making architecture analysis techniques and tools more accessible to 
the developer, focusing them on more common and widespread design description methods). 

Bringing art-to-practice would have the advantage that software architecture is better 
captured and specified with ADLs than with common design models. Moreover, ADLs and 
analysis tools are already available, although the analysis capabilities provided with ADLs are 
primarily syntactic in nature. The disadvantage of this approach, however, is that it requires 
time and major investment in training and incentive programs to become practice. A smooth 
technology transition (or introduction) is necessary. 

 
Figure 7. Conformance Verification of the Elevator component in the context of architectural execution 
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Bringing practice-to-art would have the advantage of smoother transition, whereby 
developers could start using architecture-based analysis tools with common design models 
(e.g., UML) without too much effort. Clearly, the disadvantage here is that UML does not 
adequately represent software architecture concepts and some enhancement is required. 
Although some researches are addressing this issue [18], the problem remains that 
architecture-based analysis tools using UML descriptions are not yet available and must still 
be developed. 

The work presented in this paper is a step in trying to reduce the gap by integrating art 
and practice in architecture-based analysis using architecture specifications based on both 
ADLs and UML statecharts. Additional work is still required in this integration to transition 
architecture-based analysis into a software development practice. 

As future research directions, we are pursuing both approaches to reducing the art-
practice gap. Following the first approach, we are considering the ACME interchange format 
[5] for specifying structural properties of the architecture, and integrating statecharts (and 
other UML models) to describe behavioral properties. This would then enable our 
architecutre-based analysis toolkit to support a variety of ADLs, each translated into ACME. 
Following the second approach, we are considering enhancements to UML that promote 
completely specifying the structural and behavioral properties of software architecture, and 
modifying our analysis toolkit for this purpose. 

We continue also to consider supporting other types of analysis for architecture 
specification and implementation. For instance, we are investigating and developing further 
architecture dependence analysis capabilities, symbolic architectural simulation, and 
architectural integration test criteria and test generation. We believe that an integrated set of 
support capabilities for architecture and component specification and analysis will greatly 
enhance the quality of systems developed in the architecture-based and component-based 
software engineering paradigms. 
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