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Abstract
High assuance architecturdased and componehtised software development relies fundamentally on the
quality of the components of which a system is composed and their configuration. Analysis over those
components and their integration as a system plays a keynrtiie software development process. This paper
describes an approach to develop and assess architecture and coripasestsystems based on specifying
software architecture augmented by statecharts representing component behavioral specifications. The
approach is applied for the C2 style and associated ADL and is supported within a-fp@lisged environment,
called Argusl, which assist specificatiebhased analysis and testing at both the component and architecture
levels.

1. Introduction

A current trendin software engineering is architectvased and componebased
software development, where the higliel structure and behavior of a large software system
is specified and the system is configured of components and their connections. Quality
assuranceof such a system relies fundamentally on the quality of the components of which
the system is composed and their configuration. Yet little quality assurance technology exists
for this architecturdbased and componebéased software development paradigm.

To predictably and reliably build complex systems by composing components,
components must be analyzed not only independently but also in the context of their
connection to and interaction with other components. Analysis should be coordinated,
therefore, aithe software architecture level of abstraction, where components, connectors, and
their configuration are better understood and intellectually tractable. Analysis at the level of
system architecture may address such behavioral qualities as functiomettreess,
performance, and timing (e.g., allowable order of operationstirealguarantees) as well as
structural quality.

To support both structural and behavioral architeebhaged analysis, not only must the
structure of the architectural configuaii and the components be specified, as is supported
by all architecture descriptions languages (ADLS), but also the behavior of those components
and their interactions must be described. Many ADLs fail to provide a mechanism for
behavioral semantics. Hereye discuss augmenting ADLs with statechart for specifying
component behavior. We have defined this integration for C2SADEL, the ADL faty®?
architectures, yet we believe the approach is more general and effective with a number of
ADLs. We support tis approach to architecturand componerbased software development
within a qualityfocused environment, called Arguswhich provides a comprehensive toolkit
facilitating iterative and evolvable analysis throughout architectural specification and
implementation. Both structural and behavioral analyses are accomplished by a synergistic
combination of static and dynamic techniques.

The remainder of this paper is organized as follows. Section 2 motivates our work,
while Section 3 discusses related work domponent description and architectiyased
analysis. In Section 4, statecharts are described. The -Argmgronment and its analysis
capabilities are described in Section 5, while an example is presented in Section 6. Finally, we
conclude by discussingur philosophical approach as well as future work.
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2. Motivation

Perry and Wolf define architecture as follows: “Architecture is concerned with the
selection of architectural elements, their interactions, and the constraints on those elements
and their inteactions necessary to provide a framework in which to satisfy the requirements
and serve as a basis for the design” [16]. In the years since this seminal paper, there has been
much interest in software architecture among researchers, resulting in two enotabl
contributions. First, the research community has converged on a set of three fundamental
elements as forming the basis for discourse about architecture: the component (a unit of
computation or data storage), the connector (an entity that facilitatesuooation between
components) and the configuration (a topological arrangement of components and connectors)
[11]. Second, the community has demonstrated the importance of architectural styles as
embodiments of engineering experience, allowing identifinatind exploitation of structural
and behavioral commonality among related applicatipb8]. Apart from these two
contributions, most research in software architecture has focused on formal specification
languages, called architecture description langaageé\DLs, for describing architectures at a
high level of abstraction [1, 5, 8, 10, 13, 20, 22], along with simple architectural analysis
techniques- that is, primarily syntactic analysis applied in isolation to ADL models [11]. In
fact, there has beemrlatively little research attempting to fulfill the original vision of Perry
and Wolf, particularly work that provides means for analyzing an architecture to demonstrate
that it indeed does provide a framework for satisfying requirements and serving as a
dependable basis for design. This is one primary motivation for our work.

To support sophisticated architectdnr@sed analysishbehavioral semantics must be
considered. In spite of the importance of structural description at both architecture and
component levels, behavioal specification enables more informative analysis. Although
architecturebased analysis places stringent new requirements on architecture description
techniques, it has numerous benefits. For one, it enables explicitly focusing on @nelitec
defects rather than relying on other test strategies to detect these defects. Moreover,
architecturebased analysis can begin much earlier in the development process than usual
(after implementation and during system integration), thereby deteactiiegts early in the
software lifecycle, when they are less costly to fix and more likely to be fixed unerringly.
Furthermore, since an architecture description can be reused to develop multiple systems, the
analysis costs, which are high relative to the&t ¢ development, can be amortized across the
family of systems.

Each ADL embodies a particular approach to architecture specification. All ADLs
address structural architecture and component description, although there is a wide variation
in the behaviodaaspects each ADL is able to addrass|uding: functional behavior, timing,
allocation of resources, performance, faalerance, and so on [2].

C2 [13] is a componentand messagbased architectural style for constructing flexible
and extensible saftare systems. A C8&tyle architecture is a hierarchical network of
concurrent components linked together by connectors (or message routing devices) in
accordance with a set of style rules. The ADL associated with C2, C2SADEL, provides the
capability to speify component functionality in firsbrder logic, using invariants and
operation pre and postonditions [12], but there is no provision for explicitly defining
component behavior.

The lack of semantic definition in C2 for component behavior limitsptiospects for
enlightening analyses. To face this problem, we integrated statechart semantics to describe
component behavior with the C2 architectural model. As proposed by Harel [6], statechart
semantics extend basic finigate automata with many feagar including an instantaneous
broadcast communication mechanism and the ability to specify timing constraints.
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We believe that statecharts contribute much added value in this role. In particular, the
formal semantic theory used famctional behaviodescription should be simple so as to help
the software architect rather than hinder him or her with needless confusion. The statechart
model is fundamentally graphical in form and hence visually appealing, yet unlike many
graphical design notations, statads have a precise formal semantics [6]. Furthermore, both
sequentialityandconcurrencyof activities may be represented in a uniform way read time
constraints such as for event and activity scheduling, are easily included. Another strong
reason ighat as part of the Unified Modeling Language (UML) standard defined by Object
Management Group (OMG) for objectiented modeling [15], the statechart model is well
accepted in industry. This facilitates a smooth transition for designing and implementing
components as objeotiented classes. For all of these reasons, we chose statecharts as the
modeling notation to integrate with C2, thereby providing a rich abstraction to describe
software architecture.

While formal statechart semantics defines compbhehavior, C2 semantics define the
topology and relations among components. Architectural behavior is characterized in terms of
significant events (messages) that take place when components are in determined states. A
state defines a component’s behavimy how it reacts to certain eventsthe events it
produces that pass through the architecture. The combined abstraction allows us to promote
sophisticated analysis.

3. Related Work

Our work is related to other ADLs that describe component behavioral sesnantic
most closely to the analysis capabilities provided for their architectural formalism. Here, we
overview related work in both areas.

3.1. Component Specification

We observe that analysis tools for most existing ADLs tend to view architectures
staticaly and current support for dynamic modeling and analysis is scarce. The ability to
perform more sophisticated analysis of software architecture directly depends on the ability to
model behavior. To this end, ADLs have employed different specification mseiza
ACME [5] and UniCon [20] allow component behavioral information to be specified in
property lists, but these have no joiefined semantics. MetaH [22] allows specification of
component implementation semantics with path declaratitag describe sequencing
behaviors of objectswWright [1] defines component semantics usi@§P as the underlying
model. In Rapide [9], each component specification has an assodeatealior which is
defined via state transition rules that generate partially ordereadfsevents (posets). Darwin
[10] uses the -@alculus as its underlying semantic model, whereby a system is described as a
collection of independent processes that communicate via named channels. In more recent
work [3], Darwin provides for modeling compemt behavior by labeled transition systems
(LTSs) described in the FSP specification language. A system is modeled as a collection of
LTSs, which are interacting finkstate machines.

It is difficult to argue whether the statechart model is better thd?, @8sets, thé-
calculus,or LTSs to specify component behavior. Statecharts do fit this task well and have
many advantages, including those described above, especially wider use and acceptance in the
software industry.

3.2. Architecture-based Analysis

Analysis of archiectures may be performed statically, without execution, or
dynamically, at runtime; certain types of analysis can be performed both statically and
dynamically. Here, we describe some analysis techniques that make use of architectural
information and areelated to our work.
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Dynamic architecturdased analysis is concerned with demonstrating the software
architecture’s rustime behavior in response to selected inputs and conditions. Examples of
dynamic analysis are simulation, testing, debugging, and tiassezhecking. Dynamic
analysis techniques require “executing” an architecture in one of two ways: (1) the system
implemented based on the architecture is run, or (2) the architecture itself is simulated.
Certain analyses, such as reliability assessmesttnare meaningful or only possible on the
implementation. Such techniques are limited, however, since they are not applicable until the
system has been implemented. Performing analysis on the architecture itself allows early
defect detection, which hasdyeshown much more cestfective than revealing architectural
defects after they have fully impacted the system implementation. Dynamic analysis is a
necessary part of software verification, because some qualities are better assessed using
dynamic techniges and only dynamic techniques can analyze in the operational environment.

Due to the complexity of software systems, dynamic analysis alone is insufficient to
verify architecture functionality- that is, the architecture is fully functional or free ofeats.

In fact, all dynamic analysis techniques rely on sampling [25], which means that correctness
cannot be verified. Static techniques are crucial, therefore, to offset the limitations of dynamic
analysis. Static architectutised analysis is concernedth suggesting problems or finding
defects by examining a software architecture specification without execution. Examples of
static analysis are data flow, dependence and reachability analysis, and model checking. Static
analysis techniques are capabfeperforming consistency and completeness checks over a
software architecture, demonstrating whether certain properties are satisfied (such as liveness
and safety properties), and assessing certain concurrent and distributed aspects of an
architecture (sut as the potential for deadlock or starvation). Architectures can also be
analyzed statically for adherence to design heuristics and style rules.

3.2.1. Architecture ssmulation. Simulation is a powerful tool for dynamically analyzing
complex systems prioto their implementation. Simulation is useful for a wide variety of
purposes, including detecting defects, optimization, or simply system understeRapide

[9] supplies this capabilityThe Rapidesimulator runs a usetefined test case over the
archiiecture, generating a trace of events together with the causal event history and their
timing. These traces may reveal defects in dynamic behavior not easily exposed by static
analyses.

3.2.2. Architecture-based dependence analysis. Dependence between manf elements in

an architectural configuration can be analyzed either statically or dynamically. The transitive
closure of direct dependence relationships creates sequences of dependencies, or indirect
dependence, similar to program slices [24addin 21] is a static dependence analysis tool

that identifies direct relationships based upon input/output, temporakbsised, and causal
dependence and implements a technique called chaining for indirect dependence relationships.
Aladdin has been implemesat for Rapide and ACME.

3.2.3. Architecture-based model checking. Model checking is a static analysis technique
that constructs a finite model of the system (e.g., from the composite component descriptions
according to the architecture configuration) aheéaks it against a set of desired properies
standard qualities or specific system requiremeitsght [1] uses FDR [4] (a commercial
specificationchecker for CSP) as the core of its consistency checkingDaokin applies the
compositional reachaliy analysis techniquein TRACTA [3] to analyze behavior of
concurrent and distributed systemi$ie LTS of a complete system, computed from those of

its subsystems, is model checked against desired properties.

3.2.4. Architecture conformance testing. Testhg the system for conformance to its
architecture helps to ensure that architectural drift has not occurred during system
implementation and evolution. To ascertain architecture conformance [8], both the aspects of
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the architecture to be tested and theeexgd behavior must be identified. This can be done

via an architecture conformance oracle consisting of a trace specification of expected events
and their causal and timing relationships. Using such an oracle requires a mapping between
elements in the ahnitecture specification and those in the implemented system. Rapide
provides event pattern mappings to define how a system is related to a reference architecture.
The mapped executions are checked for conformance to the reference architecture’s
constraints

4. Modeling Component Behavior with Statecharts

There are several works on statechart, and most of them have tried to understand and
modify the semantics of the original Harel statecharts [6]. In [26], David Harel explains the
statecharts semantics for sitions where some overlapping states exist, which was not
included in the initial statecharts idea. In [28], Beeck presents a useful comparison of all the
major variants of statecharts developed till 1994, saying that almost every statecharts variant
modebk concurrency by interleaving. In [27], Harel again tries to explain the statecharts
semantics that they originally implemented in STATEMATE, and which they have modified
since then to accommodate users' demands. Lilius and Porres [29] discuss theafitwmaliz
UML statecharts, presenting a clear description of semantics for statecharts in UML. Such a
description is needed as a reference model for implementing tools for code generation,
simulation, and verification. We extended UML statecharts [15] tadeindbehavioral
semantics for architectural components. A statechart represents the sequences of states that a
component goes through during its life in response to events (incoming request or notification
messages). A transition is triggered by an evedeunertain conditions.

The basic elements
of a statechart arstates

trigger [guard] / actioni, actionz I Targetitate | CompOS|te States, and
P Soumuesime transitions The following
true [quard?] f action? )\ . .
_ ; paragraphs will introduce
triggers true [gquardi] ! actionl o
o Targetd how these elements are

used in our approach; refer
Figurel. Simple Statechart to Figure 1.

A state represents a
situation in the life ba component when it satisfies some conditions, may perform some
actions, and/or waits for some events. iAtial state appears in the televel of a statechart;
the transition from an initial state may be labeled with an action generated upon component
creation; otherwise, it must be unlabelediifal staterepresents the completion of activity in
the enclosing state and triggers a transition on the enclosing state labeled by the completion
event, if such a transition is defined. Reaching the fina¢ $itatg an action with the keyword
_Exitmeans that the application has finished and the system terminates.

A composite statelecomposes a state into two or more concurrent substates or into
mutually exclusive disjoint substates. A state may only be desceed in one of these two
ways. Any substate of a composite state can be decomposed in either way.

A transition is a relationship between two states indicating that when the specified
trigger event occurs, the component in the source state to the taatgetst performs the
associatedaction provided that the specifieduard is satisfied. When this occurs, the
transition is said to “fire.”

An eventis an occurrence that may trigger a state transition. Events are related to the
component interface, morgexifically to the messages that arrive at the component and are
understood by the interface. For example, in the C2 context, events are requests and
notifications. If a message reaches a component and does not trigger any transition, it is
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HevatorStates

State

true [opened] § CallAtended, Bew StopOpen

true [mowing] ¢ Bewhdawing
true [opened] f CallAtended, Bew StopOpen

hdawin 5P| true [stopped] / Bev StopClose
Step

Stopped Opened

true [stopped] f Bew StopClags StoppedClosed

1
true [mowing] / EIeuhfb\tW
true [closed] £ Bev $topClose Step
true

i '
Direction Component Services
_ AddCall ¢ CallAdded RemoweCall / CallRemiowed
true [direction==Up] ¢ BewLp GetlD # BevlD Reset f ResetDone
Step 4[dir\ec1ion==l3c-wn] ! Elevl:lown,\_r Diown ] |"- Ready N‘I
kﬁir&c‘tion== Idle] / Bevlidle I ldle ] .
. true | ‘J Step / Status true
Get Status / Status GetDistanceToCall / DistanceToCall

Figure2 Elevator Component Statechart

ignored by thestatechart. If it triggers more than one transition within the same sequential
region, only one will fire. An event name may appear more than once per state if the guard
conditions are different; the choice may be nondeterministic if guard conditionsoare n
specified. Predefined triggers denoted Iyué” and “els€ may be defined for a transition:

true enables the transition to be taken immediately when the component reaches the source
state;elseenables the transition if there is no transition fromcineent state to be taken after

an event arrives at the component.

A guard condition is a boolean expression written in terms of parameters of the
triggering event, and attributes or pre/post conditions on the component. The guard condition
may also invole tests of concurrent states of the current machine, or explicitly designated
states of some reachable component (for example, elevatbtoving” and ‘hot inlidle”). A
simple transition may be extended to include a treebraihches or decision symbols
(indicated by the diamond). This is equivalent to a set of individual transitions, one for each
path through the tree, whose guard condition is the “and” of all of the conditions along the
path. The predefined guarcl$€¢ may be used for at most one outgp transition; this
transition is enabled if all the guards labeling the other transitions are falseexdeption
guard used to define an internal error condition not identifiable with a logical expression.

An action is executed if and when a trangsitifires. It is written in terms of messages
that the architectural component sends when the transition is fired. The action expression may
be an action sequence comprising a number of distinct actions including actions that explicitly
generate events, duas sending notification signals or invoking operations.

Figure 2 presents a statechart description for an elevator component (used in the larger
context of an Elevator system in Section 6). There are three concurrent Biagesion,
State,and Servtes “Services”describes those services provided by the component that are
independent of the current direction or movement. For inst@@aé)\ddedis always sent by
this component when it receivégldCall Direction indicates the current elevator dinect
(Up, Down, or Idle). Movementindicates if the elevator isloving Stoppedwith the doors
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Opened,or Closed The initial state of afElevator component (just after creation) isllg,
StoppedClosed, Regdy

5. Argus|

In considering the development ofrgus|, we investigated the suitability of various
analysis techniques for software architectures so as to include a complimentary set. We knew
in advance that we wanted the toolkit to analyze architectural elements as well as topology,
which presented usvith a broad range of techniques to consider. One outcome of this
exploration is that Argus provides support for numerous analysis techniques, from type
checking to model checking and simulation. A developer or analyst must pick and choose
among these thniques by considering the risk associated with the system and the role of
specific elements in higheisk functions. The magnitude of the analysis effort should be
commensurate with this risk that is, while all architecturadlomponents should be vadittd,
more critical components should be subject to more thorough analysis. Likewise, the size and
complexity of the software architecture is an important factor in establishing the appropriate
level of architecturdased analysis.

Furthermore, we wantedscification and analysis to go hand in hand so as to permit
the architecture to be incrementally and naturally checked. Argwes implemented using
the framework developed by Argo/UML [18]. This environment integration between Argus
and Argo/UML allovs not only easy data exchange but also a more consistent and integrated
design process, including support for both architecture and detailed-obgrded design
activities.

5.1. Argus-| Process

Although Argusl does not enforce any specific procesguFé 3 presents guidance to
understand the interaction between the specification and analysis capabilities inside the
Argus-| context.

The developer starts by specifying the architecture and its elements (components and
connectors). This specification magcur in an incremental fashion through the creation of
new items or the reuse/evolution of existing components. During this incremental
specification, the developer should use the available analysis tools to incrementally assess the
guality of the softwee architecture.

J

/ Architectural Element (Component) Specification

- N

Component Implementation

Create / Evolve Analysis

[ Structure Analysis ] Dg‘é:'lgs/ Analysis
() [ State-Based Testing (DAS-BOOT) ]
[ Static Behavior Analysis ]
[
Dynamic Behavior Analysis ] >
~Vd y,
N

/ Architecture (Configuration) Specification A 3 Architecture Implementation R

>
Create / Evolve / Analysis Compose / Analysis
( ] ] Integrate

Reuse / Import

T ¢
Y [ Interface Consistency
Reuse / Import N
:

A s
[ Dependency Analysis L [ Debugging / Monitoring ]
> [ Conformance Verification ]

\ -

Figure3. Argus| Process
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Specification analysis tools work at both component and architecture levels. At the
component level, structural and behavioral analyses check component integrity. At the
architecture level, dependence analysis, model checking, and simdatve to evaluate the
architecture specification.

Argus| does not explicitty provide support for the coding activity. During
implementation, however, developers should use the implementation analysis tools to
incrementally verify not only each compareindividually but also whether components
behave as desired when integrated with other components.

5.2. Architectural Element (Component) Specification Analysis

Argus| provides capabilities to evaluate both structure and behavior for individual
architectural components wittstructural analysis model checkingand simulation tools.
These capabilities assist the software architect in improving component behavior
independently of the configuration.
Structure Analysis

During structural analysis, a colleati oft ype checki ng rules is applied over each
component specification to determine whether each component is “well” structured. Any parts
of a component not well specified are presented with an explanation of the rules violated. The
type-checking rules geerally embody common sense inference and consistency rules. For
instance, interfaces must be mapped to an operation and operations must be mapped to an
interface. In the current versionype checki ng rules are enforced during component and
message typgoscification. Argud can export component specifications to C2SADEL.
Static Behavior Analysis

Argus| analyzes componeriiehavior statically by syntactic and semantic checking of
statecharts (using critics from Argo/UML [17]) and reachability analysipeéts such as
conflicting transitions (nondeterminism) amwnsistency between the component interface
and the state machinare verified. Model checking is applied to further analyze the
component specification, by translating the statechart specificationPromela (the input
language of the SPIN verification system [7], using an approach similar to MOCES [14]).
SPIN is then used to check the logical consistency of the statechart model against proprieties
expressed in linear time temporal logic.
Dynamic Behavior Analysis

Dynamic behavior analysis consists of statechart simulation upon an event trace. The
user selects a list of events to drive execution. The statechart engine executes and the user can
follow the triggered transitions and actions to vdkdide statechart.

5.3. Architecture (Configuration) Specification Analysis

We built dependence analysendsimulationtools and integratethodel checkingnto
Argus-| for architectural analysis. These tools explore structural and behavioral dependence
anmong components, validate the configuration through extensive simulations, and verify of
specific properties using model checking. The results facilitate refining and correcting the
architecture before the system is implemented.
Dependence Analysis

Dependepe relationships at the architectural level arise from the connections among
components and the constraints on their interactions. The core of an architectural style comes
from how components/connectors are organized. For instance, the structural dependenc
among C2 components are determined by analyzing the characteristics of each component (its
level in the architectural topology, notifications to which it will react and requests that it can
send). These characteristics expose control and data depenttetice. C2 style, control
dependence between two components is not explicit, because components are not aware of
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which components with whom they interact. Control dependence exits, however, between a
component that sends a message (request or notificatidrany component that understands

and potentially receives that messaBata dependence in the C2 style is identified by the
parameters passed in a message by the component that defines the parameter to the
component that uses it.

I nterface Consistency

Performing structural analysis over component interfaces and the architecture
configuration enables detection of architectural defects, such as, interface mismatch, missing
interfaces and unused services.

Model Checking

Model checking can be performed tae architectural level as well as the component
level. At the architectural level, Argudscreates a “super statecharts model” integrating all
components’ statecharts (concurrently) subject to the constraints of the architectural
configuration. The restdnt model is converted to Promela, and SPIN is invoked to check
desired properties.

Simulation

Simulation provides a sophisticated and accurate way for visualizing the functionality of
a software architecture. By simulating the architectural model, ipossible to detect
architectural defects, like a compondmat receives an unexpected event, or a state transition
that should generate an action but does Betsed on simulation results, the user may
improve the architecture.

Another capability providg by Argusl’'s simulation tool is predicting system
performance by how often each component, message, connector, or component interface is
invoked for particular simulations.

Simulation is done by interpreting components’ behavior while following the
archtectural topology- thus, all components’ statechart engines run in parallel. The result is a
trace, which can be visualized either graphically or textually. A trace may indicaeaan
which occurs when a component during the simulation receives experted event, or a
warning, representingan anomalous event that is not definitely erroneous (for example, the
trace presents a warning when a component accepted an expected message but no effect was
produced).

5.4. Component | mplementation Analysis

Argus-| carries out component implementation analysis thought-ststed testing
using DASBOOT [23]. Detailed explanation of DABOOT is beyond the scope of this
paper; due to space limitations we do not consider this activity in the example that follows.
State-based Component Testing

DAS-BOOT is a specificatiodased testing tool that verifies the behavior of a Java
class based on and against a statechart diagram modeling how objects of that class should
behave. DASBOOT receives as input a Java class tadsted, a statbased specification of
the class behavior, and a FSM coverage criterion from which it produces as output test driver
oracles that automatically test the Java class against the component specification according to
the coverage criterion.

5.5. Architecture Implementation Analysis

Architecture implementation analysis can be done in many different ways. We adopted a
dynamic approach involving execution of the architecture implementation. Although our
major concern is verifying conformance betweearchitecture specification and
implementation, the actual behavior of the components can be unpredictable. This
unpredictability demands support for monitoring and debugging, providing finer control over
the components and architecture during execution.
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Debugging and Monitoring

Architecturebased debugging and monitoring acts at a higher level of abstraction than
does typical program debugging to control and follow system execution. In the C2 style, this
abstraction level is well defined by message exgbdetween components.

Debugging at the architectural level, the user can validate the sequence of events that
occurs during execution by visualizing event traces for the architecture as well as for
individual components. Following event traces, the wser gain better understanding of
components and architecture misbehavior and, consequently, better reason about the cause of
architectural defects.

Utility of this event monitoring is enhanced by enabling the user with further control
over execution. Argu$s debugger provides mechanisms to interrupt messages at pre
determined points (“breakpoints”), allowing the user to follow execution more carefully and
control it interactively, and to modify, add or remove messages received by or sent from a
component.

ArgusI’s “component inspector” offers capabilities similar to “watch” and “object
inspector” mechanisms present in program level debuggers. The component inspector enables
the user to access the internal state of a component so as to understand yandmpdhent
behavior. The user can browse through the component data structure and modify data values.

Argus| facilitates performance analysis by providing the user with statistical measures
of component and interface usage, based on the number of exehtsnged during the
execution.

Conformance Verification

When verifying consistency between specification and implementation at the
architectural level, both the conformance of the architectural topology as well as the
conformance of each component andrmaotor of the architecture must be considered.

Conformance to the architectural topology is based on dynamic configuration
“enforcement”— i.e., the architecture is dynamically built based on information from the
specification and its mapping to the implerentation. This guarantees that the actual
architecture topology is consistent with its specified configuration.

Conformance verification for components is dynamically performed with respect to two
distinct (but associated) aspects: interface and beha&grthe names suggest, interface
conformance means the implemented component’s interface is consistent with the specified
interface, while behavioral conformance means that component behavior satisfies the
behavior specification (as embodied in the statech@hecking for both is performed based
on the messages exchanged and captured during monitored execution.

Conformance verification identifies all component interfaces not used during execution,
as well as all used interfaces not specified. This verifieonsistency/incompleteness in both
directions, from specification to implementation and weesa. For those interfaces that were
specified and used during execution, any mismatch between specification and implementation
is identified, including mesge type, direction, and parameters.

Behavioral conformance verification is based on parallel execution of all components’
statecharts. At runtime, each component instance has a statechart engine that executes based
upon incoming messages. Incoming messaggger transitions and outgoing messages are
compared to the expected effects. At any time, the user can follow the execution history and
check those messages that were responsible for each step, as well as those messages that were
not expected/specifitin the statechart.

Conformance verification requires not only monitored execution of the implementation
but also mapping events in the implementation to the specification. This representation
mapping must be defined by the user before verification; Argpiovides support for
defining the mapping. Implementation must be based on the C2 framework.
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6. EXAMPLE

In this section, we illustrate the analysis capabilities of Atgughin the context of an
elevator control system. First, we briefly explain the peobcontext, and then present the
architecture and components specification. Finally, analyses are performed and discussed.

6.1. Elevator Problem

The elevator system assigns elevator cars to attend users’ calls, which are made from
inside an elevator car @utside on a floor. For an inside call, the user is requesting a specific
elevator to move to a particular floor and only the specific car is assigned to attend the call.
For an outside call, the user is requesting an elevator to pick up at a paftorand the
system can assign any elevator to attend the call.

The component types used in this system are:

» Elevator represents the model for one elevator car in the system; the number of such

components determines the number of elevator cars.

» ElevatorWhdow: represents the view for each car.

» ControlWindow represents the control view for the building independent of any elevator car.

» Scheduler assigns an elevator to attend a user call; if there is no scheduler, all elevator cars

are assigned to an extat call, and after it is attended, outstanding cars are unassigned.

» Clock represents the timing of actions; a single clock component in the configuration means

the system is synchronous; multiple clock components means the system is asynchronous.
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Figured4. Architectural configuration for Elevator system dfldvatorcomponent interface specification

With these components, different architectural configurations can be specified and
analyzed Figure 4 shows the simplest architectural configuration in the background. This
architecture is composed of o@®ntrolWindow(lowest layer), on&levatorWindow(middle
layer), oneElevator,and oneClock (highest layer). Since there is only one elevator to attend
all calls, theScheduleris not necessary. Other configurations are also considered in this
section and different analysis results are discussed.

In Figure 2 (0 Section 4), theElevator behavior is specified using statecharts, where
concurrent states can be observed. Observe, for instance, tha¢ateingAddCall (trigger)
in state StoppedClosed, Idle, Regdyhe Elevator component is supposed to sendvant
CallAddedand transition to stat&loving, Up, Ready
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6.2. Component Specification Analysis

Static structural analysis checks the consistency between component interface
specification and the structural aspects of it's behavior specification. efisisgres that all
events referenced in a component’s statechart are defined in the interface specification and
that each interface defined there is used in the statechart. For instance, it ensures that the
interface AddCall of the Elevator component has beeused as a trigger in the statechart
model that describes the component behavior.

Static behavioral analysis over the component employs model checking to determine
whether a component’s behavior always satisfies -ds@ned propertiesFor example,
suppse the user wants to ensure thaEsevatorcannot be in statédoving andldle at the
same time; this property is represented as a Promela never clause:

F'[] ' (in_Moving && in_ldle)

Model checking returnslaim violated meaning thaMoving andldle are not mutually
exclusive (the states can be active at the same time). This occurs because the guards used fail
to consider the active states of the component in deciding which transition should fire.

6.3. Architecture Specification Analysis

Structural depndence analysis is one capability for analyzing the architectural
specification. In the GC2tyle, components have dynamic interfaces, and the “physical”
connections between components are not based on their interfaces. C2 components can even
modify their interfaces “orthefly”. Dependence analysis, in this context, determines the
logical dependence between component interfaces. In an architecture configuration with two
elevators and two clocks, for instance, dependences are shown graphically in Figure 5.
ControlWindow depends onElevator for the interfaces AddCal, RemoveCall and
CallAttended On the other handilevatorWindowis found to depend oRElevator for the
interfacesAddCall and CallAttendedamong others, but not f&RemoveCall Although both
CortrolWindow and ElevatorWindow show the same connection tBlevator in the
architectural configuration, further dependence analysis incorporating component structure
and behavior determines thHakevatorwWindowdoes not recognizR@emoveCall.
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Figure 5. Dependence analysisarchitecture with two elevators

Static structurhanalysis also identifies interfaces that are not used in the architectural
configuration under analysis. For instanédevator provides an interfac®istanceToCall
that returns the actual distance from the current state of the elevator to the caderaamn
not only the difference between floors but also the call direction and other calls to which the
elevator must attend. This service is useful for an optimidogedulerthat considers the
actual distance before selecting an Elevator to attend tmlla A simpler Scheduler
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component does not need this interface, and it would not be used in the architecture
configuration.

At the architecture level, model checking provides more power and more verification
options than at the component level. Now ee® verify whether or not one component can
reach a state based on the events generated by other components. For instance, suppose the
user wants to ensure that téock component cannot beéeactivatedwvhen theElevatoris
moving The following Promela ner clause expresses this property:

' [1 ! (Elevator_in_Mving & Cl ock_in_Deacti vat ed)

This property is not violated, thus the desired behavior has been verified.

Architectural simulation is based on the combined statecharts for all components in the
archtectural configuration. Again, the user provides a sequence of events, this time for the
entire system. Events are also generated by actions specified in the statecharts and their effect
propagated through the architecture. The user can reason abaaictheftevents generated,
such as that shown in the event graph in Figure 6. In this figure, we see the effect of
componentElevator2 receiving RemoveCalls to sendCallRemovedwhich is received by
ElevatorWindow2but this message is not understoodysosee avarning arrow Simulation
continues until there are no events left, at which point the simulator sends thetexariof
all components. After this, if no component generates an event, simulation stops. Otherwise,
simulation continues as befor&his enables determining whether the simulation completes
(reaches a final state) or reaches a deadlock situation.

Architectural simulation also provides statistics about the number of events generated
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Figure 6. Event Trace Graph generated by Simulation

for each component and for each interface; thiormétion is useful for predictive
performance evaluation as well as determining where further analysis or optimization might
be fruitful. For instance, after simulating an architectural configuration with two elevators, we

might see the following perceneg@f usage for each component’s interface:
ControlWindow 26.65% ElevatorWindow (N) 13.71%

Elevator (N) 11.51% Clock (N) 11.45%

With this information, we identify those components that may be-¢nitieal or
represent bottlenecks and, consequently,ulshde subject to further evaluation and
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performance improvement. Here, special attention should be given tGathieol\Window
component.

6.4. Architecture Implementation Analysis

Argus| supports debugging at the architectural level during execution ef th
implemented system. The user can toggle breakpoints for incoming and outgoing messages in
a component, and also remove, add or even edit messages (modify parameters) when
execution is stopped. Figure 7 illustrates behavioral conformance verificationg diystem
execution; here, the user is viewing th#evator component being verified against its
behavioral specification in the context of the executing architecture. Verification confirms
that the actual events the component has received (IN events upgbr left panel) and sent
(OUT events in the lower left panel) are the same as those specified in the component’s
statechart. The current possible transition to fire is displayed in the upper right panel, and the
history of fired transitions recognizeitom the actual events is displayed in the lower right
panel.
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Figure 7. Conformance Verification of th#evatorcomponent in the context of architectural execution

7. Conclusions

There is a noticeable gap between staeof-the-art and thestateof-the-practice in
architecturebased analysis techniques. Whde (in the research community) is based on
ADLs and their analysis tools, for the most part practice consists of specifying software
architectures using widespread design models for which analysis capabilities are extremely
limited.

There are basically two distinct approaches to reducing thisbgapging art-to-practice
(making software developers use ADLs for specification and their tools for analysis) or
bringing practiceto-art (making architecture analysis techniques and tools more accessible to
the developer, focusing them on more commonveidéspread design description methods).

Bringing art-to-practice would have the advantage that software architecture is better
captured and specified with ADLs than with common design models. Moreover, ADLs and
analysis tools are already available, altiotige analysis capabilities provided with ADLs are
primarily syntactic in nature. The disadvantage of this approach, however, is that it requires
time and major investment in training and incentive programs to bepoawéce A smooth
technology transitio (or introduction) is necessary.
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Bringing practiceto-art would have the advantage of smoother transition, whereby
developers could start using architectbesed analysis tools with common design models
(e.g., UML) without too much effort. Clearly, thesddvantage here is that UML does not
adequately represent software architecture concepts and some enhancement is required.
Although some researches are addressing this issue [18], the problem remains that
architecturebased analysis tools using UML deptions are not yet available and must still
be developed.

The work presented in this paper is a step in trying to reduce the gap by integrating
and practice in architecturdbased analysis using architecture specifications based on both
ADLs and UML stéecharts. Additional work is still required in this integration to transition
architecturebased analysis into a software development practice.

As future research directions, we are pursuing both approaches to reduciag- the
practice gap. Following theifst approach, we are considering the ACME interchange format
[5] for specifying structural properties of the architecture, and integrating statecharts (and
other UML models) to describe behavioral properties. This would then enable our
architecutrebasedanalysis toolkit to support a variety of ADLs, each translated into ACME.
Following the second approach, we are considering enhancements to UML that promote
completely specifying the structural and behavioral properties of software architecture, and
modifying our analysis toolkit for this purpose.

We continue also to consider supporting other types of analysis for architecture
specification and implementation. For instance, we are investigating and developing further
architecture dependence analysis cap@s] symbolic architectural simulation, and
architectural integration test criteria and test generation. We believe that an integrated set of
support capabilities for architecture and component specification and analysis will greatly
enhance the qualitpf systems developed in the architectbesed and componebased
software engineering paradigms.
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