XV Simpésio Brasileiro de Engenharia de Software

Identification of Framework Hot Spots Usig Pattem Languages

Rosana T. Vecae Braga'
Paulo Cesar Masiefo
ICMC-Universidade & Sao Paulo
{rtvb, masiero}@icmc.sc.usptb

Abstract

One of the mgor factors that brings compexity to framewak develgmert is the idertification of its hot spots,
i.e., the framevork parts that mug be keptflexible asthey ae gecific of irdividual g/stems In this paper we
show that pattern languages can be important saurces fo framewak hot spots identification and, consequently,
can be usedfor framewak construction. We define the types o hot spots that are idertifiable from information
preenid in the ekment of eachpatern of the patern language. W& propoe ako a proces for hot spots
idertification and presein a case study for idertifying the hot spots d a framewak built based on a pattern
languaye Pr busines resource nanagenent.

1. Introduction

Software reuseis agoal tha was s& dmost simultmeously with sotware engineering.
Structured programming followed by objed-oriented programmingand doman analysiswere
achievements obtaned along time ago @ming at the enhancement of software reuse Objed-
oriented softvare framewarks” have emerged in the sane context. They alow the reuse of
large stuctures n a paticular dorain, which can ke cusbmizedto specfic applcationsin the
domain. RBmilies of similar but non-identical appitions can be a@lived from a single
framework.

Software patems and patem languages hare also energed aming at reuse, but in
higher abstration levels. Softwar patterns ty to cagture theexperienceacquied during
software @velopment andygithesiz it in a problem/solution formi], 15] A patternlanguage
is a structuredcollection of patterns that build on eh other to tansform neds and
constraintsinto an architecture [14]. Pattern langages epregnt the temporal seque of
decisionghat lead to the completeesign of an appliation, so it becomes a methodguide
the development press [LO].

Although the first famewaks weae corcerned with basic domains,as for example
userinterface,presenty there is a greatinterestin deweloping appication frameworks, ie.,
framewaks for specific goplication domains, as business,gi@®ering, medicine and
insurance. Paticularly, the business evironment is becoming more dynamic with the
enhancement of worldwide compsdition and maket changes [11], denanding new
technologes to decease th applications deslopment effat.

Howeve, frameworksare dten vely complexto build, understand and usSkhere are
a few methoddor framewak development, ofvhich we can mention thdot-spotdriven
framewak development23, 24]and the frarawork design by systematicgeneralization |26,
27]. In both there is a step mhich the famewak hot spotsmust be identified, and this
involves deep knowlegk about the domain fawhich the famewak is being built.

! Apoio financeiro da FAPES — proceso e 98/135884
2 Apoio financeiro do ANPq e APESP
“From now onwe will use the tem framework with the ssme meaning asobjectoriented oftware framework.

- 145 -

XV Simpésio Brasileiro de Engenharia de Software

Framework hotspos ake the pars that hawe to be keptflexible, as hey arespecific of
individual systems.They are designedo be generic and reed to beadapted ecording to the
requirement®f each application thatan be instantiated usithe ramewak. Gererally they
are discowered firstby domain anaysis and then bysuaessiveframewnork refinements.
Howeve, each new dscowery may imply in the need @ redesgn pat of the framewark,
which makes destopment more complexThe best appach is to knowbeforehand which
are the framewok hot spots, in ater to minimize the numbe of iterations neded for its
construction.

Pdtern languages rdlect experience in speific domans, covering al their man
aspectsConsequenyl, they hawe built-in information about the points that diffeom one
application to anothe. According to Brugali and Menga there is an intriguing relationship
betveen pattern languagesand frameworks [9]. Both are cowreived for a sgecific domain,
solving most of the problems thda are common to applications in tha doman. Pdtern
languages may help togenerate frameworksas theycontain the rain abstractions found ian
application domain. These almsttions @n originate the famewvork high-level components.
So, the availabilit of a pdtern larguage for a speific domain and itscorrespondiigy
framewak imply tha new applications do not need to be built from saatch, because the
framewak offers thereusale implementaions ofeach pettern of the patern language. Thus,
the application development mess mg follow the lnguage graph, from root to leaves,
deciding onthe useof eachspecific pattern andreusng its implementaton offered by the
framework.

In this workwe show that patta larguages can bimportantsoures for framevork
hot spotsidentificationand,consequenyl, can [usedas a basis foframeworkconstruction.
We define the types of hot spots identifiabledm information presnted in the pattern
language. We also present a ase stug for identifying the hot spots o& framework built
based on a patte larguagefor businessesouce mamgement b, 7].

The pape is omganized in five se&tions. In section 2 we pesent therelated work
concernig framavork hot spots identificationln section 3 we state somguidelinesfor
identifying hot spotsfrom pattern énguages. In section 4 we shwa @ase stugt and in setion
5 we presnt the conclusions aridture wak.

2. Related Work

Pree proposea pro@ss for famewvork constration [24]. In it, an object modelfor a
speific applicdion is initially defined, followed by a @nstuction cycle tha is repeated
throughsucessiveframework refinements. Seera steps ae included in this gcle. First, the
hot spots are identified and domented # hot spot ceds. Then the hot spotseadesgned
and implemented, and the framework is tested to assess whether the hot spots d&sfy the
domain requirements. éW hot spots mybe found inthis stepandthe cycle is repeated At
theendof each iteetion, the franework is evaluated to detenine if it can bereleased fo use
or has to be modified.

Sdhmid staes tha frameworks are constiucted by systamatic generdization based on
the classmodel of a fixed application 6, 27] A high-level hot spots angdis is initially
done, aimingat establishinghe mainaspects of theystem that need tbe kept flexible. Then
eachhot spotis anayzed in detail producin its specifcation. The nexstep is to make the
high level dsign of each hot spot, genating several hot spot subgstems. Thdinal stepis to
transformthefix ed application class model into themewak class model,eplacing goups
of classes of t original model ly the corespondig hot spots sulystem.

- 146 -

XV Simpésio Brasileiro de Engenharia de Software

Froehlich and others docuemt the famework hot spots, ated hooks, using
descriptionghat ease tk framework instantiation forapticular applications 18]. The hooks
are identified by the framework builder, considexd to have ma knowledye about the
framewak. This knowledge is storedin the hooks dscription and an be usd by the
application develope who will know exactly what neds to be completed extendedin the
framewak and whch choices red to be domto develop sp#ic applications.

Roberts and Johnson present a pattern dmage for deweloping object-oriented
framewaks, called“Evolving Frameworks [25]. The patterns suggest thiéiree concete
applications be develed first and begradwlly genedlized to produce a white box
framewak. Then it goes through svera iterations to beome more and moe black box,
making use & component libraes, pluggable objectfine-grained objets, andfinally of a
visualbuilderand lamuagetools. The authors ggest hot spots to be epsulated in objects,
so tha variation is ahieved by composing the desired objeds rather than by creding
subclasses andriting methods.

Bosch and otérs present a simple model fiirmamework developmentwith six phases
[3]. The first phase deals with the domain gaal which is neessay to describethe domain
covered by the framework and to @pture its man requirements and concepts, resulting in a
domain analsis model.In the second pdse thdramework achitectual desgn is created; in
the third phaethis design is reined; in thefourth phaetheframewok is implanented using
a speific programming language In thefifth phaethe framewok is tested to evaluae both
its fundiondity and usaility. Findly, in the sixth phae the framewok is doamented,
usually with a use guide and dsign dacumentation.

We observethatthe processesuggesed by Pree, Schmid and Rothé& Johnson bgin
with paticular applicaion modds, induding the desired flexibility later. In Froehlich’s
approactthe knowledye aboutthe hot spots comes from theamework devdoper,who needs
to have acqued it through pratical experien@ or domain aalysis. In Bosch’s appoach the
domainanalsis modelis obtained in the dginning which makes thdramework hot spots
more foregedle. In this work we propose tB use ofa pattern language to guide the
framewak development, particularly to identify its hot spots. This sk is pat of a larger
work in which thepatem languageis dso use to hdp in thedesign of theframewok and in
theinstantiation of gpplications from theframework.

3. Hot Spots Identification fom Pattern Languages

Thereare ®veral types of hot spots in a fraework, which must be adapted toquuce
specific appliations. Accoding to Froehlichand others 18], a hot spot mabe adapted in
five different ways, summaried in Table 1.To perform suchadaptation,the frameworkuser
may have three different support lesfs: 1) option levelthere are pre-built componentdo be
chosen)?) supportpatternlevel (parameters or aues ae supplied fola hot spot, following
behavior patten); and 3) opn-ened level (tke requirements must be implementey the
user,without framework support).In a moregeneal way, the adaptation of &rameworkfor a
specific appliation involves the inclusion of newadses, methods and attributes; #reaval
of default classesthat are not desired in garticular application; and theadaptation of
algorithms tha cdculate spedfic atributes of the application.

The existenceof a pattern larguage fora paticular domain en gredly help in the hot
spots identification. The followingubsetions gve more dedil aboutthe seveal soures of
hot spots found in pattern lamapes.

- 147 -

XV Simpésio Brasileiro de Engenharia de Software

Table 1 — Types badaptationfor a hot spot [18]

Type Degription
1 A featre that eists in the framework, but is not part of the default
implemertation, is enabed
2 A feaure that is part of the defult implemertation, bu is not
desred, i disabled
3 A feaure is subgituted or oerriddenby arother
4 The existing kehavior is augmented
5 A feaure or ®rvice isadded

3.1. Rattern Language Graph, Context and RelatedPatterns

By analyzing the structure of a pattern language we observe that it has severa inter-
related pattens. This relationship is gerallly shown though a graph that representsthe
interadion among paterns and theseajuence in which they are gpplied. A simple analysis of
which patternsare of mandatoy use and whichare d optional use, indicates szl
framewak hot spots. Br example, both the patterariguage for improving the cgpacity of
reactivesystems[22] andthe pattern laguage for business resooe marmgement b, 7] use a
graph to illustrate the langge structureBy analzing this graph v can havean ideaof
which patterns i@ mandatoy or optional and, so, &can identify seveal hot spotsof the
framewak to be built. For example, in the patern language for business reource
management the “Reservethe Resour@” pattern is optional This indicakes the need of a hot
spotin the framework to handle this feaure This @n be confirmed by analyzing the patern
coniext, which preserd the sceario for the patern usage.

If the patterndnguage has no corespondig graph, information neessay to know
whether each m@ttern is optional or not, canebfound mainy in sections “Conte,
“Following patterns, and “Reated patterris The ontex is important, as givesindications
of the desirablefeatures fo the pattern wumye. Adding to this the knowlege @out the
applicationdomain, we can identify applicationsthat do not fit in the contéxand that,
consequenyl, do not usethe patten. Sections “elated pattens” and “followin g pattern$
showothe paterns tha are related to thecurrent patern, helping to identify othe aternative
patternsand, conequently indicatethe pattern optionaliy. The patten larguage Accounts
and Transetions R0] — althoudp written in the Aleander formand,conseqgently, without a
“related ptterns” fction — has agragraphat the end of thésolution” sectionpointingto the
related patems, wher it is clea that the use is direded to dternative paterns acwrding to
the appicaion chaactristics.

In geneal the hot spots found in these sections bghantypes 1 and 2foTable 1 ad
canbe adaptedhrough option, which is the simplestype of adaptation for the we. If the
framewak develogr wants the patternapplication to be the drult behavior 6 the
framewak, then ype 2 is used, otheise, fype 1 is chosn.

3.2. Variants and Sib-patterns

The “variants” or “variations” sction, commony found in the patternsfca patten
language, is one of tle richest soures of hot spotdt containsalternative solutions for the
problem solved ¥ the patternand defires variableaspets that must be availabler the
framewak use to instantiate it. These vaiants ma also ke doaumented in patern languages
in the form of sub-pattes or throgh seeral solutionsFor example,the “B uffalo Mountain”
pattern, which is partfahe generative cevelopment-proess patta language [13], hasthree
subpaterns with dternative solutions or the sane problem. Subpaterns have the same

- 148 -

XV Simpésio Brasileiro de Engenharia de Software

semantic meanmof variants and, so,ra also important sourcesf hot spots.The pattern
“Representing inheiitance in arelationd database”, which is mntdned in thepdtern language
for Object-RDBMS Integration [8], has two dternative solutions or the same problem, giving
rise to a famework hot spot.

Similarly to the hot spots found in section 3.1, i spotsfoundin this sectionare
mostly of types 1 and 2 of Table 1 andcan ke adaped throwgh option. All the alternative
solutionscan be implementedand one 6 them is made dault. During instantiation, the
framewak userchooses theeadired solution.

3.3. Rarticipants and Collaborations

The “participans’ and “collaborations” sedions, whch are gesentin paterns that
follow the GoF format[15], canindicate some of th&amework hot spots, as tgedexribe
the participants of thegtern and theicollabortion, gving alterrativesto useor not someof
the paticipants. When a paticipant is optiond there is a description of how the pattem works
without it. For example, in the pattern lgoage for businessresoure management [5],
“Source-Rirty” is an optonal paricipant in the “Rent the Resource” pettern, becausesmall
organiztions do not have braneb or deprtments to be maged. When aparticipant has
alternatves, seeral classes i@ offered and one D them must be chosento ad as the
paticipant, acording to design dedsions.For example, in the patern languagefor Object-
RDBMS Integration [8] there is a section namé®iscussion” in which variations of the
solution are preseed to discuss the participants anditircollaboations.

It is also possibleto identify, in these sedions, somehot spots esulting from
propagation of previous design decisions. This means that somerpstimay hawe their
paricipant or relationshps nodified accordig to the pettern varians already appled. For
example, in the pattern lgnage for businessasoure management §], the choice done when
applying the “Quantify the Resouce” patern implies in se&eral additions to thepaticipants
of patterns applied subsesnily. In general, the hot spots found in thesectons ag of type 2
and 3 of Table &nd @n be adpted throgh option or support patte.

3.4. Implementation

The “implementation”section, also present in patie that follow the GB format,
contains suggestions of alternative implementations of tlegoged solution, so that
accordirg to the restrictionsmposed ly each particulr appli@tion, diffelent implementations
can bechosen. Thus, this section identifies anotiype of hot spotlt mustbe obsened that
the framewok developer often mé&kes implanentaion doices thd limit the possible
implementations to oneor two solutions. So, is common br the framewak not to ©ver all
the possibilities presented in the “implementation” sectibframework usrswantto take
advantage of sud possibilities, theymust usethe open-ended mode In this s&tion we can
identify hot spots oftypes 1 to 4 ofTable 1, so tha dl the desired flexibility can be
implemented.

3.5. Structure

Another soure of hot spots is the “structeif section, which contains diagrammatic
representation of the patem classes and ther relationships. A deiled analysis of this sedion
can hdp to identify alternative behaviors tha may be desired for the systam opeations, oten
not describedn the “participants” gction. Thus, new hot spots cae definel to allow, for

- 149 -

XV Simpésio Brasileiro de Engenharia de Software

example, new attributes or methods foe ttlassesnd alterrative algorithms for computirg
attributes. This consists mayndf hot spots ofytpes 4 and 5 of Thle 1.

3.6. Types ofhot gots identifiable from pattern languages

Table 2 summaizes thetypes of hot spots thacan be identified from a patern
language. An identification code is assgned to eaxh of them to be usal in section 4. The
adaptationytpe shows what &s to be done to obtain application from thermework.

Table 2 — Hot spots idenfiable from pattern languages

idCode Hot spot Adaptation type Main sourcesin the
Degription pattern language
PATTERN_ Optional pattern Sewral clases adrelatinshipsare |« Languagegraph
OPTION disabled * Fdlowing patterrs
» Relatedpatterns
PARTIC_ Optional participart | One class ar its relatioshipswith |« Participarts
OPTION other classes are disbled or eabled
PARTIC_ Choice of One a more participarts must ke » Participarts
CHOICE participarts chosenaccordingto the g/stem e Structure
requiremerts e Variarts
RELATIONSHIP | Change of One ormore rektionshipsmustbe | Participarts
Relationship changed accordig to the system
requiremerts
BEHAVIOUR Change of One ormore algorithms must be * Participarts
Behavior changed accordig to the system e Structure
requiremerts
PROPAGATION | Propagationeffect | Some participants may have changes |« Participarts
of applcaion of in attributes or methodsaccordimto |« Structure
arpther patern other patterrs alread applied

Comparingthe adaptationype propo®d by Froehlich and othes (Tabk 1) with the
adaptation ytpe provided #ter identifying the hotspotsthrough the pattern language (Table
2), we @n see tht the secondllows a hgherabstraction led than the first. This implies a
better understandgnof the hot spotsypthe application develogr, as the hot spots@amore
straightly linked to the gstem requiements. Erthermore,each of the hot spots is tiei a
speific patem of the pattern language Thus, if the gpplicaion instantiation follows the
patern language then the hotspos adapdtion can be doe nore essily, becaug only those
hot spots correspondjrio the actuayl applied ptterns must be consice.

3.7. Quidelines for hot spots identfication

Basedon the types of hot spots defined inable 2 and on the infmation contained in
a pattern laguage presented in sgions 3.1 throuly 3.5,a generic processis proposeddelow
to help the framwork de\eloper to identiy the hot spots using patternanguage.

a. Initially analze the pattern language gaph,if there is op. Look for peths that
skip one or more pattes. F no gaph is available,ry to look at the contexof
each pttern andalso rebted patterns or rext paterns b be appled, asexplainedin
section 3.1.

b. Analyze eachpattern of the pattern laguage, following the explanations supplied
in sections 3.2 to 3.5 to identipossible hot spots.

c. For each hot spot identified in stepg @nd (b do the followiry:

- 150 -

XV Simpésio Brasileiro de Engenharia de Software

cl. Include it in the hot spots table, agsng it a number, a name and a brief
desaiption ofthedesired flexibility.

c2. Inform the hotspottype, a&cordng to what is neededo adaptthe framewark
for aspedic gpplicaion (Table 2).

c3. Assocate the hot spot with its sowe in the pattern languageand the pattern
number.
d. After havingfinishedthe analsis of the pettern language, amlyze te table creaed
instep (c) b:
d1. Refinethe specfication of each hot spot to include engluinformation for its
subsequent dagi and implementation.

d2. Identify other hot spots that@mnot exlicit in the patternlanguage, but should
be included beause thg would bring more flexibili ty to theframework.

d3. Use the information about thes new hot spots asdédbak to improve the
pattern laguage.

e. Consider now other non-fgtional aspets of the appliation that migpt originate
new hot spots,which indude portability, usability, searity and rdiability. Also
conside design and implanentaion issus thda would bing moreflexibility.

Some considerations need to be el@bout stepsl2 and e, as they are not tivial
activities. Knowlede about the doain is essentialto perfom activity d2, but some
guidelines en gve theframework deeloper indications of oty soures of hotspots.For
example, lookingat class attributes in the patie of thepattern language, somequestions
should be answed, like: “is this a computed attributel? so,“is it possible tohavesever
types ofalgorithms to compute ®” If the answe is affirmative, a nev hot spot hadeen
found. Looking at class rettionships, another sowr®f hot spots is to gue thecardirglity of
therelationships.flit is possible to find applications whereetbadinality would be different
from the cadinality proposedin the pattern, ten a vaiant of the pttern exsts and,
consequenyl, a nav hot spot.It is also desable to look for similar hot spots in the table,
becausesomnetimes new hot spots can beadlived by analogy. Examples of some of thes
cases i supplied in section 4.

Regarding activity e, it is necesary to balarce peformance ersus flexbility when
considerig non-furctional requiements and degn or implementationissues, because
including severa alternatives in the framework would mé&e it more flexible but degrade
systam performance For example, if we conside database portability, the choice of usinga
relationaldatalaseor anobject-agientedone mg derive a hot spot to be seylthe framework
user. Another exanple is the gaphcal use interface, which coud hawe two or nore
implementations (one for traditional apg@litons, another fovirtual applicationsgetc.) sothat
the framevork use could choose anof them. Notie that this ype d flexibility could be
achievedoy implementing sesral versions of the famewak, which would ause less impact
on g/stan peformance An example of a design/implementation issuetha could generate a
hot spot is a web-basediucation famewak, whee thecourse salction mechnismcan vay
[16]. For example, the entire list of available cousser just the onesliated to the student
major could be shown.

4. Case Study
This sectionpresents &ase stug paformed toevaluate tk proposed qocess. Saion

4.1 summaries the pattern laguage for business eoure@ mangement, calledsRN [5, 7],
which was used to delop a ramewak for the samedomain,cadled GREN [6]. Section4.2

- 151 -

XV Simpésio Brasileiro de Engenharia de Software

describes thapplication of the proess propasd in section 3.7 for thidentification of the
GREN framevork hot spots.

4.1 Pattern Language Eatures

The PatternLanguage for Business Resaue Management (Gestdo deRecursos d
Negocios or GRN in Portugies) [5, 7], originated fom a fmily of three paternsfor the
sanedoman [4], whosepdterns wee split intosmdler paterns to form the patern language.
It is conposed 6 fifteen anaysis paterns, sone of which are specific usagesor extensionsof
moregeneic patterns poposed in the literaterf2, 12, 17, 21]It is the result of arvolution
of more than teryears of ystems @velopment pratice of tre first authorfor mediumand
smallbusinessn this domain.tiwas coneived to help softwa engineers in the e/elopment
of applications corgrnedwith business resouecman@gement.This includes applications
where it is neessay to log transadions ofbusinessresouce rentd, trade or maintenance By
transadion we meanthe sanre as ad etal.: “a significanteventto be emembered, ie., an
eventthat the g/stem must remember through time” [12]. Resourcerental focuses pnmarily
on the satisfaction of aertain temporay need ofa prodwt or servie like a videadpe or a
physician time. Resowe tade fa@uses on the ansfeence of property of a product, asor
examplea productsaleor auction. Resoge maintenace focuses on the amtenane of a
certain prodat, usinglaba and g@rts to perfom it, as in an eledt applianceepair shop.

Figure 1 showsthe dgpendencies amog the mtterns and th orde in which they are
generally applied. Thesedependegies are also pesented,and eventally complemented,
inside each spfic patern. The nain petterns in the language ae RENT THE RESOURCE,
TRADE THE RESOURCE, and MAINTAIN THE RESOURG, indicated by a thicker line. Their use
is not mutually exclusiveand, in &ct, thee ae applications in which tlyecan fit tayether.
MAINTAIN THE RESOURCE may use RENT THE RESOURCE and TRADE THE RESOURCE, as in a
car repair shop gstem, in which prts ae traced and labor isented. The patterns i@ grouped
accordirg to their pupose, as illustrated inigure 1:group 1 @tternsare basicaly conerned
with the identification, quantification and stgeaof the busines®souces; group 2 paties
deal with the business tramsians perforned by the ystem; andyroup 3 f@tternstakecare of
details assocated to most busings tansections.

The GREN framework construction ba=l on the GRN patta language is beirg
conducted in two phasek the first phas a white boxversion ofthe framework is being
built. The framewak hot spots wee identified and ae bang implemented. Besides the
classedhat refer to eachpattern of the pettern language, other classesare recessay to deal
with more geneal aspets (as fo exanple obpct persstence, graphical use interface,
securi, etc.).In thesecondphase avizard is being built, also based on the paitarnguage,
to hdp instaitiating the framework to spedic gpplicaions.

4.2 Application o the hot spots identiication process

The processoutlinedin section3.7 was applied to idengifthe hot spots of the GREN
framewak. Most of the hot spots (88,9 %)eve found basd in the GRN pattern layuage
(stepsa andb of the pocess)and ony 11,1 % vere identified by other ways (stepd of the
processjn this casg. Table 3 summares the ypes é hot spots found. Wobserve that most
of them is of ype PATTERN_OPTION, since the pattern lguiage has nany optional patterns
and this resultsdirectly in hot spots, as @kained in section 3.1. Thappendixshows the

-152 -

XV Simpésio Brasileiro de Engenharia de Software

mapping between eachhot spot identified and & corespondig sour@s in the pattern
language (when appli@able) fa the 36 hot spots found.

(y

| IDENTIFY THE RESOURCE (1) |
Group 1
Business v
Resource | |
P UANTIFY THE RESOURCE (2
Identification Q 2
v
| STORE THE RESOURCE (3)
\ \
(y
RENT THE RESOURCE (4) TRADE THE RESOURCE (6) MAINTAIN THE RESOURCE (9)
A 4
GrO.Up 2 RESERVE THE QUOTE THE QUOTE THE
Business Resource (5) TRADE (7) MAINTENANCE (10)
Transactions
\4 v
CHECK RESOURCE
DELIVERY (8)
\
"2 4 v vy v
y \4
G 3 > ITEMIZE THE RESOURCE PAY FOR THE RESOURCE IDENTIFY MAINTENANCE
roup TRANSACTION (11) P TRANSACTION (12 TAsks (14)
Business
Transaction
Details y
IDENTIFY MAINTENANCE
IDENTIFY THE TRANSACTION PARTS(15)
ExecuToRr (13)
\

Figure 1 — “GRN Pattern Language” structure

To illustrate the hot spotsidentification based on thepatern language, we will use one
patern of the GRN pattern language, shown in kgure 2. It refers to the" Trade the Resouce”
pattern, eixacted fom the exended version of thpattern laguage [7]. Thefour hot spots
identified from this pattern carespond to numbers 13 to 16 okthppendix Hot spot 13,
cdled “Trade the Resource”, provides the flexibility to make optiond the application of this
pattern, beause the gttern larguage can also be usd for rental or mainterance applications,
and so it mg be dsired not to appl this pattern. This is BATTERN_OPTION hot spotasthe
whole pattern is optionallt was identified during step a of the praess of sction 3.7.
Analyzing the patterndnguaye graph (ge Fgure 1), we noticethat thereare pathsthatdo not
include the Trade the Resour@ patem, which implies thd this patern is optiond. Also,
observingthe patterrcontex (see item 6.1 ofilgure 2), we notice that appliationsthatdo not
dealwith resoucetradedo notfit in the prope contest for the pattern wmge and, thus, should
not use it.

Hot spots 14 to 16 were fourtlring stepb of the section 3.7 paess. Hot spot 14,
called“Source-party existence”, gvessmall organiztionsthe possibiliy of havirg a simpler
system, in which anches b departments ag¢ not considesd. This hot spowas identified

- 153 -

XV Simpésio Brasileiro de Engenharia de Software

observingthe “paticipants” setion of the patternsee item 6.5 ofigure 2: notice that
“Source-party” is an optiond participant of this pdtern). It is aPARTIC_OPTION hot spot, as its
purpose is to make sourperty optional. Hot spot 15 (“Destination-gg exstence”) is
similar to numbe 14 and was identified in thesane setion.

Table 3 — Sumnmary of the types ofhot spots identfied

Type o hot spa Quantity found Percentage

Step a| Step b| Step d| Step e
PATTERN_OPTION 14 38,9 %
PARTIC_OPTION 7 19,4 %
PARTIC_CHOICE 3 8,3 %
RELATIONSHIP 1 2,7%
BEHAVIOUR 2 3 13,9 %
PROPAGATION 5 1 16,7 %
Total 36

Hot spot 16 (“Tradd quantiy entry”) conerns the inclusion ch new attributein the
trade due to therpvious use ofnother pttern of the laguage and, so, is a PROPAGATION
hot spot. The knowledge about the paggtion cased ly theapplicationof certain patterngs
embedded in the pattelarguage, as an be veified in theparticipant“Resouce Trad€ (see
section 6.5 of Fyure 2). Thepattern laguage states thaan attribute “gantity” is included in
this class whenhe “Measurabe Resour®” sub-g@ttern has leen appkd ealier.

Anotherinterestirg result of the case study was the identifiation of four rew hot spots
during stepd2 of the proess proposed in sgon 3.7. lBr example, hotspot 12 of the
appendixwas not identified from the patteranbguage, but found though inspectionof
similar hot spots in thaable. An analysis of the table was dore to ched the propagation
effed of goplying the “Quantify the Resour®@” patern. This psiem has four aternative
solutions,presentedis sub-pattens. One of tlem, the “Measurable Rsoure@” sub-patern, is
usal when the resource is delt with in quantities, so the*quantity” atribute needs to be
enteredin all resour@ transactions. Thus, as weabe seen possible transdions in the
pattern laguage, weexpected to have sew hot spots conering this feature Howewer, we
found ony four. The missingones wee for patterns5, 9 and 10. Making a deepe domain
analsis, we corcluded that this feateris not desired fomaintenane systems(pattens 9 and
10), becaus it is very rare to hae resouces to le maintained in quantities (thieare usualy
unique).Soonly onenew hot spot was adetl (numbe 12), as it makesease to rearve moe
than one copy of aresouce It has be@ forgotten duiing the pattern language writing and,
afterwards, the gitern larguage wadix ed to include this requirement.

Hot spot 36 of the appendiz another eample of a hot spot found dugrstepd?2, by
analzing classatributes hat need ¢ be computed. Thee ae sewral different ways of
computingthe fine that customes neel to pay when a transadion is pad &fter its duedde.
Examplesare fixed daily, weekly or monthl/ fees, @ a pecentage of the total due value.
Besidesthe fine,interests mg optionally be chaged. Hot spots 8 and 35 weealso found
during stepd?2 of the section3.7 process. i was not possible to identifhot spots durig stepe
usingthe GRN patem languagebecauseit refers to analysis pdterns and is not oncerned
with desigh and implementationasgects. W have @cided not to include hot spots of this
caegory in a first vasion of the framework, but will conside this possibility in future
versions (see discussion at tred of setion 3.7).

- 154 -

XV Simpésio Brasileiro de Engenharia de Software

Pattern 6: TRADE THE RESOURCE

6.1 Context

Your apgicaion deak with trade o resaurces, which
may involve resources sold andfor purchased. You have
already identified amd Quartified these resairces.
Resource trading may be thoudit of as a resource
property transference, in which aresource owned by one
paty becomes owned by anothe paty. In a sale, if the
resairce is nat avalade in siock, then he cistomer can
fill in an orde that will be granted when possible In a
purchase an order is made to the supplier who ddivers
theresoure within a certain period.

6.2 Problem
How do you manage the resource trades made by your
application?

6.3 Forces

. It is essetial to log trade information, kecawse t can
be usd to generate important reports on resource
demand and omanization gains (mog systens in this
donmain ae concerned with profits).

e The additional storage space ad processimy time
required to log trade information has to be bdanced
against possiblegains in system fundiondity when
evaluaing costs versus bendfits. Forexanple, it may
be emough to increase amh decrease stk levels
when resources are traded, without conddering other
trade deails.

6.4 Structure
Figure 17 shows the TRADE THE RESOURCE pétern.

Source-Party Destination-Party

code
name
Iget trades by destination-party

0.1

code

name

Igettrades by sourceparty
0.1| makes
* v

Regurce Trade

axks for

v

6.5 Participants
Resource Trade: represents dl the details involved in trading the

resairce. The atribute st at us dendes hetrade sage:pending,
patially fulfilled, or fully fulfilled. When the MEASURABLE
RESOURCE sub-pdtern has been applied earlier, then an attribute
Quanti ty isadded b dende a nm-unitary resairce trace.
Resource/Resource | nstance/Resource Lot: the cloice anong
Resource, Resource Instance or Resource Lot depends on the
quantification sub-patern used.

Source-Party: represemts the aiginal resarce owner, for
exanple, in thecase of asdle it is the organization dgpartment or
branchthat sels the resairce, andin the case ba purchase i is
the sugplier organization. This dass is opiond for smel sde
systems where there are p departments a branctles.
Destination-Party: represents the find resource owner, for
example, in the case ba sat it is the customer buying the
resairce, ard in the case ba purchase 1 is the orgarizaion
depatment or branch buying the resource This classis optiond
for small purchase sysims where here are o departments a
branctes aml ako in systems where the customer is nat logged
as n suwermarkes.

6.6 Example
Figure 18 shows an indantiation of the TRADE THE RESOURCE

pdtern for an Inventory Control system

Desiration-Pary

Supgier Storebranch
code code
locaion name
1gét purchases by supplier !get purchases by branch
s for
1 | makes a 1
% * v
Y
Purchase Prodict
purchase number baCode
purchase dae is related to B | desaiption
status codt
observations o
2do the purchase * 1 ?;:T.;g\,'?;g:k
?#?;ilgg g&mﬁ !get purchasesby product
I#get non-ddiv. purch.

trade number
trade date
staus
observations
?do the trade * 1
?arcd thetrade
I#cdculate eanings

I#get non-delivered trades

ResurceReurce

is related to B InstanceResource Lat

Figure 17: TRADE THE RESOURCE patern

Resource
Tt Resource

Figure 18 Instantiation of the TRADE THE RESOURCEpétern

6.7 Following patterns

Now, look a pdterns in Section 2.3, which ae ussful for
modding othe trade details. As atrade is followed by a ddivery
ard canbe prececkd by aquotdion, try to use thepaterns QUOTE
THE TRADE (7) ard CHECK RESOURCE DELIVERY (8).

Figure 2 — Exanple of one pattern ofthe GRN pattern language

5. Concluding remarks and future work

It is rather intuitive tha splitting the gpplication doman in several patterns implies in
the isolation of several hot spots. This makes tlseesycomposedof smallerparts, which
need to be joined to make up thesific application.This fact wascorfirmed during the case

- 155 -

XV Simpésio Brasileiro de Engenharia de Software

study, whee we have obsrved nmany hot spots identified from the pattelarguage graph,
which means that optional parts oétystem are isolated ingiterns.

We have to remembyethat the patten language construction involves aanalsis of
theapplicationdomainand havirg practical experience in the @/elopment ofapplications for
this doman. In our casethefirst author had morethan ten yeas o pradice tha alowed the
developmentof the patten language. Durirg the famevork usae in the development of
specific appliations and beauise of tle application domain evolution, ndwat spotsmay be
necessy. In this cag, the patternahguage must also be ugded, includig new @tterns or
charging existing ones.

It could be argued that constructm a pattern laguage ony to help in the
identification of the hot spots of a possiblanfreworkwould not be worth theffort. We
think that this is nothe case, lmusea patterndnguage can also b usedfor documentig the
framewak, asalread/ shownin severa works [1, 19} for supportingthe famewak desgn
andimplementation 9, 10]; and as a method taide the transfomation of the famewak in
a concete appliation [9].

We ae interestal in the ddinition of two different processes: the first to build
framewaks basedn pattern larguages and theexond fo usinga patternadnguage during the
instantiation of applications with a framerk built based in thapatternlanguage. This
second proess my include the @velopment ofa wizard with an interhce that follows the
same conepts of the patta language, so that userscan apply the patten language andhawe
thar systems seni-automaicaly built.

We also intend to propose a spaanotation to represt egh hot spot identified from
the pattern laguage. Ourgoal is to provide enagh information about the hot sptd easeits
subsequent degn and implementation. df that, weare analzing seweral proposls for hot
spot represeation found in the literatureamorg which ae Pre&'s hot spot cards [24],
Schmid’s hot spots hig level desig specifiation [26, 27] Foehlich’'s hooks[18] and
Fontoura’s UM_-F [16]. Besides that, w are studyng whether it is important to repsent the
framewak flexibility in the patems of the pattern language, for example using UML-F
extensions b UML [16] in the class dagrans of each pitern. At first glance t seens thatthis
is desirable if the patem languageis beng developed with theintent of building aframewoik
based on it. Otherwise this would not be muaéfuls

References

[1] AARSTEN, A.; BRUGALI, D.; MENGA, G. (2000). A @M Frameworkand Pattern
Language, in “FAYAD, M. E. & JOHNSON, R. E.(eds.)(2000. Domain-Spedic
Application Frameworks: Frameworksqgeriene by Industry, John Wley & Sons.”, p.
21-42.

[2] BOYD, L. (1998). BisinessPatternof Assaiation Objectsin: “R. Martin, D. Riehle,
F. Buschmann éds.)PatternLanguage®f Program Design 3Addison-Wesley, 1998,
p. 395-408.

[3] BOSCH, Jet al. (1999). FaRmework Prol®#ms and Eperiencesin: “FAYAD, M. E.;
JOHNSON, R. E.; SCHMIDT, D. C. (eds.) (199). Building Application Frameworks:
Object-Oriented Foundations of Framewdlksign John Wley & Sons”, p. 55-82.

[4] BRAGA, R. T. V.; GERMANQ F. S. R.; MASERO, P. C. (1998). A Family of
Patterndor Business ResouedManagement. Proasling of the 5° Annual Conferece
on Pattern languages of Prgrams (R.OP’98), Monticello-IL-EUA. Techni@al Report
#WUCS-98-25 Washingon Uniwversity in St. Louis, Missouri, USA,august, 1998,

- 156 -

XV Simpésio Brasileiro de Engenharia de Software

available at 15/03/99 ithe URL: jerry.cs.uiuc.edu/plop/plopd4-submissions/plopd4-
submissions.htin

[5] BRAGA, R.T.V.; GERMANQF. S. R.; MASERO, P. C. (1999 PatternLanguage
for BusinessResouce Management. Procedings o the 6" Pattern Languages of
Progams Confereoe (PLoP’99), Monti@llo-IL, USA, v.7, p. 1-34.

[6] BRAGA, R. T. V. (200). GREN: Aframewak for BusinessResouce Management.
WEB PagelCMC-USP, Sao Carlos-SP, Available in 04/10/01,LLUR
www.icmc.sc.usp di~rtvb/ GRENFramewdk.html.

[7] BRAGA, R. T. V.; GERMANQ F. S. R,;MASIERO, P. C. (2001). Extensionof the
Pattern language for BusinessResouce Maragement. Unpublished,|CMC-USP, Sa
Carlos-SP. Available for download in 03/10/01, lUR
www.icmc.sc.usp ti~rtvb/exended_patlamzip.

[8] BROWN, K. & WHITENACK, B. G. (1996). CrossimChasmsA Patternlanguage for
Object-RIBMS Integration, The Static Patterng) “VLISSDES, J; COPLIEN, J;
KERTH, N. (eds.)(1996). Pattern Languages of ProgrameBign 2 Reading-MA;
Addison-Wesley”, p. 227-238.

[99 BRUGALI, D. & MENGA, G. (1999). Frameworks and Patte Languages: an
Intriguing RelationshipACM Compuing Surveysmarch 1999.

[10] BRUGALI, D.; MENGA, G.; AARSTEN, A. (2000). A Gse Stug for Flexible
Manufacturig Systems,in “FAYAD, M. E. & JOHNSON, R. E. (eds.(2000).
Domain-Specific Application FrameworkSrameworks Eperien@ by Industry, John
Wiley & Sons.”, p. 85-99.

[11] CAREY, J; CARLSON, B.; GRASER, T. (2000)SanFrartisco Design Patterns:
Blueprints for Business Softwarkddison-W\ésley.

[12] COAD, P.; NORTH, D.; MAYFIELD, M. (1997 Object Models: Strategies, Pattens
and Applications2.ed., Yourdon Press.

[13] CORLIEN, J. O. (1995) A Generative Development-Proess PatternLanguage, in
“Coplien, J.O. & Schmidt, D. C. (1995pattern Languages of Program Design
Addison-Wesley”, p. 183-237.

[14] CORLIEN, JO. (1998). Softwee Design Pattens: Common Questions and Answaers,
Linda Rising (editor) (1998) The Pattes Handbook: &chniques, Stragges, and
Applications, CambridgUniversity Press, N& York, p. 311320.

[15] GAMMA, E.; HELM, R.; DHNSON, R.; \LISSDES, J (1995).Design Patterns-
Elements of Reusable ObjeOriented SoftwareReadig-MA, Addison-Wesley.

[16] FONTOURA, M. F; PREE, W; RUMPE B. (2000) UM_-F: A Modeling Language
for ObjectOriented Frameworks, 14th Bopean Cordrerce on Object Oriented
Progamming (ECOOP 2000)Lecture Notes in Computer Scxerl850, Spriger, 63
82, Cannes, fan.

[17] FOWLER, M.(1997).Analysis Pattens. Addison-W\esley.

[18] FROEHLICH, G.; HOOVER H. J; LIU, L.; SORENSON, P. (1997). Hookimg into
Object-Orented ApplicationFramevorks. Proeedirgs of the International Conferernce
on Software Egineering, BostonMass-USA, p. 491-501.

[19] JOHNSON, R. E. (1992). Documentirframeworks usig Patterns, FPoceedirgs of the
Conferene on Objet-Oriened Praggrams, §stems, Languages and Applications
(OOP3.A’92), Vancouve, British Columbia, p. 63-76.

[20] JOHNSON, R. E. (1996). Transdons and Accountsn “VLISSDES, J; COPLIEN,
J.; KERTH, N. (eds.) (1996)Pattern Languages of Program Design 2&ddison-
Wesley”, p. 239249.

- 157 -

XV Simpésio Brasileiro de Engenharia de Software

[21] JOHNSON, R E.; WOOLF, B. (1998). Type Object. In “Martin, R., Riehle D.,

[22]

[23]

[24]

[25]

[26]

[27]

Buschmann Heds.)Pattern languages of Program [@sign 3, Addison-Wesley”, p. 47-
65.

MESZAROS G. (1996). A PatternLanguage for Improving the Cajpcity of Reative
Systems, in “VLISSDES, J; COPUEN, J; KERTH, N. (eds.) (1996)Pattern
Languages of Program DesignReadig-MA; Addison-Wesley”, p. 575591.

PREE, W (1995). Design Patterns for Object-Oriente@oftware Development
Reading-MA, Addison-Visley.

PREE, W (1999).Hot-spot-DrivenDevelopment, in: “FAYAD, M. E.; OHNSON, R
E.; SCHMDT, D. C. €ds.) (1999)Building Application Frameworks: Object-Gented
Foundations of Framework Desigdohn Wiley & Sons”, p. 379893.

ROBERTS, D. &JOHNSON, R. E. (1998). EvolvinFramewvorks: A PatternLanguage
for Deweloping Object-Oreented Framewvorks, in Martin et al. (1998, p. 471-486,
disponivel em 12/03/99 na UWRst-www.cs.uiuc.edu/uss/droberts/evolve.html
SCHMID, H. A. (1997). Systematic Famevork Desgn by Genealization.
Communications of the ACM. 40, n.10, p. 48-51.

SCHMID, H. A. (1999). Framework Design by Systematic Genealization, in:
“FAYAD, M. E.; OHNSON, R. E.; SCHANDT, D. C. €ds.) (1999. Building
Application Frameworks: Object-@ented Foundations of FrameworkeBign, John
Wiley & Sons”, p. 353-378.

Appendix - GREN Franmework ha spots

Hot spot Name Degription Type Source in the | Pattern
number pattern language #
1 Resource A resource canhave a ype, bu PARTIC_ | Participarts, 1
Qualification this is optional. It canalsohave CHOICE | Variarts
multiple types a nestedtypes.
2 Resource A resource canbe wique, can PARTIC_ | Participarts, 2
Quantification have multiple instances, ca be CHOICE Structure, Variars
managed in quartities a in lots (sub-pattemns)
3 Reource Storge | It canor camot be degable trat | PATTERN | LanguageGraph+ 3
the ajplication manages the _OPTION | Context
repurce gorage
4 Reource Rental | The applicationmay or may not PATTERN | LanguageGraph + 4
corcernresource retal _OPTION | Context
5 Existence of The organization may be small and | PARTIC_ | Participarts 4
Souceparty”in | not have brarches or depanents | OPTION
the renal
6 Rened instance | It is necesary to read tk ingance | PROPAGA | Participarts 4
ertry number ofthe rented resurce TION
when the rental reérsto an
instantiable resairce (popagation
of patern 2 usage)
7 Rerted quantity | It is necesary to read tlke quantity | PROPAGA | Participarts 4
ertry of rerted resurceswhenthe rera | TION
refers to ameasirable resurce
(propagtion of patern 2 usage)

“In businessresairce management systems a resarce moves from a sarce-party (the party that initially owns
the resurce) to tle desinationparty (the party that acqiresthe resurce, tanporaly or defnitely).

- 158 -

XV Simpésio Brasileiro de Engenharia de Software

Hot spot Name Degription Type Source in the | Pattern
number pattern language #
8 Instance nunier | The instance nuber ofthe BEHAVIO |- 4
geneation reource to be reted carnbe UR
supplied by the user or
automaticdly generated by the
system
9 Resource The gpplication may or may not PATTERN | LanguageGraph + 4
reservation need to dealith reource _OPTION | Context
reservation
10 Existence d The organization may be small and | PARTIC_ | Participarts 5
Souceparty in | not have brarches or depantnents | OPTION
the regrvation
11 Reservation of It may be allovedfor theuserto | RELATIO | Participarts 5
the resurce reserve a particlar ingarce NSHIP
instance instead | instead ofreserving the resurce
of reource
12 Reserved It is necesary to read tke quantity | PROPAGA |- 5
quartity entry of reerved regurceswhenthe TION
resrvationrefers to ameasuable
resource (pr@agation of pattern2
usae)
13 Resaurcetrade | The gpplicaion may or may not PATTERN | LanguageGraph + 6
corcernthe trade ofesources _OPTION | Context
14 Existence d In sde systems, the organization PARTIC | Participarts 6
Souceparty in | may be small and nat have OPTION
the trace brarchesor depantents.
15 Existence d In purchasesystams, the PARTIC_ | Participarts 6
Destinationparty | organization may be small andnat | OPTION
in the trace have brarchesor depannents.
16 Traded quartity | It is necesary to read tle quantity | PROPAGA | Participarts 6
ertry of traded resurceswhenthe trade | TION
refers to ameasirable resurce
(propagtion of patern 2 usage)
17 Resource The gpplication may or may not PATTERN | LanguageGraph + 7
quotation corcernthe quotationof reources | OPTION | Context
18 Existence d In sde systems, the organization PARTIC_ | Participarts 7
Souceparty in | may be small and nat have OPTION
the quotation brarchesor depantents.
19 Existence d In purchasesystams, the PARTIC_ | Participarts 7
Dedtinationparty | organizaion may be small and nat | OPTION
in the quotation | have brarchesor depannents.
20 Quoted quartity | It is necesary to read te quantity | PROPAGA | Participarts 7
ertry of quoted resurceswhen the TION
guatation refers toameasurabe
reource (prgagation of pattern
2)
21 Chedk of The applicaion may or may not PATTERN | LanguageGraph + 8
reource delivery | need to tak care ofchedkingthe | _OPTION | Context
resource delivery
22 Existence d The organization may be small and | PARTIC | Participarts 8
Souceparty in | not have brarches or depantnents | OPTION
resource delivery
23 Delivered It is necesary to read tke quantity | PROPAGA | Participarts 8
quartity entry of delivered resurceswhen the TION

delivery refers to measirable
reources(propagaion of peitern 2)

- 159 -

XV Simpésio Brasileiro de Engenharia de Software

Hot spot Name Degription Type Source in the | Pattern
number pattern language #
24 Resource The gpplication may or may not PATTERN | LanguageGraph + 9
maintenan@ corcernthe re@urce maintenance | OPTION | Context
25 Tasks The gpplication may or may not PATTERN | LanguageGraph + 14
specification want to individually specify the _OPTION | Context
tasks involvedin the maintenance
26 Pars The gpplication may or may not PATTERN | LanguageGraph + 14
discrimination want to discriminate the pars used | OPTION | Context
in the maintenance
27 Diff erent The application may allow a RELATIO | Participarts 15
executors for different exeautor to perbrm each | NSHIP
eachtak mainterance task
28 Managenent of | It may be degable sveral PATTERN | LanguageGraph + 11
several resurces | resaurces to be managel in a _OPTION | Context
in a shgle single trarsaction
transaction
29 Managenent of | The gpplicaion may or may not PATTERN | LanguageGraph + 12
the trarsactin deal with the seeral payments _OPTION | Context
payment associated to a tragsaction
30 Idertificaton of | The applicatiormay treat PATTERN | LanguageGraph + 13
the trarsactin commissims tobe paid for the _OPTION | Context
execuor tramsaction exeautor
31 Commisson It may be degable that BEHAVIO | Variarts 13
accordimg to commisgons be paid to exctors | UR
installments paid | only whenan installmert is paid
by the cusomer
32 Execuor team The application may allow PARTIC_ | Participarts 13
transacions to be perbrmed by CHOICE
execuor teans so that
commissims are sfit amongthem.
33 Quotation Tasks | The gpplicaion may or may not PATTERN | LanguageGraph + 14
specification want to individually specify the _OPTION | Context
tasks involvedin the quotation
34 Quotation Pars | The gpplicaion may or may not PATTERN | LanguageGraph + 15
discrimination want to discriminate the pars used | OPTION | Context
in the quotation
35 Chageof rentals | The gpplication may have no BEHAVIO |- 4
charge for rertals asin some UR
libraries
36 Finecomputing | The computing of fines due to BEHAVIO |- 12
delayed payment may vary from UR

application to application

- 160 -

