
Identification of Framework Hot Spots Using Pattern Languages

Rosana T. Vaccare Braga1

Paulo Cesar Masiero2

ICMC-Universidade de São Paulo
{rtvb, masiero}@icmc.sc.usp.br

Abstract

One of the major factors that brings complexity to framework development is the identification of its hot spots,
i.e., the framework parts that must be kept flexible as they are specific of individual systems. In this paper we
show that pattern languages can be important sources for framework hot spots identification and, consequently,
can be used for framework construction. We define the types of hot spots that are identifiable from information
presented in the elements of each pattern of the pattern language. We propose also a process for hot spots
identification and present a case study for identifying the hot spots of a framework built based on a pattern
language for business resource management.

1. Introduction

Software reuse is a goal that was set almost simultaneously with software engineering.
Structured programming, followed by object-oriented programming and domain analysis were
achievements obtained a long time ago aiming at the enhancement of software reuse. Object-
oriented software frameworks∗ have emerged in the same context. They allow the reuse of
large structures in a particular domain, which can be customized to specific applications in the
domain. Families of similar but non-identical applications can be derived from a single
framework.

Software patterns and pattern languages have also emerged aiming at reuse, but in
higher abstraction levels. Software patterns try to capture the experience acquired during
software development and synthesize it in a problem/solution form [1, 15]. A pattern language
is a structured collection of patterns that build on each other to transform needs and
constraints into an architecture [14]. Pattern languages represent the temporal sequence of
decisions that lead to the complete design of an application, so it becomes a method to guide
the development process [10].

Although the first frameworks were concerned with basic domains, as for example
user interface, presently there is a great interest in developing application frameworks, i.e.,
frameworks for specific application domains, as business, engineering, medicine and
insurance. Particularly, the business environment is becoming more dynamic with the
enhancement of worldwide competition and market changes [11], demanding new
technologies to decrease the applications development effort.

However, frameworks are often very complex to build, understand and use. There are
a few methods for framework development, of which we can mention the hot-spot driven
framework development [23, 24] and the framework design by systematic generalization [26,
27]. In both there is a step in which the framework hot spots must be identified, and this
involves deep knowledge about the domain for which the framework is being built.

1 Apoio financeiro da FAPESP – processo nº 98/13588-4
2 Apoio financeiro do CNPq e FAPESP
∗ From now on we will use the term framework with the same meaning as object-oriented software framework.

XV Simpósio Brasileiro de Engenharia de Software

- 145 -

Framework hot spots are the parts that have to be kept flexible, as they are specific of
individual systems. They are designed to be generic and need to be adapted according to the
requirements of each application that can be instantiated using the framework. Generally they
are discovered first by domain analysis and then by successive framework refinements.
However, each new discovery may imply in the need to redesign part of the framework,
which makes development more complex. The best approach is to know beforehand which
are the framework hot spots, in order to minimize the number of iterations needed for its
construction.

Pattern languages reflect experience in specif ic domains, covering all their main
aspects. Consequently, they have built-in information about the points that differ from one
application to another. According to Brugali and Menga there is an intriguing relationship
between pattern languages and frameworks [9]. Both are conceived for a specific domain,
solving most of the problems that are common to applications in that domain. Pattern
languages may help to generate frameworks, as they contain the main abstractions found in an
application domain. These abstractions can originate the framework high-level components.
So, the availability of a pattern language for a specific domain and its corresponding
framework imply that new applications do not need to be built from scratch, because the
framework offers the reusable implementations of each pattern of the pattern language. Thus,
the application development process may follow the language graph, from root to leaves,
deciding on the use of each specific pattern and reusing its implementation offered by the
framework.

In this work we show that pattern languages can be important sources for framework
hot spots identification and, consequently, can be used as a basis for framework construction.
We define the types of hot spots identifiable from information presented in the pattern
language. We also present a case study for identifying the hot spots of a framework built
based on a pattern language for business resource management [5, 7].

The paper is organized in five sections. In section 2 we present the related work
concerning framework hot spots identification. In section 3 we state some guidelines for
identifying hot spots from pattern languages. In section 4 we show a case study and in section
5 we present the conclusions and future work.

2. Related Work

Pree proposes a process for framework construction [24]. In it, an object model for a
specific application is initiall y defined, followed by a construction cycle that is repeated
through successive framework refinements. Several steps are included in this cycle. First, the
hot spots are identified and documented by hot spot cards. Then the hot spots are designed
and implemented, and the framework is tested to assess whether the hot spots satisfy the
domain requirements. New hot spots may be found in this step and the cycle is repeated. At
the end of each iteration, the framework is evaluated to determine if it can be released for use
or has to be modified.

Schmid states that frameworks are constructed by systematic generalization based on
the class model of a fixed application [26, 27]. A high-level hot spots analysis is initially
done, aiming at establishing the main aspects of the system that need to be kept flexible. Then
each hot spot is analyzed in detail producing its specification. The next step is to make the
high level design of each hot spot, generating several hot spot subsystems. The final step is to
transform the fixed application class model into the framework class model, replacing groups
of classes of the original model by the corresponding hot spots subsystem.

XV Simpósio Brasileiro de Engenharia de Software

- 146 -

Froehlich and others document the framework hot spots, called hooks, using
descriptions that ease the framework instantiation for particular applications [18]. The hooks
are identified by the framework builder, considered to have more knowledge about the
framework. This knowledge is stored in the hooks description and can be used by the
application developer, who will know exactly what needs to be completed or extended in the
framework and which choices need to be done to develop specific applications.

Roberts and Johnson present a pattern language for developing object-oriented
frameworks, called “Evolving Frameworks” [25]. The patterns suggest that three concrete
applications be developed first and be graduall y generalized to produce a white box
framework. Then it goes through several iterations to become more and more black box,
making use of component libraries, pluggable objects, fine-grained objects, and finally of a
visual builder and language tools. The authors suggest hot spots to be encapsulated in objects,
so that variation is achieved by composing the desired objects rather than by creating
subclasses and writing methods.

Bosch and others present a simple model for framework development with six phases
[3]. The first phase deals with the domain analysis, which is necessary to describe the domain
covered by the framework and to capture its main requirements and concepts, resulting in a
domain analysis model. In the second phase the framework architectural design is created; in
the third phase this design is refined; in the fourth phase the framework is implemented using
a specific programming language. In the fifth phase the framework is tested to evaluate both
its functionalit y and usabilit y. Finall y, in the sixth phase the framework is documented,
usually with a user guide and design documentation.

We observe that the processes suggested by Pree, Schmid and Robert & Johnson begin
with particular application models, including the desired flexibilit y later. In Froehlich’s
approach the knowledge about the hot spots comes from the framework developer, who needs
to have acquired it through practical experience or domain analysis. In Bosch’s approach the
domain analysis model is obtained in the beginning, which makes the framework hot spots
more foreseeable. In this work we propose the use of a pattern language to guide the
framework development, particularly to identif y its hot spots. This task is part of a larger
work in which the pattern language is also used to help in the design of the framework and in
the instantiation of applications from the framework.

3. Hot Spots Identification from Pattern Languages

There are several types of hot spots in a framework, which must be adapted to produce
specific applications. According to Froehlich and others [18], a hot spot may be adapted in
five different ways, summarized in Table 1. To perform such adaptation, the framework user
may have three different support levels: 1) option level (there are pre-built components to be
chosen); 2) support pattern level (parameters or values are supplied for a hot spot, following a
behavior pattern); and 3) open-ended level (the requirements must be implemented by the
user, without framework support). In a more general way, the adaptation of a framework for a
specific application involves the inclusion of new classes, methods and attributes; the removal
of default classes that are not desired in a particular application; and the adaptation of
algorithms that calculate specif ic attributes of the application.

The existence of a pattern language for a particular domain can greatly help in the hot
spots identification. The following subsections give more detail about the several sources of
hot spots found in pattern languages.

XV Simpósio Brasileiro de Engenharia de Software

- 147 -

Table 1 – Types of adaptation for a hot spot [18]

Type Description
1 A feature that exists in the framework, but is not part of the default

implementation, is enabled
2 A feature that is part of the default implementation, but is not

desired, is disabled
3 A feature is substituted or overridden by another
4 The existing behavior is augmented
5 A feature or service is added

3.1. Pattern Language Graph, Context and Related Patterns

By analyzing the structure of a pattern language, we observe that it has several inter-
related patterns. This relationship is generall y shown through a graph that represents the
interaction among patterns and the sequence in which they are applied. A simple analysis of
which patterns are of mandatory use and which are of optional use, indicates several
framework hot spots. For example, both the pattern language for improving the capacity of
reactive systems [22] and the pattern language for business resource management [5, 7] use a
graph to illustrate the language structure. By analyzing this graph we can have an idea of
which patterns are mandatory or optional and, so, we can identify several hot spots of the
framework to be built. For example, in the pattern language for business resource
management the “Reserve the Resource” pattern is optional. This indicates the need of a hot
spot in the framework to handle this feature. This can be confirmed by analyzing the pattern
context, which presents the scenario for the pattern usage.

If the pattern language has no corresponding graph, information necessary to know
whether each pattern is optional or not, can be found mainly in sections “Context”,
“Following patterns” , and “Related patterns” . The context is important, as it gives indications
of the desirable features for the pattern usage. Adding to this the knowledge about the
application domain, we can identify applications that do not fit in the context and that,
consequently, do not use the pattern. Sections “related patterns” and “followin g patterns”
show other patterns that are related to the current pattern, helping to identif y other alternative
patterns and, consequently, indicate the pattern optionality. The pattern language Accounts
and Transactions [20] – although written in the Alexander form and, consequently, without a
“related patterns” section – has a paragraph at the end of the “solution” section pointing to the
related patterns, where it is clear that the user is directed to alternative patterns according to
the application characteristics.

In general the hot spots found in these sections belong to types 1 and 2 of Table 1 and
can be adapted through option, which is the simplest type of adaptation for the user. If the
framework developer wants the pattern application to be the default behavior of the
framework, then type 2 is used, otherwise, type 1 is chosen.

3.2. Variants and Sub-patterns

The “variants” or “variations” section, commonly found in the patterns of a pattern
language, is one of the richest sources of hot spots. It contains alternative solutions for the
problem solved by the pattern and defines variable aspects that must be available for the
framework user to instantiate it. These variants may also be documented in pattern languages
in the form of sub-patterns or through several solutions. For example, the “Buffalo Mountain”
pattern, which is part of the generative development-process pattern language [13], has three
sub-patterns with alternative solutions for the same problem. Sub-patterns have the same

XV Simpósio Brasileiro de Engenharia de Software

- 148 -

semantic meaning of variants and, so, are also important sources of hot spots. The pattern
“Representing inheritance in a relational database”, which is contained in the pattern language
for Object-RDBMS Integration [8], has two alternative solutions for the same problem, giving
rise to a framework hot spot.

Similarly to the hot spots found in section 3.1, the hot spots found in this section are
mostly of types 1 and 2 of Table 1 and can be adapted through option. All the alternative
solutions can be implemented and one of them is made default. During instantiation, the
framework user chooses the desired solution.

3.3. Par ticipants and Collaborations

The “participants” and “collaborations” sections, which are present in patterns that
follow the GoF format [15], can indicate some of the framework hot spots, as they describe
the participants of the pattern and their collaboration, giving alternatives to use or not some of
the participants. When a participant is optional, there is a description of how the pattern works
without it. For example, in the pattern language for business resource management [5],
“Source-Party” is an optional participant in the “Rent the Resource” pattern, because small
organizations do not have branches or departments to be managed. When a participant has
alternatives, several classes are offered and one of them must be chosen to act as the
participant, according to design decisions. For example, in the pattern language for Object-
RDBMS Integration [8] there is a section named “Discussion” in which variations of the
solution are presented to discuss the participants and their collaborations.

It is also possible to identif y, in these sections, some hot spots resulting from
propagation of previous design decisions. This means that some patterns may have their
participants or relationships modified according to the pattern variants already applied. For
example, in the pattern language for business resource management [5], the choice done when
applying the “Quantify the Resource” pattern implies in several additions to the participants
of patterns applied subsequently. In general, the hot spots found in these sections are of type 2
and 3 of Table 1 and can be adapted through option or support pattern.

3.4. Implementation

The “implementation” section, also present in patterns that follow the GoF format,
contains suggestions of alternative implementations of the proposed solution, so that
according to the restrictions imposed by each particular application, different implementations
can be chosen. Thus, this section identifies another type of hot spot. It must be observed that
the framework developer often makes implementation choices that limit the possible
implementations to one or two solutions. So, it is common for the framework not to cover all
the possibilities presented in the “implementation” section. If framework users want to take
advantage of such possibilities, they must use the open-ended mode. In this section we can
identify hot spots of types 1 to 4 of Table 1, so that all the desired flexibilit y can be
implemented.

3.5. Structure

Another source of hot spots is the “structure” section, which contains a diagrammatic
representation of the pattern classes and their relationships. A detailed analysis of this section
can help to identif y alternative behaviors that may be desired for the system operations, often
not described in the “participants” section. Thus, new hot spots can be defined to allow, for

XV Simpósio Brasileiro de Engenharia de Software

- 149 -

example, new attributes or methods for the classes and alternative algorithms for computing
attributes. This consists mainly of hot spots of types 4 and 5 of Table 1.

3.6. Types of hot spots identifiable from pattern languages

Table 2 summarizes the types of hot spots that can be identif ied from a pattern
language. An identif ication code is assigned to each of them to be used in section 4. The
adaptation type shows what has to be done to obtain an application from the framework.

Table 2 – Hot spots identifiable from pattern languages

idCode Hot spot
Description

Adaptation type Main sources in the
pattern language

PATTERN_
OPTION

Optional pattern Several classes and relationships are
disabled

• Language graph
• Following patterns
• Related patterns

PARTIC_
OPTION

Optional participant One class and its relationships with
other classes are disabled or enabled

• Participants

PARTIC_
CHOICE

Choice of
participants

One or more participants must be
chosen according to the system
requirements

• Participants
• Structure
• Variants

RELATIONSHIP Change of
Relationship

One or more relationships must be
changed according to the system
requirements

• Participants

BEHAVIOUR Change of
Behavior

One or more algorithms must be
changed according to the system
requirements

• Participants
• Structure

PROPAGATION Propagation effect
of application of
another pattern

Some participants may have changes
in attributes or methods according to
other patterns already applied

• Participants
• Structure

Comparing the adaptation type proposed by Froehlich and others (Table 1) with the
adaptation type provided after identifying the hot spots through the pattern language (Table
2), we can see that the second allows a higher abstraction level than the first. This implies in a
better understanding of the hot spots by the application developer, as the hot spots are more
straightly linked to the system requirements. Furthermore, each of the hot spots is tied to a
specific pattern of the pattern language. Thus, if the application instantiation follows the
pattern language then the hot spots adaptation can be done more easily, because only those
hot spots corresponding to the actually applied patterns must be considered.

3.7. Guidelines for hot spots identification

Based on the types of hot spots defined in Table 2 and on the information contained in
a pattern language presented in sections 3.1 through 3.5, a generic process is proposed below
to help the framework developer to identify the hot spots using a pattern language.

a. Initiall y analyze the pattern language graph, if there is one. Look for paths that
skip one or more patterns. If no graph is available, try to look at the context of
each pattern and also related patterns or next patterns to be applied, as explained in
section 3.1.

b. Analyze each pattern of the pattern language, following the explanations supplied
in sections 3.2 to 3.5 to identify possible hot spots.

c. For each hot spot identified in steps (a) and (b) do the following:

XV Simpósio Brasileiro de Engenharia de Software

- 150 -

c1. Include it in the hot spots table, assigning it a number, a name and a brief
description of the desired flexibilit y.

c2. Inform the hot spot type, according to what is needed to adapt the framework
for a specif ic application (Table 2).

c3. Associate the hot spot with its source in the pattern language and the pattern
number.

d. After having finished the analysis of the pattern language, analyze the table created
in step (c) to:
d1. Refine the specification of each hot spot to include enough information for its

subsequent design and implementation.
d2. Identify other hot spots that are not explicit in the pattern language, but should

be included because they would bring more flexibili ty to the framework.
d3. Use the information about these new hot spots as feedback to improve the

pattern language.
e. Consider now other non-functional aspects of the application that might originate

new hot spots, which include portabilit y, usabilit y, security and reliabilit y. Also
consider design and implementation issues that would bring more flexibilit y.

Some considerations need to be done about steps d2 and e, as they are not trivial
activities. Knowledge about the domain is essential to perform activity d2, but some
guidelines can give the framework developer indications of other sources of hot spots. For
example, looking at class attributes in the patterns of the pattern language, some questions
should be answered, like: “is this a computed attribute?” I f so, “is it possible to have several
types of algorithms to compute it?” If the answer is affirmative, a new hot spot has been
found. Looking at class relationships, another source of hot spots is to argue the cardinalit y of
the relationships. If it is possible to find applications where the cardinality would be different
from the cardinality proposed in the pattern, then a variant of the pattern exists and,
consequently, a new hot spot. It is also desirable to look for similar hot spots in the table,
because sometimes new hot spots can be derived by analogy. Examples of some of these
cases are supplied in section 4.

Regarding activit y e, it is necessary to balance performance versus flexibility when
considering non-functional requirements and design or implementation issues, because
including several alternatives in the framework would make it more flexible but degrade
system performance. For example, if we consider database portabilit y, the choice of using a
relational database or an object-oriented one may derive a hot spot to be set by the framework
user. Another example is the graphical user interface, which could have two or more
implementations (one for traditional applications, another for virtual applications, etc.) so that
the framework user could choose one of them. Notice that this type of flexibilit y could be
achieved by implementing several versions of the framework, which would cause less impact
on system performance. An example of a design/implementation issue that could generate a
hot spot is a web-based education framework, where the course selection mechanism can vary
[16]. For example, the entire list of available courses or just the ones related to the student
major could be shown.

4. Case Study

This section presents a case study performed to evaluate the proposed process. Section
4.1 summarizes the pattern language for business resource management, called GRN [5, 7],
which was used to develop a framework for the same domain, called GREN [6]. Section 4.2

XV Simpósio Brasileiro de Engenharia de Software

- 151 -

describes the application of the process proposed in section 3.7 for the identification of the
GREN framework hot spots.

4.1 Pattern Language features

The Pattern Language for Business Resource Management (Gestão de Recursos de
Negócios, or GRN, in Portuguese) [5, 7], originated from a family of three patterns for the
same domain [4], whose patterns were split into smaller patterns to form the pattern language.
It is composed of fi fteen analysis patterns, some of which are specific usages or extensions of
more generic patterns proposed in the literature [2, 12, 17, 21]. It is the result of an evolution
of more than ten years of systems development practice of the first author for medium and
small business in this domain. It was conceived to help software engineers in the development
of applications concerned with business resource management. This includes applications
where it is necessary to log transactions of business resource rental, trade or maintenance. By
transaction we mean the same as Coad et al.: “a significant event to be remembered, i.e., an
event that the system must remember through time” [12]. Resource rental focuses primarily
on the satisfaction of a certain temporary need of a product or service like a videotape or a
physician time. Resource trade focuses on the transference of property of a product, as for
example a product sale or auction. Resource maintenance focuses on the maintenance of a
certain product, using labor and parts to perform it, as in an electric appliance repair shop.

Figure 1 shows the dependencies among the patterns and the order in which they are
generally applied. These dependencies are also presented, and eventually complemented,
inside each specific pattern. The main patterns in the language are RENT THE RESOURCE,
TRADE THE RESOURCE, and MAINTAIN THE RESOURCE, indicated by a thicker line. Their use
is not mutually exclusive and, in fact, there are applications in which they can fit together.
MAINTAIN THE RESOURCE may use RENT THE RESOURCE and TRADE THE RESOURCE, as in a
car repair shop system, in which parts are traded and labor is rented. The patterns are grouped
according to their purpose, as illustrated in Figure 1: group 1 patterns are basically concerned
with the identification, quantification and storage of the business resources; group 2 patterns
deal with the business transactions performed by the system; and group 3 patterns take care of
details associated to most business transactions.

The GREN framework construction based on the GRN pattern language is being
conducted in two phases. In the first phase a white box version of the framework is being
built. The framework hot spots were identif ied and are being implemented. Besides the
classes that refer to each pattern of the pattern language, other classes are necessary to deal
with more general aspects (as for example object persistence, graphical user interface,
security, etc.). In the second phase a wizard is being built, also based on the pattern language,
to help instantiating the framework to specif ic applications.

4.2 Application of the hot spots identification process

The process outlined in section 3.7 was applied to identify the hot spots of the GREN
framework. Most of the hot spots (88,9 %) were found based in the GRN pattern language
(steps a and b of the process) and only 11,1 % were identified by other ways (step d of the
process, in this case). Table 3 summarizes the types of hot spots found. We observe that most
of them is of type PATTERN_OPTION, since the pattern language has many optional patterns
and this results directly in hot spots, as explained in section 3.1. The appendix shows the

XV Simpósio Brasileiro de Engenharia de Software

- 152 -

mapping between each hot spot identified and the corresponding sources in the pattern
language (when applicable) for the 36 hot spots found.

QUANTIFY THE RESOURCE (2)

RESERVE THE

RESOURCE (5)

RENT THE RESOURCE (4) TRADE THE RESOURCE (6)

CHECK RESOURCE

DELIVERY (8)

MAINTAIN THE RESOURCE (9)

PAY FOR THE RESOURCE

TRANSACTION (12)
ITEMIZE THE RESOURCE

TRANSACTION (11)

IDENTIFY THE TRANSACTION

EXECUTOR (13)

QUOTE THE

TRADE (7)
QUOTE THE

MAINTENANCE (10)

IDENTIFY MAINTENANCE

TASKS (14)

IDENTIFY MAINTENANCE

PARTS (15)

IDENTIFY THE RESOURCE (1)

Group 2
Business

Transactions

Group 1
Business
Resource

Identification

Group 3
Business

Transaction
Details

STORE THE RESOURCE (3)

Figure 1 – “GRN Pattern Language” structure

To illustrate the hot spots identif ication based on the pattern language, we will use one
pattern of the GRN pattern language, shown in Figure 2. It refers to the “Trade the Resource”
pattern, extracted from the extended version of the pattern language [7]. The four hot spots
identified from this pattern correspond to numbers 13 to 16 of the appendix. Hot spot 13,
called “Trade the Resource”, provides the flexibility to make optional the application of this
pattern, because the pattern language can also be used for rental or maintenance applications,
and so it may be desired not to apply this pattern. This is a PATTERN_OPTION hot spot, as the
whole pattern is optional. It was identified during step a of the process of section 3.7.
Analyzing the pattern language graph (see Figure 1), we notice that there are paths that do not
include the Trade the Resource pattern, which implies that this pattern is optional. Also,
observing the pattern context (see item 6.1 of Figure 2), we notice that applications that do not
deal with resource trade do not fit in the proper context for the pattern usage and, thus, should
not use it.

Hot spots 14 to 16 were found during step b of the section 3.7 process. Hot spot 14,
called “Source-party existence”, gives small organizations the possibility of having a simpler
system, in which branches or departments are not considered. This hot spot was identified

XV Simpósio Brasileiro de Engenharia de Software

- 153 -

observing the “participants” section of the pattern (see item 6.5 of Figure 2: notice that
“Source-party” is an optional participant of this pattern). It is a PARTIC_OPTION hot spot, as its
purpose is to make source-party optional. Hot spot 15 (“Destination-party existence”) is
similar to number 14 and was identif ied in the same section.

Table 3 – Summary of the types of hot spots identified

Quanti ty foundType of hot spot
Step a Step b Step d Step e

Percentage

PATTERN_OPTION 14 38,9 %
PARTIC_OPTION 7 19,4 %
PARTIC_CHOICE 3 8,3 %
RELATIONSHIP 1 2,7 %
BEHAVIOUR 2 3 13,9 %
PROPAGATION 5 1 16,7 %
Total 36

Hot spot 16 (“Traded quantity entry”) concerns the inclusion of a new attribute in the
trade due to the previous use of another pattern of the language and, so, is a PROPAGATION
hot spot. The knowledge about the propagation caused by the application of certain patterns is
embedded in the pattern language, as can be verified in the participant “Resource Trade” (see
section 6.5 of Figure 2). The pattern language states that an attribute “quantity” is included in
this class when the “Measurable Resource” sub-pattern has been applied earlier.

Another interesting result of the case study was the identification of four new hot spots
during step d2 of the process proposed in section 3.7. For example, hot spot 12 of the
appendix was not identified from the pattern language, but found through inspection of
similar hot spots in the table. An analysis of the table was done to check the propagation
effect of applying the “Quantify the Resource” pattern. This pattern has four alternative
solutions, presented as sub-patterns. One of them, the “Measurable Resource” sub-pattern, is
used when the resource is dealt with in quantities, so the “quantity” attribute needs to be
entered in all resource transactions. Thus, as we have seven possible transactions in the
pattern language, we expected to have seven hot spots concerning this feature. However, we
found only four. The missing ones were for patterns 5, 9 and 10. Making a deeper domain
analysis, we concluded that this feature is not desired for maintenance systems (patterns 9 and
10), because it is very rare to have resources to be maintained in quantities (they are usually
unique). So only one new hot spot was added (number 12), as it makes sense to reserve more
than one copy of a resource. It has been forgotten during the pattern language writing and,
afterwards, the pattern language was fixed to include this requirement.

Hot spot 36 of the appendix is another example of a hot spot found during step d2, by
analyzing class attributes that need to be computed. There are several different ways of
computing the fine that customers need to pay when a transaction is paid after its due date.
Examples are fixed daily, weekly or monthly fees, or a percentage of the total due value.
Besides the fine, interests may optionally be charged. Hot spots 8 and 35 were also found
during step d2 of the section 3.7 process. It was not possible to identify hot spots during step e
using the GRN pattern language because it refers to analysis patterns and is not concerned
with design and implementation aspects. We have decided not to include hot spots of this
category in a first version of the framework, but will consider this possibility in future
versions (see discussion at the end of section 3.7).

XV Simpósio Brasileiro de Engenharia de Software

- 154 -

Pattern 6: TRADE THE RESOURCE

6.1 Context
Your application deals with trade of resources, which
may involve resources sold and/or purchased. You have
already identified and Quantified these resources.
Resource trading may be thought of as a resource
property transference, in which a resource owned by one
party becomes owned by another party. In a sale, if the
resource is not available in stock, then the customer can
fill in an order that will be granted when possible. In a
purchase an order is made to the supplier who delivers
the resource within a certain period.

6.2 Problem
How do you manage the resource trades made by your
application?

6.3 Forces
• It is essential to log trade information, because it can

be used to generate important reports on resource
demand and organization gains (most systems in this
domain are concerned with profits).

• The additional storage space and processing time
required to log trade information has to be balanced
against possible gains in system functionality when
evaluating costs versus benefits. For example, it may
be enough to increase and decrease stock levels
when resources are traded, without considering other
trade details.

6.4 Structure
Figure 17 shows the TRADE THE RESOURCE pattern.

*
*

is related to

* 1

Resource Trade
trade number
trade date
status
observations
?do the trade
?cancel the trade
!#calculate earnings
!#get non-deli vered trades

Resource/Resource
Instance/Resource Lot
. . .

0..10..1

Source-Party
code
name
!get trades by source-party

makes asks for

Destination-Party
code
name
!get trades by destination-party

Figure 17: TRADE THE RESOURCE pattern

6.5 Par ticipants
Resource Trade: represents all the details involved in trading the
resource. The attribute status denotes the trade stage: pending,
partially fulf illed, or fully fulfilled. When the MEASURABLE

RESOURCE sub-pattern has been applied earlier, then an attribute
Quantity is added to denote a non-unitary resource trade.
Resource/Resource Instance/Resource Lot: the choice among
Resource, Resource Instance or Resource Lot depends on the
quantif ication sub-pattern used.
Source-Party: represents the original resource owner, for
example, in the case of a sale it is the organization department or
branch that sells the resource, and in the case of a purchase it is
the supplier organization. This class is optional for small sale
systems where there are no departments or branches.
Destination-Party: represents the final resource owner, for
example, in the case of a sale it is the customer buying the
resource, and in the case of a purchase it is the organization
department or branch buying the resource. This class is optional
for small purchase systems where there are no departments or
branches and also in systems where the customer is not logged,
as in supermarkets.

6.6 Example
Figure 18 shows an instantiation of the TRADE THE RESOURCE

pattern for an Inventory Control system.

* *

is related to

* 1

Purchase
purchase number
purchase date
status
observations
?do the purchase
?cancel the purchase
!#calculate earnings
!#get non-deliv. purch.

Product
barCode
description
cost
quantity in stock
re-supply level
!get purchases by product

1 1

Supplier
code
location
!get purchases by supplier

makes
asks for

Store-branch
code
name
!get purchases by branch

Source-Party Destination-Party

Resource
Trade Resource

Figure 18: Instantiation of the TRADE THE RESOURCE pattern

6.7 Following patterns
Now, look at patterns in Section 2.3, which are useful for
modeling other trade details. As a trade is followed by a delivery
and can be preceded by a quotation, try to use the patterns QUOTE

THE TRADE (7) and CHECK RESOURCE DELIVERY (8).

Figure 2 – Example of one pattern of the GRN pattern language

5. Concluding remarks and future work

It is rather intuitive that splitting the application domain in several patterns implies in
the isolation of several hot spots. This makes the system composed of smaller parts, which
need to be joined to make up the specific application. This fact was confirmed during the case

XV Simpósio Brasileiro de Engenharia de Software

- 155 -

study, where we have observed many hot spots identified from the pattern language graph,
which means that optional parts of the system are isolated in patterns.

We have to remember that the pattern language construction involves an analysis of
the application domain and having practical experience in the development of applications for
this domain. In our case the first author had more than ten years of practice that allowed the
development of the pattern language. During the framework usage in the development of
specific applications and because of the application domain evolution, new hot spots may be
necessary. In this case, the pattern language must also be updated, including new patterns or
changing existing ones.

It could be argued that constructing a pattern language only to help in the
identification of the hot spots of a possible framework would not be worth the effort. We
think that this is not the case, because a pattern language can also be used for documenting the
framework, as already shown in several works [1, 19]; for supporting the framework design
and implementation [9, 10]; and as a method to guide the transformation of the framework in
a concrete application [9].

We are interested in the definition of two different processes: the first to build
frameworks based in pattern languages and the second for using a pattern language during the
instantiation of applications with a framework built based in that pattern language. This
second process may include the development of a wizard with an interface that follows the
same concepts of the pattern language, so that users can apply the pattern language and have
their systems semi-automaticall y built.

We also intend to propose a special notation to represent each hot spot identified from
the pattern language. Our goal is to provide enough information about the hot spot to ease its
subsequent design and implementation. For that, we are analyzing several proposals for hot
spot representation found in the literature, among which are Pree’s hot spot cards [24],
Schmid’s hot spots high level design specification [26, 27], Froehlich’s hooks [18] and
Fontoura’s UML-F [16]. Besides that, we are studying whether it is important to represent the
framework flexibilit y in the patterns of the pattern language, for example using UML-F
extensions to UML [16] in the class diagrams of each pattern. At first glance it seems that this
is desirable if the pattern language is being developed with the intent of building a framework
based on it. Otherwise this would not be much useful.

References

[1] AARSTEN, A.; BRUGALI, D.; MENGA, G. (2000). A CIM Framework and Pattern
Language, in “FAYAD, M. E. & JOHNSON, R. E. (eds.) (2000). Domain-Specific
Application Frameworks: Frameworks Experience by Industry, John Wiley & Sons.”, p.
21-42.

[2] BOYD, L. (1998). Business Patterns of Association Objects. In: “R. Martin, D. Riehle,
F. Buschmann (eds.) Pattern Languages of Program Design 3, Addison-Wesley, 1998”,
p. 395-408.

[3] BOSCH, J. et al. (1999). Framework Problems and Experiences, in: “FAYAD, M. E.;
JOHNSON, R. E.; SCHMIDT, D. C. (eds.) (1999). Building Application Frameworks:
Object-Oriented Foundations of Framework Design, John Wiley & Sons”, p. 55-82.

[4] BRAGA, R. T. V.; GERMANO, F. S. R.; MASIERO, P. C. (1998). A Family of
Patterns for Business Resource Management. Proceeding of the 5th Annual Conference
on Pattern Languages of Programs (PLOP’98), Monticello-IL-EUA. Technical Report
#WUCS-98-25, Washington University in St. Louis, Missouri, USA, august, 1998,

XV Simpósio Brasileiro de Engenharia de Software

- 156 -

available at 15/03/99 in the URL: jerry.cs.uiuc.edu/plop/plopd4-submissions/plopd4-
submissions.html.

[5] BRAGA, R. T. V.; GERMANO, F. S. R.; MASIERO, P. C. (1999) A Pattern Language
for Business Resource Management. Proceedings of the 6th Pattern Languages of
Programs Conference (PLoP’99), Monticello-IL, USA, v.7, p. 1-34.

[6] BRAGA, R. T. V. (2001). GREN: A framework for Business Resource Management.
WEB Page, ICMC-USP, São Carlos-SP, Available in 04/10/01, URL:
www.icmc.sc.usp.br/~rtvb/ GRENFramework.html.

[7] BRAGA, R. T. V.; GERMANO, F. S. R.; MASIERO, P. C. (2001). Extension of the
Pattern Language for Business Resource Management. Unpublished, ICMC-USP, São
Carlos-SP. Available for download in 03/10/01, URL:
www.icmc.sc.usp.br/~rtvb/extended_patlang.zip.

[8] BROWN, K. & WHITENACK, B. G. (1996). Crossing Chasms: A Pattern language for
Object-RDBMS Integration, The Static Patterns, in “VLISSIDES, J.; COPLIEN, J.;
KERTH, N. (eds.) (1996). Pattern Languages of Program Design 2. Reading-MA;
Addison-Wesley” , p. 227-238.

[9] BRUGALI, D. & MENGA, G. (1999). Frameworks and Pattern Languages: an
Intriguing Relationship. ACM Computing Surveys, march 1999.

[10] BRUGALI, D.; MENGA, G.; AARSTEN, A. (2000). A Case Study for Flexible
Manufacturing Systems, in “FAYAD, M. E. & JOHNSON, R. E. (eds.) (2000).
Domain-Specific Application Frameworks: Frameworks Experience by Industry, John
Wiley & Sons.”, p. 85-99.

[11] CAREY, J.; CARLSON, B.; GRASER, T. (2000). SanFrancisco Design Patterns:
Blueprints for Business Software, Addison-Wesley.

[12] COAD, P.; NORTH, D.; MAYFIELD, M. (1997) Object Models: Strategies, Patterns
and Applications, 2.ed., Yourdon Press.

[13] COPLIEN, J. O. (1995) A Generative Development-Process Pattern Language, in
“ Coplien, J.O. & Schmidt, D. C. (1995) Pattern Languages of Program Design,
Addison-Wesley” , p. 183-237.

[14] COPLIEN, J.O. (1998). Software Design Patterns: Common Questions and Answers, in
Linda Rising (editor) (1998) The Patterns Handbook: Techniques, Strategies, and
Applications, Cambridge University Press, New York, p. 311-320.

[15] GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. (1995). Design Patterns –
Elements of Reusable Object-Oriented Software. Reading-MA, Addison-Wesley.

[16] FONTOURA, M. F.; PREE, W.; RUMPE B. (2000) UML-F: A Modeling Language
for Object-Oriented Frameworks, 14th European Conference on Object Oriented
Programming (ECOOP 2000), Lecture Notes in Computer Science 1850, Springer, 63-
82, Cannes, France.

[17] FOWLER, M. (1997). Analysis Patterns. Addison-Wesley.
[18] FROEHLICH, G.; HOOVER, H. J.; LIU, L.; SORENSON, P. (1997). Hooking into

Object-Oriented Application Frameworks. Proceedings of the International Conference
on Software Engineering, Boston-Mass-USA, p. 491-501.

[19] JOHNSON, R. E. (1992). Documenting Frameworks using Patterns, Proceedings of the
Conference on Object-Oriented Programs, Systems, Languages and Applications
(OOPSLA’92), Vancouver, British Columbia, p. 63-76.

[20] JOHNSON, R. E. (1996). Transactions and Accounts, in “VLISSIDES, J.; COPLIEN,
J.; KERTH, N. (eds.) (1996). Pattern Languages of Program Design 2. Addison-
Wesley”, p. 239-249.

XV Simpósio Brasileiro de Engenharia de Software

- 157 -

[21] JOHNSON, R. E.; WOOLF, B. (1998). Type Object. In “Martin, R., Riehle D.,
Buschmann F. (eds.) Pattern Languages of Program Design 3, Addison-Wesley” , p. 47-
65.

[22] MESZAROS, G. (1996). A Pattern Language for Improving the Capacity of Reactive
Systems, in “V LISSIDES, J.; COPLIEN, J.; KERTH, N. (eds.) (1996). Pattern
Languages of Program Design 2. Reading-MA; Addison-Wesley”, p. 575-591.

[23] PREE, W. (1995). Design Patterns for Object-Oriented Software Development,
Reading-MA, Addison-Wesley.

[24] PREE, W. (1999). Hot-spot-Driven Development, in: “FAYAD, M. E.; JOHNSON, R.
E.; SCHMIDT, D. C. (eds.) (1999). Building Application Frameworks: Object-Oriented
Foundations of Framework Design, John Wiley & Sons”, p. 379-393.

[25] ROBERTS, D. & JOHNSON, R. E. (1998). Evolving Frameworks: A Pattern Language
for Developing Object-Oriented Frameworks, in Martin et al. (1998), p. 471-486,
disponível em 12/03/99 na URL: st-www.cs.uiuc.edu/users/droberts/evolve.html

[26] SCHMID, H. A. (1997). Systematic Framework Design by Generalization.
Communications of the ACM, v. 40, n.10, p. 48-51.

[27] SCHMID, H. A. (1999). Framework Design by Systematic Generalization, in:
“FAYAD, M. E.; JOHNSON, R. E.; SCHMIDT, D. C. (eds.) (1999). Building
Application Frameworks: Object-Oriented Foundations of Framework Design, John
Wiley & Sons”, p. 353-378.

Appendix - GREN Framework hot spots

Hot spot
number

Name Description Type Source in the
pattern language

Pattern
#

1 Resource
Qualification

A resource can have a type, but
this is optional. It can also have
multiple types or nested types.

PARTIC_
CHOICE

Participants,
Variants

1

2 Resource
Quantification

A resource can be unique, can
have multiple instances, can be
managed in quantities or in lots

PARTIC_
CHOICE

Participants,
Structure, Variants
(sub-patterns)

2

3 Resource Storage It can or cannot be desirable that
the application manages the
resource storage

PATTERN
_OPTION

Language Graph+
Context

3

4 Resource Rental The application may or may not
concern resource rental

PATTERN
_OPTION

Language Graph +
Context

4

5 Existence of
Source-party∗ in
the rental

The organization may be small and
not have branches or departments

PARTIC_
OPTION

Participants 4

6 Rented instance
entry

It is necessary to read the instance
number of the rented resource
when the rental refers to an
instantiable resource (propagation
of pattern 2 usage)

PROPAGA
TION

Participants 4

7 Rented quantity
entry

It is necessary to read the quantity
of rented resources when the rental
refers to a measurable resource
(propagation of pattern 2 usage)

PROPAGA
TION

Participants 4

∗ In business resource management systems a resource moves from a source-party (the party that initiall y owns
the resource) to the destination-party (the party that acquires the resource, temporary or definitely).

XV Simpósio Brasileiro de Engenharia de Software

- 158 -

Hot spot
number

Name Description Type Source in the
pattern language

Pattern
#

8 Instance number
generation

The instance number of the
resource to be rented can be
supplied by the user or
automatically generated by the
system

BEHAVIO
UR

- 4

9 Resource
reservation

The application may or may not
need to deal with resource
reservation

PATTERN
_OPTION

Language Graph +
Context

4

10 Existence of
Source-party in
the reservation

The organization may be small and
not have branches or departments

PARTIC_
OPTION

Participants 5

11 Reservation of
the resource
instance instead
of resource

It may be allowed for the user to
reserve a particular instance
instead of reserving the resource

RELATIO
NSHIP

Participants 5

12 Reserved
quantity entry

It is necessary to read the quantity
of reserved resources when the
reservation refers to a measurable
resource (propagation of pattern 2
usage)

PROPAGA
TION

- 5

13 Resource trade The application may or may not
concern the trade of resources

PATTERN
_OPTION

Language Graph +
Context

6

14 Existence of
Source-party in
the trade

In sale systems, the organization
may be small and not have
branches or departments.

PARTIC_
OPTION

Participants 6

15 Existence of
Destination-party
in the trade

In purchase systems, the
organization may be small and not
have branches or departments.

PARTIC_
OPTION

Participants 6

16 Traded quantity
entry

It is necessary to read the quantity
of traded resources when the trade
refers to a measurable resource
(propagation of pattern 2 usage)

PROPAGA
TION

Participants 6

17 Resource
quotation

The application may or may not
concern the quotation of resources

PATTERN
_OPTION

Language Graph +
Context

7

18 Existence of
Source-party in
the quotation

In sale systems, the organization
may be small and not have
branches or departments.

PARTIC_
OPTION

Participants 7

19 Existence of
Destination-party
in the quotation

In purchase systems, the
organization may be small and not
have branches or departments.

PARTIC_
OPTION

Participants 7

20 Quoted quantity
entry

It is necessary to read the quantity
of quoted resources when the
quotation refers to a measurable
resource (propagation of pattern
2)

PROPAGA
TION

Participants 7

21 Check of
resource delivery

The application may or may not
need to take care of checking the
resource delivery

PATTERN
_OPTION

Language Graph +
Context

8

22 Existence of
Source-party in
resource delivery

The organization may be small and
not have branches or departments.

PARTIC_
OPTION

Participants 8

23 Delivered
quantity entry

It is necessary to read the quantity
of delivered resources when the
delivery refers to measurable
resources (propagation of pattern 2)

PROPAGA
TION

Participants 8

XV Simpósio Brasileiro de Engenharia de Software

- 159 -

Hot spot
number

Name Description Type Source in the
pattern language

Pattern
#

24 Resource
maintenance

The application may or may not
concern the resource maintenance

PATTERN
_OPTION

Language Graph +
Context

9

25 Tasks
specification

The application may or may not
want to individually specify the
tasks involved in the maintenance

PATTERN
_OPTION

Language Graph +
Context

14

26 Parts
discrimination

The application may or may not
want to discriminate the parts used
in the maintenance

PATTERN
_OPTION

Language Graph +
Context

14

27 Diff erent
executors for
each task

The application may allow a
different executor to perform each
maintenance task

RELATIO
NSHIP

Participants 15

28 Management of
several resources
in a single
transaction

It may be desirable several
resources to be managed in a
single transaction

PATTERN
_OPTION

Language Graph +
Context

11

29 Management of
the transaction
payment

The application may or may not
deal with the several payments
associated to a transaction

PATTERN
_OPTION

Language Graph +
Context

12

30 Identif ication of
the transaction
executor

The application may treat
commissions to be paid for the
transaction executor

PATTERN
_OPTION

Language Graph +
Context

13

31 Commission
according to
installments paid

It may be desirable that
commissions be paid to executors
only when an installment is paid
by the customer

BEHAVIO
UR

Variants 13

32 Executor team The application may allow
transactions to be performed by
executor teams so that
commissions are split among them.

PARTIC_
CHOICE

Participants 13

33 Quotation Tasks
specification

The application may or may not
want to individually specify the
tasks involved in the quotation

PATTERN
_OPTION

Language Graph +
Context

14

34 Quotation Parts
discrimination

The application may or may not
want to discriminate the parts used
in the quotation

PATTERN
_OPTION

Language Graph +
Context

15

35 Charge of rentals The application may have no
charge for rentals, as in some
libraries

BEHAVIO
UR

- 4

36 Fine computing The computing of fines due to
delayed payment may vary from
application to application

BEHAVIO
UR

- 12

XV Simpósio Brasileiro de Engenharia de Software

- 160 -

