XV Simpésio Brasileiro de Engenharia de Software

An AspectBased Approach for Developing
Multi -Agent Object-Oriented Systems

Alessandro F. Garcia Viviane T. da Silva Carlos J. P. de Lucena Ruy L. Milidiu

Computer Science DepartmenTecComm Group
Pontifical Catholic University of Rio de Jane#d?UC-Rio
Rua Marqués de S&o Vicente, 2232453900 Rio de Janeire Brazil
e-mail:{afgarcia, viviane, lucena, rg@inf.puc-rio.br

Abstract

Agent technology has been revisited as a complementary approach tgabeparadigm in order to design
and implement complex distributed software. Objects and agents have many similaritegeriigare also
driven by beliefs, goals, capabilities, plans, and a number of agency properties such as autonotatjo@dap
interaction, learning and mobility. Moreover, cooperating software agents must incorporate different
collaborative capabilies in order to work together in heterogeneous contexts. In practice, a complex
application is composed of objsand multipletypesof agents, each of them having distiagency properties
and capabilities. An additional difficyltis that these capabilities and propertigpically overlap and interact
with eachother, and a disciplined schertecompositioris required This paper discussesftware engineering
approaches for mukagent systems, and presents a new approach for building-ageltit objecbriented
software from early stage ofesign Thisapproach(i) describesstructured integration of agentstmthe object
model, (ii) incorporates flexible facilities to build different types of software agents, (iii) encouragep#nate
handling of each property and capabilif an ager, (iv) provides explicit support for disciplined and
transparent composition of agency properties and capabilities in complex software agents, and (v) allows the
produdion of agentbased software so that it is easy to understand, maintain and reuse. The proposed approach
explores the benefits of aspéetsed design and programming for the incorporation of egjarobjectoriented
systems. We alsdemonstrateour multi-agent approach through th&ortalware system a webbased
environment for the development eé@mmerce portals.

1. Introduction

With agentbased softw@ systems growing in size and complexity, the effort and cost of
designing and implementing them while satisfying quality requirements, such as
maintainability and reusability, are still deep concerns to software engineers. The design and
implementationof a single agent is very complex. Software agents, like objects, include a
specifc set of capabilities (services) for their users. In fact, objects and agents have many
similarities [4, 30], but the@gents arariven by beliefs, goals, plarsnd a number of agency
properties such as autonomy, adaptation, interaction, learning and mobility. Moreover,
software agents generally must incorporate different collaborative cajealititcooperate
with other agents in heterogeneous eatd. In practice, a complex application is composed
of objects and multipléypesof agents, each of them having distinct capabilities ageahcy
properties. Agerts pose othedesign and implementatioproblems because many properties
and capabilities of agents/erlap andnteract with each other, and a disciplined approach is
requiredfor composition

As a consequence, there is a need forflavace engineering approach frommearly stage
of design that encourages the separate handling of each property and capability of an agent as
well as provides explicit support for disciplined composition of complex software agents.
Ideally, this approackhould incorporate flexible facilities to build different types of software

- 177 -

XV Simpésio Brasileiro de Engenharia de Software

agents, and allow the production of agbased software so that it is easy to understand,
maintain and reuse. In this context, research in software engineering ctgeaiiti syems

has been carried out according two different approaches. Researchers in the first approach
[18, 32, 33] argue persuasively that adopting a raglént approach to system development
affords software engineers a number of significant advantages ovemgmrary methods

and, therefore, they view muligent systems as a “new software engineering”. In contrast,
researchers in the second approach [13, 20, 21, 26, 30] propose the integration of agents into
the objectorientation world and, thus, they thirdd objects and agents as complementary
abstractions; as a result, they have centered on extending existing techniques from object
oriented software engineering to agbased systems. Although there are several motivations

to introduce software agents ihe object model [17, 30], it is not a trivial task due to the
differences between objects and agents [18].

Traditionally, existing objeebriented proposals often focoa the implementation phase,
and do not provide direct support for handling and reygproperties and capabilities
separately (e.g. [2], [6] and [26]Moreover, these current proposals generally support a
limited number of agent types, and the state and behavior of an agent generally are
encapsulated as an object. Even thought it igralde for an agent to appear as a single
object, this scheme results in agent design and implementation being quite poor, complex and
difficult to understand, maintain and reuse in practice. In fact, it is not often easy to design
software agents properlgs the developers of mudgent systems have to take into account
many agency properties at the same time. In addition, the lack of support for dealing with the
interactive and overlapping nature of agency properties limits the understanding,
maintainaldity and reusability of multagent applications. Ideally, agent system developers
should apply special structuring techniques and disciplined ways of associating the different
properties and collaborative capabilities of an agent with its core stateehadior.

In this paper, we briefly discuss the current research in software engineering of agent
systems, and present an innovative aspasted approach for designing and implementing
agentbased objeetriented systems. Our proposal explores the benefit aspeebased
design and implementation for mastering the increasing complexity of integrating software
agents into the object model. Aspeciented design encourages modular descriptions of
software systems by providing support for cleanly separdbisgobject’s core functionality
from its crosscutting concerns. Aspect is the abstraction that modularizes a crosscutting
concern and is associated with one or more objects. Our approach explores this abstraction to
support the construction of muligentobjectoriented software with improved structuring for
design reuse and evolution. We will also present results applying our approach to introduce
multiple software agents in Portalware [14], a vibeised environment for the development of
e-commerce porta. To implement this system, we have used AspectJ [24] which is practical
aspectoriented extension to the Java programming language [15].

The remaider of this paper is organized as follows. Section 2 gives a brief description of
definitions and apptations of multdagent systems. This section also introduces an example
which is usedthrougtout this papetto illustrate our approach. Section 3 overviews software
engineering approaches for agent systems, and introdaspsctoriented designand
programming Section 4 presents our aspbesed approach for designing agkased
applications, and applies it to the Portalware system. Section 5 assesses the relative
advantages and disadvantages of applying our approach, and describes some tatfdamen
issues. Section 6 discusses related work. Finally, Sectwesénts some concluding remarks
and directions for future work.

-178 -

XV Simpésio Brasileiro de Engenharia de Software

2. Multi -Agent Systems: Definitions and Case Study
2.1. Software Agents and Agency Aspects

Software agentsften are vewed as complex objects with an attitude [5], in the sense of
being objects with some additional agermpperties In general, the state of an agent is
formalized by knowledge, and is expressed by mental components shetieds goals
plans andcapabilities[30, 35] Beliefs model the external environmemith which an agent
interacs. A goal maybe realized throughifferent plans A plan describes a strategy to
achieve an internal goal of theear, and the selection of plans is based on agent beliefs. In
this way, the behavior of agents is driven by the execution of their plans that select
appropriate capabilities in order &mhieve the stated goalEhere are different kinds of plans,
and theyare applicatiorspecific [21]. Plansare divided into three categories: (@action
plans (ii) decision plansand (iii) collaborative plansEach of them is associated with pre
conditions and pasconditions[8]. Pre-conditions list the beliefs thahould be held in order
for the plan to be executed, while pasnditions describe the effects of executing a succesful
plan usingan agent’'s beliefsA software agent is not usually found completely alone in an
application, but often forming an orgaation with other agents; this organization is called a
multi-agent application A multi-agent application generally has several types of software
agents [29], such asformation agentsuser agentsandinterface agents

AGENCY PROPERTY DEFINITION

Interaction An agent communicates with the environment and other agents by
means of sensors and effectors

Adaptation An agent adapts/modi.fies its mental state according to messages
received from the environment

Autonomy An agent is capable of acting withtalirect external intervention; it
has its own control thread and can accept or refuse a request message

Learning An agent can Ie_arn ba_sed on previous experience while reacting ahd
interacting with its environment

Mobility An agent is able to transpatself from one environment in a network
to another

Collaboration An agent can cooperate with other agents in order to achieve its goals
and the system’s goals

Table 1. An Overview of Agency Properties

Agency Properties and Agenthood.The state and bewiar of an agent is respectively
affected byand composed afigency propertiesAgency properties are behavioral features
that an agent can have to achieve its gdable 1 summarizes the definitions for theirma
agency properties. These definitions are based on previous studies [21, 29, 30] and our
experience in developing muligent systems [14, 34, 36, 38h general, autonomy,
interaction and adaptation are considered as fundamental properties of safiests while
learning, mobility and collaboration are neither a necessary nor sufficient condition for
agenthood [30] (Figure 1). Interaction is the agency property that implements the
communication with the external environment, i.e. the message recepith sending. An

agent hassensorsto receive messages, aaffectorsto send messages to the environment
[21]. Since agents ar@utonomous software entitiethe agent itself starts its control thread

and decides between accepting and rejecting incomnegsages. Since the message is
accepted, the agent can have to adapt its mental state. The adaptation consists of processing an
incoming message and defining which mental component is to be modified: beliefs can be
updated, new goals can be set, and cares#ty plans can be selected. During the execution

of plans, software agents alternatively: (i) extend or refine its knowledge when interacting

-179 -

XV Simpésio Brasileiro de Engenharia de Software

with its environment (learning), (ii) move itself from one environment in a network to another
(mobility), and(iii) join a conversation channel with other agents (collaborati&agh agent
type typically has different applicatiespecific capabilities and agency properties.

M Agency Properties
Beliefs
| \
coal M - Autonomy Adaptation
oals
- \ Y
Plans h Ny
- Interaction
e
|- i
Capabilities ||[] _ Collaboration I
T |
Mobility Learning
" LEGEND:
I ive |1 _
CCOa|;)ae1bbDiIria:itlzvse 1 Agenthood
[1 Alternative Features
— Relationship betwee Properties |

@l Overlapping Properties
Figure 1. A Definition for Agenthood

Collaborative Capabilities. An agent can use the adyplities provided by other agents via
some communication languag€ollaborative capabilites are applicatidependent and are
specific for each context. So, since software agents can cooperatgwisiéng their goals

in different situations, a cooperating agent generally includes different collaborative
capabilities in order tavork togethein multiple contexts. In order to perform a cooperation, a
collaborative plan is instantiated,caih chooses the eligible collaborative capabilities.

Interacting and Overlapping Properties. By the very nature of agency properties, these
properties are not ortoghonal in general, they interact with each other (Figure 1). For
instance, the adaptatialepends on autonomy since it is necesgandapt the agent’s state
(beliefs and goals) and behavior (plans) when the autonomy prapssifes accepting an
incoming message. In addition, two agency properties are overlapping: interaction and
collaboraion. Collaboration is viewed as a more sophisticated interaction form, since the
former comprises communication and coordination. Interaction is only concerned with
communication, i.e. sending and receiving messages. During a collaboration, messages are
also received from and sent to the participating agents. Howevedhaboration property
additionaly defines how to collaborat#, addresses the coordination protocol. A simple
coordination protocol consists of synchronizing the agent waiting fesponse.

2.2. Software Agents in Portalware: A Case Study

Figure 2 illustrates the software agents in Portalware [9], abasbd environment for the
construction and management @tommerce portals. Portalware encompasses three agent
types: (i) inerface agents, (ii) information agents, and (iii) user agents. Each of them has
different capabilities and properties, but everyone implements the fundamental aspects
definided by agenthoodrigure 2 summarizes capabilities and agency properties for the
Patalware agents. For purpose of brevity, we discuss in detail only the Portalware's
information agents. For a more complete discussion about this example the reader can refer to
[8]. Portalware users often need to search for information which is stocethiotdifferent
databases. Each information agent is attached to a database, and contains plans for searching
for information. The search plan determines the agent’s searching capability. An alternative
collaborative capability is used, when an informatgent is not able to find the information

- 180 -

XV Simpésio Brasileiro de Engenharia de Software

in the attached database. The agent uses its calling collaborative capabilities in order to call
the other information agent and ask for this information. Similarly, the latter uses its
answering capabilities gbat it can receive the request and send the search result. Note that
both of them need to include calling and answering capabilities.

INFORMATION USER
AGENTS
INTERFACE AGENTS
AGENTS o Searching . performing time -
* monitoring | Autonomy J__JQuaborauon consuming - collaboration s
* memorizing Collaboration

S
| Adaptation HB Caller)

Adaptation

Autonomy

ml

Editor

Interaction Answerer

Adaptation

Reviewer

Content Supplier

S Y

Learning

Interaction

LEGEND:

Effectors
S state Sensors
B Dbehavior
® capability N -

Q collaborative capabili

[agency property Environment

Figure 2. Portalware Agents.

3. Software Engineering for Agent Systems

The inherent complexity in the organization adesign of software agents makes it
necessary for developers to apply appropriate software engineering approaches. Modularity
and separation of concerns are two complementary-es&blished principles in software
engineering that use highvel abstractios to hide complexity [37]. In addition, software
engineers often need to capture multiple architectural descriptions, each representing a certain
perspective of the system’s architecture and dealing with the multiple system’s modules and
concerns. For exaple, complex problems can be decomposed into different architectural
perspectives, including: (i) a structural perspective, (ii) a behavioral perspective, and (iii) an
organizational perspective. The importance of these principles and distinct desgription
increases as new technologies are introduced and software applications such-basagent
applications, become more complex.

Figure 3 provides a framework that assists in identifying relationships between
architectural decomposition, modular decompositiand concern decomposition. From the
viewpoint of modular decompositions, complex problems can be divided into smaller parts
(abstractions), such as: (i) data, (i) functions, (iii) objects, and (iv) agents. The common
feature of these abstractionshat the decomposed parts are disjoint [28]. From the viewpoint
of concern decompositions, complex problems can be divided into different abstractions, such
as: (i) roles [25], (ii) views [11], (iii) features [1], (iv) aspects [23], and (v) subjects [16].
What distinguishes this concern decomposition from the module decomposition is the fact
that the decomposed parts are not disjoint. In modular decomposition, any entity from the
problem domain appears in only one of the pieces after decompesitiorentiyy appears in
more than one piece. By contrast, an entity may appear in any number of concerns [28]. In
other words, concerns naturally cut across application modules.

According to the framework pictured in Figure 3, we can classify current approaches to
multi-agent software engineering into two categoriesag@éntbased software engineering
and (ii) objectoriented software engineering for agent systeBath these current approaches
have concentrated on modular decomposition. However, our proposatdallee second
approach and additionally extends it with the application of recent advances in segdration
concerns techniques [23, 37]. So, we present an engineering software approach which
explores the benefits of both modular and concern decompositioparticular, our proposal

-181 -

XV Simpésio Brasileiro de Engenharia de Software

uses the advantages of aspa@énted design and programming in order to deal with the
complexity of integrating software agents in the object model.

Modular
Decomposition

A
>_ A
= agent O Qe Q
= object el e 0
O | function =
o

""""""""" d ta‘"i:" ..,‘,‘-“"‘ :
‘ ‘ i : H

PERSPECTIVE

\(O\S/’ | i i] » Architectural
& role stéyetlital _behaviorat~ organizational ~ Decomposition
\) vie! / “"..."‘ .‘_"‘.-" ‘.“‘_‘.-'
feature)
aspec/ LEGEND:

subject !
o / © Agent-Based Softwar&ngineering

O 00 Ssoftware Engineeringor AgentSystems
< our Proposal

Concern
Decomposition

Figure 3. Software Engineering Approaches for Agent Systems (Based fn [28
3.1. AgentBased Software Engineering

Researchersin agentbased software engineeringuch as those iff19, 33 argue
persuasively that adopting a medigent approach to system development affords software
engineers a number of sifjoant advantages over contemporary methods and, therefore, they
describemulti-agent systems dgsew software engineering”. Accordirtg these researchers,
agent systems are often more complex than cbjented systems and hence the traditional
object model generally fails to capture the complexity of agent systems. In this approach,
agents are a new abstraction that substitictethe object abstraction and reabzihe agent
abstractioras a software engineering paradigm. As a result, peygerof this approach claim
it is necessary to develop new software engineering techniques, methods and methodologies
that are specifically tailored tagens, as well as software architectures, programming
languages and tools supporting these teclasigmethods and methodologies. We refer to
[17, 39] for a more complete survey.

3.2. ObjectOriented Software Engineering for Agent Systems

In contrast to the previous approadhther researchex [7, 13, 21, 26,30] proposethe
integration of agents into the objemientedworld and, thus, they think of objects and agents
as complementary abstractionss a result, they have concentrated on extending existing
techniques from objeairiented software engeering to agerbased systems. The central
idea of this approach is the addition of additional features to objects so they become agents. In
fact, objectoriented software engineering has proved to be extremely powerful for building
complex systems, whicpromotes modularity, maintainability, and reusability. Moreover,
objectoriented software engineering has evolved by introducing successful techniques, such
as objecioriented frameworks [9] and design patterns [12]. For example, Kestdall[21]
propcse an objeebriented framework for developing muligent applications. This

-182 -

XV Simpésio Brasileiro de Engenharia de Software

framework is based otine layered agent architectural pattern, which separates different layers
of an agent, such as sensory layer, collaboration layer, and so on. Section atesomp
Kendall's approach with our proposal (Section 4).

3.3. AspectOriented Design and Programming

Aspectoriented design and programming has been proposed as a technique for improving
separation of concerns in software design and implementation. Ttralgdea is that while
hierarchical modularity mechanisms of objecented design and implementation languages
are extremely useful, they are inherently unable to modularize all concerns (properties) of
interest in complex systems. Asp@ctentedsoftware engineering does for concerns that are
naturally cut across each otherhat objectoriented software engineering does for concerns
that are naturally hierarchicalit provides mechanisms that explicitly capttite crosscutting
structue. Thus, the goal of aspeatiented design and programming [10, 23] is to support the
developer in cleanly separating components (objectspapéectgconcerns) from each other,
by providing mechanisms that make it possible to abstract and compos®therduce the
overall system. Aspects are defined as system propertiescribsdcut (i.e., cut across)
components in system’s design and implementation. Separating aspects from components
requires a mechanism for composigr weaving— them later. Cemal to the process of
composing aspects and components is the concepbirofpoints the elements of the
component language semantiggh which the aspect programs coordinaf®in points are
well-defined points in the dynamic execution of fr@gram (Figure 4). Examples of join
points are method calls and receptions, method executions, and field sets and reads. Pointcuts
are collections of join points. Aspect] [24] is a practical aspeehted extension to the Java
programming language [15]

<<crosscuts>>

attributel
attribute2
method1
method2

advicel
Y. advice2
advice3

(_ dispatch)
join point

~
RS
~ - . .
introduction
join point .
advices

Figure 4. AspectJ Mechanisms for Dealing with Crosscutting Aspects.

Adviceis a special methelike construct that can be attached to pointcuts. In this way,
pointcuts are used in the definition of advices. There are different kinds of adviceb(g
adviceruns when a join point is reached and before the computation proceeds, i.e. that runs
when computation reaches the method call and before the actual method starts running; (ii)
after adviceruns after the computation “under the join point” fires, i.e. after the method
body has run, and just before control is returned to the calleraf@ynd adviceruns when
the join point is reached, and has explicit control whether the computation under the join point
is allowed to run at all. Aspects aneodular units of crosscutting implementation that are
associatedwith one or more objects, comprised of pointcuts, advices, imimdduction
Introduction is a construct that defines new ordinary Java member declarations to theoobject
which the aspa is attachedsuch as, attributes and methoddjeaveris the mechanism
responsible for deviating the normal control flow to an advice, when program execution point
is at a join point (Figure 4). Up to the current version of AspectJ, almost all efeheng
process is realized as a grecessing step at compiliene [10].

-183 -

XV Simpésio Brasileiro de Engenharia de Software

4. An AspectBased Approach for Multi-Agent OO Systems

In the following, our agenAmulti approach is presented as an aspeeinted extension of
the traditional object modeln particular, our proposal is discussed in terms ofagent’s
core state and behavip(ii) agent types(iii) agency aspects for agenthodd/) particular
agency aspectgv) collaborative aspectqvi) aspect compositigrand (vii) agent evolution
We adopt UML diagrams [3] as the modeling language throughout this paper. The design
notation for aspects is based on [22]: aspects are represented as diamonds, the first part of an
aspect represents introductions, and the second one represents poirtdcihisiraattached
advices. Each advice is declared as follawgiceKind(pointcut):adviceName.

4.1. Agent’s Core State and Behavior

In our approach, classes aised to represent agents and their constituent components.
Classes represent agentsaadl as their beliefs, goals and plans. Byent class specifies the
core state and behavior of an agent (Figure 5), and should be instantiated in order to create the
application’s agents. Since agent siatdescribed in terms aofs goals, belies, andplans, the
attributes of amgent objectshouldhold references to objects that represent these elements,
namelyBelief, Goal andPlan objects.

Agent

beliefList
goalist
planList

setBelief)
addGoal()
setGoa()
addPlarf)

N sePlan()

Capabilities

y InterfaceAgent | Infor mationAgenty--.... UserAgent
“"‘receivelnstructio(w) Tsearch(Keyword) .?etUse()

monitor() searchKWL ist) checkPreferenc@
memoltize()

Figure 5. Agent Types.

Methods of theAgent class are used to update its basic state and implemeritsagen
capabilities. Application designers must subclassBiiief, Goal and Plan classes to define
beliefs, goals and the kinds of plans of their agents according the application requirements.
Plan classes also define methods to checkgar&ditions and sgiog-conditions (Section 2.1).

A Goal object can be decomposed in subgoals. A goal may have different gotanisence a
Goal object may have more than one associatadobject.

4.2. Agent Types

Our approach proposes the use ofemance in order to create different agent types.
Different types of agents are organized hierarchically as subclasses that derive from the root
Agent class. The methods of these subclasses implement the capabilities of each agent type.
Figure 5 illustrées the subclasses representing the different kinds of agents of our case study
(Section 2.2): (i) thenterfaceAgent class, (ii) theinformationAgent class, and (iii) theJserAgent

class. For example, the methesghrch(Keyword) of the InformationAgent class implements the
capability of information agents searching ifoiormation accordingo a specified keyword.

- 184 -

XV Simpésio Brasileiro de Engenharia de Software

4.3. AgencyAspectsfor Agenthood

Aspects should be used to implement the agency properties an agent incorporates. These
aspects are termedgencyaspects Each agencyaspect is responsible for providing the
appropriate behavior for an agent’s agency property. Figure 6 depicts the aspechs
define essential agency properties for agenthood: (i) interaction, (ii) adaptatid (iii)
autonomy. These agenagpectaffect oth core states and behaviors of agéaestion 2.1).

Sensor
AUTONOMY
senseMsg()
controlThreadList Introduction N
Effector startsControlThread() Part
putMsg() howManyThreads() -
around(receiveMsgRecision() .
after(set*)ProactiveAction() s
INTERACTION <<crgsscuts>> % ADAPTATION
<< >> B .
inbox ¥ crosscuts adaptBelief()
N\ adaptGoal()
?euégﬁ/XeMsg() A 3 adaptPlan()
ent suspendedPlanList
sendMsg() <kcrosscutsy> 9
beliefList <{Crosgtuts>>.after(receiveMsg)erification()
after(senseMsgnboxUpdate() goalList 1 after(setGoalplanStart()
after(receiveMsgutboxUpdate(planList S| after(executePlankchievedGoal()
seBelief()
addGoal()
setGoal() 2
addPlan() Pointcuts & Adviced)
setPlan() P
executePlan() art

Figure 6. Agency Aspects and the Design for Agenthood.

For example, when thiateraction aspect is associated with thgent class, itmakesany
Agent instance interactive. In other words, theeraction aspect extends thegent class’s
behavior to send and receive messages. This aspect updates messages and senses changes in
the environment by means of sensors and effectors. The intradyetib is used to add the
new functionality related to the interaction property. Baesor andEffector classes represent
sensors and effectors respectively, and cooperate with deapeaaific environment classes.
When a message is received by means séresor, thenteraction aspect needs to update its
inbox. So, the receptions of calls to #eseMsg() method are defined as a pointcut (Figure
6), and theinboxUpdate() after advice is associated with this pointcut. Similarly, the
OutboxUpdate() after adiice is attached to thgutMsg() method in order to update the agent
outbox. Since the process of sending and receiving messages occurs quite ofteragenulti
systems anduts @&rossthe agent’s basic capabilities, the implementation of this preseas
aspect is a design decision that avoids code duplication and improves reuse.

The Autonomy aspecimakesan Agent object autonomougt, encapsulates and manages one
or more independent threads of contigiplements theccepance or refusabf a capability
request and for acting without direct external intervention (Section Bdk) example, the
Decision() around advice implements th#ecisionmaking process by invoking specified
decision plans whea message is received. Then, this advice is attached to the pointcut that is
a collection of receptions of calls to theeiveMsg() method. TheProactiveAction() after advice
implements the agembility to act without direct external interventigproactive behavior)
to each invocation of methods with pregit (i.e., to each state change), this advice checks if
a new plan must be started

-185 -

XV Simpésio Brasileiro de Engenharia de Software

The Adaptation aspectmakesan Agent object adaptiveit adapts an agent’s state (beliefs
and goals) and behavior (plans) according to message receptions. As a consequence, this
aspect crosscutbe Agent class and theiteraction aspect so that it is possible to perform state
and behavior adaptatiofmsed ormessages received fratime environment by means of the
receiveMsg() method. Theverification after advice verifies if state change is needed and which
state component must be adapted. AbeptBelief(), AdaptGoal() and AdaptPlan() methods
themselves, defined in the introductipart, are responsible for updating beliefs, goals, and
plans, respectively. Thedaptation aspect also implements the following behaviors: (i) adapts
the agent behavior by starting appropriate plans when new goals a@asstart() after
advice), andii) adapts the agent’s goal list by removing a goal when this goal is achieved, i.e.
when the execution of the corresponding plan is finished succes@futigvedGoal() after
advice).

4.4. Particular AgencyAspects

The agency aspects that are specific each agent type are associated with the
corresponding subclasses (Figure 7). Note that the different types of software agents inherit
the agency aspects attached toAbent superclass. As a consequence, the three agent types
reuse the agenthood feeds and only define their specific capabilities and aspéas.
example, thelnformationAgent and UserAgent classes are associated with thelaboration
aspect, while theterfaceAgent class is attached to thearning aspect. Th€ollaboration aspect
extends thanteraction aspect by implementing tleynchronization of the agents participating
in a collaboration (coordination protocol). It locks the agent sending a message as well as
unlocks it when receiving the response. Thearning aspectintroduces the behavior
responsible for processing a new information when the agent state is updated.

Agent
beliefList COLLABORATION
goalist
planList
LEARNING sharedObject
setBelief) get()
] - addGoa() put()
insertinformation() setGoa() sendMsg()
removelnformation() addPlal) receiveMsg()
processinformation() sePlan()
executePlan() after(sendMsg):ock()
after(set*)UpdatesKnowledge() after(receiveMsg)Jniock()
v A
InterfaceAgent InformationAgent UserAgent
receivelnstructio) search(Keyword) getUse()
monitor() searchKWList) checkPreferendg
memorize()

Figure 7. Particular Agency Aspects.
4.5. Collaborative Aspects

Aspects should be used to implement the collaborative capabditiasa agent These
aspects are termaxbllaborative agency aspect collaborative agency aspect is a partof a
agent which defines the activity of the agenthin a set of particular collaborations. As a
result, it decouples the agent’s basic capabilities the collaborative capabilities, which in
turn improves understanding, reusability and evolution. Sincegant object neesd to
include multiple collaborative capabilities, different collaborative agency aspects are
associated with this object.

- 186 -

XV Simpésio Brasileiro de Engenharia de Software

Figure 8 illustrates this situation for the information agents of Portalware (Section 2.2). An
information agent nesdo support calhg and answeng capabilities in order to cooperate
with the other information agent in different contextsnust be ala to receive or make calls
Thus, thecCaller andAnswerer collaborative aspects are attached toltf@mationAgent class.

The caller aspect introduces to an agent the ability to send the sesygbsto the answeng

agent as well receive the search result. Similarly Atls@erer aspect introduces the ability to
receive the searchequestand to send the search result. TdwgtsCaller() after advice is
associated with receptions of searchingthods(search(*)) and is responsible for send the
searchrequestwhen the agent itself is not able to find the required information. This advice
checks results of searching methods so that the caller is activatadwehtbe method resu

is null. Note that these collaborative capabilities are introduced in a way that is transparent
and nonintrusive.

CALLER ANSWERER
sendSearchAsk() receiveSearchAsk()
receiveResult() sendResult()
after(search*$StartsCaller() <<B(OSSCUtS>> <<CrOSSCUIS>> | 4fier(search*BtartsAnswerer()

InformationAgent

search(Keyword)
searchKWList)

Figure 8. Collaborative Aspects of Agents.
4.6. Aspect Composition

As we have stated previously (Section 2.1) agency properties aogtogihonal, they can
overlap and interact with each other. As a result, there is a need for capturing the interactive
and overlapping characteristics of the multiple agency aspects. Our model establishes
relationship patterns which provide design ruleat tancompass the namthogonality of
agency properties. To capture the interaction among agency aspects, we define an advice to
each agency aspect at the same pointcut. For examphkytthemy aspect interacts with the
Interaction aspect in order to recve the incoming message and decide if the message should
to be acepted. Thedaptation aspect interacts with theutonomy aspect in order to adapt the
agent state and behavior when a incoming message is acepted. As a consequence, these
aspects implemertifferent advice for the same pointcut that comprises receptions to calls to
the receiveMsg() method. We use inheritance to capture the overlapping nature between the
Interaction and thecCollaboration aspects.Collaboration includes the interaction behaviand
refines it to add the coordination protocol. So, tagaboration aspect is a subaspect of the
Interaction aspect.

Figure 9 shows an interaction diagram for a basic call scenario between two information
agents in PortalwaréWeaver is the mechanismesponsible for composing the multiple
agency aspects. directsthe normal control flow to an advieéhen program executias ata
join point (Section 3.3)An information agent receives a message to search for an information
accading to a specified keyword. Thenteraction aspect receives this message through a
sensor and updates the Inbox with the new mesSHue Autonomy aspect performs the
decisioamaking process by invoking the decision plarhus, for every messaghat the
agent receives, it may determine, based on its own goals and state, and the state of the
ongoing conversation, whether to process the message and how to respond if it does. After the
Autonomy aspect decides on processing the messhgegdaptation aspect adapts the agent’'s
goals, since the agent must use a new search goal. When the goahes/seitation aspect

- 187 -

XV Simpésio Brasileiro de Engenharia de Software

seeks for an appropriate agent plan for achieving this goal and adapts the agent’s behavior for
carrying out this search plan. Tlagent selects a plan on the basis of the current situation.
During the plan execution, the agent’'s searching capaltitigsearch() methodis invoked.
Since the information agent is not able to find the specified keyword;dlee aspect is
activated in order to perform the caller collaborative capability. It calls the other information
agent and askfor the required information. Thiateraction aspect sends the message to the
answerer information agent. After the message is #®mollaboration aspect carries out the
coordination protocol so that the caller agent waits for the search @snikarly, the agent
receiveing the message uses its answerer capabilities to receiveqtiestand send the
search result. It is worthwhile to hilggght that advices and methods of dependent aspects are
performed everytime after aspeotswhich they depend

:Search ||:Decision||:Information

:Sensor| Plan Plan Adent [Interaction]Adaptation[Autonomy[Collaboration] Caller _[Answerer_]
senseMsg(Ms
—n.(- E _________________ -——— receiyeMsgMsg)
< - <& InboxUpdate() B
___executePlan() » Decisior(Msg)
» AdaptGoa(Msg)
< setGoa{Msg)
- — - P
4 executePlan() AdaptPlar{Goal
searcliKeyword) N ' |
- — — P StartsClallefKeyword, Resul) »| SendseardhadMsg)
seng» s@gMsg)
_ 07-! OutboxUpdate()
i Synchfonisation() Message
v ;Jget() being processed
on the answerer
LEGEND: .
« Joinpoint

Figure 9. An Interaction Diagram for the Portwalware’s Information Agents
4.7. Agent Evolution

The behavior of software agents can evolvequently to meet new application
requirements. Suppose information agents do not need to cooperate with each other in order to
find information. Instead, information agents are required to transport themselves from one
environment in the network to amer in order to achieve the searching goal. As a
consequence, they do not need to have the calling and answering capabilities, but must to be
mobile. In our model, this modification is done transparently, since agency aspects can be
added to or removed fno classes in a plégndplay way. TheCaller andAnswerer aspects are
disattached from thaformationAgent class without requiring any invasive adaptation for the
other agent's components. The remaining behavior of the agent is kept. However, it is
necesary to associate thelobility aspect, which introduces to thgent class the ability to
roam the network and gather information on behalf of its owner. This association process
includes defining the end of executions of searching metfgedsh(*)) as apointcut. At
runtime, when the execution okearch() method is finished, the weaver deviates the program
control flow to theMobility aspect. It takes results of searching methods to check if the
information agent was not able to find the informationug;hf the method result is null, this
aspect is responsible for migrating the agent to the other host in order to start a new search for
the information.

-188 -

XV Simpésio Brasileiro de Engenharia de Software

5. Discussion and Implementation Issues

Althougthwe have presented a definition for agenthood t{@e@.1) that tries to identify
the common features of software agetiiss definition is not widely accepted and varies from
researcher to researcher. This variation requires an agent model which is flexible enough to
encompass disciplined compositiasf aspects of agentd-ortunately, our aspecbased
approach can accommodate every distinct definition since agency aspects can be attached to
and removed from thagent class.

We are currently developing a case study comparing two approaches for develafiing
agent systems. In this case study, we have designed and implemented Portalware using
objectoriented programming (OOP) and aspecéented programming (AOP). Our goal is to
find out which of these techniques allows building ageged applicationsasier to write,
read, maintain and reuse. We have found our aspesited approach promotes better
readability and reusability sincle code for agent’s basic capabilities is not amalgamated
with the code devoted to the different agency propertiescatidborative capabilities. For
this reason, basic and collaborative capabilities as well as agency properties are easier to read
and maintain.

Our aspecbased approach was implemented for the case study using Aspectd [34]. The
implementation consists &l classes, 5 agency aspects, and 5 collaborative aspects. In order
to implement the dependency relationship between these different aspects, we used the
“dominates” construct of AspectJ. In addition, we have used two aspects which implement
application’sgeneral aspects: exception handling and persistence. For instarrasitwence
aspect is applied for dealing with the persistence of an agent’s state. In this sense, we have
also used TSpaces/IBM [27], a blackboard architecture for network communiceitio
database capabilities. TSpaces provides group communication services, database services and
event notification services. It is implemented in the Java programming language and thus it
automatically possesses network ubiquity through platform indimee, as well as standard
type representation for all datatypes. In our prototype, messages captured by different
collaborations were implemented as tuples and finally, agents communicated by posting such
tuples to the blackboard.

In our case study (Seoti 2.2), different instances of information agents should have
varying characteristics. They may be collaborative orcataborative, they may be static or
mobile, they may or may not learn. So, it is desirable to build personalized information agents
to attach different aspects to distinct instances of information agents. Our proposed model
supports this feature. However, the current version of AspectJ does not provide direct support
for associating different aspects with different class instances. féatsre is currently
supported by some metdject protocols such as Guarana [31].

6. Comparison with Related Work

Some attempts to deal with agent complexity by using the object model have been
proposed in the literature [20, 2Kendall et al [21] prposes the layered agent architectural
pattern, which separates different layers of an agent, such as sensory layer, action layer and so
on. However, some aspects of agents, such as autonomy, cut across the different layers of this
approach. We also beliewvevolution of this design is cumbersome since it is not trivial
removing any of these layers; it requires the reconfiguration of the adjacent layers. This work
does not present guidelines for evolving agent behavior in order to accommodate new aspects
of agents or remove existing ones. In faopdeling the agency properties of an agent within
the traditional object model is hard to do and introduces expressive limitdtioosntrast,
our model allows the addition or removal of aspects of agents tranfpai®ection 4.7).

- 189 -

XV Simpésio Brasileiro de Engenharia de Software

Moreover, we have found that the use of design patterns for the agent domain introduces a
number of problems: (i) class explosion, (ii) need for preplanning, (iii) the application of the
suitable design patterns is not trivial, and (ack of expressive power. Finally, this proposal
causes object shizophreniathe agent state and behavior, which are intended to appear as a
single object, are actually distributed over multiple objects.

We have followed Kendall et al [20] guidelindsat describes the application of aspect
oriented programming to implement role models, to implement agent’s collaborative aspects.
However, their work does not deal with agents’ agency properties, which we believe are the
main source of agent complexity this sense, our paper presents a unified framework for
dealing with collaborative capabilities and agency properties, and their interrelationships.

Research in aspeotiented software engineering has concentrated on the implementation
phase. A few workdiave presented aspdiised design solutions. In addition, since aspect
oriented programming is still in its infancy, little experience with employing this paradigm is
currently available. To date, aspecrtented programming has been used to implement
generic aspects such as persistence, error detection/handling, logging, tracing, caching, and
synchronization. However, each of these papers is generally dedicated to only one of these
generic aspects. In this work, we provide an aspased design model vah: (i) handles
both agencgpecific aspects as well as generic aspects (e.g. synchronization), and (ii)
encompasses a number of different aspects and their relationships.

7. Conclusions and Future Work

As the world moves rapidly toward the deploymeingeographically and organizationally
diverse computing systems, the technical difficulties associated with distributed,
heterogeneous computing applications are becoming more apparent and placing new demands
on software structuring techniques. The notdragents is becoming increasingly popular in
addressing these difficulties. However, the development of software agents is not a trivial
task. Thiswork discussed the problems in dealing with agency properties and capabilities as
well as overviewed softwa engineering approaches to addressing these problems. So, we
presented an aspedaased approach to make development of sophisticated agents simple
enough to be practical. In fache main contribuition of this work is an implementation and
design propaa that provides a unified framework for introducing complex software agents
the object modelOur proposal explores the benefits of asfiiaged software engineering for
the incorporation of agency aspects in obmetnted systems. Since aspeaoented
programming is still in its infancy, little experience with employing this paradigm is currently
available. In this sense, we have presented a substantial case study (Section 2.2), which we
have used to apply our aspéetsed approach.

Design patters [12] are important vehicles for constructing haghality software.
Architectural patterns define the basic structure of an architecture and of systems which
implement that architecture; design patterns are more pretwiemted than architectural
pattens, and are applied in later design stages. As presented in this paperbaspdatesign
can be used to address the problems of dealing with agency propéféeste currently
investigating a language @fspectbased design patterns for agent systewtgch provide
good design solutions for dealing with each of the agency aspects of agents. An architectural
pattern should be proposed in order to specify a-lgll description of the agent's
organization in terms of its aspects and their interrelakips. Aspecbased design patterns
can be used to provide solutions for each of the agency aspects of agents while following the
overall structure of the proposed architectural pattern.

-190 -

XV Simpésio Brasileiro de Engenharia de Software

References

1. M. Aksit, L. Bergmans, and S. VuralAn Object-Oriented LanguageDatabase
Integration Model: The Composition Filters Approach’. Proceedings of ECOOP’92,
Lecture Notes on Computer Science, vol. 615, 1992.

2. J. Bigus and J. BigusConstructing Intelligent Agents with Java— A Programmers’s
Guide to Smarter Applications’. Wiley, 1998.

3. G. Booch, and J. RumbaughJnified Modeling Language — User Guid€. Addison
Wesley, 1999.

4. J. Bradshaw, S. Dutfield, P. Benoit, and J. WoollggaoS: Toward an Industrial-
Strength Generic Agent Architecturé€. In: J. M. Bradshaw (edith Software Agents.
Cambridge, MA: AAAI/MIT Press, 1996.

5. J. Bradshaw!An Introduction to Software Agents’. In: Software Agenis). Bradshaw
(editor), American Association for Artificial Intelligence/MIT Press, 1997.

6. D. Brugali and K. Sycard'A Model for Reusable Agent SystenisIn: Implementing
Application Frameworks— ObjectOriented Frameworks at WarkM. Fayad et al
(editors), John Wiley & Sons, 1999.

7. A. Chavez, D. Dreilinger, R. Guttman, and P. Maés. RealLife Experiment in
Creating an Agent Marketplac€. Proceedings of the 2nd Int. Conference on the
Practical Application of MultiAgent Technology (PAAM'97)London, UK, April 1997.

8. M. Elammari and W. Lalonde€:An Agent-Oriented Methodology: High-Level and
Intermediate Models’. Proceedings of AOIS1999 (AgeniOriented Information
Systems), Heidelberg (Germany), June 1999.

9. M. Fayad et al“*Implementing Application Frameworks”. First Edition,John Wiley &
Sons, 1999.

10.C. von Flach, C. Lucena, M. Fontouf#® Design Model for AspectOriented Software
Development. Technical Report, PURIo, 2001.

11.A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goeditkewpoints: a
Framework for Integrating Multiple Perspectives in System Developmerit
International Journal of Software and Knowledgeikeering, 2(1):3437, 1992.

12.E. Gamma, R. Helm, R. Johnson, and J. Vlissidéesign Patterns: Elements of
Reusable ObjectOriented Software’. AddisonWesley, Reading, MA, 1995.

13.A. Garcia, C Lucena and Donald D. Cowdrgents in ObjectOriented Software
Enginnering”. Technical Report C&001-07, Computer Science Department, University
of Waterloo, Waterloo, Canada, March 2001.

14.A. Garcia, M. Cortés, C. LucendA Web Environment for the Development and
Maintenance of E-Commerce Portals Based on Groupware Aproach”. Proceedings
of the 2001 Information Resources Management Association International Conference
(IRMA’2001), Toronto, May 2001.

15.J. Gosling, B. Joy, G. Steel@élie Java Language SpecificatiohAddison-Wesley, 1996.

16.W. Harrison and J. OsshetSubjectOriented Programming: A Critique of Pure
Objects’. Proceedings of OOPSLA’93, ACM, pages 4428, 1993.

17.C. Iglesias, M. Garrijo, and J. GonzaléA Survey of AgentOriented Methodologies,
Proceedings of the 5th International Workshop on Intelligent Agehgent Theories,
Architectures, and Languages (ATAI8), Paris, France, July 1998, pp. 3330.

18.N. Jennings“On Agent-Based Software Engineering Artificial Intelligence 117(2000)
277-296, Elsevier.

19.N. Jennings and M. WooldridgeAgent-Oriented Software Engineering”. In: J.
Bradshaw (editor), Handbook of Agent Technology, AAAI/MIT Press, 2000.

20.E. Kendall’Agent Roles and Aspects ECOOP Workshop on Aspect Oriented
Programming, July, 1998.

-191 -

XV Simpésio Brasileiro de Engenharia de Software

21.E. Kendall, P. Krishna, C. Pathak and C. SuréahHramework for Agent Systems. In:
Implementing Application Frameworks ObjectOriented Frameworks at WarkM.
Fayad et al(editors), John Wiley & Sons, 1999.

22.M. Kersten and G. MurphyAtlas: A Case Study in Building a WebBased Learning
Environment using AspectOri ented Programming’. Proceedings of the OOPSLA’99,
Denver, USA, ACM Press, pp. 34852, 1999.

23.G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and J. Irwin.
“AspectOriented Programming”. European Conference on Obj&atiented
Progranming (ECOOP’97)Finland. SpringeiVerlag LNCS 1241June 1997.

24.G. Kiczales et al*An Overview of AspectJ. Submitted to ECOOP’2001, Budapest,
Hungary, 2001.

25.B. Kristensen.“Roles: Conceptual Abstraction Theory and Practical Language
Issues” Special Isse of Theory and Practice of Object Systems (TAPOS) on Subjectivity
on ObjectOriented Systems, 1996.

26.D. Lange and M. Oshim&Programming and Developing Java Mobile Agents with
Aglets.” AddisonWesley, August 1998.

27.T. Lehman, S. McLaughry, and P. WyckoffTSpaces: The Next Wavé Hawaii
International Conference on System Sciences (Hi88SJanuary 1999

28.T. Nelson, D. Cowan, P. AlencarA Model for Describing Object-Oriented Systems
from Multiple Perspectives’. Lecture Notes on Computer Scien&pringefVerlag,
(1783) 237248, 2000.

29.H. Nwana.” Software Agents: An Overview. Knowledge Engineering Review, 11(3). 1
40, September 1996.

30.Object Management GroupAgent Platform Special Interest Grouggent Technology
— Green Papef. Version 1.0, September Q0.

31.A. Oliva and L. Buzato:The Design and Implementation of Guarana 5th USENIX
Conference on Obje@riented Technologies and Systems (COOTS '99), 84ay1999,
San Diego, CA, USA.

32.C. Petrie.* Agent-Based Software Engineeringj Lecture Notes in IA, SfingerVerlag,
2000.

33.C. Petrie. Agent-Based Engineering, the Web, and Intelligen¢elEEE Expert, Special
Issue on Intelligent Systems and their Applications, 11(6), December 195%:24

34.P. Ripper, M. Fontoura, A. Neto, and C. LucenaV-Market: A Framework for e
Commerce Agent Systems World Wide Web, Baltzer Science Publishers, 3(1), 2000.

35.Y. Shoham. Agent-Oriented Programming”. Artificial Intelligence, 60(1993): 2429.

36.0. Silva, D. Orlean, F. Ferreira, C. LucendA SharedMemory Agent-Based
Framework for Businessto-Business Applications. Proceedings of the 2001
Information Resources Management Association International Conference (IRMA’2001),
Toronto, May 2001.

37.P. Tarr, H. Ossher, W. Harrison and S. SuttdtN Degrees of Separation: Multi
Dimensional Separation of Concerns.Proceedings of 21st International Conference on
Software Engineering (ICSE'99), May 1999.

38.TecComm Group.“Frameworks and New Technologies toE-Commerce’. URL:
www.teccomm.les.inf.pudo.br

39.M. Wooldridge, N. Jennings:‘Agent Theories, Architectures, and Language: A
Survey’. In: M. Wooldridge & N. Jennings (editors)ntelligent Agents: ECA94
Workshop on Agent Theories, Architectures, Langud@gedin, SpringVerlag (pp. 139).

-192 -

