
MuDeL: A Language and a System for Describing
and Generating Mutants ∗

Adenilso da Silva Simão
José Carlos Maldonado

{adenilso,jcmaldon}@icmc.sc.usp.br

Departamento de Computação
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

Av. Trabalhador Saocarlense, 400
Cx. Postal 668
CEP. 13560-970

São Carlos — São Paulo

Abstract

Mutation Testing is an approach for assessing the quality of a test case suite by
analyzing its ability in distinguishing the product under test from a set of alternative
products, the so-called mutants. The mutants are generated from the product
under test by applying a set of mutant operators, which produce products with
slight syntactical differences. The mutant operators are usually based on typical
errors that occurs during the software development and can be related to a fault
model. In this paper, we propose a language — named MuDeL — for describing
mutant operators aiming not only at automating the mutant generation, but also at
providing precision and formality to the operator descriptions. The language was
designed using concepts that come from transformational and logical programming
paradigms, as well as from context-free grammar theory. The language is illustrated
with some simple examples. We also describe the mudelgen system, developed to
support this language.

Keywords: Testing, Programming Language, Mutation Testing, Mutant Genera-
tion.

1. Introduction

Mutation Testing [3, 6] is a testing approach that has been proposed to assess the
quality of a test case suite in revealing some specific classes of faults. In this sense,
Mutation Testing is a fault-based testing technique. It was originally proposed for program
testing [6]. Since then, several researchers have applied its underlying concepts in a variety
of other contexts, e.g. specification testing [8, 9, 20, 22], interface testing [5], protocol
testing [7, 15] and network security model testing [16].

∗The authors would like to thank the Brazilian Funding Agencies — FAPESP, CNPq, Capes — and
to Telcordia Technologies (USA) for their partial support to this research.

XV Simpósio Brasileiro de Engenharia de Software

- 240 -

The main idea behind Mutation Testing is to employ a set of alternative products1

(the so-called mutants) of the product under test (the original product). These mutants
are derived from the original product through some syntactical changes made to induce
specific faults in the product. Then, the ability of a test case suite in revealing those
faults is estimated by running the mutants and comparing their results against the result
of the original product in the same test cases.

The faults considered to generate the mutants are based upon knowledge about errors
that typically occurs during the software development and is usually related to a fault
model. In the Mutation Testing approach, the fault model is partially embedded in the
mutant operators [13]. From an abstract viewpoint, a mutant operator is a function that
takes a product as input and generates a set of products in which the fault modeled by
this particular operator is injected. The fault model has great impact in the Mutation
Testing cost and effectiveness, and, hence, so do the mutant operators. In general, when
the Mutation Testing is proposed for a particular language, one of the first steps is to
describe the fault model, usually in the form of a mutant operator set. The fault model,
as well as the mutant operator set, has to be assessed and evolved to improve its accuracy
w.r.t. to the language in question. This is usually made by theoretical and/or empirical
analyses. Specifically for empirical analysis, it is necessary to design and construct a
prototype or a supporting tool, once the manual generation of mutants is very costly and
error-prone. However, the tool design and construction are also costly and time-consuming
tasks.

Another important issue to be considered is that, given the already mentioned impact
in the Mutation Testing effectiveness, the mutant operators have to be precisely defined.
If one takes an informal description of a mutant operator and implements it in the way
one interprets it, one runs the risk of not being able to compare results with someone else,
because it may not be clear whether the mutants in hand are the same. That is, mutant
operators, alike any other piece of artifact of software engineering, must be described in
a way as precise and formal as possible, avoiding ambiguities and inconsistencies.

In this paper we describe a language — called MuDeL (MUtant DEscription Lan-
guage) — for the description of mutant operators. The intend behind the language is
threefold. First, we want a way to precisely and unambiguously describe the operators.
In this respect, the MuDeL is an alternative for sharing mutant descriptions. The
denotational semantics of MuDeL is defined in [19]. Second, the description can be
“compiled” into an actual mutant operator, enabling the mutant operator designer to
validate the description and potentially to improve it. With this particular purpose, we
have implemented the mudelgen system. Given a mutant operator description and the
original program, the mudelgen compiles the description and generates the mutants, based
on a context-free grammar of the original product. And finally, by providing an abstract
view of the mutations, MuDeL eases the reuse of mutant operators defined for different
languages. For example, although the actual grammars of, say, C and Java are quite
different, they both share several similar constructions, and, by carefully designing their
grammars and the mutant operators, we can reuse the mutant operators that operate
on the same construction, e.g., deleting statements, swapping expressions, and so on, on
both languages. The MuDeL language captures the underlying concepts that leaded to
the mutant operator definition.

1Throughout this paper we will use the term “product” in the same sense most testing research papers
employ the term “program”.

XV Simpósio Brasileiro de Engenharia de Software

- 241 -

Mutations can be classified in two major groups: context-free mutations and con-
text-sensitive ones. Roughly speaking, context-free mutations are those that could be
carried out regardless the syntactical context where the mutated part is in. Conversely,
context-sensitive mutations depend upon the context, e.g. the variables declared in a
specific point. Most mutant operators in literature [1, 8, 9] involve context-free mutations.
Currently, MuDeL only supports context-free mutations and some simple kinds of con-
text-sensitive ones. Indeed, considering all kinds of context-sensitive mutations would
require more sophisticated constructions, and, however, there are usually few cases in
which those constructions would be used [1].

The Mutation Testing demands several functionalities other than just generating
mutants. Both MuDeL and mudelgen are to be used as a piece in a complete mutation
tool, either in a tool specifically tailored to a particular language or in a generic tool — a
tool that could be used to support Mutation Testing application in (ideally) any language.

This paper is organized as follows. In Section 2 we present some work related to our
approach. Basic concepts need for the discussion in the remain sections are presented
in Section 3. In Sections 4 and 5 we present the MuDeL language and the mudelgen

system, respectively. Finally, in Section 6 we make some concluding remarks.

2. Related Work

Transformational programming paradigm is based on describing abstractly how to
transform a source item in a target one through a systematic series of syntactical changes.
In general, the source and the target item are in different languages. In a special case, both
can be in the same language. The MuDeL’s approach is a transformational programming,
in which the source item’s and the target item’s languages are the same. The source item
is the original product and the target item is the mutants.

There are several examples of transformational languages and systems, e.g. DRACO
[14, 18], TXL [4] and Refine [11]. With some effort, any of these could be used for
generating mutants. This can be made by adapting and sometimes tricking these systems,
since none of them was designed with this particular propose in mind. For example, Kotik
and Markosian [11] describe a piece of work carried out with Refine to generate test cases.
The authors also suggest Refine can be used to generate mutants and present a little
example of their approach. The main drawback of using these transformational systems
to describe mutants is that a set of mutants are to be generated from a single original
product, and most, if not all, transformational systems work with an one-to-one schema,
i.e., they take one input product and generate one transformed output product. In this
sense, what we believe MuDeL add to this scenario is a mutant description/generation
oriented language, which brings the main idea of mutation built-in, yet being general
enough to be applied to (likely and hopefully) any product source language.

3. Basic Concepts

In this section we present a brief introduction to grammar and language theories,
needed for the discussion that follows. A thorough presentation can be found elsewhere
[17]. Syntax grammars are finite devices to describe usually infinite languages. Given
a grammar G, we have L(G) be the set of all sentences that can be generated by the

XV Simpósio Brasileiro de Engenharia de Software

- 242 -

productions in G. Most, if not all, programming or computer language is characterized
by a grammar. Indeed, the grammar is usually part of the sound definition of the language.

Grammars can be classified based on the kind of productions they possess. An
important class is the context-free grammars. They are simple and expressive enough to
catch most constructions that are usual in computer languages. Moreover, the algorithms
to recognize them are computationally tractable. Context-free grammars are usually
described in BNF [23]. We will refer to them as BNF grammars, as a shortcut for
context-free grammar described in BNF. A BNF grammar G is formed by a four-tuple G =
(N, T, S, R), where N is the set of non-terminal symbols, T is the set of terminal symbols,
S ∈ N is a non-terminal symbol referred to as the initial symbol, and R ⊆ N × (N ∪ T)∗

is the production rules. Rather informally, a production rule of the form (n, α) states that
the non-terminal symbol n (the lefthand symbol) can be replaced by the sequence α (the
righthand symbol sequence) of terminal and non-terminal symbols without “inflicting”
the grammar. Usually, the non-terminal symbols are expressed between angle brackets
and the terminal symbols between single quotes. A production (n, α) is represented in
the form of

〈n〉 ::= α

Using these conversions, BNF grammars can be (and often are) described just by
means of productions, taking the terminal and non-terminal sets directly from them,
and having the initial symbol be the lefthand symbol of the first production. As an
example of a simple BNF grammar, Figure 1(a) presents a grammar that defines the
language of parenthesis-balanced expressions formed by numbers, identifiers, additions
and multiplications, preserving the usual mathematical precedence of multiplications over
additions. Following the above conventions, we can derive the remaining elements of the
grammar. So, we have the non-terminal set N = {〈S 〉, 〈A〉, 〈B〉, 〈number〉, 〈identifier〉},
the terminal set T = {‘*’, ‘+’, ‘(’, ‘)’, ‘1’, ‘a’}, and the initial symbol S = 〈S 〉. Observe
that we actually limit ourselves to define only one production for each 〈number〉 and
〈identifier〉. Other productions could be included as well, but they would not contribute
any further to the explanation that follows.

〈S 〉 ::= 〈A〉

〈S 〉 ::= 〈S 〉 ‘*’ 〈A〉

〈A〉 ::= 〈B〉

〈A〉 ::= 〈A〉 ‘+’ 〈B〉

〈B〉 ::= 〈number〉

〈B〉 ::= 〈identifier〉

〈B〉 ::= ‘(’ 〈S 〉 ‘)’

〈number〉 ::= ‘1’

〈identifier〉 ::= ‘a’

S

S A

A

A

S

A

B

B

B

B

‘(’ ‘)’

‘1’

‘+’

‘a’

‘a’

‘*’

(a) (b)

Figure 1: (a) A (partial) BNF context-free grammar of simple expressions.
(b) The syntax tree for ‘(1 + a) * a’.

From a sequence γ〈n〉δ, we can derive another sequence of the form γαδ, for any
production (n, α). This is represented by γ〈n〉δ ⇒ γαδ. The language L(G) defined by G

XV Simpósio Brasileiro de Engenharia de Software

- 243 -

is the set of all sequences of terminal symbols that can be derived from the initial symbol
S with the productions in R, i.e., ϕ ∈ L(G) if and only if ϕ ∈ T ∗ and S ⇒ . . . ⇒ ϕ.
The derivation of ϕ from S can be summarized in a syntax tree for ϕ. The syntax tree
is a tree where the non-leaf nodes are non-terminal symbols, the leaf nodes are terminal
symbols and the root node is the initial symbol. If a node 〈n〉 has child nodes with labels
α1, α2, . . . , αk, then there has to exist a production of the form

〈n〉 := α1α2 . . . αk

If transversing a syntax tree t of a grammar G and collecting the terminal symbols we
obtain a sequence ϕ, then t is the syntax tree of ϕ w.r.t. G. Indeed, ϕ belongs to L(G)
if there exists such a syntax tree t for ϕ. Figure 1(b) presents the syntax tree for the
expression ‘(1 + a) * a’.

Let π be a function that takes a grammar G and a sequence ϕ and returns one syntax
tree2 of ϕ w.r.t. G. Let δ be a function that takes a syntax tree and generates the sequence
of terminals by transversing and collecting the leaf as alluded above. So, it holds that
δ(π(G, ϕ)) = ϕ. As stated before, a mutant operator µ is a function that takes a product
and generates a set of mutated products. This can be restated by constructing a function
µ′ that takes a syntax tree and generates a set of mutated syntax trees, and defining µ as
follows:

µ(p) = {m | ∃t ∈ µ′(π(G, p)) ∧ δ(t) = m}

where p is the original product. MuDeL can be thought of as a language for describing
µ′ functions, i.e., for describing how the syntax tree of original product is to be translated
into the syntax tree of the mutants. Nevertheless, MuDeL also embodies both π and δ,
the parsing and unparsing functions, respectively.

3.1. Context-Sensitiveness and Mutation

The syntax of most languages are defined by means of context-free grammars, e.g.
the programming languages C and Pascal. However, these languages are, indeed, not
context-free. For example, an expression “x = 1” will or not be accepted as a valid C
expression depending upon the context (particularly, the variable declaration context) it
appears in. In this respect, the C language is clearly context-sensitive. If so, why is it
usually described as a context-free grammar? The most important reasons for this are:
(a) context-sensitive grammars are harder to specify and more expensive to recognize;
(b) the context-sensitiveness can be properly tackled using lookup tables.

In a very similar way, mutations can be divided up into context-free and context-sensi-
tive classes. Even for a context-sensitive language, there can be context-free mutations.
An example of context-free mutations is the change of “x = 1” into “x += 1”, since
wherever the first expression is valid, so is the second. However, the change of “x = 1”
into “y = 1” is context-sensitive, since the second expression will not be valid unless y

has the same declaration status as does x. To deal with this rather difficult problem, a
language for describing mutants should either embody features to specify context-sensitive

2Actually, for some grammars there can exist more than one syntax tree for a given sequence. For
this case, π could choose anyone of them, by chance. To make this choice unique, we have π choose the
leftmost derivation [10].

XV Simpósio Brasileiro de Engenharia de Software

- 244 -

grammar or provide some way to gather information from the context in some kind of
lookup table.

Although some kind of context-sensitive mutations can be described in MuDeL,
its primarily intent is to describe context-free mutations. As pointed out before, con-
text-sensitive grammars are harder to couple with, and so are context-sensitive muta-
tions. Moreover, in experiments we have conducted with the MuDeL and mudelgen in
generating mutants for Petri nets specifications and C programs we observed that only
a small percentage of the overall existing mutant operators could not be described with
context-free mutations [21]. For example, we were able to describe all of the 11 mutant
operators proposed by Fabbri [7] for Petri net specifications. For C programs, we were
able to specify 59 out of 71 mutant operators proposed by Agrawal [1].

4. MuDeL: The Language

We introduce a set M of meta-variables and extend the syntax tree by allowing for
leaves to be meta-variables as well as terminal symbols. Moreover, in this extension the
root node can be any non-terminal symbol (not only the initial one, as in syntax trees).
We call these extended syntax trees pattern trees. Each meta-variable has an associated
non-terminal symbol, which is called its type. A meta-variable can be either free or
bound. Every bound meta-variable is associated to a sub-tree that can be generated from
its type. Therefore, a syntax tree is just a special kind of pattern tree; a kind where every
meta-variable (if any) is bound. Figure 2 shows an example of a pattern tree. As a way to
distinguish from ordinary identifiers, we prefix the meta-variables with a colon (:). Even
in the presence of meta-variables, the children of a node must be in accordance with its
productions, i.e., a meta-variable can only occur where a non-terminal of its type also
could.

S

S

A

A

S

B

‘(’ ‘)’

‘*’

:a

:b

Figure 2: The pattern tree for ‘(:a) * :b’. The types of ‘:a’ and ‘:b’ have been declared
as 〈A〉 and 〈B〉, respectively.

To specify patterns we use the following notation. The simplest pattern is formed
by an anonymous meta-variable, as its root node. This pattern is expressed just by the
non-terminal symbol that is its root node enclosed in squared brackets. For example, [A]

is a pattern whose root node is an anonymous meta-variable of type 〈A〉. Most times,
such a simple pattern will not be enough to specify pattern trees. For those situations,
one can use a more elaborated pattern denotation. The non-terminal root symbol is put
in squared brackets, as before, but following it, in angle brackets, is included a sequence
of terminal symbols and meta-variables that should be parsed to generated the pattern
tree. For example, the pattern tree in Figure 2 is denoted by [S< (:a) ∗ :b>]. Note
that inside the angle brackets the grammar of the product, rather than the MuDeL’s

XV Simpósio Brasileiro de Engenharia de Software

- 245 -

grammar, is to be respected. Nonetheless, meta-variables come from MuDeL itself and,
thus, the previous pattern will only be valid if the meta-variables :a and :b are declared
with proper types.

Indeed, the best term for MuDeL, instead of a language, is a meta-language, in that
a MuDeL’s description is valid or not w.r.t. a given source grammar. That is, given
a source grammar of a product language, we instantiate a MuDeL language for that
grammar. The source grammar, for example, determines the form and the syntax of the
tree patterns.

4.1. Matching and Replacing

There are two main operations in the MuDeL language: matching and replacing.
For matching, we take two tree patterns c and m and try to unify them, using the same
algorithm as the Prolog language [2]. A matching can either fail or succeed. In case of
success, the meta-variables in the tree pattern are unified either to closed tree patterns
or to other meta-variables, in a way that makes them unrestrictly interchangeable. In
case of failure, no meta-variable unification occurs. The unification can bind some
meta-variables either to other meta-variables or to sub-trees. Binding a meta-variable
to another meta-variable leads to situations where a chain of meta-variable referencings is
obtained. The actual referent of a meta-variable is the referent of the last meta-variable
in a chain, and it can be a sub-tree or be free. If a pattern tree is such that the referents
of all its meta-variables are sub-trees, it is called a closed pattern tree. The matching
process is illustrated in Figure 3.

S

S

S

S

A

AA

A

A

SS

A

BB

B

B

B

‘(’ ‘)’

‘1’

‘+’

‘a’

‘a’

‘*’

‘(’ ‘)’

‘*’

:a

:b

Figure 3: Matching Process

For replacing, we take three patterns c, r and b, try to unify c with r and, in case of
success, substitute c by b. This is actually the most general operation, in that the matching
is just a special case where b equals r, i.e., no change is made at all. A replacement, when
occurs, takes place after the unification of c and r. Thus, meta-variables can be used to
make the pattern b refer to some parts of c and/or r.

The matching and replacing processes are usually employed techniques. Indeed, most
of the transformational systems use a similar approach. Maybe the only novelty of
MuDeL is the later unification, in a way similar to what happens in Prolog. The replacing
pattern need not be closed, in that it is allowed for free meta-variable to appears. Latter
on in the computation, if the same meta-variable is unified to a pattern, previous patterns

XV Simpósio Brasileiro de Engenharia de Software

- 246 -

in which that meta-variable has appeared will unify accordingly. This particular feature
was introduced to couple with situations where the information to complete a mutation
appears only latter in the product. For example, when the actual mutated value of an
expression will only be available afterwards, when, say, the return value of the function is
known.

4.2. MuDeL’s Constructions

A mutant operator description has three main parts. The operator name declaration
comes in first. This name is just for documentation purposes and has no impact in the
remaining declarations. Next, there is the optional section of meta-variable declarations.
If present, this section is started by the keyword var followed by a list of one or more
meta-variable declarations. A meta-variable declaration is a meta-variable name followed
by a pattern tree. The last section, enclosed by the keywords begin and end operator, is a
(possibly compound) operation. This operation will be executed on the syntax tree of the
original product and will generate the mutants, if any. Figure 4 presents a mutant operator
description, illustrating its overall structure. This mutant operator, whose name is STDL,
declares the meta-variable :s with the type 〈statement〉, and has a simple operation,
that, as will be clarified later, generates mutants replacing nodes with type 〈statement〉
by a semi-colon (the null statement), according to the grammar of the C programming
language. The grammar used in this and in the operators in Figures 9 through 11 is
presented in Section 5.

operator STDL
var : s [s t a t emen t]

begin

∗ replace [s ta tement< : s>]
by [s tatement< ; >]

end operator

Figure 4: A Simple Mutant Operator. For every statement in the program, a mutant is
generated by “deleting” the statement.

The replacing operation is encoded with the construction replace r by b, where r is
the pattern to be found and b is the replacing pattern. This kind of construction has an
implicit context pattern against which r is to be matched. By default, the context pattern
of an operation is the innermost declared context pattern, or the complete product tree,
if none is declared. Actually, the replacing occurs by exchanging the context pattern by
the b pattern. Figure 5 shows the mutant operator SWDD that illustrates the replacing
operation. This operator changes a C while statement into a C do-while one.

The SWDD does not really do what we would expect for such a kind of mutant
operator. Recall that the implicit context defaults to the whole product tree, in this case,
the whole C program. So, what SWDD really does is to generate one mutant provided
the whole program is just a single while statement (which is not even a valid C program).
What would be expected is that all while statement, in any level, be exchanged. To
accomplish this effect, we can add the modifier “∗” (read in depth) to the replacing. The
modifier “∗” means, informally, that the modified operation will be applied to the context
pattern tree and recursively to any subtree thereof. Therefore, an operation with the in
depth modifier will usually generate a set of mutants, since whenever one of its subtrees

XV Simpósio Brasileiro de Engenharia de Software

- 247 -

operator SWDD
var : e [e x p r e s s i o n] : s [s t a t emen t]

begin

replace [s tatement< whi l e (: e) : s >]
by [s tatement< do : s wh i l e (: e) ; >]

end operator

Figure 5: Replace a while statement by a do-while statement.
See also Figure 6.

matches the pattern a different mutant is produced. Figure 6 shows a somewhat more
suitable description of the SWDD.

operator SWDD
var : e [e x p r e s s i o n] : s [s t a t emen t]

begin

∗ replace [s tatement< whi l e (: e) : s >]
by [s tatement< do : s wh i l e (: e) ; >]

end operator

Figure 6: Replaces every while statement in any level by the respective do-while statement.

Suppose now we are designing a mutant operator that exchange not only while by
do-while, but also the other way round3. Changing a do-while statement into a while can
be easily make by swapping the patterns in SWDD. A further construction is needed to
compose both features together. For that purpose, MuDeL has the composition operator
“ ||” (read choice). The choice operator takes a sequence of operations and means that
each will be tried in order to generate mutants. More than one operation can be included,
separating each pair with a “ ||”, e.g. a || b || c. All operations in a chain separated by the
choice composition operator is called a choice list. For each operation, the global state
will be the same, i.e., after one operation has been concluded, the state is restored and
any eventual change is undone. In other words, in any mutant, only the effects of one
of these operations will be present. Therefore, the set of mutants generated by a choice
list is the union of the mutants generated by each individual operation. Figure 7 shows a
description of the mutant operator for exchanging while and do-while by each other.

One more thing has to be said about the choice composition operator. There exists
a primitive operation named cut, which, when executed in any operation, makes all
remaining operations in the innermost choice list be skipped. The cut is similar to, and
was design after, the Prolog’s cut predicate [2]. It is primarily intended to improve control
over the number of times a set of operations is executed.

Sometimes it may be necessary to execute more than one operation in the same mutant.
Usually, this happens to constraint further the pattern. It can be the case, as well, that
the mutant operator semantics requires more than one change be done. The composition
operator “ ;;” (read then) was designed to tackle this point. The then operator takes a
series of operations and means that each one has to be executed, in sequence, to generate
a mutant. More than one operation can be included separating each pair with a “ ;;”,
e.g. a ;; b ;; c. The “ ;;” operator has a higher precedence than has “ ||”, so a ;; b || c ;; d is

3Usually, this goal is accomplished by design two mutant operators [1]. We made both together just
for sake of illustration.

XV Simpósio Brasileiro de Engenharia de Software

- 248 -

operator SWDDW
var : e [e x p r e s s i o n] : s [s t a t emen t]

begin

∗ replace [s tatement< whi l e (: e) : s >]
by [s tatement< do : s wh i l e (: e) ; >]

| |
∗ replace [s tatement< do : s wh i l e (: e) ; >]

by [s tatement< whi l e (: e) : s >]
end operator

Figure 7: Replace every while statement in any level by the respective do-while statement
and vice-versa.

interpreted as a choice list composed of two (compound) operations, namely, a ;; b and
c ;; d. Double parenthesis can be used to group the operations in order to overhide the
precedence, as in a ;;((b || c));; d. However, unlike most programming language, ((a ;; b))|| c

is not the same as a ;; b || c, in that, for the latter, if either a or b is the cut operation, c

will be skipped, whereas for the former, c will be executed anyway. In other words, the
grouping chops the scope of the cut operation.

The matching operation is coded with the construction match m. As in the replacing
operation, m is matched against the context pattern. If m matches the context pattern,
the generation continues further, keeping the effects of any unification that ever occurs.
However, if it does not match, the generation is stopped and an alternative is tried (either
due to a choice composition operator or to an in depth modifier).

Figure 8 illustrates both then compositions and matching operations. It presents a
mutant operator that changes the control expression of every do-while statement into 0,
unless this expression already syntactically equals 0.

operator EDWT
var : e [e x p r e s s i o n] : s [s t a t emen t]

begin

∗ replace [s tatement< do : s wh i l e (: e) ; >]
by [s tatement< do : s wh i l e (0) ; >]

; ;
:e does not match the express ion 0

: e @@ ˜ match [e xp r e s s i on< 0 >]
end operator

Figure 8: Enforce that the do-while body statement be executed at most once. The
character # marks a comment line.

In operator EDWT there are also two new modifiers, the “@@” (read apply) and “˜”
(read not). The apply modifier is used to explicitly declare the context pattern. The
construction :v @@ op demands the operation op be executed using the meta-variable :v

as its context pattern. The not modifier is intended to negate the operation it is used in.
The construction ˜ op fails if the operation op succeeds, and succeeds with no unification
if op fails.

There are also two simple operations in the MuDeL, which do not actually involve
matching or replacing: the donothing and the abort. The donothing operation actually
does not change the tree and is primarily intended to be used as a syntax placeholder

XV Simpósio Brasileiro de Engenharia de Software

- 249 -

where an operation is demanded. So, the simplest mutant operator that can be described
in MuDeL is presented in Figure 9. Indeed, this operator generates only one mutant
that actually equals to the original product.

operator DONOT
begin

donothing

end operator

Figure 9: Generates one “mutant”, yet equals to the original product.

In contrary to donothing, there is the operation abort, that does not allow the
mutation to occur. That is, whenever an abort is executed, no mutant is generated.
It is primarily intended as a guard to, for example, inhibit equivalent or undesirable
mutants be yielded. For example, the mutant operator in Figure 10 does not generate
any mutant at all.

operator ABRT
begin

abort

end operator

Figure 10: Does not generate any mutant.

By their own, both donothing and abort operations are not really useful. However,
in conjunction with matching and replacing, they are very useful to increase the control
over the mutations.

4.3. An Example

In this section we present an example to better illustrate the main concepts of the
MuDeL language. In Figure 11 we present the SDWE operator that is meant to change
every while statement into a do-while and4 also change the control expression into 0 and
1, if it does not already equal to 0 and 1, respectively.

The replacing operation in lines 4 and 5 changes every while statement into a do-while
statement, in any depth. The meta-variable :e stands for the control expression of the
while. The group of operations in lines 7 through 19 make changes in this control
expression. Observe that the context pattern declaration in line 7 affects the whole group,
and, consequently, every operation therein.

The (negated) matching in line 8 makes sure the context pattern (:e, in this case) is
not equal to 0. If so, the context pattern is changed to 0, by the replacing in lines 10
and 11, and a mutant is generated. Note that these two operations compose a sequence,
which, by its turn, is part of a choice list. Then, the next choice is tried, in this turn
w.r.t. the expression 1. Finally, the donothing operation in line 18 is tried and a mutant
is generated only with the replacement of line 4.

4Here, as in note 3, different mutant operators would be better than a general one like this. Again,
we do so to illustrate MuDeL’s features.

XV Simpósio Brasileiro de Engenharia de Software

- 250 -

1 operator SDWE
2 var : e [e x p r e s s i o n] : s [s t a t emen t]
3 begin

4 ∗ replace [s t a t ement<whi l e (: e) : s >]
5 by [statement<do : s wh i l e (: e) ; >]
6 ; ;
7 : e @@ ((
8 ˜ match [e xp r e s s i on< 0 >]
9 ; ;
10 replace [e x p r e s s i o n]
11 by [e xp r e s s i on< 0 >]
12 | |
13 ˜ match [e xp r e s s i on< 1 >]
14 ; ;
15 replace [e x p r e s s i o n]
16 by [e xp r e s s i on< 1 >]
17 | |
18 donothing

19))
20 end operator

Figure 11: A multi-purpose while mutant operator.

5. mudelgen: The System

In addition to being able to precisely describe the mutant operators, it is desirable to
be able to generate the mutants themselves. So, given a grammar, given a product in
that grammar, and given a mutant operator for that grammar, we should generate the
respective mutants.

For this task, we developed the mudelgen (standing for MuDeL Generator). When
mudelgen is input with a grammar, say grm, in a special format described latter, it
produces a program called mudel.grm. In its turn, this program is to be run with a
mutant operator description op and a product P . After checking whether both op and
P are syntactically correct w.r.t. the input grammar, a mutant set M is generated. The
overall execution schema of mudelgen is stretched in Figure 12.

The grammar input to mudelgen is furnished in two files: the .y and the .l. The .y

file is the context-free grammar, written in a subset of YACC syntax [12]. The terminal
symbols should be explicitly declared with the construction %token and usually come in
uppercase. A production of the form

〈n〉 ::= A b | c

is encoded as

n : A b | c ;

The .l file is a lexical analyzer and gives the actual form of the terminal symbols of
the grammar. It is encoded in a subset of the LEX syntax [12]. As an example of the
MuDeL’s input files, Figure 13 presents part of the C.l and C.y files, the lexical analyzer
and the grammar, respectively, for the C language. Indeed, these files can be thought of

XV Simpósio Brasileiro de Engenharia de Software

- 251 -

mudel.grm

M1

M2

M3

Mutants

Grammar

mudelgen

grm.y

grm.l

op

P

Figure 12: mudelgen Execution Schema

/* C.y file */

%token WHILE

%token DO

%token OPENPAR

%token CLOSEPAR

%token SEMICOLON

%token CONSTANT

...

%%

statement

: iteration_statement

| null_statement

| ... ;

iteration_statement

: WHILE OPENPAR expression CLOSEPAR

statement

| DO

statement

WHILE OPENPAR expression CLOSEPAR

SEMICOLON

| ...

;

null_statement : SEMICOLON ;

expression : CONSTANT | ... ;

/* C.l file */

...

"do" { RETURN(DO); }

"while" { RETURN(WHILE); }

"(" { RETURN(OPENPAR); }

")" { RETURN(CLOSEPAR); }

";" { RETURN(SEMICOLON); }

[0-9]+ { RETURN(CONSTANT); }

...

(a) (b)

Figure 13: (a) Part of the C.y input file. (b) Part of the C.l input file.

XV Simpósio Brasileiro de Engenharia de Software

- 252 -

as minimal standard yacc and lex inputs, from which all so-called semantic actions were
stripped off.

An example of a typical execution with mudelgen is presented following.

hortencia% mudelgen C

hortencia% mudel.C STDL.op Sample.C

In the first line, mudelgen is called with the option C, what means that files named C.l and
C.y are to be read. Then, the program mudel.C is produced. In second line, this program
is run with the files STDL.op and Sample.C, which are the mutant operator description
and the original product, respectively. As result, a set of mutants is generated, with each
single mutant in an own file.

To implement the mudelgen, an alternative approach could have been taken, instead
of the one alluded in Figure 12, by having mudelgen take the mutant operator description
as an input and, so, generating a program specific for the operator, say mudel.op.grm.
This program could be somehow optimized for that specific mutant operator. However,
we have chosen the approach in Figure 12 because we believe in the early phases of a
mutant operator description, much experimentation would be carried out, but more with
the mutant operator, and lesser with the grammar. So, we tried to isolated the potential
bottleneck, avoiding having to run mudelgen too many times, a rather longer process.

6. Concluding Remarks

The efficacy of Mutation Testing is heavily related to the quality of the mutants
employed. Mutant operators, therefore, play a fundamental role in this scenario, since they
are used to generate the mutants. Due to their importance, mutant operators should be
precisely defined. Moreover, they should be experimented with and improved. However,
implementing tools to support experimentation is very costly and time-consuming.

In this paper we presented MuDeL language as a device for describing mutant
operators. The language is based on transformational paradigms and also uses some
concepts from logical programming. Being described in MuDeL, an operator can be
“compiled” and the respective mutants can be generated using the mudelgen system.
MuDeL and mudelgen together form a powerful instrument in developing and validating
mutant operators.

MuDeL was mainly design to deal with context-free mutations. With this decision,
we keep the language quite simple, yet considerably expressive. However, there are some
important kinds of mutants that are inherently context-sensitive and can not be described
in MuDeL. For example, some program mutant operators might need knowledge about
the variables defined prior some specific point in the program. Currently, we are investi-
gating how to cope with this setback.

The experiments we have so far carried out with MuDeL involved languages for which
there were supporting tools, namely Petri nets and C programs. Although fully useful in
demonstrating its potential usage, these experiments are not a complete validation. Right
now, we are working on a project where Java mutant operators are being described, what
will further contribute towards the validation of the ideas presented herein.

MuDeL language has some other constructions that were not discussed in this paper.
For example, there are constructions for declaring and invoking rules. Rules can be
thought of as procedures of conventional programming languages. The rule declarations

XV Simpósio Brasileiro de Engenharia de Software

- 253 -

can be recursive, i.e., a rule can invoke itself. This feature does enlarge the MuDeL
language expressiveness by allowing for an alteration to be repeatedly applied times in
the same mutant. Another characteristic not discussed in this paper is the built-in rules.
Their are provided to couple with tasks that are hard, cumbersome or even impossible
to be carried out only with the construction MuDeL embodies, e.g. arithmetics, string
manipulation, and so on. We, then, keep the kernel of MuDeL tiny, whereas we provide
built-in rules for any further need we have to take care of. We are currently developing
an API (Application Programming Interface) to allow the implementation and inclusion
of rules written in a conventional programming language, namely, in C++.

Our forthcoming steps in this research include:
• to develop an integrated graphical user interface. mudelgen is currently operated

by means of command-line invocations. To ease the usage and experimentation, a
graphical interface would be more appropriate.

• to further investigate the context-sensitiveness of some kinds of mutants and devise
constructions to couple with them. As already stated, MuDeL does not currently
address problems concerning context-sensitive mutations. Although we claim these
cases are in minority, they should be tackled.

• to integrate the MuDeL and the mudelgen in a complete mutation tool. Mutation
Testing demands also other activities such as test case handling, mutation execution,
result analysis, and so on. We are now specifying and designing a complete mutation
tool which follows the main ideas of MuDeL, i.e., a tool with multi-language
support.

References

[1] Agrawal, H. (1989). Design of mutant operators for the C programming language. Technical
Report SERC-TR-41-P, Software Engineering Research Center/Purdue University.

[2] Bratko, I. (1990). Prolog Programming for Artificial intelligence. Addison-Wesley, 2 edition.

[3] Budd, A. T. (1981). Mutation Analysis: Ideas, Examples, Problems and Prospects, pages
129–148. Computer Program Testing. North-Holland Publishing Company.

[4] Cordy, J. R. and Shukla, M. (1992). Practical metaprogramming. In Centre for Advanced

Studies Conference, Toronto.

[5] Delamaro, M. E., Maldonado, J. C., and Mathur, A. P. (2001). Interface mutation: An
approach for integration testing. IEEE Transactions on Software Engineering, 27(3):228–247.

[6] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data selection: Help
for the practicing programmer. IEEE Computer, 11(4):34–41.

[7] Fabbri, S. C. P. F. (1996). A Análise de Mutantes no Contexto de Sistemas Reativos:

Uma Contribuição para o Estabelecimento de Estratégias de Teste e Validação. PhD thesis,
IFSC/USP, São Carlos, SP.

[8] Fabbri, S. C. P. F., Maldonado, J. C., Delamaro, M. E., and Masiero, P. C. (1999a).
Proteum/FSM: A tool to support finite state machine validation based on mutation testing.
In XIX SCCC - International Conference of the Chilean Computer Science Society, pages
96–104, Talca, Chile.

[9] Fabbri, S. C. P. F., Maldonado, J. C., Sugeta, T., and Masiero, P. C. (1999b). Mutation
testing applied to validate specifications based on statecharts. In ISSRE — International

Symposium on Software Reliability Systems, pages 210–219.

XV Simpósio Brasileiro de Engenharia de Software

- 254 -

[10] Fejer, P. A. and Simovici, D. A. (1990). Mathematical Foundations of Computer Science,
volume I. Springer-Verlag.

[11] Kotik, G. B. and Markosian, L. Z. (1989). Automating software analysis and testing using a
program transformation system. In Proceedings of the ACM SIGSOFT’89 Third Symposioum

on Software Testing, Analysis, and Verification, pages 75–84.

[12] Mason, T. and Brown, D. (1990). Lex & Yacc. O’Reilly.

[13] Nakagawa, E. Y. and Maldonado, J. C. (2001). Software-fault injection based on mutant
operators. In Anais do XI Simpósio Brasileiro de Tolerância a Falhas, Florianópolis, SC.

[14] Neighbors, J. (1984). The draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, 10(5).

[15] Probert, R. L. and Guo, F. (1991). Mutation testing of protocols: Principles and preliminary
experimental results. In Proceedings of the IFIP TC6 Third International Workshop on

Protocol Teste Systems, pages 57–76, North-Holland.

[16] Ritchey, R. W. (2000). Mutating network models to generate network security test cases.
In Mutation 2000, pages 101–108, San Jose, California.

[17] Salomaa, A. (1973). Formal Languages. Academic Press, New York.

[18] Santana, A. C. L., Prado, A. F., and Lopes de Souza, W. (1997). Utilização do paradigma
Draco para implementar especificações Estelle na linguagem C++. In Anais do 15o Simpósio

Brasileiro de Redes de Computadores, pages 118–134, São Carlos, SP.

[19] Simão, A. S. and Maldonado, J. C. (2001). Denotational semantics of the MuDeL language.
Technical report, ICMC/USP. (in preparation).

[20] Simão, A. S., Maldonado, J. C., and Fabbri, S. C. P. F. (2000). Proteum-RS/PN: A tool to
support edition, simulation and validation of Petri nets based on mutation testing. In Anais

do XIV Simpósio Brasileiro de Engenharia de Software, pages 227–242, João Pessoa, PB.

[21] Simão, A. S., Vincenzi, A. M., and Maldonado, J. C. (2001). Using MuDeL to describe
java, c and petri net mutants. Technical report, ICMC/USP. (in preparation).

[22] Souza, S. R. S., Maldonado, J. C., Fabbri, S. C. P. F., and Souza, W. L. (2000). Mutation
testing applied to estelle specifications. Quality Software Journal, 8(4).

[23] Vladimir, D. (1989). Formal Languages and Automata Theory. Computer Science Press.

XV Simpósio Brasileiro de Engenharia de Software

- 255 -

