
Mutant Operators for Testing Concurrent Java Programs

Márcio Delamaro
Universidade Estadual de Maringá (UEM)

delamaro@din.uem.br

Mauro Pezzè
Università degli Studi di Milano

pezze@disco.unimib.it

Auri M. R. Vincenzi
José Carlos Maldonado

Universidade de São Paulo (USP)
{jcmaldon,auri}@icmc.sc.usp.br

Abstract

Mutation testing is a fault-based testing technique that has been widely studied
in the last decades. One reason for the interest of the scientific community in mu-
tation testing is its flexibility. It can be applied to programs at unit and integration
testing levels, as well as to software specifications written in a variety of different
languages. A fundamental issue to make mutation testing work for a given language
or environment is the set of mutant operators used to create the mutants. In this
paper a set o mutant operator is proposed for the Java programming language, and
more specifically, aiming at exercising aspects of concurrency and synchronization
of that language.

1 Introduction

Testing is a crucial activity in the software lifecycle. It is expensive and time con-
suming. For this reason much effort has been spent on developing techniques and
tools to support the testing activity. An important result of research is the defi-
nition techniques and criteria to drive the generation of test sets that can suitably
exercise a program.

Mutation testing is a fault based test technique. It uses a set of “rules” called
mutant operators to create programs slightly different from the program under
test. These programs are called mutants. The goal of mutation testing is the
generation of a test set that distinguishes the behavior of the mutants from the
original program. The ratio of distinguished mutants (also called dead or killed
mutants), over the total number of mutants, measures the adequacy of the test set.

According to the coupling effect hypothesis[14], test cases that distinguish
simple faults injected in the original program to create the mutants should also
be able to reveal faults that can be obtained as a composition of simple faults.

XV Simpósio Brasileiro de Engenharia de Software

- 272 -

Thus, mutant operators can be seen as representing common faults usually found
in software.

Mutant operators depend on the language in which the artifact to be tested
is described. So far mutation testing has been applied to programs written in
several programming languages, like Fortran [5], C [3] and Java [11]. and to formal
specifications written using Finite State Machines [7], Petri Nets [8], Statecharts [6]
and Estelle [20, 18]. This flexibility derives from the fact that mutation testing
requires only an executable model that transforms inputs into observable outputs
that can be compare against the results produced by the mutants.

Mutant operators are designed referring to the experience of using the target
language and of the most common faults. In the past mutant operators were de-
signed based experts’ knowledge. Recently, Kim et al. [10] have proposed the use
of a technique named “Hazard and Operability Studies” (HAZOP) to systemati-
cally derive mutant operators and they applied it to the Java language. Although
the resulting operators do not significantly differ from past works, the proposed
methodology is an important step towards a more rigorous discipline in the creation
of mutant operators. The technique is based on two main concepts. It first iden-
tifies in the grammar of the taget language (Java in this case) the points subject
to mutation and then defines the set of mutations these points based on suuitable
“Guide Words”.

In general, a comprehensive set of mutant operators, that well cover the struc-
tures of a given language tends to produce too many mutants even for small pro-
grams. This problem has been tackled by selecting subsets of mutants according
to different strategies [21, 16, 13] like randomly selecting a percentage of the gen-
erated mutants or choosing a subset of the mutant operators based on some known
characteristic like cost or tendency to generate equivalent mutants.

The test of concurrent programs is complicated by the nondeterminism of their
execution, that in the case of mutation testing, makes it difficult to analyze the
behavior of the mutants. Since a program in this context can present different
correct results, the fact that the behavior of a mutant differs from the result of the
original program for a test case t does not mean that t has revealed the fault in the
mutant. The discrepancy may result from the non determinism of the program and
not from the fault seeded in the mutant.

Two different approaches to apply mutation testing to concurrent programs have
been proposed in the literature [17, 19]. Both have ADA as their target language and
are presented with more details in the next section. Unfortunately the approaches
do not extend straightforwardly to other languages, such as Java, that are not
based on the Ada rendezvous model. A pilot study that used a pre-existent mutant
operator set confirmed the need of mutant operators specifically designed for the
Java model of concurrency and synchronization [2].

This paper describes part of the work that aims at applying mutation testing to
Java concurrent programs. Herein we describe the design of mutant operators. In
Section 2 we overview previous work on mutation testing for concurrent programs,
and in particular the work of Silva-Barradas [19] that is closely related to our goals.
In Section 3 we briefly explains the mechanisms used for synchronization and con-
currency in Java. In Section 4 we present the set of mutant operators designed
to exercise those mechanisms. The conclusions and ongoing works related to this
paper are presented in Section 5.

XV Simpósio Brasileiro de Engenharia de Software

- 273 -

2 Mutation Testing for Concurrent Programs

When testing a sequential program, one can rely on the fact that there exists only
one correct output for a given test data. The statements are executed in a deter-
mined order that does not change from one execution to another, if the input is the
same. This is not true for concurrent programs. The parallel or concurrent execu-
tion of several (deterministic) processes may result in different outputs, depending
on the order of execution of the different processes.

This is particularly troublesome for mutation testing. When a mutant M is
executed with a test case t, it should be killed if its behaviour is incorrect, according
to a given specification. In the case of a sequential program this is equivalent to say
that the results of the execution of M with t differs from the results of the execution
of the original program P with t. In the case of concurrent programs we should
compare the set of all possible results of M with t against the set of all possible
results of P with t and then consider M distinguished if they are not the same.

Unfortunately, in general it is not possible to know the set of all possible results
of a concurrent program for a given input. Offut et al. [17] proposed a technique
that calculates an approximated set Ω, defined as a subset of all possible results
of P(t). This set is calculated by executing P(t) several times. The mutant M is
distinguished if it produces at least one result M (t) /∈ Ω.

Another approach, called “Behavior Mutation Analysis” (BMA), is defined by
Silva-Barradas [19]. A suitable instrumentation of an ADA program P can be used
to register the sequence of execution of its tasks. The recorded sequence can be used
to reproduce the same behavior in a subsequent execution of P(t). Incorporating
this synchronization sequence as part of a test case, it is expected that M(t, s) =
P(t, s), i.e., the result of the execution of the mutant M with t reproducing the same
synchronization sequence should be the same of the original program. The BMA
technique considers the mutant distinguished if one of the two conditions is verified:
1) M(t, s) �= P(t, s); or 2) M cannot reproduce the synchronization sequence s. The
second case may occur, for example, if the mutation eliminates a statement that
when executed adds an event to the synchronization sequence, e.g., a entry call. In
this case, BMA considers that the mutant has an incorrect behavior (deadlock or
abnormal termination) and thus should be distinguished.

In a pilot study [2] we tried this approach using existing operators [4] adapted to
Java and we could derive some important observations that are guiding the current
development of the technique for the Java language.

• A mutant can be distinguished by either producing a different output or be-
cause it cannot reproduce the same synchronization sequence of the original
program. In general a mutant that can be distinguished by one reason can-
not be distinguished by the other. In a few cases though it is possible to
find mutants that can be distinguished from the original program both be-
cause producing a different output for a test case t1 and because not able to
reproduce the required synchronization sequence for a different test case t2.
Although in general mutants should be killed if distinguished in either ways,
for such mutants it would be useful to require both cases for killing them, since
the different test cases can reveal different faults;

• The number of equivalent mutants, i.e., mutants that cannot be distinguished
by either reasons, is very low. In the pilot study only 2 out of the 144 mutants

XV Simpósio Brasileiro de Engenharia de Software

- 274 -

public class myclass {

public synchronized void myMethod()

{

doSomething();

}

public void myOtherMethod()

{

doSomeOtherThing();

}

}

Figure 1: Example of synchronized method

created were equivalents;

• It is harder to analyze mutants when concurrency is involved, mainly when it
is necessary to induce certain specific synchronization sequence to distinguish
them. A useful help in this matter would be the construction of a tool that
could generate different synchronization sequences to test the program. We
already know that a tool is necessary to record the synchronization sequences
of the test cases so they can be reproduced in the mutant. In the ongoing
work of developing such tool we are studying ways to create valid variants of
an original synchronization sequence. Such variants can be useful for testing
the program and killing the mutants.

• The set of mutant operators, based on the Interface Mutation operators [4],
used in the pilot study is not sufficient. Although we could not formally eval-
uate the quality of the test set obtained – because no other criterion exists
(in our best knowledge) against which we could evaluate it – we could intu-
itively note that some characteristics (either functional and structural) related
to concurrency where not exercised and an existing bug could not be revealed.

In the next section we summarize the features of the Java language related to
concurrency and synchronization and that conduced to the mutant operator set
described in Section 4.

3 Overview of Java Concurrency Mechanisms

The basic mechanism for thread synchronization in Java are synchronized methods
and blocks. Every object in Java has a monitor associated to it. This monitor is
used to guarantee that only one thread at time has access to the object. Figure 1
shows an example of synchronized method. In a program with two or more threads
sharing an object X of type myClass, only one at a time can enter myMethod using
that object. The access to myOtherMethod does not have such restriction. So a
thread T1 can execute, for instance, myMethod on object X concurrently with thread
T2, executing myOtherThread on the same object X.

If a given thread T1 is executing a synchronized method on an object X and
another thread T2 tries to enter a synchronized method on the same object the

XV Simpósio Brasileiro de Engenharia de Software

- 275 -

free monitor free monitor 2

lock monitor lock monitor 2

want lock want lock 2

Monitor

Accessing obj Accessing obj 2

Contation Contation 2

Exc Normal Exc Normal 2

Figure 2: Basic model of 2 threads sharing an object

system blocks T2 until T1 terminates executing the synchronized method. Then T2

can execute, or more precisely, it can compete to get access to the object, since other
threads may also have been trying to access the same object within a synchronized
method.

When a thread T1 gains access to a synchronized method of an object X we
say that T1 owns or has locked X’s monitor. A static method can be synchronized.
In this case entering the method locks the monitor associated to the Class object
associated to the class where the method is defined.

Figure 2 shows a simple Petri Net model of two threads that share an object X.
The places named Exec Normal represent the states of each thread when they are
executing non synchronized code w.r.t. the object of interest. A thread may want to
execute a synchronized method on X and then it reaches a contention state, where
it will lock the monitor, if it is available. On succeeding, the token is removed from
the monitor place and is holden until the thread finishes the synchronized method
and releases the monitor.

Synchronized blocks are similar to synchronized methods but protected code is
restricted only to a piece of a method and the object on which the lock is exe-
cuted is explicitly declared. For example, in the code in Figure 3, the thread must
obtain the monitor of myObject before executing doSomeOtherThing, in method
myOtherMethod.

Every object created in the JVM has associated a wait set which allows a thread
in possess of a monitor to temporarily release that monitor until an event occurs.
Class Object defines a wait method that releases the monitor of the object used in

XV Simpósio Brasileiro de Engenharia de Software

- 276 -

public class myclass {

myOtherClass myObject = new myOtherClass();

public synchronized void myMethod()

{

doSomething();

}

public void myOtherMethod()

{

synchronized (myObject)

{

doSomeOtherThing();

}

}

}

Figure 3: Example of synchronized block

the call and insert the current thread in the object wait set, temporarily blocking
its execution. The definition of method wait explicitly states that the thread that
calls the wait must be holding the monitor of the object, otherwise an exception is
thrown. Since every class in Java inherits from class Object, every object created
in Java has a method wait (declared final in the class Object).

Class Object also declares a method notify which wakes up a thread waiting
in a wait set. When this method is called on an object X one of the threads is
randomly removed from the wait set, becoming ready to execute. This does not
mean that it will be executed immediately. First because the thread that calls
notify must be in possess of the object monitor, thus the thread removed from
the wait set can execute only after the current thread releases the lock. Moreover,
even after the current thread has released the lock, there is no guarantee that that
specific thread will be the one that acquires the monitor because other threads may
be in contention for the same monitor.

The thread removed from the wait set will resume from the point immediately
after the call to wait and its state returns to the same it had at that time, i.e.,
in possess of the monitor and with the same lock count it had on that monitor.
For example, if it had locked the monitor twice, it reacquires the monitor with lock
count equals two. Figure 4 shows the example of two threads that share an object,
including the call of method wait. Note that the model becomes significantly more
complex than that shown in Figure 2.

The wait method has a variant that accepts as argument a timeout value. The
semantics of this call is similar to the one described above, i.e., the thread is inserted
in the wait set until a notify removes it. In addition, if it is not removed by a notify
within the specified timeout, it is removed “by itself”. The notify method has a
variant notifyAll that, when called on object X, removes all the threads from the
wait set of object X.

Other methods in the API complete the resources of the language for concur-
rency. Among them, the methods in the class Thread, responsible for the creation
and management of new threads.

XV Simpósio Brasileiro de Engenharia de Software

- 277 -

get notify get notify 2

wait
wait 2

free monitor free monitor 2

lock monitor lock monitor 2

want lock want lock 2

wait list wait list 2

Monitor

Accessing obj Accessing obj 2

Contation Contation 2

Exc Normal Exc Normal 2

Figure 4: Model of two threads sharing an object, including wait sets

4 Mutant Operators for Java

In this section we present a set of mutant operators designed to exercise the con-
currency and synchronization aspects of Java programs. First we identify the main
structures related to concurrency and then we derive mutant operators to exercise
such structures. One essential aspect taken in consideration is that the practical ap-
plicability on mutation testing heavily depends on the number of mutants generated
by the approach.

Based on the overview presented in Section 3 we identified four groups of struc-
tures of Java related to concurrency:

• Monitor lock code;

• Methods related to wait set manipulation that are defined in the Java core
API;

• Use of synchronized methods;

• Use of other methods related to synchronization and concurrency.

Each of these classes are analyzed and mutation operator to exercise them are
proposed in the following sections.

XV Simpósio Brasileiro de Engenharia de Software

- 278 -

synchronized public void append (Element x)

{

while (cont >= buffer.length)

wait();

buffer[nextSpot] = x;

nextSpot = (nextSpot + 1) % buffer.length;

// nextSpot = (nextSpot * 1) % buffer.length; <<== mutation

cont++;

notify();

}

Figure 5: A synchronized method and a possible mutant

4.1 Monitor locks

The class of monitor locks include synchronized methods and statements. A method
is declared synchronized adding the keyword synchronized in front of its declara-
tion, for example

synchronized public foo(int k, String s)

{

...

}

The first mutant operator identified for this construc is the deletion of the key-
word synchronized, turning the method to “normal”, regardless of the monitor
acquisition. This will require test cases that exercise the concurrent use of each
synchronized method.

The objective of a mutation is to create a program with behavior that slightly
differs fro the behavior of the original program. In the particular case of synchro-
nized methods, we want a method that when called will produce a different behavior
related to the access to a shared object. This could be achieved by mutating any
statement in the body of the method. We could use mutant operators similar to
those previously defined for unit testing [1, 12, 11] to obtain the discrepant behavior.
For example, the code in Figure 5 shows a simple method that inserts an element
in a circular shared buffer, used in a producer-consumer system, and a possible
mutant.

If on one hand this mutant may help to exercise important features in the pro-
gram, forcing for example a test case that uses a buffer larger than one element,
on the other hand all such mutants would make the test impractical. First because
the number of mutants would grow to an undesirable level. Second, because these
“fine grained” mutants would change the state of the program in such a way that
would make very hard for the tester to analyze them. In a pilot study [2], the
use of Interface Mutation operators [4] confirmed these two conjectures. To avoid
these problems we define only one type of mutation to be applied in the body of a
synchronized method, i.e., statement deletion, as defined in [1].

This operator removes one statement at each time. In this way we reduce the
number of mutants and create mutants that are easier to be analyzed because they

XV Simpósio Brasileiro de Engenharia de Software

- 279 -

represent more significant and understandable changes in the code. Using the def-
inition of Offut and Hayes [15], we have mutants with a larger syntactic difference
from to the original program and as side effect it is expected also a larger semantic
difference.

A synchronized statement is defined in [9] as

SynchronizedStatement: synchronized (Expression) Block

The two mutant operators defined for synchronized methods can be applied. The
first removes the declaration of the block as synchronized and the second deletes
a statement inside the block. We can also apply operator “move brace up/down”
as defined by Agrawal et al. [1] to the synchronized block. This operator moves
the closing brace one statement “up” moving the last statement out of the block or
one statement “down” including in the block the first statement declared outside.
We can apply a similar operator to the beginning of the block, excluding the first
statement or inserting the immediately previous one. These operators generate only
few mutants (at most four per synchronized block) and are a more subtle version
of the statement deletion operator. Test cases that distinguish such mutants might
be useful to verify the limits that a synchronized statement must have.

The semantic of a synchronized statement indicates that its synchronization
expression should evaluate to an object, i.e., an instance of java.lang.Object or
one of its subclasses. To guarantee that the programmer used the correct expression,
i.e., that the synchronization is being done in the right object we can replace the
synchronization expression by other objects accessible in that scope. So we define
four mutant operators:

• replace the synchronization expression with a local variable;

• replace the synchronization expression with a formal parameter;

• replace the synchronization expression with a static field; and

• replace the synchronization expression with an instance field;

4.2 Wait sets

In this section we present the operators designed to exercise another main feature
of the Java synchronization mechanism: the wait sets. Basically, the wait sets are
managed by two types of methods: 1) those that ask the system to block a thread
inserting it in a wait set (wait and timed wait methods); and 2) those that ask the
system to remove threads from a wait set (notify and notifyAll).

The mutant operators designed to deal with the use of the wait methods are:

• Delete a call to wait. In this case the thread that should be blocked continues
executing. Test cases that kill this kind of mutants show the relevance of each
wait call. This may be particularly important for timed wait that may require
very specific test cases to be effectively used.

• Replace a timed wait with a non-timed.

• Replace a non-timed wait with a timed.

• Increment and decrement time in a timed wait. These last three operators
exercise timing aspects of a program.

XV Simpósio Brasileiro de Engenharia de Software

- 280 -

For exercising the use of notify methods we define:

• Delete a call to notify or notifyAll. This operator changes the set of threads
available for execution at a given point of the execution. Test cases must be
provided in order to show that each of such calls is really necessary.

• Replace a call to notify with a call to notifyAll.

• Replace a call to notifyAll with a call to notify. These two operators might
be useful for testing synchronization aspects because test cases that distinguish
them may require the execution of very specific sequences of wait and notify

statements, otherwise difficult to exercise.

4.3 Synchronized method calls

The operators in this class aim at exercising the interactions with methods declared
as synchronized as they are a main feature of the Java language, for what concern
synchronization. Note that these operators differ from those defined in Section 4.1
because those are related to the declaration of synchronized methods and the ones
defined here are related to the use of such methods, i.e., the invocation of such
methods.

The type of interactions we want to exercise here are similar to those exercised
by the Interface Mutation approach [4]. Interface Mutation defines a set of mutant
operators that focus on the interaction between two units, e.g., two functions in the
C language. Here we want to specifically exercise the use of synchronized methods,
changing the points where they are invoked. Based on the set of Interface Mutation
operators we define the following operators:

• Replace arguments with constants. Each argument is replaced with constants
defined according to the type of the argument. For example int arguments
can be replaced with {0, 1, -1, Integer.MAX VALUE, Integer.MIN VALUE}
where MAX VALUE and MIN VALUE are respectively the largest positive
integer and the smallest negative integer as defined by the Java API. The sets
of required constants for each type in the language is shown in Table 1;

• Delete the call. If the method returns a value that is used in an expression
then the call is replaced with constants of the type of the returned value;

• Switch arguments of compatible types;

• Change method signature. Change the method call by removing one of the
arguments or adding a new argument, changing the call to match the decla-
ration of another method with the same name but with different signature, if
such method exists;

• Insert arithmetic negation before an argument. Invert the sign of an argument
by inserting an arithmetic negation, if allowed by the type of the argument.
If the argument is an expression, only the whole expression is negated, not
subexpressions;

• Insert logical negation before an argument;

• Insert bit negation before an argument;

• Increment and decrement an argument;

XV Simpósio Brasileiro de Engenharia de Software

- 281 -

• Change target object. Use another type-compatible object to make the call.
We can subdivide this mutation depending on which object is used to replace
the original one. So we can have: 1) replace with local variable; 2) replace
with formal parameter; 3) replace with static field; 4) replace with instance
field.

Table 1: Set of constants for operator “Replace arguments with constants”
Type Constants
int 0, 1, -1, Integer.MIN VALUE, Integer.MAX VALUE
short 0, 1, -1, Short.MIN VALUE, Short.MAX VALUE
byte 0, 1, -1, Byte.MIN VALUE, Byte.MAX VALUE
long 0, 1, -1, Long.MIN VALUE, Long.MAX VALUE
char 1, Character.MIN VALUE, Character.MAX VALUE
boolean true, false
float 0.0, 1.0, -1.0, Float.MIN VALUE, Float.MAX VALUE
double 0.0, 1.0, -1.0, Double.MIN VALUE, Double.MAX VALUE
String ””, null
other objects null

4.4 Other synchronization methods

Other methods that are not part of the “core” mechanisms for synchronization in
Java have been defined in the Java API and are important for the implementation of
concurrent programs. To these methods we can apply the same mutations defined
in the last section, changing their behavior by mutating the calls to them.

The methods we identify in this class of mutations are: Thread.interrupt,
Thread.join, Thread.sleep, Thread.start and Thread.yeld.

Note that some operators, when applied to specific structures in a program can
generate the same mutation, or more precisely, mutants with the same behavior.
This is the case for example of deleting a statement in a synchronized block and
deleting a wait call. If the first is applied, the second does not have to be applied.
This is not uncommon in the definition of mutant operators and allows one to use
an incremental approach to choose the mutant operators.

Much of the mutant operator set can be parameterized according to the the
implementor’s or even the tester’s will. For example: the value to add/subtract on
timed wait; the set of constants to use in the replacements described in Section 4.3;
the methods subject to mutation described in Section 4.4.

Table 2 summarizes the set of mutant operators.

5 Conclusion and Future Work

This paper discussed the use of mutation testing for concurrent Java programs.
Mutation testing has been shown to be an effective way of testing software in terms
of fault revealing capacity and it has been widely explored. One advantage of
mutation testing is its flexibility in the sense that it can be applied to several scopes,
e.g, unit and integration testing in different languages [17, 4], test of object oriented

XV Simpósio Brasileiro de Engenharia de Software

- 282 -

Table 2: Proposed set of mutant operators
Operator name Meaning
DelSync Removes the synchronized attribute from a method

declaration or removes a synchronized statement
DelStat Deletes a statement in a synchronized method or block
MoveBrace Moves { and } up and down
ReplSyncObject Replaces synchronization object
DelWait Deletes a call to the wait method
ReplWait Replaces a call to a timed wait by a call to a non-timed

wait and vice-versa
IncrDecrWait Increment and decrement argument for timed wait

DelNotify Deletes a call to notify or notifyAll
ReplNotify Replaces a call to notify by a call to notifyAll and

vice-versa.
ReplArg Replaces argument with constant
DelSyncCall Deletes a call to a synchronized method
SwitchArg Switch arguments in a call to synchronized method
ReplMeth Uses method with same name and other signature
InsNegArg Inserts unary (negation) operators in an argument
ReplTargObj Replaces the object in a call to synchronized method

programs [11] and test of formal specifications using different languages [7, 8, 6, 20].
To adapt the criterion to these different scenarios it is necessary to identify the
characteristics one wants to exercise on that specific scope and to develop mutant
operators for it.

This paper focuses on the definition of mutant operators to exercise the features
of the Java language related to concurrency and synchronization. Mutant operators
for other concurrent environments have been defined [17, 19], but due to the differ-
ences between those environments and the Java environment, new mutant operators
are required to address concurrency in Java. A pilot study [2] has been conducted
using well know operators, not specifically designed to this goal, and confirmed
this necessity. The mutant operators herein presented tries to cover most of the
concurrency- and synchronization-related features of the Java environment and still
be cost effective, restricting the number of operators and mutants that they can
generate.

The application of mutation testing to concurrent programs introduces addi-
tional problems. In particular it is necessary to deal with the intrinsic nondeter-
minism derived from concurrency. The execution of a program with a given input
can produce different correct behaviors. This constitutes a problem in comparing
the results of executing mutants with the results of the original program. A tool
that supports mutation testing in this scenario must provide a way to assure that
two executions of a program with the same test case lead to the same behavior.
Currently we are working on developing the tools necessary to experiment the re-
sults described in this paper. The first tool applies the mutant operators described
in this paper to automatically generate mutants. The second aims at recording
executions of the original program to execute the same synchronization sequences

XV Simpósio Brasileiro de Engenharia de Software

- 283 -

on its mutants.

6 Acknowledgements

The authors would like to thank CNPq, CAPES and FAPESP for partially sup-
porting this project.

References

[1] H. Agrawal, R. A. DeMillo, R. Hataway, Wm. Hsu, W. Hsu, E. Krauser, R. J.
Martin, A. P. Mathur, and E. H. Spafford. Design of Mutant Operators for
C Programming Language. Tech Report SERC-TR41-P, Software Engineering
Research Center, Purdue University, March 1989.

[2] M. Delamaro, M. Pezzè, A. M. R. Vincenzi, and J. C. Maldonado. Ap-
plying Mutation Testing to Multi-threaded JAVA Programs. Tech Report,
www.din.uem.br/˜delamaro/papers/relat.ps.gz, 2001.

[3] M. E. Delamaro. Proteum: Um Ambiente de Teste Baseado Na Análise de
Mutantes. Master thesis, SCE-ICMSC-USP, São Carlos - SP, October 1993.

[4] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface Mutation: An
Approach for Integration Testing. IEEE Transactions on Software Engineering,
27(3):228–247, March 2001.

[5] R. A. DeMillo and A. J. Offutt. Constraint Based Automatic Test Data Gener-
ation. IEEE Transactions on Software Engineering, 17(9):900–910, September
1991.

[6] S. C. P F. Fabbri. A Análise de Mutantes No Contexto de Sistemas Reativos:
Uma Contribuição Para O Estabelecimento de Estratégias de Teste e Validação.
Doctoral dissertation, IFSC - USP, São Carlos - SP, October 1996.

[7] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro.
Mutation Analysis Testing for Finite State Machines. In Proceedings of the 5th
International Symposium on Software Reliability Engineering (ISSRE), pages
220–229, Monterey - CA, November 1994.

[8] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro.
Mutation Analisys Applied to Validate Specifications Based on Petri Nets. In
Proceeding of the 8th IFIP Conference on Formal Descriptions Techniques for
Distribute Systems and Communication Protocols, pages 329–337, Montreal,
October 1995.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. Tha Java Language Specification.
Java Series. Addison-Wesley, 2nd edition, June 2000.

[10] S. Kim, J. A. Clark, and J. McDermid. The Rigorous Generation of Java
Mutation Operators Using HAZOP. In Proceedings of the 12th International
Conference on Software & Systems Engineering and their Applications (IC-
SSEA’99), December 1999.

[11] S. Kim, J. A. Clark, and J. McDermid. Class Mutation: Mutation Testing for
Object-Oriented Programs. In Proceedings of the FMES, October 2000.

[12] K. N. King and A. J. Offutt. A Fortran Language System for Mutation Based
Software Testing. Software-Practice and Experience, 21(7):685–718, July 1991.

XV Simpósio Brasileiro de Engenharia de Software

- 284 -

[13] A. P. Mathur and W. E. Wong. Evaluation of the Cost of Alternate Muta-
tion Strategies. In Proceedings of the 7th Brazilian Symposium on Software
Engineering, pages 320–335, Rio de Janeiro, RJ, Brazil, October 1993.

[14] A. J. Offutt. Coupling Effect: Fact or Fiction. In Proceedings of the 3rd
Symposium on Software Testing, Analysis, and Verification (ISSTA’89), pages
131–140, Key West, FL, December 1989.

[15] A. J. Offutt and J. H. Hayes. A Semantic Model of Program Faults. In
Proceedings of the International Symposium on Software Testing and Analisys
and Verification (ISSTA’96), San Diego, CA, 1996.

[16] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An Experimental
Determination of Sufficient Mutant Operators. ACM Transactions on Software
Engineering Methodology, 5(2):99–118, 1996.

[17] A. J. Offutt, J.M. Voas, and J. Payne. Mutation Operators for ADA. Tech-
nical Report ISSE-TR-96-09, Department of ISSE, George Mason University,
Fairfax, VA, March 1996.

[18] R. L. Probert and F. Guo. Mutation Testing of Protocols: Principles and Pre-
liminary Experimental Results. In IFIP TC6 – Third International Workshop
on Protocol Test Systems, pages 57–76. North-Holland, 1991.

[19] S. Silva-Barradas. Mutation Analysis of Concurrent Software. Phd thesis,
Department of Eletronic and Informatics, Polythecnic of Milan, Milan, Italy,
1997.

[20] S. R. S. Souza, J. C. Maldonado, S. C. P. F. Fabbri, and W. Lopes de Souza.
Mutation Testing Applied to Estelle Specifications. In 33rd Hawaii Interna-
cional Conference on System Sciences, Mini-Tracks: Distributed Systems Test-
ing, Maui, Hawai, January 2000. (Accepted for publication in a special issue
on Distributed Systems Testing of the Software Quality Journal).

[21] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E. Delamaro.
Unit and Integration Testing for C Programs Using Mutation-based Criteria.
Journal of Software Testing, Validation and Reliability, 2001. to appear.

XV Simpósio Brasileiro de Engenharia de Software

- 285 -

