XV Simpésio Brasileiro de Engenharia de Software

JATS: A JAVA TRANSFORMATION SYSTEM

Fernando Castor Kellen Oliveira Adeline Souza
Gustavo Santos Paulo Borba*
Centro de Informatica
Universidade Federal de Pernambuco

Abstract

In this paper we present JATS, a transformation system for the Java program-
ming language. The system has been designed with the goal of making the process
of creating and applying transformations as agile as possible. Also, it features a
transformation language which has a syntax very similar to that of Java, decreas-
ing the semantic gap between the transformation language and the language being
transformed. JATS may be used to specify and apply a wide range of transforma-
tions, including refactorings, refinement laws and code generation.

1 Introduction

Program transformation is an important techinque for supporting software engineering
activities: refactoring [5], formal software development [1, 3|, language translation [4]
and code generation [4]. Its use in practical, large scale, projects, however, is not possible
without automation. Tool support is vital to the application of program transformations,
as it increases productivity and eliminates the danger of introducing new errors.

Several program transformation tools have been implemented. Many of these are
not language-specific [4], being able to transform programs from an arbitrary source
language to an arbitrary destination language. Although this may be an advantage, it
complicates the use of the tools, since they require two kinds of user: the transformation
engineer, who configures the tool (encodes the transformations) and the programmer,
who uses the tool for software development (applies the transformations). This is usually
necessary because, in most cases, the language in which the transformations are encoded
is substantially different from the one to which they are applied.

There are also language-specific tools for program transformation [3, 7]. Most of
these have the drawback of supporting only a fixed set of built-in transformations. For
instance, refactoring systems [7] usually implement a few simple refactorings that can
be applied, but a programmer cannot add a new refactoring, unless he has access to the
source code of the system. Formal software development systems [3] are usually similar:
they support a set of built-in refinement laws that cannot be extended.

*Supported in part by CNPq, grant 301021/95-3. Email: {fjclf,adss,phmb}@cin.ufpe.br.
WWW: http://wuw.cin.ufpe.br/"{fjclf,adss,phmb}. Address: Caixa Postal 7851, Recife, PE,
Brazil.

- 374 -

XV Simpésio Brasileiro de Engenharia de Software

In this context, we present JATS, a transformation system for the Java [6] program-
ming language. JATS is able to store and apply transformations written in a language
that is a superset of Java, eliminating thus the semantic gap between the transformation
language and the language being transformed. Also, the transformation language of the
system takes the semantics of Java into account, making it possible to specify transfor-
mations that could not be specified in conventional transformation languages. JATS has
been designed as a generic transformation system, that is, it has not been devised with
the aim of applying a specific kind of transformation. Instead, it is intended to apply
many transformations of different types.

2 Functionalities

The transformation language of JATS consists of Java extended with JATS construc-
tions. The goal of these constructions is to allow type (a class or interface) matching and
the specification of the new types that are to be generated. From now on, we will use
the name JATS interchangeably for the transformation system and its transformation
language.

JATS transformations consist of three parts: a precondition, a left-hand and a right-
hand side. Both sides consist of one or more type (class or interface) declarations written
in JATS. Hereafter, however, we consider transformations having only one type decla-
ration on each side. The type declarations in the left-hand side are matched with the
source Java type declarations to be transformed, what implies that both must have sim-
ilar syntactic structures. The right-hand side defines the general structure of the types
that will be produced by the transformation.

2.1 Features of the Transformation Language

The simplest construction of the JATS transformation language is the JATS variable,
which consists of a Java identifier preceded by the ‘#’ character. JATS variables are used
as placeholders in the transformations. When the left-hand side of a transformation is
matched with the source Java type, the result yielded is a set of mappings from variables
to Java constructions. This set is called the result map of the matching. Roughly, a
construction in the source Java type matches another one in the left-hand side of a
transformation if they are identical or if the second one corresponds to a JATS variable.
JATS variables are also present in the right-hand side of transformations, where they
are replaced by the values mapped to them in the result map of the matching.

Variables can be declared as being of a specific type. This is necessary because there
are situations where it is not possible to determine the intended matching for a certain
variable. The type of a JATS variable refers to the kind of Java construction it should
be matched with (an identifier, a name, a list of names, etc.).

Variables do not need to be matched exclusively with simple structures, like identifiers
and lists of names. A variable can also be matched with complex constructions like a
method, field or constructor declaration. In this kind of matching, the variables must
be typed, so that the kind of construction the variables are to be matched with can
be determined. So, if we want a certain variable, #attr, to be matched with a field
declaration, #attr must be declared as being of type FieldDeclaration. Likewise, it
is possible to match a JATS variable with a set of declarations of the same type (a set
of methods, a set of fields, etc.).

- 375 -

XV Simpésio Brasileiro de Engenharia de Software

Sometimes, when specifying a transformation, only part of the information obtained
from the source Java types is necessary to specify the resulting Java types. For example,
it might be useful to know the type of a certain field declaration, but the field declaration
itself will not be in the resulting type. JATS addresses this problem by means of two
features: Fxecutable Declarations and Iterative Declarations. Executable declarations
extract and modify the information mapped to variables through the execution of Java
code. For example, in the transformation

Left — Hand Side Right — Hand Side
class #C extends #SC { class #C extends #SC {
#ATTR :FieldDeclaration; private [[#ATTR .getType() 1] fd;
} #ATTR:FieldDeclaration;
1

The construction [[#ATTR.getType() 1] is an executable declaration and the
expression enclosed within the ‘[[" and ‘)]’ is a simple Java method invocation. The
method getType () is invoked from the value mapped to the variable #ATTR, which
consists of a Java object representing a field declaration, and returns the type of that
field declaration. This transformation applied to the class

class ConcreteTest extends AbstractTest {
private int code;

results in the following Java type:

class ConcreteTest extends AbstractTest {
private int fdi;
private int code;

}

[terative declarations are used for specifying transformations that generate sets of
declarations with the same pattern but differing on specific information obtained from a
set of declarations in the source Java type. Both, executable declarations and iterative
declaration, can only appear in the right-hand side of a transformation.

Some transformations can only be applied if certain preconditions hold. These pre-
conditions are essential components of refactorings and refinement laws, but are also
useful for a wide range of program transformations. In JATS, most of the arithmetic,
logical, relational and conditional operators of Java can be used to specify preconditions,
except for those that need an environment, like ‘=", ‘4=’ and ‘++’, postifx and prefix.
Also, some precondition-specific JATS constructions are allowed.

The transformation language of JATS takes the semantics of Java into account, for
applying transformations. By “takes the semantics of Java into account”, we mean that
JATS does not treat Java structures in a type declaration as simple textual patterns.
Their meanings are also taken into account. This feature allows the specification of
transformations that could not be specified if only the syntax was taken into account.
For example, the matching and replacement of declarations and sets of declarations are
not supported by traditional (syntactic-only) transformation languages [4]. A through

- 376 -

XV Simpésio Brasileiro de Engenharia de Software

evaluation of the advantages and disadvantages of JATS when compared to other trans-
formation systems has been presented elsewhere [2].

2.2 The JATS Work Environment

JATS’ Work Environment (JWE) has been designed with the goal of making the speci-
fication, visualization and application of transformations as easy as possible.

In JWE, transformations are grouped in projects, which consist of sets of related
JATS and Java types. The JATS types in a project are grouped as left-hand and right-
hand sides. To JWE, a transformation is simply an association between left-hand and
right-hand sides and is created by selecting the corresponding JATS types. This way,
transformations that have JATS types in common in the left or right-hand sides may be
easily created.

Transformations are presented, in JWE, by means of two panels: one for the types
corresponding to left-hand sides of transformations and another one corresponding to
the right-hand sides. This division aims to make the visualization of transformations as
intuitive as possible, as left-hand side JATS types are exhibited on the left-hand side
panel and right-hand side types on the right-hand side panel. The source and generated
Java types are presented similarly. Above each panel is a list of the types belonging
to the current project. The type presented in a panel is the one that is selected in the
corresponding list.

ga JaTs - Java Transformation System !Em
Arquivo Transformacao Janela Ajuda

N ==

A barra de estatus fica aqui..

H [F]Projeto untitled.prj - C:uAVAnewJaTSIEXEMPLOS Synchronize hsijats

|]]

[Ihg jats [the jate

EMODS: MaodifierList class #C extends == #5C == implements == | fprecondition [[#MTDS sized = 0]];
#ATTRS FieldDeclarationSet; M ODS ModifierList class #C extends << #3C =» implements << #F3:Nam|

#TDS:MethodDeclarationSet; Tarall # in #MTDS {
it [[1(#M. hasModifier synchronized"y) 11 {
[[[#result=#M - @result getModifiers() addModifier("synchronized”) J)
}
else {
#h:MethodDeclaration;
}
}

FATTRS FieldDeclarationSet;
i

Figure 1: The User Interface of JATS’ Work Environment.

JATS transformations are applied in the following steps: first, the user choses the
types corresponding to the left and right-hand sides of the transformation and selects
the ‘Store Transformation’ option in the ‘Transformation’ menu. Then, the user selects
the Java types to be transformed. The number of Java types selected must be equal
to the number of JATS types in the left-hand side. If this condition does not hold,
the application of the transformation fails automatically. After the source types have
been chosen, the user selects the ‘Apply Transformation” option in the ‘Transformation’

- 377 -

XV Simpésio Brasileiro de Engenharia de Software

menu. If the transformation is successfully applied, a number of Java types equal to the
number of types in the right-hand side of the transformation is generated. Otherwise,
the user is notified that an error has ocurred.

3 Implementation

JATS has been implemented using the Java Development Kit v1.3. The parser for
the transformation language has been constructed with the parser generator JavaCC[8].
JavaCC also has a parse-tree generator called jjTree. We have chosen not to use it,
though, because syntax-trees generated by it tend to have a large number of unecessary
nodes, specially for inherently recursive grammars like the one for Java expressions.
Instead, we generate the parse-trees by means of the semantic actions of the parser.

The arquitecture of JATS is composed by three main parts: JATS 10, JATS EN-
GINE and the user interface.

| GUI |

[Facade |

v v

| JaTS 10 JaTS Engine |

| JaTS Parser HJaTSPrmter\ ’/E—SW\

|JaTS Replacer| | JaTS Processor

Figure 2: The JATS Architecture.

JATS 10 is responsible for the parsing of the Java and JATS types supplied as input
and for the generation of the corresponding parse-trees. Also, JATS TO has the task of
doing the pretty printing of the parse trees of the Java types produced by a transforma-
tion. Correspondingly, JATS IO is subdivided in two subsystems: the JATS PARSER,
which does the parsing and parse-tree generation, and the JATS PRINTER, which does
the pretty printing.

The JATS ENGINE subsytem applies a transformation to a Java type. In order for
a transformation to be applied, the following information must be provided:

1. The syntax-trees of the JATS types corresponding to the left and right-hand sides
of the transformation.

2. The syntax-tree of the Java type being transformed.
3. A (possibly empty) result map containing mappings from variables to nodes.
4. A precondition (optional).

The JATS ENGINE is composed by three subsystems: the JATS MATCHER, the JATS
REPLACER and the JATS PROCESSOR.

The JATS MATCHER tries to match the parse-tree of the left-hand side of the trans-
formation with the parse-tree of the source Java type. The JATS REPLACER receives

- 378 -

XV Simpésio Brasileiro de Engenharia de Software

as input the parse-tree of the right-hand side of the transformation and the result map
of the matching. Its task is to transverse the parse-tree and replace occurrences of vari-
ables by the values mapped to them in the result map. Finally, the JATSPROCESSOR
is responsible for the processing of the executable and iterative declarations.

4 Conclusion

In this paper we introduced JATS, a transformation system for the Java programming
language. We presented the main features of its transformation language, described its
work environment and delineated some key aspects of its implementation. The current
prototype of the system implements all the functionalities presented. It may be used
to write, store and apply transformations. It is restricted, though, to a subset of Java
consisting of its declarations and expressions. Statements are not supported yet.

The transformation language of JATS has a simple syntax, not far from Java, the
language being transformed, eliminating thus, the need for the transformation engineer.
That makes it easier for the user to implement and alter transformations, increasing pro-
ductivity and reducing the probability of errors being introduced. Also, it is expressive
enough to specify several different types of transformations.

Acknowledgements

We would like to thank the anonymous referees, who help improve this paper.

References

[1] Paulo Borba and Augusto Sampaio. The basic laws of rool: An object oriented language.
Revista Brasileira de Informdatica Tedrica e Aplicada, 7(1), sep 2000.

[2] Fernando Castor. Defini¢cao de uma Linguagem para Especificar Transformagcies em Java.
Universidade Federal de Pernambuco, 2001. Graduate work. Avaliable for download at
http://www.cin.ufpe.br/ fjclf/jats.

[3] Sandrelly Coutinho, Tiago Reis, and Ana Licia Cavalcanti. Uma ferramenta educacional
de refinamentos. In XIII Simpdsio Brasileiro de Engenharia de Software - Sessdo de Fer-
ramentas, pages 61-64, Florianépolis, Brazil, 1999.

[4] Marcelo F. Felix and Edward H. Hausler. LET:uma linguagem para especificar trans-
formagoes. In III Simpdsio Brasileiro de Linguagens de Programacdo, pages 109-123, Flo-
riandpolis, Brazil, may 1999.

[6] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[6] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley,
1996.

[7] Instantiations, Inc. The jFactor White Paper, 2000. Avaliable for download at
http://www.instantiations.com/jfactor/docs/default.htm.

[8] Sriram Sankar. The JavaCC Documentation. Metamata, Inc., 1998. Avaliable for download
at http://www.metamata.com/javacc.

- 379 -

