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Abstract

The concept of software architecture is important to the design of complex soft-
ware systems, as it provides a model of the large scale structural properties of the
system. It is possible to find several formal models to depict static distributed soft-
ware architecture. Nevertheless, notations for supporting architectural dynamism
and evolution are still difficult to find in the literature. We present a formal frame-
work to specify dynamic distributed applications to enable us to specify the dynamic
behaviour of reconfigurable systems. This framework will help the designer to check
the project suitability.

1 Introduction

The software architecture of a system is important to the design of complex software
systems, as it provides a model of the large scale structural properties of systems. These
properties include the decomposition and interaction among parts as well as global sys-
tem issues such as coordination, synchronization and performance [5]. Structural issues
also include the organization of a system as a composition of components; global con-
trol structures; the protocols for communication, synchronization, and data access; the
assignment of functionality to design elements, the composition of design elements; phys-
ical distribution; scaling and performance; dimensions of evolution; and selection among
design alternatives [29].

Research on distributed software architectures evolved from the existing MILs[29],
especially configuration languages(6, 9, 14], which basically separate the computation
from the structure of the system, defining a special notation to describe the architectural
elements of a distributed system. Despite of their benefits, MILs have some drawbacks,
like failing to distinguish between implementation and interaction relationships between
modules[29]. Therefore, MILs are not suitable to deal with some architectural issues.

In order to deal with those architectural issues, architectural description languages
(ADLs) have emerged as an important field of study. Most of existing ADLs typically sup-
port only static architecture specification and do not provide facilities for the support of
dynamic architectures, used to describe architectures which change during run-time. The
most common operations that can change the architecture of a system are [16]: addition
of new components, upgrading existing components, removal of unnecessary components,
reconfiguration of application architecture, and reconfiguration of system architecture.
Notations for supporting architectural dynamism and evolution is still difficult to find in
the literature. Exceptions are C2[22], Darwin[15] and Rapide[13].
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In this paper, we present ZCL: a formal framework, specified in Z [30], to specify and
reason about dynamic distributed software architectures. The framework is based on the
CL model [9, 10] and focuses on the operations necessary in the construction of dynamic
software architectures. The ZCL framework enables us to perform some analysis on the
specification of an architecture, as we present on Section 5. The framework has also an
execution machine, which is still being formalized, which will allow us to analyse the
behaviour of an (dynamic) architecture during run-time.

In section 2, we present the features one language must have to be considered an
ADL, including dynamism. In section 3, we present some formal models for architectural
descriptions. In section 4, we present the ZCL framework. In the sequence of the paper,
we present, in section 5, a brief case study to show how the framework can be used. In
section 6, we describe the next steps of our research, including the reconfiguration model
for ZCL, and in section 7 we conclude the paper emphasizing our contribution.

2 ADLs

In this section, we present the features one language should have to be considered an ADL.
We give special attention to ADLs that support the specification of dynamic architectures.

ADLs “focus on the high-level structure of the overall application rather then the
implementation details of any specific source module”[17]. Due to the novelty of the
studies, there are some questions in the research community on what an ADL is and what
aspects of an architecture should be modelled by an ADL. Another source of disagreement
is the level of support an ADL should provide to developers. In [28], the authors list six
classes of properties that an ADL should provide:

1. Composition: An architectural langnage must allow a designer to divide a com-
plex system hierarchically into smaller, more manageable parts, and conversely, to
assemble a large system from its constituent elements.

The elements must be sufficiently independent as to allow them to be understood
in isolation from the system in which they are eventually used.

It should be possible to separate concerns of implementation level issues (such as
choice of algorithms and data structures) from those of architectural structure.

2. Abstraction: The architectural level of design requires a different form of abstrac-
tion to reveal high-level structures so that the distinct roles of each element in the
structure are clear.

3. Reusability: It should be possible to reuse components, connectors and architectural
patterns in different architectural descriptions, even if they were developed outside
the context of the architectural system. This form of reuse differs from the reuse of
components from libraries.

4. Configuration: A language for architectural description should separate the descrip-
tion of composite structures from the elements in those compositions. Dynamic
configuration is needed to allow architectures to evolve during the execution of a
system.
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5. Heterogeneity: There are two aspects of heterogeneity: the ability to combine dif-
ferent architectural patterns in a single system; and the desirability of combining
components that are written in different languages. This property is not very com-
monly found in the existing ADLs.

6. Analysis: The need for enhanced forms of analysis are particularly important for
architectural formalisms, since many of the interesting architectural properties are
dynamic.

The survey presented by Medvidovic in [17] compares the most popular ADLs: Ae-
sop, C2, Darwin, MetaH, Rapide, SADL, UniCon, and Wright. ACME (8] is a common
denominator of existing ADLs, providing a fixed vocabulary for representing architec-
tural structures and an open semantic framework in which architectural structures can
be annotated with ADL-specific properties.

2.1 ADLs and Dynamic Architectures

Architectures are likely to describe large, long-lived software systems that may evolve over
time. ADLs must support such changes through features for modelling evolution (before
execution) and dynamism (during execution). This is done at the level of configurations.

As we previously said, the most common operations that can change the architecture
of a system are [16]:

1. Addition of new components: it can be necessary to include new components to an
architecture. So, the ADL must allow the inclusion of a component that was not
being used before;

2. Upgrading existing components: a component can be replaced by another with same
functionality, but with better performance, for example. The ideal situation is to
keep the original component running, if needed, while it is being upgraded;

3. Removal of unnecessary components: if a component is no more being used by the
architecture, it can be removed;

4. Reconfiguration of application architecture: after adding or removing components,
it can be necessary to reconnect components and connectors and;

5. Reconfiguration of system architecture: it can be necessary to move a component
from one machine to another. It this case, the architecture must support the mod-
ification of the mapping of components to processors.

C2, Darwin, and Rapide support dynamism. Darwin and Rapide support only con-
strained dynamic manipulation of architecture, i.e. the changes must be planned.

In [22] and (23], we find a set of issues to be considered when trying to establish under
what circumstances it is safe to remove and/or add a component from/to an architecture,
change the filtering policy on a connector port, and rewire the architecture.
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3 Formalizing Software Architectures

Several formalisms are being investigated by the software architecture reuea.rch commu-
nity. The dimension of generality and power of the formalism must be considered. A
formal notation for architectural descriptions might be useful both for system f:onstruc-
tion as well as support verification. In most cases, however, a formalism has st its .aure .a
specific problem that it is attempting to address(27]. Here are four core functions in this
design space:

e Amnalysis of Architectural lnstances

To analyse designs, it is necessary to associate an underlying semantics model with
the description of a system architecture. Several different models have been pro-
posed, each of them focusing on one important aspect. UniCon and Aesop, for
example, support methods of real-time analysis, while Darwin [15, 24] allows dy-
namic architectures modelling systems behavior in terms the of w-calculus.

e Capture of Architectural Styles

Some styles have been completely formalized. The framework developed by Abowd,
Allen, and Garlan [1], for example, permit the comparison of different styles at a
semantic level.

e Verification of Architectural Styles

Sometimes architectural descriptions must be refined into lower-level architectural
descriptions that are more directly implemented than their abstract counterparts. In
(18], the authors ohserved that it is possible to exploit patterns of refinement between
different levels of architectural description. SADL [19] is an ADL constructed with
the possibility of refining architectural descriptions.

e Analysis of Architecture in General

It is important to provide a formal basis of an architectural description in order
to answer some questions that arise. Some languages define connectors as first-
class entities or allow the specification of components or protocols to reason about
these elements, guaranteeing, for example, that components interacting over a given
connector will never deadlock.

The model defined by Abowd, Allen and Garlan(1] provides a formal framework for
the uniform definition of architectural styles. In order to do that, architectural styles are
described formally in terms of a small set of semantic mappings. The model shows how
these mappings can be used to define formally two common architectural styles. In this
way, new styles can be defined by a similar set of definitions and it is possible to use
the formal descriptions to gain insight into the properties of a style and its relationships
to other styles. The main feature of this model is that it gives meaning to architectural
descriptions.

The Module Interconnection Language (MIL) model was first defined in [25] and in-
corporates the essential elements and operations of MILs as generic Z schemas. The basic
elements of a system structure (or configuration) are the Templates (which correspond
to modules) and their interfaces (Ports). It is assumed that there is a set of Templates
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and a set Ports. The Primitives are a set of Templates that are initially available. Each
port must be associated with a template and with a set of attributes (Attributes). Each
attribute of a port is specified by a field, an element of the set of Indices. The primitive
templates, interfaces, and attributes constitute the library (MIL_Library). To construct a
system structure, each library template can be instantiated as a node which is an element
of the set Nodes. A function node_parent specifies the relationship between nodes and
templates. Each instantiated node inherits the interface (ports) of its parent template.
However, the ports associated with the parent templates are also instantiated as slots
associated with the node instance. Therefore, the slots must inherit the attributes of the
parent port as the third constraint of the MIL_Setting schema indicates. Labels are also
associated with slots of the nodes to define a relation (connection) on the set of nodes.
Two nodes are considered connected if they have slots with the same label.

The Architectural Style Description Languages (ASDL) model, described in [26], is in
fact an extension of the MIL model. To enable the description of architectural styles, the
ASDL model mainly introduces the notion of semantics for both components and interac-
tions. Although ASDL provides support for describing the essential elements of software
architectures, including the semantic aspects of the modules and their interfaces, it does
not. provide support for the description of evolving (reconfigurable) software architectures.

Wright [5] is an architectural description language based on the formal description
of the abstract behavior of architectural components and connectors. Wright provides
a formal basis for the description of both architectural configurations and of architec-
tural styles. It is distinguished by the use of explicit, independent connector types as
interaction patterns, the ability to describe the abstract behavior of components using a
CSP-like notation, the characterization of styles using predicates over system instances,
and a collection of static checks to determine the consistency and completeness of an ar-
chitectural specification. As the semantics of Wright specifications are formally defined,
an architecture characterized in Wright provides a sound basis for reasoning about the
properties of the system or style described.

Darwin has been formally specified in [15], where we find the description of the oper-
ational semantics of Darwin in terms of the m-calculus. The model is used to argue the
correctness of the Darwin elaboration process and the objective is to provide a soundly
based notation for specifying and constructing distributed software architectures, In [24],
the Darwin’s representation in first order logic is presented. The definitions and axioms
of the logic representation form a theory. From this theory it is possible to derive nota-
tions of validity for both programs and configurations as well as an important property of
Darwin programs - a running configuration can be extended without requiring reconfigu-
ration. The basic features of Darwin, concerned with binding, instantiation and hierarchy,
and their semantics in the m-calculus are found in [15]. Nevertheless, Darwin also has the
ability to specify architectures which change at run-time using lazy and direct dynamic
instantiation. So, the authors present an extension of the w-calculus model to describe
the direct dynamic instantiation facility.

The problem of capturing dynamic architectures is addressed in [3]. Dynamic systems
are defined as systems in which composition of interacting components changes during the
course of a single computation. This is different from steady-state behavior, in which the
computation performed has no reconfiguration. The approach of this model is based on
the premise that it is both possible and valuable to separate the dynamic re-configuration
behavior of an architecture from its non-reconfiguration functionality. While Darwin

XII Simpésio Brasileiro de Engenharia de Software - SBES'98 11


http://www.cvisiontech.com

capture reconfiguration behavior, at the architectural level, it is important to provide a
notation that supports both aspects of design while maintaining a separation of concerns
[4]. The model is then a new technique by which these two aspects can be described
in a single formalism while keeping them as separate views. Analysis of the combined
interaction between the two is supported.

4 The ZCL Framework

We propose a framework to help designers in the specification of an application. The
main inspiration for our work is CL [9, 12]. The CL model follows the principles of others
MILs but it had introduced new concepts such as the notion of planned reconfiguration,
which is a modification considered by the designer as possible to happen.

Our framework [20, 11] is specified in Z [30] and defines a semantics to CL. To con-
struct the framework, we have considered the CL language as a combination of state
and operations. So, we modeled components, composite components, instances, ports,
connectors and configuration (top) in schemas separated from the ones of the operations.
This structure follows the types of schemas defined in Z, in which there are two types of
schemas: state and operation. In a state schema, the upper half is know as the declara-
tive part, and is used to declare variables and their types. The second part of the state
schema is known as the predicate part, and in this part it is described how variables are
related and constrained. Operations affect states, and are characterized by their effect on
the state. An operation schema relates the state variables before and after the operation.
The general operation schema has a before state, an after state, inputs, outputs, and set
of pre-conditions for the application of the operations.

4.1 The Software Architecture State

The state of a software architecture is divided into two parts: static and dynamic. The
static state relates to the various levels of the library of components. The dynamic state
relates to information about the execution.

4.1.1 The Basic Library of Components and Ports

The basic elements of a ZCL specification are Components, Ports and Connectors. Com-
ponents can be primitive components (tasks) or composites components (group or sub-
configuration). Ports can be simple ports or family of ports.

We use Indices and Attributes to classify the attributes of ports and components. Like
in [25], Attributes are classified into fields, which are elements of the set of Indices. For
example, in a ZCL specification, the attribute mode ::= {notify, reqreply} are used to
represent the mode of a port. A notify port implements asynchronous communication and
a reqreply (request-reply) port is the one which implements synchronous communication.

The CL.Component schema, shown in Figure 1, specifies the interfaces as a mapping
between components and sets of Ports, and defines the attributes of each port. The
schema asserts that the interfaces use distinct ports (setdisjoint interfaces) and that every
port has a direction to indicate that it receives messages (entryport) or sends messages
(exitport); and has a mode to indicate that it can be notify or regreply.
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—1X]
setdisjoint _: IP(IP(IPX))

Vzss : P(IPX) e setdisjoint (xss)
& (Vzs,ys : IPX o ((xs € x38) A (ys € xss) A (xs # ys)) = (xs Nys) = @)

_ CL_.Component|Indices, Attributes] ___
id_component : Names
component_attr : Component -+ Indices — Attributes
inter faces : Component > I\ Ports
port_attr : Ports -+ Indices — Attributes

setdisjoint {interfaces}

dom port_attr = | J( ran inter faces)

Vp: Ports | p € dom port_attre
port_attr(p)(dir) € {entry, ezit}A
port.attr(p)(mode) € {notify, reqreply}

Figure 1: CL_Component

4.1.2 Basic Software Architectures and Composite Components

A basic software architecture is a component that can be composed by others components
(task or group) and is represented in ZCL as a composite component. In Figure 2, we
present the CL_Composite_Component schema just to illustrate the specification. The
complete framework can be found in [21].

The Nodes given set represents the concept of instance of a compo-
nent (CL_InstanceLibrary). Components are instantiated into nodes and their ports
into port_inst to form a composite component. The variable node_parent indicates the
instantiation of components and port_inst the instantiation of ports respectively. The
function childrens provides the set of nodes of one component and node_attr is the set of
attributes of a node. In this set, the location of the node is stored.

The composite component has virtual_ports® in its interface, which can be bound to
its component’s interfaces. A composite component uses instances of components to
construct the structure of an application. It keeps information about its components
and the links between them (connection and cname). The variable composites stores
information about sub-composite components.

CL_Connector stores information about each pair of ports connected, creating links.
Its semantics can specify several forms of communication ( ConnectorDescriptions).

The highest component in the hierarchy is called the Top Configuration. It is a
composite one, but has no interface, as it cannot be instantiated and connected to other
components.

The idea of virtual_ports is similar to that presented in [26].

XII Simpdsio Brasileiro de Engenharia de Software - SBES'98 13


http://www.cvisiontech.com

[SemanticDeseriptions]

C'L_Component_Boundary[Indices, Attributes]
inter face_attr : Ports +» Indices — Attributes
virtual_ports : F'Ports

virtual_ports = dom inter face_attr

__ CL_Composite_Component[Indices, Attributes, SemanticDescriptions)
CL_Component[Indices, Attributes)
CL_Component_Boundary[Indices, Attributes]
CL.Connector

ECL_InstanceLibrary

id_composite : Names

components : F'C'L_Component

C P ites : FC P nt

bind : (Nodes x Ports) ++ F Ports
virtual_port_descr : Ports ++ SemanticDescriptions
connection : (Nodes x Ports) + Connector Names
ename : Connector Names — CL_Connector

Ve : Component | ¢ € posites e ¢ € ran group

dom cname = ran connection

Vn : Nodes; p: Ports | (n,p) € dom connection e (n,p) € port_inst

dom bind C dom connection

U( ran bind) C virtual_ports

dom virtual_port_deser = virtual_ports

Vp : Ports; n: Nodes | p € virtual_ports A p € bind(n, p)e
inter face_attr(p) = port_attr(p)

Vn : Nodes; p : Ports | node_parent(n) € compositesA
p € inter faces(node_parent(n))e
(n,p) € dom bind

Figure 2: CL_.Composite_Component
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A configuration table stores information about the configuration context, instances
and their status, and links. The state of an architecture is important to guarantee the
integrity of the application during reconfiguration. We create a schema that describes
sets that keeps information about the existing elements of an architecture.

4.2 The Operations on a Software Architecture

The dynamic ZCL operations are applied at the elements of the architecture. However, it
can be necessary to use some auxiliar (basic) operations applied to lower level concepts.
For example, if a component is used by an application, if must exist in the library. If it
does not exist in the library, it must be created. The creation of a component is not an
ZCL operation, but is is necessary to define a component in a system context. Dynamic
operations usually change the state of the software architecture. All operations contain
error cases.

We describe below the steps necessary to create an application using the ZCL frame-
work.

1. The first step to allow operation in an architecture is to create a system (application),
which is named CL_Top_Configuration. The configuration table of the system is
initialized.

2. The definition of context consists mainly in selecting components from the library
and updating the configuration table. A component must be included in the context
before an instance of it is created. A component can exist in the library or can be
included in it. In the first case, as specified by the CL_Define_Contezt schema, the
component must be declared just once. If the component does not exist in the
library, it must be created (CL_Create.Component).

3. When a component is created, its interface is also created and the attributes of each
port are defined.

4. Connectors must be created to allow the communication of the instances. Each
connector has an identifier and a behaviour that must be defined by the architect.
Each connector can support more than one pair of communicating ports.

Instances of components are the operational element of an application. A component
can have several instances. If the correspondent node does not exist, it must be created
(CL_Create_Node schema) before the creation of an instance. The CL_Create_Instance
schema is shown in Figura 3.

Each port is associated to a connector which matches the desired behaviour of the
port. This association can be removed if it is necessary to change the behaviour of a port
or to associate this port to another connector.

Two ports (or families of ports) are linked to establish communication between the
instances of components. The link statement is represented by the CL_Link schema.When
two ports are connected, the connector responsible for setting up the connection stores
data about the ports it is connecting. The constraints in the schema guarantee that the
ports have suitable type, mode, and direction to be linked.
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. CL.Create_Instance
ACL_InstanceLibrary
ACL Table
node? : Nodes

ponent? : Comp t

machine? : Attributes
r!: Response

node? € dom node_parent

component? € InContext

node? ¢ InstNodes

InstNodes' = InstNodes U {node?}
node_attr(node?)(location) = machine?
r! = success

Figure 3: CL_Create_Instance

When an instance is activated, the configuration table is updated to keep the infor-
mation that the instance has a different status. In Figure 4, we show the CL.Activate
schema.

The reconfiguration operations are able to modify the configuration structured. For
example, to interrupt the execution of an active instance (CL_Deactivate); to disconnect
two ports, the connector responsible for the link has to eliminate the connection from
the set of ports it connects (CL_Unlink); to delete an instance, it can not be activated
(CL_Delete), and finally; when a component is no more necessary to the application, it
can be removed from the context. In this case, it cannot have any active instance. The
CL_Remove schema is shown in Figure 5.

__ CL_Activate
ACL Table
node? : Nodes
resp! : Response
node? € InstNodes

(node? € Activelnst) = Activelnst' = Activelnst U {node?}
resp! = success

Figure 4: CL_Activate
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__ CL_Remove_Component
ZCL_InstanceLibrary
ACL Table
connector : CL.Connector
€? : Component
resp! : Response

¢? € InContext
¥n : Nodes | n € childrens(c?)e

(n € Activelnst) = Activelnst' = Activelnst\ {n}A

(n € InstNodes) => InstNodes' = InstNodes \ {n}
Vnodel, node2 : Nodes; portl, port2 : Ports |

node_parent(nodel) = ¢? V node_parent(node2) = c7e

{((nodel, portl), (node2, port2))} C eonnector.linked_ports =
connector.linked_ports = connector.linked_ports \ {((nodel, portl), (node2, port2))}

InContezt’ = InContext \ {c?}
resp! = success

Figure 5: CL_Remove

5 Case Study

The Message Router system presented in this section consists of a communication net-
work connecting N senders to M receivers via a message router. Each sender is connected
to one of the input ports of the router, whereas each receiver is connected to one output
port [7]. The architecture of the system and the CL code for it can be seen in Figure 6.
For simplification, we define only one instance of each module in the CL configuration
seen in Figure 6 (b).

1. Creating a Configuration Specification
The CL_Create_System operation is used to create the system and initialize its sets.

The CL_Create_Connector specifies the connectors needed to establish communi-
cation between the instances’ ports and CL_Assign_Connector is used to associate
instances of ports to connectors. Having specified the components, interfaces and
assignment, it is possible specify the operations that build the configuration pro-
gram.

In this example, the CL_Define_Contezt operation is invoked three times and the
input variables have the values: router, sender and receiver.

Then, the CL.Create.Instance operation is used to create each instance. In the
example, the input variables have the values: {rt, router}, {sd, sender} and {rcv,
receiver}. We assume that all the nodes are executed in the same machine.

Each link command in the configuration program corresponds to a CL_Link opera-
tion. The input variables of that schemas are the names of the nodes and the ports
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E E
use task router, sender, receiver;
begin
create rt from router;

__.__, create od from sender;
create rev from receiver;
E Router link sd.sending to ri.receiving;
2 link rt.sending to rev.receiving;
(st )— et 1, b
end
(a) (b)

Figure 6: The Message Router System

to be linked, which in the example correspond to: {sd, rt, sd.sending, rt.receiving}
and {rt, rcv, rt.sending, rcv.receiving}.

Finally, the CL_Activate operation is used to activate each instance: rt, sd and rev.

2. Analysing a Configuration Specification

Our present framework enables us to perform three main types of analysis of evoly-
ing software architecture: reconfiguration operations, planned reconfiguration using
reconfiguration expressions and configuration invariants. In the following, we illus-
trate how we applied the three types of analysis to the Message Rouler system.

(a) Analysing Reconfiguration Operations
Suppose that for some reason the sd instance has to be replaced. We have to
delete sd and include a new instance of the sender component. To reconfigure
the system, we have to deactivate the instance, disconnect its ports and delete
it. The schemas for each operation guarantees that the restrictions will be
applied. In this way, the sd instance will just be deactivated if it is activated
and the will be delete after being deactivated and having its ports disconnected.

(b) Analysing Planned Reconfiguration using Reconfiguration Expres-
sions
In the Message Router, the sender and the receiver should be always monitored
by a router. Suppose, however, that the rt instance is deactivated because of
a failure. To guarantee that the above constraint holds without rejecting the
configuration, another instance of router should be automatically created. In
our framework, we can create a schema that checks the state of the configu-
ration when the sd and rev instances are active but the rf instance is not. In
that case, the configuration should automatically create another instance of
the router component, link the ports to the new instance and activate the new
instance. The first definition presented below says that the data requested
by CL.Create_Instance will be provided by Auto.Create. The operation will
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not require any input. The second definition automatically creates another
instance of the router component when the condition is satisfied.
Auto C L _Create_Instance=AutoCreate 3> C L _Create_Instance g

CL.Link § _CL_Activate
=(3n : Nodes | (task™(node_parent(n))).id_component = router)

= Auto_C'L_Create_Instance

(¢) Analysing Configuration Invariants
Consistency is one of the goals of the configuration program. Many of nec-
essary constraints are included in the configuration schema operations, but
some application specific can be needed. These constraints are usually defined
as configuration invariants. In the Message Rouler system, the sd and the
rev instances must be activated only if there is an instance of router already
activated. In other words, the system is only valid if there exists one active
instance of router as defined below:
3n : Nodes | (task™(node_parent(n))).id_component = router A
(n € InstNodes A n € Activelnst)

6 Current and Future Work

The next step of our work is to propose and formalize a run-time reconfiguration model
for dynamic reconfiguration. Our goal is to formalise aspects related to the execution of
the application, verifying its state, to ensure that a reconfiguration can be done without
invalidating invariant requirements of the application.

In our model, we use the idea of blocking just ports and not instances during a recon-
figuration. The execution of the instance can continue normally, unless a send or receive
command on the blocked port has to be executed. In this case, the execution of the
instance must wail until the port is unblocked.

Each application is a top configuration and is executed by a management system
represented in Figure 7,

The main manager is the executor of an application and must create the configura-
tion and dependency table, which is used to order the reconfiguration commands. Local
managers are created in each machine where it is a component in execution and they
communicate to compenents and connectors to order reconfigurations.

7 Conclusions

Most of the existing languages do not support specification of dynamic architectures.
Darwin is one of the exceptions. Although the work presented in [15] enables us to verify
some properties of (dynamic) configurations described in Darwin, it is more concerned
with proving the correctness of the Darwin elaboration mechanism, namely, that after
Darwin transforms a hierarchical configuration into a flatten configuration, it preserves
the correctness of the modules and their interconnections.

The logical framework presented by [2] allows the specification of evolving systems
where the changes are static and represented by modified versions of the system. This
involves encoding in the logical formalism the conditions for valid software configuration
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alterations and guarantees that the configurations remain valid after the software system
is altered. Each modification generates a new version of the system. In this sense, the
framework is mainly used for version control of critical systems. Also, there is not a notion
of a configuration language as (re)configurations are specified by a set of axioms.

Our work presents a formal configuration language for specifying evolving distributed
systems, allowing the designer to follow software development from specification to run-
time, using the run-time reconfiguration model. In the current version, our framework
does not include any operational aspects as to how the reconfiguration takes place but it
still provides a powerful method to verify properties of the configuration. We are working
on the formalization of the reconfiguration model in order to enrich the framework to
prove properties of an application.
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