
Specifying Dynamic Distributed Software
Architect ures

Virgínia C. de Paula1 and G. R. Ribeiro Justo
Centre for Parallel Computing, University of Westminster, London, UK

{ vccpaulaJustog}Ccpc. wmin.ac.uk,
P. R. F Cunha

Department of lnformatics, Federal UniversiLy of Pernambuco, Recife, Brazil
prfc@di.ufpe.br

Abstract

The concept of software architecture is important to the design of complex soft­
ware systems, as it provides a model of the large scale structural properties of the
system. lt is possible to find several formal modela to depict static distributed soft­
ware architecture. Nevertheless, notations for supporting architectural dynamism
and evolution are still difficult to find in the literature. We presenta formal frame­
work to specify dynamic distributed applications to enable us to specify the dynamic
behaviour of reconfigurable systems. This framework will help the designer to check
the project suitability.

1 Introduction

The software architecture of a. sysLem is important to the design of complex software
systems, as it provides a model of Lhe large scale sLructural properties of systems. These
properties include tbe decompoHition and interaction among parts as well as global sys­
tem issues sucb as coordination, synchronization and performance [5]. Structural issues
also include the organization of a system as a composition of components; global con­
trai structures; the protocols for communication, synchroruzation, and data access; the
assignment of functionality to design elements, the composition of design elements; phys­
ical distribution; scaling and performance; dimensions of evolution; and selection among
design alternatives [29] .

Research on distributed software architectures evolved from the existing M1Ls[29] ,
especially configuration languages[6, 9, 14], which basically separate the computation
from the structure of the system, defining a special notation to describe the architectural
elements of a distributed system. Despite of their benefits, MILs have some drawbacks,
like failing to distinguish between implementation and interaction relationships between
modules[29] . Therefore, MILs are not suitable to dea.l with some arcbitectural issues.

ln arder to deal w.ith those architectural issues, architectural description languag~

(ADLs) have emerged as an important field of study. Most of existing ADLs typically SU(r

port only static architecture specification and do not provide facilities for the support of
dynamic architectures, used to describe architectures which cbange during run-time. The
most common operations that can change the architecture of a system are [16]: addition
of new components, upgrading existing components, remova! of unnecessary components,
reconfiguration of application architecture, and reconfiguration of system architecture.
Notations for supporting architectural dynamism and evolution is still difficult to find in
the literature. Exceptions are C2[22], Darwin[15] and Rapide[l3] .

10n leave from Federa.l University of Pernambuco (Phl) student) and from Federal University of Rio
Grande do Norte {Assistant lecturer).

XII Simpósio Brasileiro de Engenharia de Software - SBES'98 7

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

ln this paper, we present ZCL: a formal framework, specified in Z (30], to specify and
reason about dynamic distributed software architectures. The framework is based on the
CL model [9, 10) and focuses on the operations necessary in the construction of dynamic
software architectures. The ZCL framework enables us to perform some analysis on the
specification of an architecture, as we present on Section 5. The framework has also an
execution machine, which is still being formalized, which will allow us to analyse the
behaviour of an (dynamic) architecture during run-time.

ln section 2, we present the features one language must have to be considered an
ADL, including dynamism. ln section 3, we present some formal modela for architectural
descriptions. ln section 4, we present the ZCL framework. ln the sequence of the paper,
we present, in section 5, a brief case study to show how the framework can be used. ln
section 6, we describe the next steps of ou r research, including the reconfiguration model
for ZCL, and in section 7 we conclude the paper emphasizing our contribution.

2 ADLs

ln this section, we present the features one language should have to be considered an ADL.
We give special attention to ADLs that support the specifica.tion of dynamic architectures.

ADLs "focus on the high-level strucLure of Lhe overall application rather Lhen the
implementation details of any specific source module"(17). Due to the novelty of tbe
studies, there are some questiona in the research community on what an ADL is and whaL
aspects of an architecture should be modelled by an ADL. Another source of disagreement
is the levei of support a.n ADL should provide to developers. ln (28), the authors list six
classes of properties that a.n ADL should provide:

8

1. Composition: An architectural language must allow a designer to divide a com­
plex system hierarchically into smaller, more manageable parta, and conversely, to
assemble a large system from its constituent elements.

The elements must be sufficiently independent as to allow them to be understood
in isolaLion from tbe system in which Lhey are eventually used.

It should be possible to separate concerns of implementation levei issues (such as
choice of algorithms and data structures) from those of architectural structure.

2. Abstraction: The architectural levei of design requires a different form of abstrac­
tion Lo reveal high-level sLructures so that the distinct roles of each element in the
structure are clcar.

3. ReusabiliLy: lt should be possible to reuse components, connectors and architectural
patterns in different architectural descriptions, even if they were developed outside
Lhe context of thc architectural system. This form of reu.se differs from the reuse of
components from libraries.

4. Configuration: A la.nguage for architectural description should separate the descrip­
tion of composite structures from the elements in those compositions. Dynamic
configuration is needed Lo allow architectures to evolve during the execution of a.
system.

XII Simpósio Brosileiro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

5. Heterogeneity: There are two aspects of heterogeneity: the ability to combine dif­
ferent architedural pattems in a single system; and tbe dcsirability of combining
components that are written in different languages. This property is not very com­
monly found in the existing ADLs.

6. Analysis: The need for enhaoced forms of analysis are particularly important for
architectural formalisms, since many of the interesting architectural properties are
dyoamic.

The survey presented by Medvidovic in (17) compares the most popular ADLs: Ae­
sop, C2, Darwin, MetaH, R.apide, SADL, UniCoo, and Wright. ACME (8) is a common
denominator of existing ADLs, providing a fixed vocabulary for representing architec­
tural structures and an open semantic framework in which architectural structures can
be annotated with ADL-specific properties.

2.1 ADLs and Dynamic Architectures

Architectures are likely to describe large, long-lived software systems that may evolve over
time. ADLs must support such changes througb fea.tures for modelling evolution (before
execution) and dynamism (during execution). Tbis is done at tbe levei of configuratioos.

As we previously said, tbe most common operations that can change the architecture
of a system are (16):

1. Addition of new components: it can be necessary to include new components to ao
architecture. So, the ADL must allow the inclusion of a component that was not
being uscd before;

2. Upgrading cxisting components: a component can be replaced by another with sarne
functionality, but with better performance, for example. Tbe ideal situation is to
keep tbe original componcnt running, if needed, while it is being upgraded;

3. Remova! of unnccessary components: if a. component is no more being used by the
architecture, it can be rcmoved;

4. Reconfiguration of application architecture: after adding or removing components,
it can be necessary to reconnect components and connectors and;

5. Reconfiguration of system architecture: it can be necessary to move a component
from one machine to another. It this case, the architecture must support the mod­
ification of the mapping of components to processors.

C2, Darwin, and R.apide support dynamism. Darwin and R.apide support only con­
strained dynamic manipulation of architecture, i.e. tbe cbanges must be planned.

ln (22) and [23), wc find a set of issues to be considered when trying to establisb under
what circumstances it is safe to remove and/or add a component from/to an architedure,
change the filtering policy on a connector port, and rewire the architecture.

Xll Simpósio Brasileiro de Engenharia de Software- SBES'98 9

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

3 Formalizing Software Architectures

Several forma.lisms are being investiga.ted by the software a.rchitecture resea.rch cornmu­
nity. The dimension of generality a.nd power of the forma.lism must be considered. A
formal nota.tion for a.rchitectural descriptions might be useful both ~or system ~onstruc­
tion a.s well a.s support verifica.tion. ln most ca.ses, howevcr, a. forma.ltsm ha.s a._t 1ts _core _a.

6 pecific problem tha.t it is a.ttempting to a.ddress[27). Here are four core funct1ons JO th1s
des\~;n spacc:

• .t\na\ys\s of .t\rch\tectura\ \nsta.nces

To a.nalyse designs, it is necessa.ry to a.ssocia.te a.n underlying sema.ntics model with
the description of a. system a.rchitecturc. Severa.! different models ha.ve been pro­
posed, ea.ch of them focusing on one importa.nt a.spect. UniCon a.nd Aesop, for
exa.mple, support methods of real-time a.nalysis, while Darwin [15, 24) a.llows dy­
na.mic a.rchitectures modelling systems beha.vior in terms the of 7r-ca.lculus.

• Capture of Architectura.l Styles

Some styles ha.ve been completely forma.lized. The fra.mework developed by Abowd,
Allen, a.nd Ga.rla.n [1), for exa.mple, permit the compa.rison of different styles a.t a.
sema.ntic levei.

• Verifica.tion of Architectura.l Styles

Sometimes a.rchitectural descriptions must be refined into lower-level a.rchitectura.l
descriptions tha.t are more directly implernented tha.n their a.bstra.ct counterpa.rts. ln
[18), the a.uthors obscrved tha.t it is possible to exploit pa.tterns of refinement between
different leveis of a.rchitectura.l description. SADL [19) is a.n ADL constructed with
the possibility of refining a.rchitectura.l descriptions.

• Analysis of Architecture in General

It is irnporta.nt to provide a. formal ba.sis of a.n a.rchitectura.l description in order
to a.nswer sorne questiona that a.rise. Sorne la.ngua.ges define connectors a.s first­
cla.ss entities or a.llow the specifica.tion of components or protocols to rea.son a.bout
these elements, gua.ra.nteeing, for exa.mple, tha.t components intera.cting over a. given
connector will never dea.dlock.

Thc rnodel defined by Abowd, Allen a.nd Ga.rla.n[1) provides a. formal fra.mework for
the uniform definition of a.rchitectura.l styles. ln arder to do tha.l, a.rchilectura.l styles are
described forrnally in terms of a small set of serna.ntic mappings. The rnodel shows how
lhese mappings ca.n be used to define formally two common architectura.l styles. ln this
way, new styles ca.n be defined by a similar set of definitions and it is possible to use
the formal descriptions to gain insight into the properties of a. style a.nd its rela.tionships
to other styles. The ma.in fea.ture of this rnodel is that it givcs mea.ning to a.rchitectura.l
descriptions.

The Module Interconnection La.nguage (MIL) model wa.s first defined in [25) a.nd in­
corpora.tes the essentia.l elernents a.nd opera.tions of MILs a.s generic Z schema.s. The ba.sic
elements of a. system structure (or configura.tion} a.re the Templates (which correspond
to modules) a.nd their interfaces (Ports). It is a.ssurned tha.t there is a. set of Templates

lO XU Simpósio Br.lSilciro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

a.nd a. set Ports. The Primitives are a. set of Tem7Jlates tha.t a.re initia.lly a.vaila.ble. Each
porL musL be a.ssocia.ted with a. templa.te a.nd with a set of attributes (Attribv.tcs). Each
a.tLribute of a. port is specified by a field, an element of the set of lndices. The primitive
templates, interfa.ces, and attributes constitute the library (MILLibrary). To construct a.
system structure, ea.ch library template ca.n be instantiated a.s a node which is an element
of the set Nodes. A function node_parent specifies the relationsbip between nodes and
templates. Each instantiated node inherits the interface (ports) of its parent template.
However, the ports a.ssociated with the parent templates are also instantiated as slots
a.ssociated with the node instance. Thereforc, the slots must inherit the attributes of thc
parent port as the third constraint of Lhe MIL..Setting schema indicates. Labels are also
associated with slots of Lhe nodes to define a relation (connection) on the set of nodes.
Two nodes are considered connected if they have slots with the sarne label.

The Architectural Style Description Languages (ASDL) model, described in [26], is in
fact an extension of the MIL rnodel. To enable the description of architectural styles, the
ASDL model mainly introduces the notion of sema.ntics for both components a.nd interac­
tions. Although ASDL provides support for describing the essential elements of software
a.rchitectures, including the semantic aspects of the modules a.nd their interfaces, it does
not provide support for the description of evolving (reconfigurable) software a.rchitectures.

Wright [5] is a.n a.rchitectura.l description la.ngua.ge based on the formal description
of the a.bstract beha.vior of architedura.l components and connectors. Wright provides
a. formal basis for the descriptiou of boLh a.rchitectural configurations a.nd of a.rchitec­
Lura.l styles. It is distinguished by Lhe use of explicit, independent connector types as
interaction pa.tLerns, Lhe a.bi lity to describe Lhe a.bsLra.cL beha.vior of components using a.
CSP-Iike nota.Lion, the characterizaLion of sLyles using predica.tes over system insta.nces,
a.nd a. collecLion of static checks Lo determine Lhe consistency and completeness of a.n ar­
chitectura.l specification. As Lhe semanLics of Wright specifications are forma.lly defined,
an a.rchitecture characterized in Wright provides a sound basis for reasoning about the
properties of the system or style described.

Darwin bas been formally specified in [15], where we find the description of the oper­
a.tiona.l sema.ntics of Darwin in terms of the 1r-ca.lculus. The rnodel is used to argue the
correctness of the Darwin ela.boration process a.nd the objective is to provide a. soundly
based nota.tion for specifying a.nd constructing distribuLed software architectures. ln [24],
the Darwin 's representa.tion in first order logic is presentcd. The definitions a.nd axioma
of the logic representa.tion forrn a theory. From this Lheory it is possible to derive nota­
tions of va.lidity for both programa and configurations as wcll as an important propcrty of
Darwin programs - a. running configuration ca.n be extended without requiring reconfigu­
ra.tion. The basic features of Darwin, concerned with binding, insta.ntiation and hierarchy,
and their semantics in the 1r-ca.lculus are found in [15). Nevertheless, Darwin also has tbe
a.bility to specify a.rchitectures which change at run-timc using lazy and direct dyuarnic
instantiation. So, the a.uthors present a.n extension of the 7r-calculus model to describe
the direct dynamic insta.ntiation facility.

The problem of capturing dynamic architectures is a.ddressed in [3]. Dynamic systerns
are defined as ~ystems in which composition of interacting components changes during the
course of a. single computation. This is different from steady-state behavior, in which the
computation performed ha.s no reconfiguration. The approach of this model is based on
the premise that it is both possible and va.luable to sepa.rate the dynamic re-configuration
behavior of an a.rchitecture from its non-reconfiguration functiona.lity. While Darwin

XII Simpósio Brasileiro de Engenh:u-ia de Software - SBES'98 li

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

capture reconfiguration bebavior, at the architecLural levei, it is important to provide a
notation that supports both aspccts of design while maintaining a separation of concerns
[4). The model is then a new technique by which these two aspects can be described
in a single formalism while keeping them as separate views. Analysis of the combined
interaction between the two is supported.

4 The ZCL Framework

We propose a framework to help designers in the specification of a.n application. The
main inspiration for our work is CL [9, 12] . The CL modcl follows the principies of others
MILs but it had inLroduced new concepts such as the notion of planned reconfiguration,
which is a modification considered by the designer as possible to happen.

Our framework [20, 11) is specified in Z [30) and defines a semantics to CL. To con­
strucL Lhe framework, we have considered Lhe CL language as a combination of state
and operaLions. So, we modelcd componenLs, composite components, instances, ports,
connecLors and configuration (Lop) iu schemas separaLed from the ones of the operations.
This slructure follows the types of schemas defined in Z, in which there are two types of
schemas: state and operation. ln a state schema, tbe upper half is know as the declara­
tive parL, and is used to declare variables and their types. The second part of the state
schema is known as the predicate part, and in this part it is described how variables are
related and constrained. Operations affect states, and are characterized by their effect on
the statc. An operation schema relates the state variables before and after the operation.
The general operation schema has a. before sta.le, a.n a.fter sta.te, inputs, outputs, a.nd sct
of pre-conditions for the a.pplication of the opera.tions.

4 .1 The Software Architecture State

Tbe sta.te of a. software architecture is divided into two parts: sta.tic and dyna.mic. The
sta.tic sta.te relates Lo Lhe va.rious leveis of the library of componente. The dynamic state
relates to informa.tion a.bout the execution.

4.1.1 The B asic Libr ary of Comp onente and Por ts

The basic elements of a. ZCL specifica.tion are Components, Ports a.nd Connectors. Com­
ponente can be primitive components (tasks) or composites components (group or sub­
configura.tion). Ports can be simple ports or family of ports.

We use /ndices a.nd Attributes to classify the attributes of ports and components. Like
in [25], Attributes are classified into fields, which are elements of the set of lndices. For
example, in a. ZCL specifica.tion, the a.ttribute mode ::= {notijy,reqreply} are used to
represent the mode of a. port. A notify port implementa a.synchronous communication and
a. reqreply (request-reply) port is tbe one whicb implementa synchronous communication.

Tbe CLComponent scbema, shown in Figure 1, specifies the interfaces as a mapping
between components a.nd seta of Ports, a.nd defines the attributes of each port. The
schema. a.sserts tha.t the interfaces use distinct ports (setdisjoint interfaces) and that every
port has a. direction to indicate tha.t it receives messages (entryport) or sends messages
(exitport); a.nd has a. mode to indicate tha.t it can be notify or reqreply.

12 XII Simpósio Brasileiro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

X]
setdisjoint _: P (P (P X))

Vzss : P (PX) • setdisjoint (xss)
~ (Vzs, ys: PX • ((xs E xss) 1\ (ys E xss) 1\ (Xll #: ys)) ~ (xs n ys) = 0)

_ CL-Component(lndices, Attributes] __
id...component : N ames
component..attr: Component -+t l ndices-+ Attributes
interfaces: Component >H F 1Ports
port..attr : Ports -+t I ndices -+ Attributes

setdisjoint {interfaces}
dom port..attr = U(ran interfaces)

Vp : Ports I p E dom port_attr•
port_attr(p)(dir) E { entry, exit}l\
port_attr(p)(mode) E {notify,reqrepJy}

Figure 1: CL_Component

4 .1.2 Basic Software Architectures and Composite Components

A basic software a.rchitecture is a. component tha.t ca.n be composed by others components
(task or group) a.nd is represented in ZCL as a composite component. ln Figure 2, we
present the CL Composite_Component schema. just to illustrate thc specification. The
complete fra.mework ca.n be found in [21].

The Nodes given set representa the concept of insta.nce of a compo­
nent (CLlnstanceLibranJ). Components are insta.ntia.ted into nodes a.nd their ports
into porUnst to form a composite component. The va.ria.blc node_parent indica.tes the
insta.ntia.tion of components a.nd porLinst the instantiation of ports respectively. The
function childrens provides the set of nodes of one component and node_attr is the set of
attributes of a. node. ln this set, thc loca.tion of the node is stored.

The composite component has virtuaLport.SJ in its interface, which ca.n be bound to
its component's interfaces. A composite component uses insta.nces of components to
construct the structure of an applica.tion. It keeps informa.tion a.bout its components
a.nd the links between them (connection a.nd ena me). Thc varia.ble composites stores
information a.bout sub-composite components.

CL_Connector stores informa.tion a.bout each pa.ir of ports connected, crea.ting links.
Its sema.ntics ca.n specify severa) forms of commuuica.tion (ConnectorDescriptions).

The highest component in the ltiera.rchy is ca.lled the Top Configuration. It is a.
composite one, but has no interface, as it ca.nnot be insta.ntia.ted and connected to other
components.

lThe idea of virtuaLportB is similar to that presented in (26) .

Xll Simpósio Brasileiro de Engenhllria de Software - SBES'98 13

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

14

(Semant icDescriptions]

C L..Component_Boundary(I ndices, Attributes]
inter I ace.n.ttr : Ports -++ I ndices -+ Attributes
virtual..ports : F Ports

virtual_port,, = dom inter I ace.n.ttr

C L..Composite_Component(I ndices, Attributes, SemanticDe.5criptions]
C L_Component[I ndices, Attribute,,]
C L ..C omponenLBoundary(I ndices, Attributes]
C L..Connector
=.c LJ nstance Library
id_composite : N ame.,
components : IJ1'C'L..Component
composites: FComponent
bind: (Nodes X Ports)-++ FPorts
virtuaLport.descr : Ports -++ SemanticDescriptions
connection : (Nodes x Ports)-++ ConnectorNames
cname: ConnectorNames-+ CL..Connector

V c: Component I c E composites • c E ran group
dom cname = ran connection

Vn: Nodes; p: Ports I (n, p) E dom connection • (n, p) E port_inst
dom bind Ç dom connection

U(ran bind) Ç virtual ..ports
dom virtual..port..descr = virtual..ports

Vp: Ports; n : Nodes I p E virtual..ports 11 p E bind(n,p)•
inter lace_attr(p) = port_attr(p)

Vn: Nodes; p : Ports I node..parent(n) E compositesll
p E inter laces(node_parent(n))•
(n ,p) E dom bind

Figure 2: CL_Composite_Component

Xll Simpósio Bms.ileiro de Engenharia de Software - SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

A configura.~ion ~a.ble s~ores informa.tion a.bout the configura.Lion context, insta.nces
a.nd ~heir s~a.~us, a.nd links. The sta.te of a.n architeclure is imporla.nt to guara.ntee the
integrity of the a.pplicalion during reconfiguration. We creale a schema that describes
sets that keeps information about the existing elemenls of ao a.rchit~cture.

4.2 The Operations on a Software Architecture

The dynamic ZCL opera~ions are a.pplied at the elemen~s of the a.rchitecture. However, it
ca.n be necessary lo use some auxiliar (basic) operalions a.pplied to lower levei concepts.
For example, if a componen~ is used by an applica.tion, if musl exisl in the library. Tf it
dof'..s nol exist in ~he library, il must be created. The creation of a component is not a.n
ZCL opera.tion, bul is is necessary to define a. component in a. system conlext. Dyna.mic
operalions usually change the state of the software architecture. Ali operations conta.in
erro r cases.

We describe below the steps necessary to create an application using the ZCL frame­
work.

1. The fira~ step ~o a.llow operation in an architecture is to create a system (applica.~ion),
which is named CLTop_Configuration. The configuration table of the system is
ini~ia.lized.

2. The defini~ion of context consista mainly in sclecting components from the library
a.nd upda.ting the configuration table. A componcral musl be included in the context
before an insla.nce of il is created. A componcral can exist in Lhe library or ca.n be
included in it. ln the first case, as specified by ~he CL_Define_Context schema, the
component must be declared just once. If the componenL does not exist in the
library, it mus~ be created (CL_Crcate_Component).

3. When a component is created, its interface is also crea~ed and the altributes of ea.ch
port are defined. •

4. Connectors must be created to allow the communication of the instances. Each
connector has an identifier and a behaviour that rnusl be defined by the a.rchitect.
Ea.ch connec~or ca.n support more than one pa.ir of cornmunica.ting porta.

Instances of components are the opera.tiona.l elerncnt of an applicatioo. A compooeot
ca.n have severa! insta.nces. If the correspondent. node does not exist, it must be created
(CL_Crcate_Node schema.) before the creation of an insta.ncc. The CLCrcate_fnstance
schema is shown in Figura 3.

Ea.ch port is associated Lo a connector which ma.tches the desired beha.viour of the
port. This a.~socia.Lion can be removed if it is necessary to change the beha.viour of a. port
or to associa.te this port to a.notber connector.

Two porta (or fa.milies of porls) are linked to esta.blish communica.tion between the
insta.nccs of components. The link statement is reprcsentcd by the CL_Link achem a.. When
two porta are connected, the connector responsiblc for setting up the connection stores
data. about ~he porta i~ is connectiog. The constra.in~s in ~he schema. guara.ntee t ha.t the
port11 havc suitablc ~ype, mode, a.nd direction to be linked.

XII Simpósio Brosileiro de Engenlu:uin de Software - SBES'98 15

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

_C L.Cre.ate_lnstance ------­
b.C LJ nstanceLibra•·y
b.CL.Table
node?: Nodes
component? : Component
machine? : Attributes
r! : Response

node? E dom node..parent
component? E InContezt
node? ~ l nstNodes
I nstN odes' = I nstN odes U { node?}
node..attr(node?)(location) = machine?
d = success

Figure 3: CL_CreateJnstance

When a.n insta.nce is activatcd, the configura.tion ta.ble is upda.tecl to kecp the infor­
ma.tion tha.t the insta.ncc has a. clifferent sta.tus. ln Figure 4, we show thc CL.Activate
schema.

The reconfiguration opera.tions are able to modify the configuration structured. For
exa.mple, to interrupt the cxecution of an active instance (CL.Deactivate); to disconnect
two ports, the connector responsible for the link has to eliminate tbe connection from
the set of ports it connects (CL.Unlink); to delete ao instance, it can not be activated
(CL.Delete), and finally; when a c;omponent is no more necessary to thc application, it
can be removed from thc context. ln this case, it cannot have any active instancc. The
CL.Remove schema is shown iu Figure 5.

16

CL.Activate ---------­
b.CL.:J.'able
node?: Nodes
resp! : Response

node? E InstNode.,
(node? ~ Activeln.,t) :::? ActitJe ln.,t' = Activelnst U {node?}
resp! = success

Figure 4: CL.Activate

XII Simpósio Brasileiro de Engenhnrin de Software· SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

C L-Remoue_Component ---..,...--­
=.CLJnstanceLibrary
t:J.CL.Table
connector: CL.Connector
c? : Component
re.!p! : Response

c? E lnContezt
\ln: Nodes I n E childrens(c?)•

(n E Active/nst) ~ Actiuelnst' = Actiuelnst \ {n}/\
(n E l nstNodes) ~ lnstNodes' = lnstNodes\ {n}

\lnodel, node2 : Nodes; portl, port2 : Ports I
node_parent(nodel) =c? V nodf._parent(node2) = c?•
{((node L, portl), (node2,port2))} Ç connector.linked.ports ~
connector.linked_ports = connector.linked..ports \ {((nodel ,portl) , (node2,port2))}

/ nContezt' = InContezt \{c?}
resp! = success

Figure 5: CL_Remove

5 Case Study

Thc Message Router system prcsented in this section consista of a communica.Lion nel­
work connecting N senders toM receivers via a messa.gc rouler. Ea.ch sender is connected
lo one of the input ports of the rouler, wherea.s ea.ch receiver is connected to onc output
port (7). The architecture of the system and the CL code for iL can be seen in Figure 6.
For simplifica.Lion, wc define only one instance of ea.ch module in the CL configuration
scen in Figure 6 (b).

1. Creating a Configuration Specification

The CL_Creo.te...System operation is used to create Lhe system and inilialize its sets.

Tbe CL_Create_Connector specifies the connccLors necded to esLablish communi­
cation betwecn Lhe instances' ports a.nd CL_Assign_Connector is used to associate
instances of ports to connectors. Having specified Lhe components, interfacCH fmd
assignmenL, it is possible specify the operations that build Lhe configuration pro­
gram.

ln tbis exarnple, the CLJJefine_Context operation is invoked three times and the
input variables havc Lhe values: router, s1mdcr a.nd receiver.

Then, the CLCreateJnsttmcc opcraliou is used to create ca.ch instance. ln lhe
exarnple, lhe input variables have the values: {rt, routcr}, {sd, sender} a.nd {rcv,
receiver}. Wc assume that ali Lhe nodes are cxecuLed in the sarne macbinc.

Ea.ch link comrna.nd in Lhe configura.tion prograrn corresponda to a. CL_Link opera.­
tion. The input variables of Lha.t schema.~ are lhe na.mes of Lhe nodes and thc ports

XII Simpósio Brasileiro de Engenharia de Software- SRPC\'98 17

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

18

(Scodcr I

Rouler

(a)

symm eommunicalion

end

use task router, sender, nctiver;

bqin
ereate rt trom router;

creale sei fl'om HI>Ckr;

create rn fl'om rec:dver;

link sd.nndlnc to rt.receivlnc;

llnk ri.Rndinc to rc:v.rec:dvin&;

activate rt, sd, ~"C";

(b)

Figure 6: The Message Router System

to be linked, which in the example correspond to: {sd, rt, sd.seuding, rt.receiving}
and {rt, rcv, rt.sending, rcv.receiving}.

Finally, the CLActivate operation is used to activate each instance: r·t, sd and rcv.

2. Analysing a Configuration Specification

Our present framework enables us to perform three main types of analysis of evolv­
ing software architecture: reconfiguration operations, planned reconfiguration using
reconfiguration expressions and configuration invariants. ln the following, we illus­
trate how wc applied the three types of analysis to the Message Rov.ter system.

(a) Analysing Reconfiguration Operations
Suppose that for some reason the sd instance has to be replaced. We have to
delete sd and include a new instance of the sender component. To reconfigure
the system, we have to deactivate the instance, disconned its ports and delete
it. The schemas for each operation guarantees that the restrictions will be
applied. ln this way, the sd instance will just be deactivated if it is activated
and the will be delete after being deactivated and having its ports disconnected.

(b) Analysing Planned Reconfiguration using Reconfiguration Expres­
sions
ln the Message Rov.ter, the sender and the receiver should be always monitored
by a router. Suppose, however, that the rt instance is deactivated because of
a failure. To guarantee that the above constraint holds without rejecting the
conllguration, another instauce of router should be automatically created. ln
our framework, we can creatc a schema that checks the state of the configu­
ration when the sd and rev instances a.re active but the rt instance is not. ln
that case, the configuration should automatically create another instance of
the router component, link the ports to the new instance and activate the new
instance. The first definition presented below says that the data requested
by CL_CreateJnstance will be provided by Auto_Create. Thc operation will

XII Simpósio Brasileiro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

not require any iupuL. The second dcfinition automatically crcales another
instance of thc rouLer cornponenL when Lhe coudilion is sa.lisfied.

Auto_C LCreateJnstanceó:Auto_Create » C LCreateJnstance g
C L..Link g _c LActivate

-.(3n : Nodes I (ta.~k-(node_parent(n))).id_component = roul.er·)
=> Auto_C L_Create_!nstancc

(c) Analysing Configurat ion lnvariants
Consistency is one of the goa)s of Lhe configura.Lion program. Ma.ny of nec­
essary constraints are included in Lhe configura.tion schema. opera.tions, but
some applica.tion specific cau be needcd. These constra.ints are usually defined
as configura.Lion invaria.nts. ln lhe Mcssagc Router system, the sd a.ud the
rcv insLa.nccs rnust be activated only if Lherc is an instance of rouler already
activaLec.l. ln oLher words, the sysLem is only valid if there exists one active
inslance of rouLer as defined bclow:

3n: Nodc.~ I (task-(nodc_parent(n))).id..r..omponent = router·l\
(n E ln.~tNodcs 1\ n E Activelnst)

6 Current and Future Work

The nexl sl1:p of ou r work is Lo propose a.nd formalize a run-time reconfigura.lion rnodel
for dynarnic reconfiguration . Our goal is to forrnalisc aspects related to Lhe cxecution of
Lhe application, verifying its state, Lo ensure that a reconfiguration can bc clone without
invalidating invariant requirements of the applicatiou.

ln ou r rnodel, we use the idca of blocking just ports and not instanccs during a recon­
figuralion. The cxecution of Lhe instancc can continue normally, unless a send or receive
command on thc blocked porl has to be execute<!. ln Lhis ca.~e, the execution of the
instance must wail until the port i11 uublocked.

Each application is a top con!iguration and is cxecuted by a rnanagement system
represeuted in Figure 7.

The main manager is lhe executor of an application and must create Lhe configura­
tion and dependency table, which is used l.o order Lhe reconfiguration commands. Local
managers are crea.ted in cada rna.chine wherc it is a component in executiou and tlaey
communicate to compenents and connectors lo order reconfigurations.

7 Conclusions

MosL of Lhe existing languages do not support spec.ification of dynamic architectures.
Darwin is one of Lhe excepLions. AILhough Lhe work presenLed in (15] enable.~ us to verify
some properLie.~ of (dynamic) conf1gura.tions described iu Darwin, it is more concerned
wiLh proving the correcLness of Lhe Darwin claboraLion mechanism, namcly, tha.L afler
Da.rwiu Lra.nsforms a hiera.rchical configuraLion into a flatten r.onfiguraLion, iL preserves
the correcLness of Lhe modules and their interconnedions.

The logical framework prcsenLed by (2J allows Lhe specificat.ion of evolving systems
where Lhe cbanges are staLic and represented by modified versions or thc system. This
involves encoding in the logical formalism Lhe conc.litions for valid soft.warc ronfigumtion

XII Simpósio Brasileiro de Engenharia de Sofiwnre- SBES'98 19

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Main
Manager

' ' '················-·-··········

Figure 7: ZCL Ma.nagcment Systern

altera.tions and guaranlees tha.t thc configura.tions rcmain valid after the software system
is altercd. Each modification generales a new version of the syslem. ln t.his sense, t he
framcwork is mainly used for vcrsion control of criticai systems. Also, there is nota notion
of a configuration language as (rc)configurations are specified by a set of axioms.

Our work presents a formal configuration language for specifying evolving distributed
systems, a.llowing the designer to follow software development from specification to ruo­
time, using t.he run-time reconfiguration model. ln the current version, our framework
does not include any operational aspect.s as t.o how the reconfiguration takes place but it
st.ill provides a powerful method to verify properties of the configuration. We are working
on t he formalizat.ion of the reconfiguration modcl in order to enrich t.he framework to
prove propert.ies of an application.

References

[1] Gregory Abowd, Robert Allen, and David Garlan. Using Style t.o Understaud De­
scriptions of Software Architecturc. ACM Software Enginee1'Íng Notes, 18(5), De­
cembcr 1993.

[2] Paulo S. C. Alencar and Carlos J . P. de Lucena. A Logical Framework for Evolving
Software Syst.ems. Formal Aspects of Computíng, 8:3-46, 1996.

[3] Robert Allen, Remi Douence, and David Garla.n. Specifying Dynamism in Software
Architectures. Proceedings of Foundations of Component-Based Sy.5tems Workshop,
September 1997.

[4] Robert Allen, Remi Douence, a.nd David Garla.n. Specifying and Ana.lysing Dynamic
Software Archit.ectureR. Confervmce on Fundamental Approaclles to Sojtumre Engi­
neering, Lisbon, Portugal, March 1998.

[5] Robert. J. Allen. A Formal Approach to Software Archítectur-e. PhD thesis, School
of Compnter Science, Carnegie Mellon Universit.y, May 1997.

20 XII Simpósio Brosileiro de Engenharia de Software - SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

[6) M. R. Barbacci, M. J. Gardncr C. B. WeinsLock, O. L. Doubleday, and R. Licbota.
Durra: a Structure Description Language for Developing Distrilmtcd Applications.
Software Engineering Joumal, 8(2):83- 94, Mardt 1993.

[7) Paolo Ciancarini and Cecilia Mascolo. Analyzing and Refining an ArchiLectural
Stylc. 10th lnternational Conference of Z Users {ZUM97), Reading, Ul<. Apri/1997.
Lecture Notes in Computer Science n. 1212, pagcs 349- 368, April 1997.

[8) David Garla.n. What is Stylc'! Proceedings of Dagshtul Workshop on Softw(J.re
Architecture, February 1995.

[9) G. R. R. J usto and P . R . F . Cunha. Programming Distributed Systems with Con­
figuration Languages. lntemational Workslwp on Configurable Distributed Systems.
IEE, London, UK, pagcs 11 8 127, 1992.

[10) G. R . Ribeiro Justo and P. R. Freire Cunha. Framcwork for Dcveloping Exteusible
aud Reusable Para llel and Distributecl ApplicaLions. IEEE Conf. (Jn Algorithms and
Architectun!s for Parallel Procr.ssing, pages 29- 36, 1996.

[11) G. R. Ribeiro J usto, Virgínia C. de Paula, and P. R. F . Cunha. Formal Specification
of Evolving Distributed Software ArchiteclurP..s. lntemational Workshop on Coor­
dination Technologies for lnforrnation Systems (CTIS '98}, in conjunction to Ninth
Wor·k.~hO]J of Database and Exper·t Systems Applications (DEXA '98}, August 1998.

[12) G.R.R. Justo, P.R.F . Cunha, ancl V .C.C. de Paula. Distributed Systems Program­
ming Based on Conliguration-Oriented Languages. XIX lnforrnrlticiJ Lntin-Arnericcm
Confcnmce, Buenos A in:.,, Argentina, 1993.

[13) David C. Luckham and James Vera. An Event-Based Arcbitecture Definition Lan­
guagc. IEEE Transactions on Software Enginecring, 21 (9):717- 734, Scptember 1995.

[14) J . Magee, N. Dulay, and J. Kramer. A Constructivc Development EnvironmenL for
Parallcl and Distributcd Programs. !lnd lntemational Workshop on Configurable Dis­
tributerl Systems, SEI, Cnmegie Mellor1 University . IEEE Computer Society Press. ,
March 1994.

[15) J crr Magee, Na.rankcr Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Dis­
tributed Software Architecturcs. Fifth European Software Engineering Conference
(ESEC'95}, September 19~5.

[16) Nenad Medvidovic. ADLs and Dynamic Architccture Change.~. Pmceedings of
the Sccond lntemational Softwm-e Architectur'C Workshop {!SAW-fl), Snn Francisco,
CA, USA, pages 24- 27, October 14-15 1996.

[17) Ncno Medvidovic. A Classifica.tion and Comparison Framcwork for SofLwa.re Archi­
tccLurc Dcscription Languages. Technical rcport, Dcpartmcnl of lnformation and
Cornputer Sciencc, University of California., lrvine, USA . UCI-ICS-97-02, February
1997.

[1 8) Mark Moriconi, Xiaolei Qian , and R. A. Riemenschneider. Correct Arcltitecture
Refinement. IEEE Transnctions on Softwnre Enginecring, 21 (4):356- 372, April1995.

XII Simpósio Brasileiro de Engenharia de Software- SBES'98 21

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

(19] Mark Moriconi and R. A. Riemenschneider. Introduction to SADL 1.0- A Language
for Specifying Software Architecture Hierarchies. Technical report, Compu ler Science
Laboralory SRT Tnternational, SRT-CSL-97-01, March 1997.

(20] Virgínia C. de Paula, G. R. Ribeiro Justo, and P. R. F. Cunha. ZCL: A Formal
Framework for Specifying Dynamic Distributed Software Architectures. Nineth Eu­
ropean Workshop on Dependable Computing (EWDC9). Gdansk, Poland, May 1998.

(21] Virgínia Carvalho Carneiro de Paula. ZCL: A Formal Framework for Specifying
Dynamic Distributed Software Architectures. Technical report, Depa.rtmcnt of Jn­
formatics, Federal University of Pernambuco, Recife, Brazil. PhD Thesis Proposal. ,
July 1998.

(22] Peyman Oreizy. Tssues in lhe Runtime Modificalion of Software ArchitectureH. Tech­
nical report, Department of Tnformalion and Computer Sciencc, University of Cali­
fornia, l rvine, USA . UCT-TCS-TR-96-35, August1996.

[23] Peyman Oreizy, Nena.d Medvidovic, and Richard N. Taylor. Archilecture-Based
Runtime Software Evolution. Pr·oceetlings of the fnternational Confereru:r: rm Software
Engineering (!CSE'98}, f(yoto, Japan, April I 9-25 1998.

[24] Matthias Ra.deslock and Susan Eisenba.ch. Formalising System Structure. lnter·­
nalional Wor·kshop on Software Specification and Design, IEEE Computer· Society
Press, pages 95 104, 1996.

[25] M. D. Rice and S. B. Seidman. A Formal Model for Module Tnterconnection Lan­
guages. IEEE Transactions on Software Engincering, 20(1):88 101, J anuary 1994.

[26] Michael D. Ricc and Stephen B. Seidman. Using Z as a Substrate for an Architectural
Style Descriplion Language. Technical report, Departrnent of Computer Science,
Colorado State University, USA. CS-96-120, Septembcr 1996.

[27] M. Shaw and D. Ga.rla.n. Formulations and Forma.lisms in Software Architecture.
Spring- Verlag Lecture Notes in Computer Science, 1000, 1995.

[28] Mary Shaw and David Ga.rla.n. Chara.cteristics of Higher-levcl La.ngua.ges for Soft­
ware Architecture. Technical report, School of Computer Science, Carnegie Mellon
University, USA. CMU-CS-94-210, Dcccmber 1994.

[29] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerying
Discipline. Prenticc Hall, 1996.

[30] J. M. Spivey. The Z notation: A Refervmce Manual. Prentice Hall, 1989.

22 XII Simpósio Brasileiro de Engenhnrin de Softwnre- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349

