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Abstract

In this paper we present a formal specification of part of the SACI-1 microsatel-
lite on-board computer whose development is led by the Brazilian Space Research
Institute (INPE). The specification is written in CSP-Z, a specification language
that integrates CSP (which allows one to focus on the concurrent aspects of the
application) and Z (for modeling the relevant data structures). We also describe a
strategy for model-checking processes with states (developed by the authors) and its
implementation using the FDR model-checker. Finally, using this tool, we carry out
an automatic proof that the SACI-1 specification is deadlock-[ree.

Keywords: Model-Checking, Formal Methods, Industrial Case Study, Verification,
Tools, Concurrent and Model-Based Specifications.

1 Introduction

On 4 June 1996, the maiden flight of the Ariane 5 [14] launcher ended in a failure. Only
about 40 seconds after initiation of the flight sequence, at an altitude of about 3700m, the
launcher veered off its flight path, broke up and exploded. Engineers from the Ariane 5
project immediately started to investigate the failure which has resulted in the discovery
of an error in the conversion of numerical data types.

Accidents of this nature are frequent due to the loss of control over innumerable aspects
to be considered in the design of such complex systems. In view of this, it is important to
elaborate a precise documentation that serves as a reference for building a reliable system,
through a formal investigation of its main critical parts. Formal methods helps one to
produce documents having these attributes. Two main requirements must be observed
when a specification is to be developed. First, one should use appropriate languages to
specify the system: the language should include sufficient features to capture the several
aspects of the relevant application. Second, these languages should have a reasonable
practical acceptance and tool support.

The specification formalism used in this paper is CSP-Z (7, 8]. The choice of CSP-Z is
mainly due to the elegant way in which it combines CSP and Z, and to the wide accep-
tance of both CSP [11, 16] and Z [19] by the computer science and software engineering
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communities, CSP-Z is a conservative extension of both CSP and Z in the sense that the
syntactical and semantical aspects of CSP is fully preserved while Z operations have a
slightly different interpretation. Currently, there are a lot of language integration propos-
als. Some examples are LOTOS (3|, Temporal Logic and CSP [15], LOTOS and Z [6],
among others.

In [2], Mota and Sampaio present a strategy for model-checking CSP-Z specifications
emphasizing deadlock analysis of complex networks of processes employing a partition
technique. Some ideas were discussed on how to implement this strategy using the FDR
model-checker [9]. Here we further develop this strategy by presenting conversion patterns
for all CSP-Z operators into the FDR notation. In particular, we show how sequential
composition of CSP-Z specifications can be treated, which has not been considered in [2].
Furthermore, we apply the extended strategy to a realistic case study: a subset of the
On-Board Computer (OBC) of the SACI-1 [5] microsatellite, whose development is led
by the Brazilian Space Research Institute (INPE). The whole specification can be found
in [1].

The rest of this paper is organised as follows. Section 2 introduces the CSP-Z language
through an example, and briefly describes its syntax and semantics. In Section 3 we
describe a strategy for model-checking CSP-Z. A guideline of how to translate a CSP-Z
specification into FDR is given in Section 4. Section 5 illustrates this approach through
the specification and analysis of the OBC of the SACI-1. Finally, we consider what are
the benefits of using an integrated language and the practical advantages and limitations
of using FDR in this setting. We assume some familiarity with the languages CSP and Z.

2 An Overview of CSP-Z

The language CSP-Z [7, 8] is a conservative extension of both CSP and Z in the sense that
the syntactical and semantical aspects of CSP is fully preserved while Z operations have
a slightly different interpretation. In order to give an overview of CSP-Z we present part
of the specification of our case study, fully described in Section 5. In [8] the integration
of CSP with an object oriented extension of Z is presented. Here we consider the plain Z
notation.

2.1 A simple Ezample

The Watch-Dog Timer or simply WDT is a process of the SACI-1 microsatellite responsible
for waiting a reset signal that comes (periodically) from another SACI-1 process, the Fault-
Tolerant Router (FTR). If this reset signal does not come, the WDT sends a recovery
signal to the FTR in order to initiate a recovery process to normalise the situation. This
procedure occurs three times and, if after that, the FTR does not respond, than the WDT
considers the FTR faulty.

A CSP-Z specification is encapsulated into a spec and end_spec scope, where the name
of the specification follows these keywords. The interface is the first part of a CSP-Z
specification and is used to declare the external channels (keyword channel) and the local
(or hidden) ones (keyword local_channel). Each list of channels has an associated Z schema
type, where the empty schema type ([]) denotes a list of events, i.e., channels which do
not communicate values. Channel types must be declared outside the spec and end_spec
scope as illustrated by the given-set definition of CLK presented below.
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[CLK]

The concurrent behaviour of the system is introduced by the keyword main, where
other equations can be added to obtain a more structured CSP specification.

spec WDT
channel clockWDT: [clk : CLK]
channel reset, recover, failFTR: (|
local_channel timeOut, noTimeOut: ]

The equation introduced below with the keyword main describes a totally independent
behaviour between the processes Signal and Verify using the CSP interleaving operator
(/). Signal is simply characterised by waiting for consecutive reset signals, i.e., waiting for
a reset and then (—) behaving like Signal again (i.e., waiting for another signal). Verify
waits for a clock, then checks whether a reset signal arrived at the right period or not via
the choice operator (O). If a timeQOut occurs then the WDT tries to send a recovery signal
to the FDR. If the FTR is not ready to synchronise in this event then the WDT assumes
that the FTR is faulty and then finishes its execution (behaving like skip).

main=>Signal ||| Verify
Signal=(reset— Signal)
Verify=(clockWD1?c— (noTimeQut— Verify
O timeQut— (recover— Verify
O failFTR—skip))

After introducing the behaviour of the WD, the data structures used are declared. In
order to fix a timeout and to know if the clock achieved this maximum we introduce two
constants, WDTtOut and WDTP, The system state (State) has simply a declarative part
where is recorded the number of cycles that the WDT tries to recover the FTR and the
value of the last clock received. The initialisation schema (Init) asserts that the number
of cycles is initially zero.

WDTtOut ;: CLK State = [cycles : LENGTH; time : CLK]
WDTP : CLK « CLK Init = [State’ | cycles’ = 0]

The following schemas are standard Z schemas (with a declaration part and a predicate
which constrains the values of the declared variables) except that their names are origi-
nated from the channel names, prefixing the keyword com... Informally, the meaning of a
CSP-Z specification is that, when a CSP event ¢ occurs the respective Z operation com_c
is executed, possibly changing the data structures. Further, when there is no schema name
associated with a given channel, this means that no change of state occurs. An observa-
tion is that every external communication has a type, then when no type is explicit CSP-Z
assumes the type signal, where the desired behaviour is merely that of a synchronisation
and not a value passing. For events with an associated non-empty schema type, the Z
schema must have input or output variables with corresponding names in order to ex-
change communicated values between the CSP and the Z parts. Hence, the input variable
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clk? receives values communicated through the clockWDT channel. For schemas where
prime (') variables are omitted, we assume that no modifications occur, i.e., in the schema
com_reset below it is implicit that the time component is not modified (time’ = time).

com_reset = [AState | cycles’ = 0]
com_clockWDT = [AState; clk? : CLK | time’ = clk?]

When a Z schema has a precondition differing from true then it imposes a restriction
on the occurrence of a CSP event. It is like a CSP guard, i.e., if the precondition is true
then the event is allowed to occur normally, otherwise it is refused and the process behaves
like the canonical deadlock process (stop).

Note that the precondition of the schema com_noTimeQOut is given by the simple pred-
icate =~ WDTP(time, WDTtOut), meaning that the timeout has not yet occurred, whereas
the precondition of com_timeOut specifies the occurrence of timeout.

com._noTimeQut = [=State | -~ WDTP(time, WDTtOut))
com_timeOut = [AState | WDTP(time, WDTtOut)
A cycles’ = cycles + 1]

As already explained, the recovery process is attempted for 3 times, after which the
WDT assumes that the FTR is faulty.

com_recover = [ZState | cycles < 3]
com_failFTR = [SState | cycles = 3]

end_spec WDT

2.2 Brief Ezplanation of the Semantics of CSP-Z

The CSP semantical model assumed as standard is the Failures-Divergence model [4]. This
means that a specification can be characterised by a set of pairs (F, D) where F is the
failures set and D is the set of divergences. The failures of a process P is a set of pairs
(s, X), of traces (observed events) and refusals, such that after P performs the trace s it
cannot engage in any event of the refusal set X. The divergences of a process P are sets
of traces such that after P performs any trace of this set it engages in an infinite loop of
hidden events. The language CSP-Z is a semantical integration of CSP and Z in that it
is given a Failures-Divergence meaning to Z 7, 8]. This interpretation is required in order
to allow Z components to be combined using the CSP operators like interleaving (]||) and
parallelism (||).

As explained above, a CSP-Z specification is a parallel combination of the CSP and
the Z parts via the channel names, such that on the occurrence of a channel c the corre-
sponding Z schema com_c is activated. As the semantics of CSP-Z is also based on the
Failures-Divergence model, we should explain what happens when a given event ¢ occurs
successfully, when it is refused and when it leads to divergence. These situations are
considered below.
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Suppose that ¢ is a CSP untyped channel with corresponding schema com_c. If the
event ¢ occurs, the guard of the event and the precondition of the schema com_c are
satisfied, this characterises a successful execution step. In this case, the state space is
subjected to the predicate part of com_c and the CSP part also evolves (where the event ¢
is added to the trace of the process). Now, suppose that the channel c is a typed channel.
If c?x is performed and the value v assigned to x cannot be treated by the input part of
com_c, due to a type incompatibility, then c is refused. Similarly, if com_c exhibits a value
v from one of its output variables which cannot be communicated through c!v then ¢ is
also refused. Finally, suppose that ¢ is not refused by the Z part, according to the above
explanation, then if the value communicated falsifies the precondition of com_c then the
whole process diverges. A more formal presentation of the semantics is given in [8].

Formalising the above explanation, we can state precisely a refusal or a divergence
introduced by the Z part. Let ¢ be a channel and tr be a trace then

e com_c is defined as a standard Z schema operation describing the state effect on the
occurrence of ¢

e enable_c = 3State’; In?; Out! ® com_c is a constraint between the values communi-
cated from the CSP part to the Z part and vice-versa

e precom_c = JState’; Out! @ com_c
e com_() = Init, for an empty trace

e com_((c)"tr) = com_c j com_tr, where " is the concatenation operator and § is the Z
schema composition operator

Thus, a refusal can occur if —enable_c and a divergence if enable_c A - pre com_c.

3 Model-Checking CSP-Z

Instead of creating a new technique and a tool for model-checking CSP-Z specifications, we
used one of the most important principles of Software Engineering: reuse. Since CSP-Z is
a language whose semantics (see Section 2.2) is based on the Failures-Divergences model
of CSP it seems wise attempting to extend the existing model-checking technology for
CSP in the FDR system [9]. In order to achieve that, we need to answer the following
questions:

1. How to describe a state-space in CSP?
2. How to execute Z operations according to the CSP behaviour?

3. How to limit the CSP behaviour based on the Z operations and state values?

3.1 Introducing a State-Space

The unique way to consider CSP processes with states is to parametrise all CSP processes.
For example, Roscoe [16] models an infinite buffer as follows:
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B9
By

left?x : T — BF,
(left?x : T — BFy-5-(yy) O (rightly — BE®)

Note that each process carries some expression which represents its “state-space”, This
description also reveals another interesting feature, required by CSP-Z processes: each
(CSP-Z process has its own state-space.

3.2 Synchronising CSP events with Z operations

In Section 2, we show that for each CSP event e there is a corresponding Z operation
com_e, even if no com_e is present in the process scope, such that when e occurs, com_e
is executed (simultaneously). To demonstrate how to accomplish this, we transform the
previous example to obtain the following:

5 = left?x: T — B?&:{tx}‘{n : o
Baatsin = (left?x: T = By catis, i) O (rightly — BS)

where cat(s),sp) = s1"sy (sequence concatenation). cat is a state-based operation which,
in CSP-Z, wolud be described as a Z schema. In pure CSP, the evaluation of cat is
not simultaneous to the occurrence of left. However, this is a question concerning time
considerations because, by the Failures-Divergences point of view, one cannot distinguish
between this and its simultaneous version. Therefore, we can adopt this strategy when
converting CSP-Z operations into CSP annotations which describe the state of a process.

3.3 CSP Behaviour as a Function of the State-Space

The last consideration concerns how to restrict CSP behaviour based on the state-space
of the process. This is explained with an example of a finite buffer, also found in [16].

BN = left?x: T — BNy

Baatsyy = ((left?x: T = By catisityyyy) & #s < N —1 3 stop)
O(rightly — BN)

The above process represents an N-place buffer, where #s is the size of the sequence s
and P ¢ b} Q is the process that behaves like P if b is true and as Q, otherwise. From
this process one can conclude that it refuses all left events when its “state-space” fills its N
cells (#s = N). Conditionals based on the current value of components of the state space
will serve as a standard pattern to implement the preconditions of Z operations described
as schemas.

3.4 Special Considerations on Sequential Composition

The meaning of the CSP-Z process P § Q is that the final state of P will be the initial
state of Q, whenever P terminates successfully. It differs completely from the other CSP-Z
operators because it must transfer the state from one process to another. We propose a
way to deal with this operator based only on its algebraic laws [16, 18].

This problem could be solved easily if we could compute P 5 Q with state as
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(P35 Q)(Sinitiat) = Let Sginal = P(Sinitiat) in Q(Sginat)

That is, if a CSP process had a value of return, this could be passed to the following
process in the sequence. As this is not possible, an alternative strategy to model sequential
composition is to apply exhaustively the following rule

(™x:A=P)3Q="x:A—(P;Q)

such that we bring the skip’s —inside the definition of P— closer to the composed process
Q and then apply the rule skip ;§ Q = Q, subsequently.

As a final example we illustrate this strategy: Suppose we have a limited buffer that
when it achieves its maximum capacity it discharges its contents to a subsequent process
Q which treats this data in a convenient, but not relevant, way. Thus, our buffer is given
by

I

BN I‘eﬂ?x T — Byll x),0)

Bg-t(-.un = ((left?x: T = By cats i) ¥ #8 < N—13% skip)
O(right!y — BY)

and (B} 5 Q)(S) is rewritten as

BN
B

left?x : T — BNy o o)

((left?x : T — By oo cats,ivy) £ #8 <N =13} Qeats,iy)
O(right!y — BY)

cat(s,(y))

4 Translating CSP-Z into FDR

In this section we present systematic guide-lines to convert a CSP-Z specification into the
FDR notation, based on the considerations of the previous section. For analysing CSP-Z
using FDR we have to define the following elements: State (the system state space), Init
(the initialisation schema), com_c (schema associated with channel c), precom._c (precon-
dition of the schema com.c) and the communication of values between the CSP and the
7 parts of the specification. In general, Z operations are relations between initial and
final states, as well as input and output values. However, for simplicity we assume in the
following that these relations are functional.

o State: The state space is represented in FDR as a parameter (see Section 3). When a
schema com_c updates the state space the final state produced must be taken as the initial
state for the next “execution step”.

o Init: As FDR cannot represent a state space as a global element then the Init schema
is represented as a process without parameters such that it initialises the data structures
used by the main equation. So, Init = main(Sial)\local_channels, where Syyisia) is a tuple
defining an initial value for each state component. The hiding in the main equation is
necessary because I'DR does not provide a means for modularisation in the sense of scope
found in CSP-Z specifications.

e com_c: A Z schema can be translated into FDR as a function. The arguments to this
function are the (current) state and the values of the input variables; the function result
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is formed by the final state defined by the schema and the values of the output variables.
This function does not embody the precondition part of the schema, only the effect.
e precom_c: A precondition is also encoded as an FDR function of type State x Input -+ B;
it evaluates to true in the states and input values which satisfy the precondition of the
com_c schema, and to false otherwise.
¢ Communications: Values communicated in the CSP part of the FDR script must be
passed to the Z part, and vice-versa. All conversion patterns below have the form of a
CSP guarded command. For an input, the condition of the guard is a prefix choice of a
suitable value for the input parameter. The expression a?x : {a.xex : T, pre.com_a(5,x)}
is a set comprehension which generates the set of elements a.x where x ranges over T and
satifies the predicate pre_com_a(5,x). For an output we simply pass the result of the Z
part to the CSP part.

The following conversion patterns implement the above strategy and ease the encoding
of a CSP-Z specification into FDR:

CSP-Z FDR CSP-Z Meaning

P=a—P |P(S)=pre_com_a(S) & Simple prefix
(let S’=com_a(S)

within a -> P(8’))
P=a?x—P | P(S)=a?x:{x | x <= T, pre_com_a(S,x)} [ Input
-> (let S’=com_a(S,x)

within P(5’))

P=ale—P | P(S)=pre_com_a(S) & Output
(let (S’,e)=com_a(S)
within ale -> P(S’))

P\a P(S) \ a Hiding

POQ P(s) [0 q(s’) External choice
PNQ P(s) I"| q(s?*) Internal choice

PI[Q [P(s) 111 a(s”) Interleaving

Pl Q P(S) [l a 1] Q(s’) Alphatised parallel
P3Q P(S) [Q(S_final of P)/SKIP] Sequential composition
stop STOP Stop process

skip SKIP Successfull termination
chaos(¥) | CHADS(S, ¥) Chaos process

The translation of channel declarations, constants and free types is a straightforward
syntactical conversion, as presented in [1]. Note that the conversion pattern for sequential
composition was discussed in Section 3.

5 Case Study: The SACI-1 Microsatellite

In this section we present the CSP-Z specification of two processes which combined in
parallel with that introduced in Section 2 results in a final specification that represents the
simplified behaviour of the SACI-1 OBC. We also show how to translate the specification
into our FDR representation and then we carry out a deadlock analysis using FDR.

The SACI-1 OBC is a fault-tolerant distributed processing system which combines
software and hardware components [5]. Its critical parts are: its Watch-Dog Timer (WDT)
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and its Fault-Tolerant Router (I'I'R). Due to its fault-tolerant aspects, the SACI-1 was
designed with redundant components. It has three WDT’s, three FTR's, etc. However, for
illustrative purposes we consider here a simplification of the real configuration, removing
indices and presenting its behaviour. This simplification originates a slightly different
behaviour when compared to the original specification and it is considered in Section 5.2.

5.1 The CSP-Z Specification of the SACI-1 Main Components

Fault-Tolerant Router. The FTR is responsible for some tasks and for periodically
sending a reset signal to the WDT. In order to model the FTR as close as possible to its
original conception we consider that it can stop temporarily or permanently. In a tempo-
rary stop, the FTR can be reanimated through a recover signal. However, in a permanent
one the TR cannot be restarted.

spec 'TR
channel clockFFTR:[clk : CLK]
channel reset, recover:(]
local_channel reset WDT, task, taskDone, problem:|]
main=(Normal ||| Problem)
Normal=(clockFTR?c— (reset WDT— reset— Normal
O task—((taskDone—Normal ; (problem—sstop))))
Problem=(recover— Problem)

- State —— WDTRstP : CLK
time : CLK l
.,_corn _resetWDT com_task = - com_resetWDT
=State I lockFTR ;
i AState
WDTP(time, WDTRstP) | SRy
time’ = clk? |

end_spec FTR

OBC Clock. As CSP-Z cannot capture precisely the temporal aspects of a system, we
need some way to characterise the SACI-1 as a system dependent of time. We model
a process which exhibits events, carrying clock values, that control the behaviour of the
WDT and the FTR.

spec SCLOCK
channel clockWDT, clockFTR : [clk : CLK]

local_channel tic: []
main=(clockWDT!c—skip ||| clockFTR!d—skip )3(tic—main)
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noneClock : CLK _ com_clockWDT

IncC : CLK = CLK =State A
‘St.ate -— clk! : CLK
i time : CLK | clk! = time I
_ lnit ey com_clockFTR = com_clockWDT
State
IR _ com_tic
time’ = noneClock | AState 1
time’ = IncC(time)

end_spec SCLOCK

SACI-1. The simplified behaviour of the SACI-1 microsatellite is given by an alphabetised
parallel composition ([|[]) of the previous three CSP-Z components. In this specification,
the elements inside the brackets of the parallel operator are the synchronisation points.

spec SACI-1
main=(WDT || {reset, recover} || FTR)
(| {clockWDT, clockFTR} || SCLOCK
end_spec SACI-1

5.2 SACI-1in FDR

In this section we present the translation of the CSP-Z specification of the SACI-1 into
FDR. Remember that every CSP-Z process has a main process (equation), a State schema,
an Init schema and 7 operations with names derived from the channel names. Hence,
when translating into FDR we suffix these elements with the process name where can
occur name clashing. For example, the initialisation schema (process) for WDT is named
here InittWDT, and so on.

The first process to be translated is the SCLOCK which is the most simple one, whose
specification was presented in the beginning of this section. In this translation the CLK
given-set is declared as a kind of free type (datatype) so that FDR can analyse the pro-
cess. The SCLOCK process is the unique process of the case study that uses sequential
composition. Note that in its translation the skip process does not appear neither the se-

quential composition operator. This was a consequence of applying the strategy discussed
in Section 3.4,

datatype CLOCK = noneClock | clki | clk2 | c1k3 | clk4 | clk6 | clké
-- spec SCLOCK

channel clockWDT,clockFTR: CLOCK

channel tic

main_SCLOCK(S)=(let (S',c)=com_clockWDT_SCLOCK(S)
within clockWDT!c -> (let S'’'=com_tic(S’)
within tic -> main_SCLOCK(S''))
Il let (S’,c)=com_clockFTR_SCLOCK(S)
within clockFTR!c -> (let S'’=com_tic(5’)
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within tic -> main_SCLOCK(S'’)))
== Initialisation process
Init_SCLOCK = main_SCLOCK(noneClock)\{tic}
== schemas
com_clockWDT_SCLOCK(S) = (S, §) -- returns actual state and actual clock
com_clockFTR_SCLOCK(S) = com_clockWDT_SCLOCK(S)

com_tic(noneClock) = clki
com_tic(clkl) = clk2
com_tic(clk2) = ¢lk3
com_tic(clk3) = clkd
com_tic(clk4) = ¢clk§
com_tic(clks) = clké
com_tic(clks) = noneClock

-~ end_spec SCLOCK

The second process to be considered is the WDT, where the main difference from the
above translation is the presence of functions which implement the pre-condition calcula-
tion of the corresponding Z schemas.

Recall that the WDTP function checks whether a time-out has occurred. The way we
have implemented it in FDR is by checking if the current time is clk3 or clk6.

-- spec WDT
channel reset, recover, failFTR, timeOut, noTimeOut

main_WDT(S) = Signal(S) ||| Verify(s)
Signal(S) = reset -> Signal(com_reset(S))
Verify(s) = (clockWDT?c -> ((let S'=com_clockWDT(S,c)
within pre_com_noTimeDut(s') &
noTimeOut -> Verify(s'))
[1 (let S'=com_clockWDT(S,c)
within pre_com_timeDut(S’') &
timeOut -> ((let S'’'scom_timeOut(S')
within pre_com_recover(s'’') &
recover -> Verify(s’’'))
[J (let S''scom_timeOut(S')
within ptc_:ol_flilm(S' N 1
failtFTR -> SKIP)))))

WDTtOut = {clk3, clk6}

WDTP(time, timeout) = member(time, timeout)

-- Initialisation process

Init_WDT = main_WDT((0, noneClock))\{timeOut,noTimeOut,failFTR}
-- Preconditions

pre_com_noTimeOut((cycles,time)) = not WDTP(time, WDTtOut)
pre_com_timeOut((cycles,time)) = WDTP(time, WDTtDut)
pre_com_recover((cycles,time)) = cycles < 3
pre_com_failFTR((cycles,time)) = cycles == 3

== Schemas

com_reset((cycles,time)) = (0, time)
com_clockWDT((cycles,time),clk) = (cycles, clk)
com_timeDut((cycles,time)) = (cycles + 1, time)

-- end_spec WDT

The last process converted is the FTR. Observe that the same implementation of time-
out explained above is adopted here for enabling reset signals.

X1 Simpésio Brasileiro de Engenharia de Sofiware - SBES'98 33


http://www.cvisiontech.com

-- spec FTR
channel resetWDT
channel task, taskDone, problem -- They're local

main_FTR(S) = Normal(S) ||| Problem(S)
Normal(S) = clockFTR?x -> ((let S'=com_clockFTR_FTR(S,x)

within (pre_com_resetWDT_FTR(S') &

(resetWDT -> reset -> Normal(S')))
[0 (let S'=com_clockFTR_FTR(S,x)
within (pre_com_task(5') &
(task -> ((taskDone -> Normal(S'))
[>(problem -> STOP)))))))

Problem(S) = (recover -> Problem(S))
== Initialisation process
Init_FTR = main_FTR(noneClock)\{resetWDT, task, taskDone, problem}
~- WDTResetPeriod definition
WDTRstP = {clk3, clké}
== Preconditions
pre_com_resetWDT_FTR(S) = WDTP(S, WDTRstP)
pre_com_task(S) = not pre_com_resetWDT_FTR(S)
-- Schemas
com_clockFTR_FTR(S, c) = ¢
-= end_spec FTR

Finally we have the top level specification of the SACI-1 process, which is an alpha-
betised parallel composition of the three processes. Note that the processes used are the
initialisation processes, since they correspond to the main processes carrying as arguments
the initial values of the state space. Note also in the specification below the synchronisation
points of the three processes.

== spec SACI-1

System = (Init_WDT [|{|reset,recoveri}|] Init_FTR)
[I{lclock¥DT, clockFTR|}|] Init_SCLOCK

-- end_spec SACI-1

6 Conclusion

We extended a model-checking strategy to analyse CSP-Z specifications using FDR in-
troduced in [2] giving a more semantical treatment and considering the whole CSP-Z
operators. In particular we have also explained the difficulty to model sequential com-
position and how to overcome it. To illustrate the practical applicability of applying the
strategy we have developed a complex and realistic case study: the SACI-1 OBC [5].

The SACI-1 project as originally conceived lacked formal documentation. A first con-
tribution to the industry was the formalisation of a subset of the SACI-1 [1]: its OBC
system. The main aspect of the formalisation task was to develop a formal specification
free from problems, hence our second contribution was to verify this requirement for a
subset of our specification using the strategy presented here. The problems found during
the formalisation and analysis were reported to the members of the SACI-1 project so that
they could take the considerations into account in the implementation of the system.

An inductive approach to model-checking which deals with arbitrary topologies of CSP
processes is presented in [12]. One research direction we intend to pursue is to extend our
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model-checking strategy to arbitrary topologies of CSP-Z processes. Because CSP-Z deals
with a state space, we should also develop an induction principle to deal with infinite data
structures,

Another topic for further research is the integration of tools to deal with CSP-Z spec-
ifications. In [l], it is shown how to use Z-EVES [17] to type-check the Z part of the
SACI-1 specification and to refine some of its data structures. Furthermore, the ZANS
animator [13] was also used in [1] to analyse the behaviour of the data structures in the
Z part of the SACI-1 specification. Ideally, these tools should also be adapted to work
for CSP-Z, as we did with FDR. The ultimate goal would be linking all these tools into a
uniform development environment for CSP-Z.

A final remark is that although we have based our work on CSP-Z, the results could
be easily adapted to other approaches to integrate CSP and Z, such as, for example [10)].
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