
Modei-Checking Processes with States: An
Industrial Case Study

Alexandre Mota and Augusto Sampaio
Federal University of Pernambuco

P. O. BOX 7851 Cidade Universitária
50740-540 Recife- PE Brazil

{ acm,acas }@di. ufpe.br

Abstract

ln this paper we present a formal specification of part of the SACI-1 microsatel
lite on-board computer whose development is led by the Brazilian Space Research
Institute (INPE). The specification is written in CSP-Z, a specification language
that integrates CSP (which allows one to focus on the concurrent aspects of the
application) and Z (for modeling the relevant data structures). We also describe a
strategy for model-checking processes with states (developed by the authors} and its
implementation using the FOR model-checker. Finally, using this too!, we carry out
an automatic proof that the SACI-1 specification is deadlock-free.

Keywords: Model-Checking, Formal Methods, Industrial Case Study, Verification,
Tools, Concurrent and Model-Based Specifications.

1 lntroduction

On 4 June 1996, the ma.iden fiight of the Ariane 5 [14) launcher ended in a fa.ilure. Only
about 40 seconds after initiation of the fiight sequence, at an altitude of a.bout 3700m, the
la.uncher veered off its fiight pa.th, broke up and exploded. Engineers from the Ariane 5
project immedia.tely sta.rted to investiga.te the fa.ilure which has resulted in the discovery
of an error in the conversion of numerical da.ta. types.

Accidents of this nature a.re frequent dueto the loss of control over innumera.ble a.spects
to be considered in the design of such complex systems. ln view of this, it is important to
ela.bora.te a. precise documenta.tion tha.t serves a.s a. reference for building a. relia.ble system,
through a. formal investiga.tion of its ma.in criticai pa.rts. Formal methods helps one to
produce documents ha.ving these a.ttributes. Two ma.in requirements must be observed
when a. specifica.tion is to be developed. First, one should use a.ppropria.te langua.ges to
specify the system: the langua.ge should include sufficient fea.tures to capture the severa!
a.spects of the relevant a.pplica.tion. Second, these langua.ges should ha.ve a. rea.sona.ble
pra.ctical a.cceptance and too! support.

The specifica.tion formalism used in this pa.per is CSP-Z (7, 8). The choice of CSP-Z is
ma.inly due to the elegant wa.y in which it combines CSP and Z, and to the wide a.ccep
tance of both CSP (11, 16) and Z (19) by the computer science and software engineering

XII Simpósio Brasileiro de Engenharia de Software· SBES'98 23

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

communities. CSP-Z is a. conserva.tive extension of both CSP a.nd Z in the sense tha.t the
synta.ctica.l a.nd sema.ntica.l aspects of CSP is fully preserved while Z opera.tions ha.ve a.
slightly different interpreta.tion. Currently, there a.re a. lot of la.ngua.ge integra.tion propos
a.ls. Some exa.mples a.re LOTOS [3], Temporal Logic a.nd CSP [15], LOTOS a.nd Z [6] ,
a.mong others.

Jn (2], Mota. a.nd Sampaio present a. stra.tegy for model-checking CSP-Z specifica.tions
emphasizing dea.dJock a.na.lysis of complex networks of processes employing a. pa.rtition
technique. Some ideas were discussed on how to implement this stra.tegy using the FDR
model-checker [9]. Here we further develop this stra.tegy by presenting conversion pa.tterns
for a.ll CSP-Z opera.tors into the FDR nota.tion. Jn pa.rticula.r, we show how sequentia.l
composition of CSP-Z specifica.tions ca.n be trea.ted, which has not been considered in [2] .
Furthermore, we a.pply the extended stra.tegy to a. rea.listic case study: a. subset of the
On-Boa.rd Computer (OBC) of the SACI-1 [5] microsa.tellite, whose development is led
by the Bra.zilia.n Spa.ce Resea.rch Jnstitute (INPE). The whole specifica.tion ca.n be found
in [1].

The rest of this pa.per is orga.llised as follows. Section 2 introduces the CSP-Z la.ngua.ge
through a.n exa.mple, a.nd briefly describes its synta.x a.nd sema.ntics. ln Section 3 we
describe a. stra.tegy for model-checking CSP-Z. A guideline of how to tra.nsla.te a. CSP-Z
specifica.tion into FDR is given in Section 4. Section 5 illustra.tes this a.pproa.ch through
the specifica.tion a.nd a.na.lysis of the OBC of the SACI-1. Fina.lly, we consider wha.t a.re
the benefits of using a.n integra.ted la.ngua.ge a.nd the pra.ctica.l a.dva.nta.ges a.nd limita.tions
of using FDR in this setting. We assume some fa.milia.rity with the la.ngua.ges CSP a.nd z.

2 An Overview of CSP-Z

The la.ngua.ge CSP-Z [7, 8] is a. conserva.tive extension of both CSP a.nd Z in the sense tha.t
the synta.ctica.l a.nd sema.ntica.l aspects of CSP is fully preserved while Z opera.tions ha.ve
a. slightly different interpreta.tion. Jn order to give a.n overview of CSP-Z we present pa.rt
of the specifica.tion of our case study, fully described in Section 5. ln [8] the integra.tion
of CSP with a.n object oriented extension of Z is presented. Here we consider the pla.in Z
nota.tion.

2.1 A simple Example

The Wa.tch-Dog Timer or simply WDT is a. process of the SACI-1 microsa.tellite responsible
for wa.iting a. reset signa.l tha.t comes (periodica.lly) from a.nother SACI-1 process, the Fa.ult
Tolera.nt Router (FTR). lf this reset signa.l does not come, the WDT sends a. recovery
signa.l to the FTR in order to initia.te a. recovery process to norma.lise the situa.tion. This
procedure occurs three times a.nd, if a.fter tha.t, the FTR does not respond, tha.n the WDT
considers the FTR fa.ulty.

A CSP-Z specifica.tion is enca.psula.ted into a. spec a.nd end..spec scope, where the na.me
of the specifica.tion follows these keywords. The interface is the first pa.rt of a. CSP-Z
specifica.tion a.nd is used to declare the externa.! cha.nnels (keyword channel) a.nd the loca.l
(or hidden) ones (keyword localchannel). Ea.ch list of cha.nnels has a.n associa.ted Z schema.
type, where the empty schema. type ([]) denotes a. list of events, i.e., cha.nnels which do
not communica.te va.lues. Cha.nnel types must be deda.red outside the spec a.nd end..spec
scope as illustra.ted by the given-set definition of CLK presented below.

24 XII Simpósio Brasileiro de Engenharia de Software· SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

[CLK)

The concurrent behaviour o{ the system is introduced by the keyword main , where
other equations can be added to obtain a more structured CSP specifica.tion.

spec WDT
channel clockWDT: [clk : CLK)
channel reset, recover, faiJFTR: [)
locaLchannel timeOut, noTimeOut: [)

The equation introduced below with the keyword main describes a totally independent
behaviour between the processes Signal and Verify using the CSP interleaving operator
(III). Signal is simply characterised by waiting for consecutive reset signals, i.e., waiting for
a reset and then (-+) behaving like Signal again (i.e., waiting for another signal). Verify
waits for a clock, then checks whether a reset signal arrived at the right period or not via
the choice operator (O). lf a timeOut occurs then the WDT tries to senda recovery signal
to the FDR. If the FTR. is not ready to synchronise in this event then the WDT assumes
that the FTR is faulty and then finishes its execution (behaving like skip).

main=SignaJIII Verify
Signal=(reset-+Signal)
Verify=(clockWDT?c-+(noTimeOut-+ Verify

O timeOut-+(recover-+ Verify
o faiJFTR-+skip))

After introducing the behaviour of the WDT, the data structures used are declared. ln
order to fix a timeout and to know if the clock achieved this maximum we introduce two
constants, WDTtOut and WDTP. The system state (State) has simply a declarative part
where is recorded the number of cycles that the WDT tries to recover the FTR and the
value of the last clock received. The initialisation schema (lnit) asserts that the number
of cycles is initially zero.

I
WDTtOut : CLK
WDTP : CLK +-+ CLK

State ~ [cycles: LENGTH; t ime : CLK)
lnit ~ [State' I cycles' = O)

The following schemas are standard Z schemas (with a declaration part anda predicate
which constrains the values of the declared variables) except that their narnes are origi
nated from the channel names, prefixing the keyword com_. lnformally, the meaning of a
CSP-Z specification is that, when a CSP event c occurs the respective Z operation com_c
is executed, possibly changing the data. structures. Further, when there is no schema name
associated with a given channel, this means that no change of state occurs. Ao observa
tion is that every externa! communica.tion has a type, then when no type is explicit CSP-Z
assumes the type signal , where the desired behaviour is merely that of a synchronisation
and not a value passing. For events with ao associated non-empty schema type, the Z
schema must have input or output variables with corresponding names in order to ex
change communica.ted values between the CSP and the Z parts. Hence, the input variable

XII Simpósio Brasileiro de Engenharia de Software- SBES'98 25

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

clk? receives values communicated through the clockWDT cha.nnel. For schemas where
prime (') va.ria.bles a.re omitted, we assume tha.t no modifications occur, i.e., in the scbema.
comJeset below it is implicit tha.t the time component is not modified (time'= time).

com_reset = (6State I cycles' = O)
com_clockWDT = (6State; clk? : CLK I time'= clk?)

When a. Z schema. has a. precondition differing from true then it imposes a. restriction
on the occurrence of a. CSP event. It is like a. CSP gua.rd, i.e., if the precondition is true
then the event is allowed to occur norma.lly, otherwise it is refused a.nd the process beha.ves
like the ca.nonica.l dea.dlock process (stop).

Note tha.t the precondition of the schema. com_no TimeOut is given by the simple pred
icate -. WDTP(time, WDTtOut), mea.ning tha.t the timeout has not yet occurred, whereas
the precondition of com_timeOut specifies the occurrence of timeout.

com_noTimeOut = (2:State 1-. WDTP(time, WDTtOut))
com_timeOut = (6State I WDTP(time, WDTtOut)

11 cycles' = cycles + 1)

As a.lrea.dy expla.ined, the recovery process is a.ttempted for 3 times , a.fter which the
WDT assumes tha.t the FTR is fa.ulty.

com_recover = (2:State I cycles < 3]
com_faiiFTR = (2:State I cycles = 3]

end....spec WDT

2.2 Brief Explanation of the Semantics of CSP-Z

The CSP sema.ntical model assumed as sta.nda.rd is the Fa.ilures-Divergence model (4] . Thls
mea.ns tha.t a. specification ca.n be cha.ra.cterised by a. set of pa.irs (.1', V) where .1' is the
fa.ilures set a.nd V is the set of divergences. The fa.ilures of a. process P is a. set of pa.irs
(s, X), of traces (observed events) a.nd refusals, such tha.t a.fter P performs the traces it
ca.nnot enga.ge in a.ny event of the refusal set X. The divergences of a. process P a.re sets
of traces such tha.t a.fter P performs a.ny trace of this set it enga.ges in a.n infinite loop of
hidden events. The la.ngua.ge CSP-Z is a. sema.ntica.l integra.tion of CSP a.nd Z in tha.t it
is given a. Fa.ilures-Divergence mea.ning to Z [7, 8]. This interpreta.tion is required in order
to a.llow Z componente to be combined using the CSP opera.tors like interlea.ving (III) a.nd
pa.ra.llelism (11).

As expla.ined a.bove, a. CSP-Z specifica.tion is a. pa.ra.llel combina.tion of the CSP a.nd
the Z pa.rts via. the cha.nnel na.mes, such tha.t on the occurrence of a. cha.nnel c the corre
sponding Z schema. com_c is a.ctiva.ted. As the sema.ntics of CSP-Z is also based on the
Fa.ilures-Divergence model , we should expla.in wha.t ha.ppens when a. given event c occurs
successfully, when it is refused a.nd when it lea.ds to divergence. These situa.tions a.re
considered below.

26 XII Simpósio Brasileiro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Suppose that c is a CSP untyped channel with corresponding schema com_c. H the
event c occurs, the guard of the event and the precondition of the schema com_c are
satisfied, this characterises a successful execution step. ln this case, the state space is
subjected to the predicate part of com_c and the CSP part also evolves (where the event c
is added to the trace of the process). Now, suppose that the channel c is a typed channel.
H c?x is performed and the value v assigned to x ca.nnot be treated by the input part of
com_c, dueto a type incompatibility, tben c is refused. Similarly, if com_c exhibits avalue
v from one of its output variables which cannot be commurucated through c!v then c is
also refused. Finally, suppose that c is not refused by the Z part, according to the above
explanation, then if the value communicated falsifies the precondition of com_c then the
whole process diverges. A more formal presentation of tbe semantics is given in (8].

Formalising the above explanation, we can state precisely a refusal or a divergence
introduced by the Z part. Let c be a channel and tr be a trace tben

• com_c is defined as a standard Z scbema operation describing the state effect on the
occurrence of c

• enable_c = 3 State'; ln?; Out! • com_c is a constraint between the values communi
cated from tbe CSP part to the Z part and vice-versa

• pre com_c = 3 State'; Outl • com_c

• com_() = lnit, for an empty trace

• com_((c)"tr) = com_c; com_tr, where • is the concatenation operator and; is the Z
schema composition operator

Thus, a refusal ca.n occur if -.enable_c and a divergence if enable._c 1\-. pre com_c.

3 Modei-Checking CSP-Z

lnstead of creating a new techruque anda too! for model-checking CSP-Z specifications, we
used one of the most important principies of Software Engineering: reuse. Since CSP-Z is
a language whose semantics (see Section 2.2) is based on the Failures-Divergences model
of CSP it seems wise attempting to extend the existing model-checking technology for
CSP in the FDR system [9]. ln order to achieve that, we need to answer the following
questions:

1. How to describe a state-space in CSP?

2. How to execute Z operations according to the CSP behaviour?

3. How to limit the CSP behaviour based on the Z operations and state values?

3.1 Introducing a State-Space

The uruque way to consider CSP processes with states is to parametrise ali CSP processes.
For example, Roscoe [16] models an infinite buffer as follows:

XII Simpósio Brasileiro de Engenharia de Software - SBES'98 27

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

8() = left?x : T --+ 8(,:)
B~(y) (left?x: T --+ B(,:)·s·(y)) O (right!y--+ B~)

Note tha.t each process ca.rries some expression which representa its "sta.te-spa.ce". This
description a.lso revea.ls a.nother interesting fea.ture, required by CSP-Z processes: ea.ch
CSP-Z process ha.s its own sta.te-spa.ce.

3.2 Synchronising CSP events with Z operations

ln Section 2, we' show tha.t for ea.ch CSP event e there is a. corresponding Z opera.tion
com_e, even if no com_e is present in the process scope, such tha.t when e occurs, com_e
is executed (simulta.neously). To demonstra.te bow to a.ccomplish this, we tra.nsform the
previous exa.mple to obta.in the following:

8()
8~t(s,(y))

= left?x : T --+ 8~t((x).())
= (left?x: T --+ 8~t((x),cat(s,(y)))) O (right!y -+ 8~)

wbere cat(s1, s2) = s1 ·s2 (sequence conca.tena.tion). cat is a. sta.te-ba.sed opera.tion which,
in CSP-Z, wolud be described a.s a. Z schema.. ln pure CSP, the eva.lua.tion of cat is
not simulta.neous to the occurrence of left. llowever, this is a. question concerning time
considera.tions beca.use, by the Fa.ilures-Divergences point of view, one ca.nnot distinguish
between this a.nd its simulta.neous version. Therefore, we ca.n a.dopt this stra.tegy when
converting CSP-Z operations into CSP a.nnotations whicb describe the sta.te of a process.

3.3 CSP Behaviour as a Function of the State-Space

The la.st considera.tion concerns how to restrict CSP beha.viour ba.sed on tbe sta.te-spa.ce
of the process. This is expla.ined with a.n exa.mple of a. finite buffer, a.lso found in (16).

8N
~

8cat(s,(y))

left?x : T --+ 8~aM(x),())
= ((left?x : T --+ 8cat((x),cat(s,(y)))) 1: #s < N - 1 ;j> stop}

O(right!y--+ 8~}

The a.bove process representa a.n N-pla.ce buffer, where #s is the size of the sequence s
a.nd P 1: b ;j> Q is the process tha.t beha.ves like P if b is true a.nd a.s Q, otherwise. From
this process one ca.n conclude tha.t it refuses a.llleft events when its "sta.te-spa.ce" fills its N
cells (# s = N). Conditiona.ls ba.sed on the current va.lue of components of the sta.te spa.ce
will serve a.s a. sta.nda.rd pa.ttern to implement the preconditions of Z opera.tions described
a.s schema.s.

3.4 Special Considerations on Sequential Composition

The mea.ning of the CSP-Z process P ; Q is tha.t the final sta.te of P will be the initia.l
sta.te of Q, whenever P termina.tes successfully. It differs completely from the other CSP-Z
opera.tors beca.use it must tra.nsfer the sta.te from one process to a.nother. We propose a.
wa.y to dea.l with this opera.tor ba.sed only on its a.lgebra.ic la.ws (16, 18).

This problem could be solved ea.sily if we could compute P ; Q with sta.te a.s

28 XII Simpósio Brasileiro de Engenharia de Software - SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

(P; Q)(Sinitial) :; Let SFinal = P(Sinitial) in Q(SFinal)

Tb.at is, if a CSP process had a value of return, tlús couJd be passed to the following
process in the sequence. As tlús is not possible, a.n alternative strategy to model sequential
composition is to apply exhaustively the following rule

(?x: A-+ P); Q =?x: A-+ (P; Q)

such that we bring the skip's - inside the definition of P- closer to the composed process
Q a.nd then apply the rule skip ; Q = Q, subsequently.

As a final example we illustrate this strategy: Suppose we have a limited buffer that
when it achieves its maximum capacity it discharges its contents to a subsequent process
Q wlúch treats this data in a convenient, but not relevant, way. Thus, our buffer is given
by

sN
2

Bcat(s,(y))

left?x : T -+ B~•~(x),()) .
= ((left?x: T -+ Bcat((x),cat(s,(y)))) .f: #s < N- 1 * sk1p)

D(right!y-+ 8~)

a.nd (B~ ; Q)(S) is rewritten as

left?x: T-+ B~•Wx),()l
((left?x: T -+ Bcat((x),cat(s,(y)))) .f: #s < N - 1 * Qcat(s,(y)))
D(right!y-+ 8~)

4 Translating CSP-Z into FOR

ln this section we present systematic guide-lines to converta CSP-Z specification into the
FDR notation, based on the considerations of tbe previous section. For analysing CSP-Z
using FDR we have to define the following elements: State (the system state space), lnit
(the initialisation schema), com_c (schema associated with cha.nnel c) , precom_c (precon
dition of the schema com_c) and the communication of values between the CSP a.nd the
Z parts of the specification. ln general, Z operations are relations between initial a.nd
final states, as well as input a.nd output values. However, for simplicity we assume in the
following that these relations are functional.

• State: The state space is represented in FDR as a parameter (see Section 3). When a
schema com_c updates the state space the final state produced must be taken as the initial
state for the next "execution step".
• lnit: As FDR ca.nnot represent a state space as a global element then the lnit schema
is represented as a process without parameters such that it initialises the data structures
used by the main equation. So, lnit = main(Sinitiai)\locaLchannels, wb.ere Slnitial is a tuple
defining a.n initial value for each state component. The hiding in the maio equation is
necessary because FDR does not provide a mea.ns for modularisation in the sense of scope
found in CSP-Z specifications.
• com-<:: A Z schema ca.n be tra.nslated into FDR as a function. The argumenta to this
function are the (current) state a.nd the values of the input variables; the function result

XII Simpósio Brasileiro de Engenharia de Software- SBES'98 29

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

is formed by the final state defined by the schema. and the values of the output variables.
This function does not embody the precondition pa.rt of the schema, only the effect.
• precom_c: A precondltion is also encoded as ao FDR function of type State X Input- B;
it evaluates to true in the sta.tes and input values which sa.tisfy the precondition of the
com_c schema, and to false otherwise.
• Communications: Values communicated in the CSP part of the FDR script must be
passed to the Z part, and vice-versa. Ali conversion patterns below have the form of a
CSP guarded command. For ao input, the condltion of the guard is a prefix choice of a
suitable value for the input parameter. The expression a?x : { a.x • x : T, pre_com...a(S, x)}
is a set comprehension which generates the set of elements a.x where x ranges over T and
satifies the predicate pre...com...a(S,x). For ao output we simply pass the result of t he Z
part to the CSP part.

The following conversion pa.tterns implement the a.bove strategy and ease the encodlng
of a CSP-Z specification into FDR:

CSP-Z FDR CSP-Z Meaning
P=a-+P P(S)spre_com_a(S) t Simple prefix

(let S'•com_a(S)
vithin a -> P(S'))

P=a?x-+P P(S)=a?x:{x I x <- T, pre_com_a (S, x)} Input
-> (let S' •com_a(S, x)

vithin P(S'))
P=a!e-+P P(S)cpre_com_a(S) t Output

(let (S',e)•com_a(S)
vithin a!e -> p (S'))

P \a P(S) \ a Hiding
PDQ P(S) [] Q(S ') External choice
PnQ P(S) 1- 1 Q(S') Internal choice
Plll Q P(S) III Q(S') Interleaving
P~Q P(S) [I a I] Q(S ') Alpha.tised parallel
P;Q P(S) [Q(S_final of P)/SKIP] Sequential composition
stop STOP Stop process
skip SKIP Successfull termination
chaos(E) CHAOS(S, E) Chaos process

The tra.nsla.tion of channel decla.rations, constants and free types is a straightforward
syntactical conversion, a.s presented in [1). Note that the conversion pa.ttern for sequential
composition wa.s discussed in Section 3.

5 Case Study: The SACI-1 Microsatellite

ln this section we present the CSP-Z specification of two processes which combined in
parallel with that introduced in Section 2 results in a final specification that represents the
simplified behaviour of the SACI-1 OBC. We also show how to translate the specification
into our FDR representation and then we carry out a deadlock analysis using FDR.

The SACI-1 OBC is a fault-tolerant dlstributed processing system which combines
software and hardware componente [5). lts criticai parts a.re: its Watch-Dog Timer (WDT)

30 XII Simpósio Brasileiro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

a.nd its Fa.ult-Tolera.nt H.outer (FTR). Due to its fa.ult-tolera.nt aspects, the SACI-1 was
designed with redunda.nt components. It has three WDT's, three FTH.'s, etc. Ilowever, for
illustra.tive purposes we consider here a. simplifica.tion of the rea.l configura.tion, removing
índices a.nd presenting its beha.viour. This simplifica.tion origina.tes a. slightly different
beha.viour when compa.red to the origina.! specifica.tion a.nd it is considered in Section 5.2.

5.1 The CSP-Z Specification of the SACI-1 Main Components

Fault-Tolerant Router. The FTR is responsible for some tasks a.nd for periodica.lly
sending a. reset signa.l to the WDT. ln order to model the FTR as dose as possible to its
origina.! conception we consider tha.t it ca.n stop tempora.rily or perma.nently. ln a. tempo
ra.ry stop, the FTR ca.n be rea.nima.ted through a. recover signa.l. llowever, in a. perma.nent
one the FTR ca.nnot be resta.rted.

spec FTR
channel clockFTR:[clk: CLK]
channel reset, r ecover:U
localchannel resetWDT, task, taskDone, problem:U
main=(Norma.llll Problem)
Norma.l=(clockFTR?c-+(resetWDT-+ reset-+Norma.l

O task-+((taskDone-+Norma.l J (problem-+stop))))
Problem=(recover-+Problem)

Í State ::-::--l
Ltime: CLK I

com.resetWDT -----,
:=:State

WDTP(time, WDTRstP)

end..spec FTR

I WDTRstP : CLK

com_task = -. com.resetWDT

time' = clk?

OBC Clock. As CSP-Z ca.nnot capture precisely the temporal aspects of a. system, we
need some wa.y to cha.ra.cterise the SACI-1 as a. system dependent of time. We model
a. process which exhibits events, ca.rrying clock va.lues, tha.t control the beha.viour of the
WDT a.nd the FTR.

spec SCLOCI<
channel clockWDT, clockFTR: [clk: CLK]
localchannel tic: U
main=(clockWDT!c-.skip III clockFTR!d-+skip);(tic-.main)

XJI Simpósio Bmsileiro de Engenharia de Softwnre- SDES'98 31

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

I
noneCiock : CLK
lncC : CLK -++ CLK
State ~

[time: CLK I

lnit --------,
State'

1------,
time' = noneCiock

end...spec SCLOCK

com_clockWDT l
2State
clk!: CLK

clk! =time

com_clockFTR := com_clockWDT

com_tic ------,
óState

time'= lncC(time)

SACI-1. The simplified beba.viour of the SACI-1 microsa.tellite is given by a.n a.lpha.betised
pa.ra.llel composition ([11)) of the previous three CSP-Z components. ln this specifica.tion,
the elements inside the bra.ckets of the pa.ra.llel opera.tor a.re the synchronisa.tion points.

spec SACI-1
main=(WDT [I {reset, recover} IJ FTR)

[I { dockWDT, clockFTR} IJ SCLOCK
end...spec SACI-1

5.2 SACI-1 in FDR

ln this section we present the tra.nsla.tion of the CSP-Z specifica.tion of the SACI-1 into
FOR. Remember tha.t every CSP-Z process ha.s a. main process (equa.tion), a. State schema.,
a.n lnit schema. a.nd Z opera.tions with na.mes derived from the cha.nnel na.mes. Hence,
when tra.nsla.ting into FOR we suffix these elements with the process na.me where ca.n
occur na.me cla.shing. For exa.mple, the initia.lisa.tion schema. (process) for WDT is na.med
here lniLWDT, a.nd so on.

The first process to be t ra.nsla.ted is the SCLOCK which is the most sim pie one, whose
specifica.tion wa.s presented in the beginning of this section. ln this tra.nsla.tion the CLK
given-set is decla.red a.s a. kind of free type (datatype) so tha.t FOR ca.n a.na.lyse the pro
cess. The SCLOCK process is the unique process of the ca.se study tha.t uses sequentia.l
composition. Note tha.t in its tra.nsla.tion the skip process does not a.ppea.r neither the se
quentia.l composition operator. This wa.s a. consequence of a.pplying the stra.tegy discussed
in Section 3.4.

datatype CLOCK = noneCloek I elkl I elk2 I elk3 I elk4 I elk5 I elk6
-- apec SCLOCK
ehannel eloekVDT,cloekFTR: CLOCK
channel tie

main_SCLOCK(S)=(let (S',e)=eoa_cloekiiDT_SCLOCK(S)

32

vithin eloekVDT!e -> (let S''=coa_tie(S')
vithin tie -> aain_SCLOCK(s••))

III let (S',e)=eo._eloekFTR_SCLDCK(S)
vithin eloe.kFTR!e -> (let S"=eo._tie(S')

XII Simpósio Brasileiro de Engenharia de Software- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

vithin tic -> main_SCLOCK(S'')))
-- Initi&liaation proceaa

Init_SCLOCK = aain_SCLOCK(noneClock)\{tic}
-- ac.beaaa
com_clockWDT_SCLOCK(S) = (S, S) -- returna actual atate and actual clock
com_clockFTR_SCLOCK(S) = coa_clockWDT_SCLOCK(S)
com_tic(noneClock) clk1
com_tic(clk1) clk2
coa_tic(clk2) clk3
coa_tic(clk3) clk4
coa_tic(clk4) = clk6
coa_tic(clk6) = clk6
coa_tic(clk6) = noneClock

end_apec SCLOCK

The second process to be considered is the WDT, where the maio difference from the
above translation is the presence of functions which implement the pre-condition calcula
tion of the corresponding Z schemas.

Recall that the WDTP function checks whether a time-out has occurred. The way we
have implemented it in FDR is by checking if the current time is clk3 or clk6.

- apec WDT
cbannel reaet, recover, failFTR, tiaeOut, noTiaeOut

aain_WDT(S) = Signal(S) li I Verify(S)
Signal(S) reaet -> Signal(coa_reaet(S))
Varify(S) = (clockWDT?c -> ((let S'•com_ciockWDT(S,c)

WDTtOut = {clk3, clk6}

vithin pre_coa_noTiaeOut(S') a
noTiaeOut -> Verify(S'))

[] (let S'=com_clockWDT(S,c)
within pre_com_tiaeOut(S') a
tiaeOut -> ((let S''=coa_tiaeOut(S ')

vitbin pre_coa_recover(S'') a
recover -> Verify(S''))

O (let S"=coa_tiaeOut(S')
vitbin pre_com_failFTR(S'') a

failtFTR -> SKIP)))))

WDTP(tiae, tiaeout) = aeaber(tiae, tiaeout)
-- Initialiaation proceaa
Init_WDT = aain_WDT((O, noneClock))\{tiaeOut,noTiaeOut,failFTR}
-- Preconditiona
pre_coa_noTiaeOut((cyclea,tiae)) a not WDTP(tiae, WDTtOut)
pre_coa_tiaeOut((cyclea,tiae)) = WDTP(tiae, WDTtOut)
pre_coa_recover((cyclea,tiae)) cyclea < 3
pre_coa_failFTR((cyclea,tiae)) • cyclea == 3
-- Schemaa
coa_reaet((cyclea,tiae)) = (0, time)
coa_clockWDT((cyclea,tiae),clk) = (cyclea, clk)
c~tiaeOut((cyclea,tiae)) = (cyclea + 1, tiae)

end_apec WDT

The last process converted is the FTR Observe that the sarne implementa.tion of time
out explained a.bove is a.dopted here for enabling reset signals.

Xll Simpósio Brasileiro de Engenharia de Soflwan:- SBES'98 33

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

-- apec FTR
channel reaetWDT
channel taak, taakDone, problea -- They •re local

aain_FTR(S) = loraal(S) I li Problea(S)
lonaal (S) = clockFTR?x -> ((let S'=coa_clockFTR_FTR(S,x)

vithin (pre_coa_reaetWDT_FTR(S') a
(reaetWDT -> reaet - > loraal(S')))

O (let S'=coa_clockFTR_FTR(S,x)
vithin (pre_coa_taak(S') a

(taak -> ((taakDone -> loraal(S'))
(>(problea -> STOP)))))))

Problea(S) = (recover -> Problea(S))
-- Initialiaation proceaa
Init_FTR = aain_FTR(noneClock)\{reaetWDT, taak, taakOone , problea}
-- WDTReaetPeriod detinition
WDTRatP = {clk3 , clk6}
-- Preconditiona
pre_com_reaetWDT_FTR(S) ~ WDTP (S , WDTRatP)
pra_coa_taak(S) = not pre_coa_reaatWDT_FTR(S)
-- Scheaaa
coa_clockFTR_FTR(S, c) z c

end_apec FTR

Finally we have the top levei specification of the SACI-1 process, which is an alpha
betised parallel composition of the three processes. Note that the processes used are the
initialisation processes, since they correspond to the main processes carrying as argumenta
the initial values of the state space. Note also in the specification below the synchronisation
points of the three processes.

-- apec SACI-1
Syatea = (Init_WDT (l{lreaet,recover i} IJ Init_FTR)

[l{ lclockWDT, clockFTRI}IJ Init_SCLOCK
end_apec SACI-1

6 Conclusion

We extended a model-checking. strategy to analyse CSP-Z specifications using FDR in
troduced in (2] giving a more semantical treatment and considering the whole CSP-Z
operators. ln particular we have also explained the difficuJty to model sequential com
position and how to overcome it. To illustrate the practical applicability of applying the
strategy we have developed a complex and realistic case study: the SACI-1 OBC (5].

The SACI-1 projectas originally conceived lacked formal documentation. A first con
tribution to the industry was the formalisation of a subset of the SACI-1 [1]: its OBC
system. The main aspect of the formalisation task was to develop a formal specification
free from problems, hence our second contribution was to verify this requirement for a
subset of our specification using the strategy presented here. The problems found during
the formalisation and analysis were reported to the members of the SACJ-1 project so that
they could take the considerations into account in the implementation of the system.

An inductive approach to model-checking which deals with arbitrary topologies of CSP
processes is presented in (12]. One research direction we intend to pursue is to extend our

34 XII Simpósio Brasileiro de Engenharia de Software - SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

model-checking strategy to arbitrary topologies of CSP-Z processes. Because CSP-Z deals
with a state space, we should also develop a.n induction principie to deal with infinite data
structures.

Another topic for further research is the integration of tools to deal with CSP-Z spec
ifications. ln [1] , it is sbown how to use Z-EVES (17] to type-check the Z part of the
SACI-1 specification a.nd to refine some of its data structures. Furthermore, the ZANS
a.nimator (13] was also used in [1) to a.nalyse the behaviour of the data structures in the
Z part of the SAC1-1 specification. ldeally, these tools should also be adapted to work
for CSP-Z, as we ctid witb FOR. The ultimate goal would be linking ali these tools into a
uniform development environment for CSP-Z.

A final remark is that although we have based our work on CSP-Z, the results could
be easily adapted to other approaches to integrate CSP a.nd Z, such as, for example (10).

7 Acknowledgements

We tha.nk people from the Bra.zilia.n Spa.ce Research Jnstitute (INPE), a.nd in particular
Alderico R. Paula Jr. for help in the understa.ncting of the SACJ-1. We also tha.nk Clemens
Fischer a.nd Paulo Borba for discussions about CSP-Z and FOR, a.nd for suggestions a.nd
criticisms which helped us to improve our approa.ch to model-checking CSP-Z.

References

[1] A. Mota. Formalisation a.nd Analysis of the SACI-1 Microsatellite in CSP-Z (in
Portuguese). Master's thesis, Federal University of Pernambuco, 1997.

(2) A. Mota a.nd A. Sampaio. Model-Checking CSP-Z. ln Fundamental Approaches to
Software Engineering, volume 1382 of LNCS, pages 205-220. Springer- Verlag Berlin,
1998.

(3) T. Bolognesi a.nd E. Brinksma. lntroduction to the ISO specification la.nguage LO
TOS. Computer Networks and ISDN Systems, 14(1):25- 59, .Ja.nuary 1987.

(4) S. O. Brookes a.nd A. W. Roscoe. Ao improved failures model for communication
processes. ln Lecture Notes on Computer Science, volume 197, pages 281- 305, 1985.

(5) A. R. de Paula Jr. Fault-Tolera.nce Aspects of the On-Board Computer of the First
JNPE Microsatellite for Scientific Applications. VI Brazilian Symposium on Fault
Tolerant Computers, August 1995.

(6] E. Boiten, 11. Bowma.n, J. Derrick a.nd M. Steen. Viewpoint Consistency in Z a.nd
LOTOS: A Case Study. ln FME'97: Industrial Applications and Strengthened Foun
dations of Formal Methods, pages 644--664. Springer Verlag, 1997.

(7] C. Fischer. Combining CSP a.nd Z. Technical report, University of Oldenburg, 1996.

(8] C. Fischer. CSP-OZ: A Combina.tion of Object-Z and CSP. ln ~nd IFIP Jnter
national Conference on Formal Methods for Open Object-based Distributed Systems
(FMODDS'97). Chapman Hall , 1997.

XJI Simpósio Brasileiro de Engenharia de Software - SBES'98 35

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

(9] Formal Systems (Europe) Ltd. FDR: User Manual and 1"'utorial, version e.01, August
1996.

[10] G. Smith. A Semantic lntegra.tion of Object-Z and CSP for the Specifica.tion of Con
current Systems. In FME'97: lndustrial Applications and Strengthened Foundations
of Formal Methods, number 1313 in Lecture Notes in Computer Science, pa.ges 62-81.
Springer Verla.g, 1997.

[11] C. A. R. Hoare. Communicating Sequential Processes. Prentice-llall, 1985.

[12] J. N. Reed, D. M. Jackson, B. Deia.nov and G. M. Reed. Automa.ted Formal Ana.lysis
of Networks: FOR Models of Arbitra.ry Topologies and Flow-Control Mechanisms.
ln Fundamental Approaches to Software Engineering, volume 1382 of LNCS, pa.ges
239-254. Springer-Verlag Berlin, 1998.

[13] X. Jia. A Tutoria/ of ZANS- A Z Animation System, 1995.

[H] J . L. Lions. Ariane 5: A Falha do Vôo 501. Technica.l report,
http: / /www .esrin.esa.i t/htdocs/tidc/Press/ Press96/ a.riane5rep.html, 1996.

[15] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991.

[16] A. W. lloscoe. The Theory and Practice of Concurrency. Prentice-Halllnternational,
1998.

[17] M. Sa.altink. The Z/EVES System. ln ZUM'97: The Z Formal Specification Notation,
pages 72-85. Lecture Notes in Computer Science, 1212, Springer, 1997.

[18] A. Sampaio. An Algebraic Approach to Compiler Design. World Scientific Publishing,
1997.

[19] M. Spivey. The Z Notation: A Reference Manual. Prentice-Halllnternational, 2nd
edition, 1992.

36 X li Simpósio Brasileiro de Engcuharin de Softwrue- SBES'98

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349

