Patterns in CSCW Modeling
Marco Paludo'?, Robert Burnett', Edgard Jamhour'

! Pontificia Universidade Catélica do Parand - PUC-PR
Mestrado em Informética Aplicada
R. Imaculada Conceigiio, 1155 - Prado Velho
80215-901 - Curitiba - Parand - Brasil
Tel/fax: +55 41 330-1669

2 Banco do Estado do Parani S/A - Banestado
R. Méximo Jodo Kopp, 274 - Santa Cindida
80630-900 - Curitiba - Paran - Brasil
Tel: +55 41 351-8770

E-mail: m.paludo@sul.com.br, robert@lambda.pucpr.br, jamhour@rla01.pucpr.br

Abstract

Modeling object-oriented systems is usually presented in a great variety of methods, however
few of them consider patterns and reuse issues in its structure, The purpose of this article is to
present some CSCW characteristics and put them into two different approaches of system
modeling. One pure object-oriented and other pattern-oriented. The focus is to stress the
particularities of groupware applications, nevertheless traditional ones can also be addressed.
Some object-oriented modeling characteristics are presented initially, establishing
comparisons of Peter Coad’s pattern-oriented methodology with others, followed by the
modeling of a Project Management case study system with both approaches. The results are
presented by comparing both modeling considering the static, dynamic and functional
modeling, follow by the conclusions of the work.

Key-words: CSCW, Patterns, Object-Orientation, Object Modeling, Reuse

1 Introduction

This article intends to cover some software development techniques that envisage reuse in all
process phases. Among existing techniques, the use of patterns is gaining special interest from
the scientific community and the development industry. Programming languages have been
extensively studied and enhanced from the reuse standpoint, but the initial requirement,
analysis and even design stages are focused by current efforts.

The relationship between patterns and object-orientation is very close, and the current concern
of the object-oriented community is no longer only with tools, techniques, notations or code;
according to Ward Cunningham, in the preface to [Fow97a], when faults occur, they are
normally due to lack of experience, and patterns represent such experience.

CSCW represents a new paradigm of software development, more deeply presented later,
marked by an aspect that corroborates with patterns: repetition. Every CSCW applications has

X1I Simpésio Brasileiro de Engenharia de Software - SBES'98 37

http://www.cvisiontech.com

some common characteristics, like the three C’s', that are over and over used and once
modeled and defined, can easily be reused independently of the domain. Patterns are proposed
to work along with CSCW to achieve high layered reuse.

The presentation of patterns is made by means of a brief approach to the context in which they
fit and some definitions and characteristics of the several pattérn methodologies. The project
management system modeling is then presented, using pure object-orientation. Next, the same
system is modeled using patterns, as proposed by Peter Coad [Coa97].

This paper attempts to identify pattern utilization aspects in CSCW systems, validating them.
The comparisons with the traditional process are made, mainly concerned with the processes,
the diagrams and the results achieved. Lastly some conclusions are extracted from the
approaches.

2 Problem Characterization

The development of object-oriented software is fully met by several methodologies developed
by authors for over a decade, and is no longer a problem. Each methodology has a particular
notation, a particular emphasis and a well-defined process, but no solutions or tools are
provided to obtain large-scale reuse within the problem domain and of the decisions made in
other projects.

An attempt to automate reuse in the higher layer of the software process is the use of
frameworks®. Taligent, Inc proposes a hierarchy of framework elements, the root of which is
the application obtained by reuse, made up of frameworks, formed by patterns that are in turn
formed by abstract classes [Tab94a).

The first publications on pattern studies called them design patterns, since they were focused
mainly on implementation and abstract classes. With the evolution in the attempt to achieve a
higher reuse level, patterns are applied from the very beginning of the analysis, and their
notation became analysis patterns, or simply patterns.

2.1 Definitions

Gamma [Gam94] suggests that design patterns capture solutions developed and evolved
throughout time, in a compact and easy-to-apply form. Each design pattern systematically
names, explain and assesses an important and recurring subsystem in object-oriented design.

Taligent, Inc. [Tab%94a] defines design patterns as a means to identify, name and abstract
common themes in object-oriented design. They capture the hidden intentions in a design,
identifying objects, how they interact and the responsibilities assigned among them, thereby
generating an experience foundation on which to build reusable software, acting as building
blocks that may be used to structure more complex projects.

Lajoie [Laj94] states that patterns represent a mechanism to express how components
interrelate, as a high-level technique to capture and express design experiences in a proper
way to facilitate reuse.

' From Communication, Collaboration and Coordination.

? Gamma and Johnson et al [Gam94] state that frameworks implement the general development architecture: the
partition into classes and objects, their responsibilities, how they help each other in the control queue, so that the
designer may concentrate his efforts only on the specific aspects of their application.

38 XII Simpésio Brasileiro de Engenharia de Software - SBES’98

http://www.cvisiontech.com

2.2 Approaches

The methodology proposed by Peter Coad [Coa97] employs patterns in two different ways.
One of them is the traditional development in which the software is modeled by strategies that
may be seen as the development process, just complemented by patterns. The second is the
use of the patterns proposed from the initial analysis stages through the design and
implementation, increasing reuse in the problem domain.

By tracing a parallel with other methodologies, we have:

* The methodology [Gam94] is concerned with cataloguing 23 design patterns, so as to reach
an analysis and particularly system design standardization, until a level is reached in which
the design patterns nomenclature is used as the standard language of communication
between development teams, or between development teams and external units, such as
users and suppliers. It is one of the pioneers and its greater emphasis is on design and
implementation.

¢ The Pattern-Oriented Software Architecture (POSA) [Bus96] proposes a large pattern
relationship similar to [Gam94], but the latter is concentrated mainly on design patterns
and the former is much more abstract. POSA models its patterns according to the following
structure: Context, describing situations to which a pattern may be applied; Problem,
capturing the essence of a recurring problem; and Solution, showing how to solve recurring
problems and deal with the forces involved in it. The solution is composed of a static part,
contemplating component structure and its relationship, and a dynamic part such as the
behavior in execution time.

* Analysis Patterns [Fow97a] address the domain objects in a parallel way to POSA, that is,
more abstract than [Gam94], but the separation of its patterns occurs as a function of the
domain, such as inventory, accounting and finances.

« Hot Spot’ is presented in [Pre95] and differs from the previous ones because it has a well-
defined process. It starts with the definition of classes and objects, and later identification
of hot spots. Then the framework design/redesign is carried out, rendering the classes more
flexible according to the hot spots. This last phase is recurring and stops when the hot spots
reach the desired fit.

¢ Lastly, we have the methodology from Taligent, Inc [Tab94a] and [Tal94b] suggesting a
well-defined process supported by proprietary development environment tools. The
difference is the proposal to built small frameworks that will in turn, form larger
frameworks, widening reuse options, once both small and large frameworks may be
reused.

Coad's methodology [Coa97] is one of the most complete from the patterns standpoint, since
it has a strategy process, an aspect absent from example-oriented methodologies, such as
[Gam94] [Bus96] [Fow97a], but it proposes 31 patterns, absent in [Pre95] [Tab%4a] [Tal94b)].
In view of this wide scope, this was the one selected to develop the case study and will be
detailed later on.

3 CSCW application modeling
The main objective is to assess the results of modeling a system having ‘Computer Supported

Cooperative Work” — CSCW characteristics, from two perspectives. One of them uses the
process presented by James Rumbaugh [Rum91] with UML [Fow97b][Rat97] notation

" The method is called hot spot driven, but hot spot does not have is literal meaning. In this case it means ‘part to
become flexible’.

X1 Simpdsio Brasileiro de Engenharia de Software - SBES'98 39

http://www.cvisiontech.com

playing the role of pure object-oriented modeling. The second employs the pattern concepts
presented by Peter Coad [Coa97].

CSCW is a scientific discipline that motivates and validates groupware projects, and
according to [Lot95], groupware is the intersection of three technologies in software
develcpmem, depicted in figure 1 and numbered at sequence:
Communication: is the transmission of knowledge by means of electronic message
transmission, mainly by e-mail, in a simple and efficient way.

2. Collaboration: also aimed at enhancing teamwork, it is represented by the storage of
information in shared spaces, with the necessary combinations of space (location) and
times. “Shared databases facilitate collaborative interaction by providing a virtual
common workplace, with a group-centered interface that allows participants to share
information and ideas". [Lot95].

3. Coordination: represented mainly by the workflow, coordination supports company
policies leading people working in cooperation to achieve certain objectives. For that
purpose, the coordination leads those people to complete a structured set of tasks in a
particular sequence, respecting conditions and time constrains. Thus, business processes
are modeled and integrated to communication and collaboration.

Figure 1 - Intersection of CSCW systems characteristics [Lot95].

Another proposed classification of the aspects needed to support cooperative software
development is presented by [Ara97], in which communication, coordination and group
memory (collaboration) have similarities with those previously presented, but a fourth
perspective — perception - is introduced and defined as “fitting individual activities into the
context by understanding activities performed by other people” [Ara97], allowing team
members to see where their work and that of their team fit in the context.

Based on CSCW systems characteristics and on the objectives of the work, the software
selected for the case study is a Project Manager intended to be generic so as to fit the several
project types. Here projects are distributed to Departments as a way to control and follow-up
results. They are further divided into stages, which are in turn divided into tasks. All these
components have responsibles, schedules and status, which are the parameters needed to
implement cooperation and communication. Collaboration takes place by controlling the
access to the information in the several components, by user queries and updates that take on
different roles according to the project.

40 XII Simpdsio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

4 Traditional object-oriented approach

In both approaches the emphasis is on modeling and not on implementation, that is,
implementation details were disregarded, particularly in OMT" in which the analysis and
design phases have a more clear-cut separation.

ek

: person = login
‘:ﬂtm
Mnm

:dln_ .: ;
pdpartDescription : : mo
H psiagaResponsible | person
% coric pstageTamm : person
£ " hstartDals : date
- pinaiDate . date

mwmmw

Y

!
i

ask ()
Task ()

Figure 2 - Class Model [Rum91] process with UML notation.

Having as starting point the end of the requirement phase, analysis began with the static
modeling phases, having as products: data dictionaries, completed, iterated and refined object
model and class model. Because of the similarity between the object and class models, figure
2 shows the complete class model with the respective associations, aggregations, methods and
attributes.

* OMT: Object Modeling Technique: object-oriented notation, analysis and design processes introduced by
James Rumbaugh [Rum91).

X1 Simpdsio Brasileiro de Engenharia de Software - SBES’98 41

http://www.cvisiontech.com

The model presented concerns the last version, after undergoing evolution in the following
phases of this process, but some particularities became evident in its conception:

e In the first iteration the Person, Department, Project, Stage and Task classes were
identified. The ‘Person Access’ class was conceived to meet the requirement of views
to implement collaboration, but is too abstract.

» Communication was imbedded in the status changing methods by triggering e-mails to
responsibles and participants.

e Due to the dynamic aspects of CSCW systems, the static modeling provided scant
resources to represent communication, collaboration and coordination.

After identifying objects, classes and their relationships, dynamic modeling was performed
with the scenarios, event and state diagrams. In this phase, CSCW concepts could be better
exploited, such as in event diagrams depicting scenarios. The following observations were
made:

e In the event diagrams, access checks are better evidenced with a principle of
coordination. For instance, the ‘Person Access’ class that provides views to users
allows Department responsibles access the progress of all their subordinated
components. The same happens when registering or maintaining a project: this class
provides the view to which the person is entitled.

» The ‘Person Access' class also participates in communication, since the information in
the message exchange by e-mail is modeled according to the events and is better
viewed than in class diagrams.

* To enable these operations, the need for a ‘Coordinator Agent’ class was observed,
having an association with components (Project, Stage and Task) and monitoring
deadlines and status changes, coordinating activities and informing the proper
responsibles.

Among the diagrams prepared, the one better showing the dynamism and actions proper of
CSCW systems was the state diagram. Figure 3 shows the Project class state diagram
evidencing:

= Easy representation and clarity when checking access and views (coordination).

o The system internal communication by e-mail to responsibles and participants was
modeled in status changes, sending events to the Person class.

e The different states taken on by classes are components of the same diagram,
providing a global view of them, but this generates a phenomenon called “transition
combination explosion” [Rum91], as evidenced in the several states’ the project can
assume, as seen in figure 3. The solution to this problem is to reformulate the model
by using state structuring [Rum91]. In this case, however, this was not possible and
the diagram remained hard to read.

*The possible project statuses are: ‘new project’, ‘not started, ‘in approval, ‘normal process’, ‘critical process’,
‘completed and approved’, ‘cancelled’, ‘suspended’.

42 XI1I Simpésio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

e-mail o] "Suspended” “Normal
involved I -
|
PERSON |

-

Figure 3 - State diagram of the Project class.

The third and last model implemented was the functional, represented basically by the data
flow diagram that, for most processes, defined only functional dependence. In the Coordinator
Agent diagram, figure 4, existing functions were implemented and a new one -
‘checkStatusChange’ — was introduced, to know and control the status of all project
components, as well as inform the responsibles and/or participants accordingly, integrating
coordination and communication. With this model the analysis phase was completed without
entering in the system design and object design, also proposed in the process [Rum91].

PERSON

Figure 4 - Data flow diagram of the Coordinator Agent process.

XII Simposio Brasileiro de Engenharia de Software - SBES'98 43

http://www.cvisiontech.com

5 Pattern-oriented approach

In [Coa97] emphasis is essentially on examples, based on which theories, strategies, scenarios
and patterns® are presented. This composition generates the methodology used in the present
work. The definition of strategy is “a plan of action intended to accomplish a specific
objective” and pattern is “a structure (template), worthy of emulation”. For better clearness, a
pattern is considered as [Coa97]: a plan of action and not an implementation, a structure
(template) to be followed during construction but not a solution or an abstraction originated
from observation of the reality.

A pattern has a structure of objects with stereotyped responsibilities and interactions that may
be consecutively applied to build object models. The original methodology presents 148
strategies and 31 patterns and to facilitate reference to the source, in this work we adopted the
notation (Sn) for strategy n and (Pn) for pattern.

Modeling began with the definition of the system purpose (52): “Help projects coordination
by improving communication and collaboration among teams and their members.”, followed
by its features (56) divided into four categories:

* Log important information: Department data, Projects, Stages and Tasks.

* Conduct business: information on deadlines and responsibles of components.

e Analyse business results: list of missed deadlines and calculation of results, assessing

the quantity of activities per responsible.
e Interaction with systems: not applicable.

The next attempts were separated into four object categories (S25):

* PD Problem Domain: contains the objects corresponding directly to the problem
domain and are technology-neutral.

= HI Human Interaction: provides the interface between the problem domain and people
(usually window and report objects)

* DM Data-Management: provides the interface between problem domain objects and
databases and file managers.

 SI System-Interaction: objects providing an interface between PD’ objects and other
systems or equipment, encapsulating communication protocols, releasing PD objects
low level and implementation details.

For each one of the object model components, the steps are select objects, define
responsibilities and enhance the dynamic part with scenarios.

PD object selection

The strategy 13 (S13) led to find out one actor” of the application: the Person object. Similarly
(S14) helped to reveal the participant User, (S15) the place” Department; (S22) the containers

* The term adopted for this paper, for the sake of standardization, is ‘pattern(s)’; in the literature there are
references to: pattern(s) [Coa97] [Bus96], analysis patterns [Fow97b] [Fow97a), design patterns [Gam94],
[Pre95], pattern language and object-oriented patterns.

’ Later mentions are made with the initials PD, HI, DM, and SI.

* The actor might be a person, an organization or any other agent participating in one or more ways throughout
time. A participant acts in a specific way, plays a role or fulfills a specific mission [Coa97].

¥ Places are physical locations where objects rest or contain other objects [Coa97].

44 X1I Simpésio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

Stage and Task and finally (S17) the transaction'’ Project. The Project object may also be
seen as (S16) tangible things, but in view of the wide interaction with all others, was
considered as transaction,

After the strategies had been applied, patterns were considered to select, organize and propose
new objects, since they represent an object model with stereotyped responsibilities and
interactions. (P14 Container-Content) was used initially to validate the link between Project
and Stage, and afterwards to validate Stage and Task, as well as (P2 Actor-Participant) for
Person and User.

At this point in time, patterns were msponsnble for helping linking those disperses objects. To
illustrate that, fig articipants and transactions.

transaction patterns

Transaction

nmbar
date

tima
| status
[abcide |
cakcForMe
rateMe

= Typical object interactions: howMany->calcForMe calcOverTransactions->calcForMe
howMuch->calcForMe rankTransactions->rateMe

* Examples of Participant: agent, applicant, buyer, cashier, clerk, client, civilian, customer, dealer, delegate,

distributor, donor, employee, investor, manufacturer, raember, officer, official, order clerk, owner, among others.

* Examples of Transactions: agreement, assignment, authorization, contract, delivery, deposit, incident, inquiry,

order, payment, problem, purchase among others.

= Combinations: actor - participant, participant - trensaction, place — transaction, specific item — transaction,

transaction ~ transaction line item, transaction — subsequent transaction,

Figure 5 - Pattern number 3: ‘l’nrlicipant-’l'ransacﬂon .

When applying a pattern to the selected objects, the object model starts. Taking the User as
participant and the Project as transaction, the following link between objects was obtained,

shown in figure 6.
" 4

Figure 6 — Connection after using pattern (P3) “Participant-Transaction”.

Similarly, patterns (P2 actor-participant), (P3 participant-transaction), (P4 place-transaction)
and (P14 container-contents) were applied, resulting in the object model'' shown in figure 7.

'" A transaction is the log of some significant event, knows who are the participants and makes calculations
concerning the event [Coa97].

" Notation: a double frame represents a class with objects and a simple frame a class having no direct
cor dence to obj Multiplicity is represented together with the object involved. In figure 9, multiplicity
n shows that the User "knows" n Designs.

XII Simpésio Brasileiro de Engenharia de Software - SBES'98 45

http://www.cvisiontech.com

Since propositions are being dealt with, a certain multiplicity was adapted to the domain in
the final model.

Figure 7 - Initial object model obtained using patterns.

Responsibilities of PD objects

Based on the initial object model, responsibilities'? were established by means of three
questions imposed on all objects: (S29): (a) what do | know?', (b) ‘who do I know?' and (c)
‘what do I do?’, the first two for attributes and the latter for methods. The result is presented
below, relating modeled classes, strategies employed and responsibilities obtained:

- Person”CIass (actor): (a) (S52): name, address, telephone; (b) (S30): user; (c): just the
trivial .

e User Class (participant): (a)(S32): number, password, access level; (b): the
corresponding actor, Person; (¢)(850,590,591): isAuthorized(),verifyPassword().

e Department Class (place): (a)(S102): number, name, address, location; (b) knows its
transactions, Designs; (c) (895) qtyProjectsByStatus(), qtyProjectsByResp(),
provideDepartResponsible().

¢ Project Class (transaction, container): The Project class plays two roles, one as
individual transaction and another as Stages container. Its responsibilities are:
(a)(554): number, date, time, status. The date was adapted to creationDateProject, the
time to creationTimeProject and the status to statusProject. (b) (S76): user. (c¢) (S96):
provideStatus() and provideResponsible ().

* Stage Class (contents, container): The class Stage plays two roles, one as contents of a
Project, and the other as Task container. Due to the lack of strategies for containers-
contents responsibilities, they will be defined solely with the information on the
problem domain. (a); (b)Project, Task and User; (c) provideStageStatus() and
provideStageResponsible().

e Task Class (contents): Similar to Stage. (a); (b)Stage and User; (c)
provideTaskStatus() and provideTask-Responsible().

To complement responsibilities, patterns were applied no longer with the objective of defining
object links and hierarchies, but to obtain new responsibilities through the class of patterns
possessing stereotyped responsibilities. The result achieved was the following:

* By applying pattern (P1 Collection-Worker), called fundamental pattern and the origin
of all others, and assuming Project as collection and Stage as worker, obtaining
qtyStagesByStatus()'* and qtyStagesByResponsible() for the Project class, starting
from the stereotyped method ‘calcOverWorkers'. For the class Stage to play its role,

'* Responsibilities of an object: its knowledge about itself, about others, and what it is capable of doing.

'* [Coa97] considers operations read(), save(), search(), initialize and similar ones as trivial basic services (S89
basic services) and is of the opinion that they should not be included in the object model.

'* In later model iterations, the term ‘qty' was removed because methods return not only the quantity but also
information on components that meet arguments.

46 XII Simpdsio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

the existing provideStageStatus () and provideStageResponsible() were validated by
the stereotyped method ‘calcForMe’ linked to the collection class.

e Similarly applied to Stage-Task, it generated qtyTasksByStatus() and
qtyTasksByResponsible() for the Stage class starting from ‘calcOverWorkers’ and
validated the already created methods provideTaskStatus() and
provideTaskResponsible().

o Pattern (P3 Participant-transaction), when applied to User and Project classes,
generated the qtyProjectByResponsible() method in the User class, by means of the
stereotyped method ‘calcOverTransactions’. This method communicates with the
equally named one in the Department class.

o The application of (P14 Container-contents) generated name, number and description
for Stages and Tasks. The other responsibilities of Stages and Tasks came from
‘aboutMe’ found in (P14). Similarly, (P3) ‘aboutMe’ complemented the
responsibilities of the Project class.

Working out Problem Domain Dynamics with Scenarios'.

Scenarios in [Coa97] differ from those previously used [Rum91], since they work with
patterns to find out new objects, better distribute responsibilities, and also to take into account
system dynamics. The following observations were made when applying them:

e As in the pure object-oriented modeling, CSCW characteristics in the system were
evidenced at this point. When preparing the scenario shown in figure 8, it was possible
to identify the following responsibilities concerning communication and coordination:
monitorStatus() and provideProjectParticipants() for the Project class and
notifyCommunication() for the User class.

s Collaboration was validated by the responsibility isAuthorized() of User class, that
provides component views.

s Methods qtyStagesByResponsible() and qtyTasksByResponsible() were attributed to
the User class, acting in partnership with provideResponsible() in each component.

—————————————— O, ——— —— Gl

== T l
stagesByStatus notifyCommunication i
stagesByRaesponsivel varilyPassward [No time consiraints |
provideStatus InAuthorized
P TORCTr Vg qtyP By
provideProjectDepartmaent
maintainProjectData qty TasksByRaesponsible
monitorStatus makelogon
provideP rojectinvoived maintainProjectData

makeLogon
-+ verfyPassword
_—
-+ IsAuthorized
F
[maintainProjectData]
maintainProjectData l-—

-+ monitorStatus
IF

& provideProjectinvolved
ENDIF

|—# notifyCommunication
L s

Figure 8 — Scenario of one problem domain (PD) objects.

" [Coa97] A scenario is a chronologically ordered sequence of interactions between objects, containing
messages that objects send and receive, and the methods consequently invoked.

XII Simpésio Brasileiro de Engenharia de Software - SBES'9% 47

http://www.cvisiontech.com

Trying to keep modeling in the same layer presented in section 4, not taking design into
account, scenarios were developed solely for essential activities and modeling of the other
components, HI, SI and DM were made in a superficial manner.

HI Objects

Human Interaction (HI) objects are typically windows and reports. To select them (S27) was
employed to create windows for all PD objects, (S28) for the logon window, (S29) for
configuration and (S31) for reports. In this model, relationships are described by means of
attributes in classes and not graphical links, as happened with PD objects.

When modeling the scenarios of these objects, the following were obtained:

* HI scenario ‘projectWindow’ was subdivided into four sub-scenarios: ‘prepare file’,
‘file items’, ‘perform maintenance’ and ‘distribute e-mail’. The maintainProjectData
method is used both in the Project and User classes. According to [Coa97], the
inclusion of these methods in the PD model is optional, but for illustration purposes it
was included in the respective classes.

® In the ‘distribute e-mail’ scenario, the monitorStatus(), provideProjectParticipants()
and notifyCommunication() methods were employed.

S| Objects
No S1 objects were identified in this system.

DM Obijects

Each data management object (DM) possesses a corresponding PD, since its objective is to
ensure the Pcmstcnec in non-volatile media and provide query needs by means of a collection
of objects"($32). DM objects and their responsibilities were selected and applied to
scenarios, but they did not imply in modifications to the problem domain model.

Figure 9 shows a PD object model, after being complemented throughout all process phases.
It was observed that this model differs from that obtained with process [Rum91] due to the
focus in each approach.

Project A
number <
cruation[ate b
creationTime
projectStatus
authar "
name —
n n |n M |
e |l User aeten
| number date
1 || stagesByStatus | paswword uthaor
wagesByFlespanaibie | sccenslLevel | toeponsibie
provideStatus natfyConmunication | stanDate
providaP rojectAesponsitle Pt — deadhineForConchmion
provideProjeciDepartment isAutherized
" qryProjectsByFesponsitie
lnm qtyStagesyfisapans ble I.MT-M-
= ‘:md.n!m e getDeparntmant 1 D
u))

Figure 9 - Object model according to process [Coa97].

'* Concept similar to the one presented in the structural design pattern PROXY, in [Gam94].

48 XII Simpésio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

6 Comparisons

Coad, in [Coa97], states that its not productive to separate analysis and design models,
affirming that the developer needs to be free to consider both analysis and design matters as
they come up. The separation proposed is by concerns: problem domain, human interaction,
system interaction and data management. In order to trace some common aspect for
comparison, in this article, the OMT steps were selected as guidelines and the pattern
approach deliveries were spread by them.

6.1 Static modeling

The object-oriented approach showed to be very poor to represent the communication,
collaboration and coordenation features of CSCW. Some services were embedded inside
others, like the “send e-mail trigger” (communication) in the statusChange service. Other
objection raised was that all the models started from scratch.

The pattern approach also suffered to cover these requirements, however the stereotyped
services, attributes and relationships have helped this phase. As an example, the password/
authorizationLevel attributes of the Participant in (P2 Actor-Participant) has sketched some
nuance of collaboration and startDate/endDate/calcOverTransactions in (P3 Participant-
Transaction) some nuance of coordination.

At this point patterns showed more user-friendly tc achieve the proposed objectives of
modeling CSCW applications.

6.2 Dynamic modeling

The dynamic analysis showed better opportunity to represent CSCW features for both
approaches. The object-oriented, initially, provided the scenarios and the event diagram,
proving to be a good tool for coordination and communication, with the PersonAccess class
providing the views of the users and also the message exchange, modeled according to events.
The state diagrams provided a clear picture of the access and views (coordination) but, seen
that CSCW applications have a great variety of states and sometimes even created or changed
at execution-time, the diagram presented the unsolved “transition combination explosion™
anomaly and lost a little its importance.

For comparison, it was considered that part of the dynamic modeling was done at the
‘identifications of the responsibilities’ and the rest at the ‘working out dynamics with
scenarios’ steps of the pattern approach.

The responsibilities were defined by applying strategies and patterns, as already made at static
analysis, making the object model grow and to consider all elements of CSCW. Some
examples are the qtyTasksByResponsible (collaboration), notifyCommunication
(communication) and maintainProjectData (coordination).

The pattern scenario showed to be a powerful modeling tool because it shows the interactions
between objects in a graphically and chronologically way. At the left side of the diagram are
placed the objects, with the services at the top and the sequence of execution under them. At
the right side are the complete services specified with all the passing parameters and expected
results.

XII Simpdsio Brasileiro de Engenharia de Software - SBES'98 49

http://www.cvisiontech.com

Coad, in [Coa97], considers the use of state transition diagrams inadvisable and suggests
encapsulating state-dependency within an object, meaning that the object responds differently
depending on its state. Regarding to state attributes, the objective is (o include ‘applicable
states’ in its descriptions and lo state services, include ‘pre/postconditions, trigger and
terminate’ states.

6.3 Functional modeling

The OMT approach treats the functional model as the results of a process without specifying
how or when they were made. The constraints arc also present at it. When the data flow
diagrams were made, some methods turned out to be necessary like checkStatusChange at the
Coordinator Agent class, however the contribution for the whole project was scant.

The pattern approach doesn’t treat the functional aspect separated and argues that “if a service
is s0 complex that you need a data-flow diagram to describe it, you've got a partitioning
problem...” [Coa97]. To deal with functional matters, the pattern scenarios are provided with
constraint fields and with some control structure that can be inserted at the execution section,
The control structures are II/Else/Endif, While/Endwhile, Do/Enddo, Case/ Endcase and
Start_Task /Stop_Task. Another feature to supply functional modeling is the possibility to
create hierarchical scenarios, linking the more with the less detailed ones.

6.4 General observations

The object-oriented approach as is, is suitable for CSCW modeling because it can address
most of its characteristics, mainly at the dynamic analysis, but the process doesn’t assist the
developer much with the components of the application. The observation done is that the
developers build the models from scratch, what causes to waste unnecessary efforts. In
addition to this, the possibilities to reuse the models for future projects are rare because too
many conditions must be the same in order to succeed.

One of the appeals of patterns is that the developer starts the modeling with some footsteps to
follow, taking advantage of the stereotyped services, attributes and relationship. This
improves the time-to-market and quality of models.

The reuse approach of patterns is that systems can have similarities with “problem domain”
characteristics and different ‘human interfaces” or vice-versa. The same for the other
components: “data management” and ‘system interaction”, Partitioning the models this way
allows the system to be conceived with the “design-for-reuse” [Ygl98] feature, where the
focus is not just the actual project, but the advantage others would take of these models. This
represents an advantage over the reuse obtained with pure object-oriented, leveraging the
speed of CSCW application modeling that is marked by a great number of common points
between projects.

Some of these points, for example, can be User and Project, which will probably be part of
many groupware applications'’. The developer can directly apply the pattern (P3 Participant-
Transaction) or reuse the object model result conccived at this article. Other examples are
Person-User (P2 Actor-Participant) and Department-Project (P4 Place-Transaction).

' Some examples of services that may also be found in other projects are: monitorStatus(), provideProject-
Participants() and notifyCommunication().

50 XI1I Simpésio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

One drawback of the pattern approach is the absence of state diagrams, widely used by many
object-oriented methods. However, if the state issue is not well addressed by the patterns
approach, a traditional state diagram can be added to complete the description of the problem.
This need was not present in this case study because some attributes and services (e.g.
provideStatus, monitorStatus) were enough to describe the states of the CSCW problem.

One clear bottleneck of patterns is the deep knowledge one must have of the existing patterns
catalogue and structures, and even of those proposed for a specific domain. The lack of this
knowledge can lead the developer to conceive ineffective models, not achieving the reuse
objectives.

7 Conclusions

The development of object-oriented software points towards a greater application reuse in all
process phases. The use of patterns, though originated in the 80's, now arises great interest in
academic and business circles, particularly in the object-oriented development, where its
concepts may be fully applied, achieving better results.

This paper presents the aspects of object-oriented modeling in two different ways: one as a
purely object-oriented process and the other proposing the use of patterns. In both it is seen
that the CSCW system characteristics are better evidenced in the phases concerned with the
system dynamics, even causing changes in the static modeling to provide the proper support
to these characteristics.

During the presentation of the Project Management system, observations on each phase are
made, mainly concerning communication, coordination and collaboration, considered here as
basic components of CSCW systems. The benefits of applying patterns throughout the whole
project, allowing large-scale reuse in the higher layers of the process, are demonstrated.

Further research on patterns in the CSCW area will proceed with the implementation of the
Project Management system, completing the whole process life cycle. The objective is to
create a number of patterns specially addressing reuse of CSCW applications. It is hoped that
the use of CSCW patterns results in more efficient development of a large family of CSCW
applications. Another future effort may be applying formal metrics in CSCW applications
developed with patterns, in order to accurately quantify the benefits in terms of time and
quality.

References

[Ara97] Araujo, R.; Dias, M.; Borges, M., “Computer Added Cooperative Software
Development: Classifications and Proposals”, In Proceedings of XI Brazilian
Symposium on Software Engineering X1, Fortaleza-Brazil, 1997.

[Bus96] Buschmann, F; Meunier, R.; Rohnert, H.; Sommerland, P.; Stal, M., “Pattern-
Oriented Software Architecture: A System of Patterns”, John Wiley & Sons,
Chichester, 1996,

[Coa91a] Coad, P.; Yourdon, E., “Object-Oriented Design”, Yourdon Press, 1991.

[Coa91b] Coad, P.; Yourdon, E., “Object-Oriented Analysis”, Yourdon Press, 1991.

[Coa97] Coad, P.; Mayfield, M., “Object Models: Strategies, Patterns & Applications -
Second Edition”, Yourdon Press, New Jersey, 1997,

XII Simpésio Brasileiro de Engenharia de Software - SBES'98 51

http://www.cvisiontech.com

[Fow97a] Fowler, M., “Analysis Patterns - Reusable object models”, Addison-Wesley, Menlo
Park, 1997.

[Fow97b] Fowler, M.; Scott, K., “UML Distilled. Applying the Standard Object Modeling
Language”, Addison-Wesley, Reading, 1997.

[Gam94] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J., “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison-Wesley, Reading, 1994,

[Laj94] Lajoie, R.; Keller, R., “Design and Reuse in Object-Oriented Frameworks: Patterns,
Contracts, and Motifs in Concert.”, In Proceedings of 62nd Congress of the
Association Canadienne Frangaise pour |'avancement des Sciences (ACFAS),
Montreal, 1994.

[Lot95] Lotus Development Corporation. “Groupware: Communication, Collaboration and
Coordination”, Cambridge, 1995.

[Pre95] Pree, W., “Design Patterns for Object-Oriented Software Development”, Addison-
Wesley, Wokingham, 1995.

[Rat97] Rational Software Corporation, “UML v 1.1 Notation Guide”, www.rational.com,
1997.

[Rum91] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Frederick, E.; Loresen, W., “Object-
Oriented Modeling and Design”, 1991.

[Tab94a] Taligent, Inc, “Building Object-Oriented Frameworks”, Taligent, Inc White Paper,
1994, http://www.taligent.com.

[Tal94b] Taligent, Inc, “Leveraging Object-Oriented Frameworks”, Taligent, Inc White
Paper, 1994, http://www.taligent.com.

[Ygl98] Yglesias, K, “IBM's Reuse Programs: Knowledge Management and Software
Reuse”, In Proceedings of Fifth International Conference on Software Reuse
(ICSR5), Victoria, 1998.

52 XII Simpdsio Brasileiro de Engenharia de Software - SBES'98

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349

