
XI - Simpósio Brasileiro de Engenharia de Software 15

On the Design of Bouncer: A Robust and Flexible License
Management Service for Avoiding Illegal Use of Software

1Frçncisco Vilar Brasileiro
jubfca@dsc. ufPb.br

1 Waljredo Costa Cime Filho+
walfredo@dsc.ufpb.br

1.2Tárcio Rodrigues Bezerra
trb@fapeal. br

1J. Anldo Beltrl1o Moura
antao@dsc.ufpb.br

'Universidade Federal da Paraíba - UFPB/Campus II
Centro de Ciências e Tecnologia - CCT

Departamento de Sistemas e Computação - DSC
Laboratório de Sistemas Distribuídos - LSD

Av. Aprigio Veloso, 882
58.109-970, Campina Grande, Paraíba

http://www.dsc.uljlb.br/- lsd

2Escola Técnica Federal de Alagoas- ETEFAL
Coordenadoria de Eletrônica e Processamento de Dados

Av. Barlo de Atalaia, S/N, Poço
57.000-000, Maceió, Alagoas

ABSTRACf

The pbases of gctting a software ready and introducing it into a targct-markct
are scldom empbasised oo traditional software cnginecring process modcls.
Nevcrtheless, these pbases are of the utmost importance in the productioo
process of many commercial applications. Within a number of activities
carried out oo these pbases, prot«tioo of intellectual property is a key issuc
that must be tackled. ln this paper we present the design of a license
managemcnt service that can be used to avoid illegal utilisation of
applications, specially those executed over a network. The unique
architectural model of our license managemcnt too! confers on it important
characteristics such as robustncss and flexibility, not prcscnt on other
solutions currently availahlc. Wc compare ou r approach with others and show
that ours is more suitable for a widcr range of applications.

Keywords and phrases: license managemcnt, fault-tolerance, commercial
applications' production process, software developing tools.

+ On lcave at University of California at San Diego dcveloping a PhD program supported by CAPES
(grant BEX2428195-4)

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

16 XJ - SBES

l. Introductioo

Software engineering has evolved imrnensely throughout the past two decades and there
are a number of software developing models that have been used successfuUy to produce high
quality reliable applications [Aoyama 93, Basili et ai. 95]. However, it has also been observed
that a large number of systems has not been able to attain the sarne levei of success using these
models [MMM 95).

More specifically, software engineering for most of the small and medium size
comrnercial application projecta does not seem to follow the sarne pattems that have been used
in large ad hoc systems. The excessive emphasis that conventional software engineering models
place on the development phase can be deemed as one possible cause for this. For a large
portion of the software industry, successfully developing a system that matches a correct
specification is only half of the story. Most of the cost of the product is not related to the
development phase, but with activities related to getting the system ready and available to
come onto the market. Comrnon activities that have to be carried out in these often
underestimated phases are: packaging, alpha and beta testing, distribution, technical support
and marketing of the product. Only recently some models have been proposed that take these
aspects into consideration [Yeh et ai. 91, Potts 93, MMM 95).

Within the highly competitive market of comrnercial software applications, lowering
development costs, enhancing product quality and customers' satisfaction, are important
factors that must always be sought after by developers. If suitable models are not available, one
approach that can be followed is to use appropriate developing tools [BMm 96].

ln this paper we present the design of a license management too! that can be used to
avoid illegal utWsation of software applications, specially those that can be used over a
network. As will become clear throughout the paper, protection against illegal use of a
software product is an issue that must be tackled on most of the activities associated with its
preparation and distribution phases. For instance, it is an usual practice to make non-mature
versions of a software product available for prospective customers for beta testing prior to
software distribution. Beta test copies are normally protected by some mecharúsm that makes
its use impossible after a number of executions have been performed or after some expiration
date has elapsed. Also, distribution costs can be substantially cut down if the protection
scheme is flexible enough to allow evaluation copies to be upgraded to full-functional ones
without the need for re-sending new media or supporting re-installation. Further, licensing
based protection schemes can be used as an important marketing strategy when defirúng final
product pricing policy [Éian 95).

The remairúng of the paper is structured as foUows. Section 2 presents the main
mecharúsms that have been used in order to protect software against illegal use; the principal
characteristics of each approach are discussed, with their advantages and disadvantages being
briefly studied. ln Section 3 we introduce Bouncer, a distributed, fault-tolerant and flexible
license management service that can be used to avoid illegal use of comrnercial applications.
Section 4 brings a comparison between Bouncer and other license management tools; we
emphasise the criteria we believe that indicate Bouncer to be a better solution than others
currently available. Finally, Section 5 concludes the paper with some closing remarks.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 17

2. Protectiog Software against IUegal Use

Protecting intellectual property is a rather controversial issue that has been discussed for
quite a long time. Legal protection such those supported by copyright and patent regulations is
the •main resource used by those interellted in preserving their intellectual property [RS 87).
However, for the software industry, legal protection atone does not seem to have the effect its
users would like to achieve. According to statistics from the Software Publishers Association
(SPA), software piracy was rellponsible for a revenue loss to software publishers of nearly USS
13 billion in 1993 and over USS 15 billion in 1994 [Aiaddin 97). Only in the United States'
market, it is estimated that about 33% of ali software comrnercialised is obtained illegally. ln
other markets the situation is even worse. For instance, the Asian market, one of the biggest,
and certainly one of the most important software markets in the world, piracy represents
around 80% of everything that is sold [Éian 95).

There are basically two reasons that tum illegal appropriation of software so frequent
and attractive. Firstly, since there is no loss of quality in the digital copying process, digital
copies are as good as their original counterparts. Secondly, many computer users either think
that software piracy is not really a crime, or believe that tracing of illegal software use is not
carried out effectively (which seems to be true).

Long ago software publishers have realised that software piracy must be prevented, and
a number of protection schemes have been developed. The first protection schemes produced
were based either on hardware padlock devices or software activation keys. For software
applications protected by a padlock to work it is necessary that a special device (the padlock)
be present at the computer where the application executes. A typical example of a padlock is a
device that must be attached between the serial interface and the mouse for the application to
work. Protection schemes based on software keys, on the other hand, require that, when
instaUing the product, the user types in a special sequence of characters (the activation key)
supplied by the software publisher, without which the installation process cannot be
successfully completed.

Although padlock based protection schemes are very secure, making virtually impossible
the illegal utilisation of software products, there are many concems regarding its use. This is
mainly because of the flexibility restrictions imposed to the application users and the need to
adapt padlocks to the evolution of interfaces and peripherals. ln fact , nowadays very few (if
any) products use this kind of software protection. Software key based schemes are not very
prornising either, since it is always possible for a dishonest user to get access to the activation
key, and install an illegal copy of the product. Despite the relatively low levei of security
offered by this kind of mechanism, many products still use i" mainly because of its simple
implementation and low cost.

With the rapid proliferation oflocal area networks (LANs) and the rnigration from stand­
alone environments to distributed ones, the issue of software protection has gained a
completely different perspective. The facility with which resources can be shared within a
LAN, makes software piracy not only easy to be achieved by dishonest users, but also difficult
to be avoided by honest ones. Within this framework license management services (LMS)
emerged as a solution for software protection [Casey 97].

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

18 XJ -SBES

Software licenses represent the rights and the utilisation rules for a software product, as
they have been agreed by a particular software publisher and a customer that acquires its
product. An LMS guaranties that software utilisation complies with the agreement represented
by its license. There are severa! attributes that can be used when defining a license agreement;
the list of licensing policies that follows gives a better idea of the flexibility and power of this
kind of software protection mechanism.

• Concurrent licenses: when applications are executed in a networked system, a
number of licenses (normally smaller than the total number of seats in the network)
can be acquired to allow concurrently use of the application by a lirnited number of
users; licenses float from user to user, in a per-activation basis; in networked systems
this is by far the most common licensing policy used by software developers;

• Node-locked licenses: licenses are available only at a single host; this is a useful
policy when the developer wishes to use the license management technology to
protect personal, single user systems, as opposed to networked application using
floating licenses; many LMSs use themselves this kind of protection;

• Demo licenses: these licenses are useful when developers want to distribute fully­
functional evaluation copies; applications protected by this kind of policy '."ÍII either
execute for a maximum number of times, or until an expiration date has elapsed;

• Domain licenses: this policy restricts application utilisation to a specific Internet
domain for department or company-wi~e licensing; this can be applied by either the
user or the deveio per to restrict use of an application outside an specific domain;

• Reserved licenses: reserve a number of licenses to specific groups of users; this is
useful when the user wishes to guarantee a certain levei of availability of the
application for a group of users;

• Shared licenses: allow many executions of a particular set of applications to share a
single license; this is normally used to allow multiple execution of an application,
provided that ali execute on the same host and X-display.

There are many other attributes that can be used in defining a licensing policy.
Furthermore, most of the policies described above can be combined to produce even more
sophisticated licensing policies.

The most common way of structuring an LMS follows the client-server model. Protected
software products are "wrapped" by a client code that is responsible for contacting the license
server in order to acquire an execution license. The server part of the LMS normally executes
as a daemon at a particular host - the server host - within the network (in stand-alone
configurations, both application an LMS execute on the sarne host). lts job is to receive
requests from client applications and verifY if their execution is in accordance with the license
agreement. Based on information gathered each time a request is received and on licensing
information available at the server host, the license server can respomi to the client in an
appropriate way. The behaviour of the client after receiving the response from the server is
application dependent. Normally, if the response is positive, i.e. there is an execution license
available for that client, the client will call the application which will continue its normal

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI - Simp6sio Brasileiro de Engenharia de Scftware 19

execution, otherwise, the client will abort the application execution with a suitable error
message. ln case the application succeeds in getting a license, after its execution is completed
control is retumed to the client, so that it can contact the server releasing the license used.
Figure I below shows the interactions between client and server on a conventional LMS.

Figure I : client and server interaction on a conventional LMS

Piracy is prevented by an LMS because the license server can only execute on a specific
authorised host (i.e. it is node-locked). Further, the licensing information is encrypted in such a
way that only the LMS can recognise its contents; any attempt to change this information will
invalidate it.

There are two ways to tie up the license server to the server host. The first approach is
to use a system specific signature (often simply the server host identification); the signature is
generated by the software publisher after getting the appropriate specific information from the
user and encrypting it; the resulting signature is then sent to the user, so that it can be stored in
a file accessible by the host server. The second approach is to use a hardware device (a
"dongle") that contains licensing information and must be connected to the server host
(normally through a parallel port). ln this case, it is also possible to have the license server
implemented inside this hardware device.

The procedures followed by software developers in order to integrate an LMS into their
software products vary slightly, depending whether the license server is tied up with the server
host through a software signature or a hardware device. However, in both cases developers
have to add a few subroutine caUs into their application so that it can contact the server trying
to acquire a license for ~xecution. Also, appropriate testing must be conducted, the need for
changes in the documentation must be assessed, and a number of cross departmental business
decisions must be made (e.g. definition of new pricing strategies, provision of technical support
for the LMS, etc.).

Additionally, if software signature is used, a license management group must be set up.
Creation and recording of licenses are the main activities carried out by this group. Obviously,
access to the license generation procedure should be restricted to as few individuais as possible
within the corporation. On the other hand, in order to maintain customers' satisfaction high,
the license management group has to respond quickly to ali customers' requests. These two
requirements are somehow conflicting and possibly difficult to be attained.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

20 XJ - SBES

When hardware devices are used, they have to be enclosed with the shrink wrapped
software (one device per license server). Devices can be supplied with pre-programmed license
infonnation, obviating the need for any interaction between software publishers and customers,
and consequently lhe ma.intenance of a license management group. Portability is another
advantage oftying up license servers and server hosts through a hardware device. To change
the server host it suffices to install the hardware device on the new server host. On the other
hand, the cost of the extra device and the limitations imposed to the distribution process (e.g.
products using tlús kind of protection cannot be distributed via the Internet), must be
accounted for.

Despite their flexibility and efficiency, LMSs are susceptible to operational
malfunctioning, contributing in some cases to a substantial increase on the work load of system
administrators at the user environment. ln order to make an application protected with an LMS
available to its users, the system administrator has to deal with new activities related to
installing hardware devices, starting daemons at specific hosts, maintaining license files, etc.
Further, since robustness is a fundamental property of an LMS, if the LMS does not
incorporate suitable fault tolerance features, its the system administrator' s task to maintain the
license server operational (e.g. re-starting crashed ·servers, releasing licenses held by
applications that had exüed abnonn~lly, etc.).

Although LMSs constitute a very promising solution for the problem of avoiding
software piracy, the discussion above has pointed out a number of drawbacks presented by
them. ln the following section we introduce an LMS that tries to minimise most of the
inconveniences comrnon on other LMS reported in the literature. Later, in Section 4, we retum
to the issue of analysing advantages and disadvantages of LMS tools and show how our
approach differentiates from the ones currently available.

3. The Bouncer Model for Software Protection

3.1. Sei"\! ice Architec:ture

Unlike most LMSs that follow a client-server programming model, the Bouncer LMS
adopts a hybrid model of distributed programming, merging the client-server model with the
peer-group model. ln the context of a single host, the Bouncer LMS uses a client-server model
similar to the model used by conventi'onal LMSs discussed previously. ln order to acquire an
execution license, the client requests it to a server that is always executing on the same host the
client is executing (if no such server is available the client itself is responsible for actiyating the
local license server). Requests to release execution licenses are also sent to tlús local server.
Differently from other approaches, the license server is a distributed server that executes on ali
hosts that hold an active copy of a protected application. The distributed server programming
model follows a peer-group approach. ln this way, the Bouncer LMS takes advantage of the
simplicity provided by a client-server model, and the potential greater robustness of a peer­
group model. Figure 2 shows the interactions between clients and servers on a Bouncer LMS.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Slmp6slo Brasileiro de Engenharia de Software 21

Figure 2: hybrid programming model ofthe Bouncer LMS

Again, the client part of the LMS is introduced into the application. When trying to
acquire an execution license, the client sends a request to the Bouncer server executing on the
local host. Any instance of the license server upon receiving a local license request, atonúcally
broadcasts tlús request to ali other instances of the Bouncer server executing on the network.
By collecting and processing these broadcasts, wlúch are guarantied to be received by ali
functioning servers in the sarne order, every instance of the license server is able to maintain a
consistent global knowledge of the licenses that have been granted, and therefore can decide
whether a local request should be granted or denied. Before exiting, an application that holds
an execution license must return it through a call to the local server; tlús in tum, atonúcally
broadcasts the request to the other servers. A more detailed description of the protocol
executed by clients and servers implementing a Bouncer LMS can be found in [BBC 97).

Severa! licensing policies can be implemented depending on the way servers are tied up
to hosts. ln its simples! protection form no ties are enforced. Applications and servers can
execute on any host in the network, however only a lirnited number of applications can execute
concurrently. Servers executing on every host with an active application are respónsible for
keeping track ofthe number ofapplications concurrently executing at ali times. New execution
licenses are granted only if the maximum number of concurrent executions has not yet been
reached. On the other spectrum an application can define soplústicated licensing policies wlúch
restrict execution ofapplications to a collection ofhosts witlún the network. Licensing policies
are specified through a software signature stored on a file (or files) accessible by ali hosts on
wlúch protected applications may execute. Signatures, among other tlúngs, can be used to
specify the set ofhosts or the domain where servers may execute. lt is worth noting that in the
simpler case, neither hardware devices, nor software signatures are needed; as we discuss in
Section 4, tlús can be a very attractive feature for an LMS, despite its linúted protection
capability.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

22 XI-SBES

3.2. Application Programmlng Interface

Bouncer's API offers a standard set of functions that should be used by software
developers in order to implement the client portion of a Bouncer LMS and have their
applications protected against unauthorised utilisation. The following functions are provided by
the Bouncer API:

• B_RequestO: thls function requests an execution license to the local license server;
the application is blocked until a response is retumed; if no server is executing first a
server is started and then the request is sent;

• B_ReleaseQ: this function is used to release an execution license; when the
application is about to fuúsh its execution, it must retum its execution license to the
server, so that this license can be used in the future by other activation of the
application; if no more protected applications are executing on that host, the server
also exits;

• B_Chec:kO: this function is used by applications holding a license, in order to verify
the ex,istence of a local Bouncer server (see Section 3.3 below); if there is no server
executing, a new server is re-started and a license re-validation request is issued;

• B_MonitO: this function requests information about applications being protected by
the license server (e.g. host where they execute, nurnber of licenses used, number of
licenses available, etc.); it is used to implement license metering tools [Casey 97).

Altematively, it is possible for software developers (or even publishers, in this case) to
use a wrapper to make the software protection scheme transparent to the application. When
the user executes the application, first the wrapper (playing the role of the client) is executed
and requests an execution license to the local server. Depending on the response received, the
actual application is activated or the wrapper aborts its execution. After the exec:ution of an
application the wrapper sends a request to release the license just used.

3.3 Fault Tolerante Properties

As mentioned before, the functioning of an LMS may be jeopardise by the occurrence of
faults . Faults, in tum, may result from both intentional (e.g. attempts to break software
protection) and non-intentional (e.g. a host crash) events. ln any case, an LMS must continue
providing its service despite the occurrence of faults, i.e. an LMS must incorporate provisions
to tolerate as many faults as possible. There are basically four faulty behaviours that can be
observed during the execution of a Bouncer LMS, and should be tackled: i) a (local) server has
failed; ii) a false server tries to impersonate a Bouncer server; iii) the application has failed
before releasing its license, generating orphan licenses; iv) the network is partitioned. We now
discuss how each ofthese faulty behaviours are dealt with by the Bouncer LMS.

Server Fajlure

This can happen due to crashes on either the license server or the server host. lf the
license server has crashed, the client part of the applications executing at that host will
automatically re-start the server. This is achieved by introducing into the application code

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simp6sio Brasileiro de Enge11haria de Software 23

frequent calls to the B _ CheckO function. A re-started server receives information about the
current allocation of licenses from other servers in the network (if the crashed server was the
only server available, the re-validation requests issued by lhe B _ CheckO calls will suffice to
update its state). On the other hand, if the host has crashed, since the local applications have
also crashed, there is no need to re-start the server (eventually a protected application will be
activated on that host and a new server will be started).

The group of local servers that collectively implements the license server executes a
membership control protocol whose main objective is to atomically detect server failures [BBC
97]. Thus, when the server fails, two possibilities may arise. ln the first situation, all other
functioning servers will detect that a server has failed. The only action that they take is to
release any license held by applications executing at the host where the faulty server was
executing. ln the second case, the server recovery is quick enough to preveni the membership
protocol from detecting its failure, therefore no further action is needed.

Server lmpersonatjon

A dishonest user rnight try to break the Bouncer protection by installing a fake license
server which !llways grants execution licenses to applications. To elirninate this problem, ali
messages exchanged by client and servers are signed at their origin and authenticated at the
destiny. There are well known cryptogt:aphy techniques that can be used to implement such
service [Schneier 96).

C!ient Failyre

Unlike server failures, treatment of client failures are normally postponed until the point
where a license request may be denied (e.g. because the maximum number of concurrent
licenses granted, for a particular application, has been reached). At this point every server
initiates a local search for orphan licenses. For every local application that has crashed, the
local server broadcasts a license release request to the other servers. ln this way, every server
can consistently process ali release requests issued by the severa! orphan detection procedures
performed, and maintain its consistent view ofthe licenses in use.

Network Fajlure

Network partitioning is a difficult problem to solve. ln conventional LMSs based on a
centralised license server, the partition ofthe network causes the unavailability ofthe service to
applications that were executing (or would be executed) at the partitions where the server host
is not present, until the network is fixed. ln the case of a distributed LMS, the partition of the
network rnight perrnit the replication of the number licenses in use, allowing temporary illegal
activation of an application. However, once the network is re-unified, the correct licenses is
enforced, and illegal activation of applications is detected and, depending on the developer's
decision, aborted.

4. A Comparison between Severa! License Management Tools

lt has long been recognised that the utilisation of appropriate tools is ao effective way to
improve productivity and product quality in the software production process. However,
introducing a new tool incurs costs that should not be overlooked [BMIH 96). Besides the

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI-SBES

acquisition cost, training project members to use the tool and converting or adapting current
designs and production processes to incorporate the new technology are other sources of
expenditure that must be accounted for. Furthermore, in the case of software protection tools,
the impact that these tools might have at the users' environment is an important matter to be
pondered.

ln order to assess the quality and suitability of a tool, software publishers normally
follow well defined evaluation guidelines. For example, the ISO 9126 standard proposes a set
of characteristics such as functionality and usability, among others, that may be used in
estimating the quality of a software product [IS09126]. We will follow the criteria listed
below, to develop our comparison between the Bouncer LMS and other LMSs available.

• Functionality: to evaluate how well the too! performs its task;

• Usability: to evaluate how easily the tool can be used;

• Reliability: to evaluate the robustness ofthe too!; and

• Fledbility: to evaluate how much effort is needed to integrate the too! into the
production process.

As far as we know, ali LMSs currently available adopt the client-server model discussed
in Section 2. However, they can be divided into two different classes, depending on the method
used to node--lock servers to specific hosts. Thus, there are those which use software
signatures, commonly found protecting a_pplications executing on workstation-based systems
(e.g. FlexLM [FlexLM 96, FlexTO 96), ElanLM [ÉianLM 95), iFORILS [Gradient 95)), and
those normally used to protect applications executing on PC-based systems, which adopt
hardware devices (e.g. HASP [AIIadin 97), SentinelLM [Ra.inbow 97)). ln lhe discussion that
follows we use the term software LMSs to refer to LMSs using software signature schemes,
and hardware LMS to refer to LMSs using the hardware device approach.

Functionaljty

The main functionality of an LMS is to protect software against illegal utilisation. Thus,
its functionality can be measured by assessing how secure is the method used to implement
their protection scheme. There are two issues to handle: i) preventing illegal copying of the
protected application; and ü) preventing illegal utilisation of the protected application. The first
problem is normally solved by tying up the ex~tion of servers to specific and well defined
hosts, whilst the second problem is solved by storing encrypted licensing information at the
user's environment in such a way that only the LMS servers may recognise it; further, any
attempt to modify the information must be detected by the server. Since cryptography is the
heart of the security mechanisms used by ali LMSs, they use cryptography algorithms that are
virtually impossible to break [Schneier 96).

ln software LMSs, like Bouncer, the inforrnation describing which host (or hosts) may
execute the server is included into the signature file, which also contains licensing information.
The signature file is encrypted by the software publisher and sent to the user to be stored on a
file accessible by ali LMS servers. Messages exchanged between the protected application and
lhe server are also encrypted. ln hardware LMSs, the location ofthe "dongle" itself defines in a

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 25

straightforward way the host where the server executes. Software publishers generate
encrypted licensing infonnation which is stored into the hardware device. Once the device is
installed at the user's envirorunent, the infonnation can be accessed by the LMS server.
Protected applications issue calls directly to the hardware device, which encrypts a reply and
sends it to the application, therefore, it is not possible to use another device to impersonate the
original one. ln both cases, any attempt to change the licensing infonnation is detected by the
server.

Apart from using cryptography on signature files and "dongles" and on the infonnation
exchanged by clients and servers, a number of mechanisms are often incorporate to LMSs, in
order to discourage the action of hackers trying to reverse engineer the protection scheme.
Common mechanisms to achieve this goal are the disabling of interrupts used by simple
debuggers to preveni hand-debugging and the inclusion of 'spaghetti' code (e.g. using
computed jumps or self-modified code) to prevent hackers from easily walking the security
code.

Using the mechanisms described above, the Bouncer LMS as well as ali LMSs currently
available, if properly used by software publishers, can provide very good software protection
[NSTL 95).

Nearly ali LMSs available offer a similar API and provision for the utilisation of a
wrapper to make the incorporation of the protection mechanism easier and programming
language independent. When the wrapper is not used, applications must incorporate calls to the
functions provided by the LMS API. Normally, when the application first starts it calls a
function to acquire an execution license, if the license is successfully acquired, the application
main body is executed. Just before exiting, the application calls a function to release the license
it holds. Additionally, it may be required that the application frequently calls a function that
checks if the license held is still valid (see the reliability issues below). This is commonly
achieved by starting a simple watchdog thread. We can conclude, then, that ali LMSs,
including Bouncer, are fairly simple to be used by software developers.

Reljability

Ali LMSs based on the client-server model suffer, in greater or lesser extent, from
reliability problems. First, when the server is down, applications cannot be used. Also, ali
applications which were executing whilst the server had gone down are nonnally aborted or
blocked.

Servers can fail for a variety of reasons - the server host has gone down, the server
daemon has been inadvertently killed, etc. One approach often used to tolerate such failures is
to replicate the license server on hosts which fail independently. Ali software LMSs available
provide mechanisms for al.lowing server replication on pre-defined hosts. Some LMSs (for
example, iFORILS) implement a simpler replication strategy whereby servers divide the total
number of concurrent.licenses among them, i.e. server failures produce a gentle degradation of
the service. However, in al.l cases, the system adrninistrator at the user envirorunent is
responsible for detecting the failure of servers and re-starting faulty servers to re-establish
system dependability levei. Further, if ali hosts pre.defined to execute license servers are

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

26 Xl-SBES

unavailable (e.g. for maintenance), the service cannot be re-started until at least one of these
hosts is made available or a new license file allowing new hosts to execute the license server,
has been received from the software publisher.

Even hardware LMSs with the server functionality hardwired into the "dongle" device
can fail, since the host where the device is installed can fail or the device can stop functioning.
ln the fonner case the system adrninistrator has to detect the host failure and install the device
on another functioning host. ln the latter case, recovery can only be attained by contacting the
technical support staff of the software publisher and ordering a new operational hardware
device. Although the reliability of the hardware device is high enough to mini mi se the need for
replacement due to malfunctioning, the usual practice of moying the hardware device from one
machine to another within the corporation may increase the number of defects and tosses of the
hardware device.

Unlike ali other LMSs, the Bouncer LMS allows server recovery without the
intervention of the system adrninistrator. This is achieved by adding to the application code the
necessary server start up procedures as well as frequent calls to check the existence of lhe
server. When a server failure is detected, a new server is automatically re-started. lf necessary,
the new server gets its status from a server running on another host. Also, the peer-group
architecture of Bouncer provides transparent replication of the service, producing a highly
available LMS.

A second problem that may occur is client failure. When the application fails before
releasing the execution license it holds, that license is lost until recovery is carried out. Ali
LMS available, but the ÉlanLM1

, need intervention from the system adrninistrator for
recovering orphan licenses. As presented in Section 3.3, the Bouncer LMS recovers
transparently from ali protected application failures. Before denying an execution license the
servers execute local procedures that try to détect orphan licenses generated by local
applications that have crashed. Once these Hcenses are detected, the server issues the
corresponding release calls, freeing them.

Finally, network failures are also a source of problems. ln ali LMSs available, network
partition leads to service unavailability for ali applications executing (o r to be executed) at a
particular partition where there is no license server executing. Also, the behaviour of replicated
servers that have been discoMected may cause additional problems. ln ali cases, the network
partition has to be detected and fixed by the system adrninistrator. ln most systems, once the
partitioning is fixed, the service is operational again. However, when there are replicated
servers executing, sometimes the system adrninistrator has to re-start ali servers and any
surviving application.

As discussed in Section 3.3, the Bouncer LMS deals with network partition in such a
way that it tries not to penalise users or system adrninistrators. Even when the network is
broken, it is possible that applications in any of the resulting partitions may execute. The only
problem is that users may temporarily (i.e. during the time the network is broken) execute
applications illegally, since each partition will resemble the original network, resulting in a
replication of the licensing agreement. However, once the system adrninistrator has detected

1 lt is not clear how the ÉlanLM LMS deals with the recovery of orphan licenses, but its documentation
[ÉlanLM 95) argues that the product can tolerate this kind offailure transparently.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simp6sio Brasileiro de Engenharia de Software 27

and fixed the network, the functionality of the protection mecharusm is restored. Network
partitioning normally affects a large number of applications in a networked system, therefore,
system administrators are already supposed to monitor and fix this kind of failure. Further,
since network partitioning disturbs many applications, it is unlikely that a dishonest system
administrator would deliberately break the network in arder to execute protected applications
illegally.

Flexibility

Besides including the necessary API calls into the protected application, integrating an
LMS to an application requires a number of activities that must be conducted by software
developers or publishers. First, documentation must be changed in order to incorporate
information on how to install servers and have them automatically started at boot time, or how
to install hardware "dongles", and how to deal with LMS failures. Second, if a software LMS
is used, a license management group must be set up. Third, if a hardware LMS is used, the
packaging phase procedures must be changed to allow the inclusion of the hardware device
along with the protected software. Finally, technical support staff must be trained to deal with
the new problems that the LMS may cause.

Unlike ali other software LMSs available, the Bouncer LMS can provide a protection
service that does not require sett.ing up a license management group. This is because
concurrent licenses, the most commonly used licensing policy, can be implemented by the
Bouncer LMS without the need for a software signature. The number of concurrent executions
of an application can be hardwired into the server code that accomparues the application,
obviating the software signature, and consequently the necessity of a license management
group. Obviously, since servers are not node-locked in any way, this protection mechanism is
note as secure as one based on hardware keys or software signatures. However, for small
software-houses, the extra cost of adding a hardware device for each copy sold or maintaining
a license management group to deal with the generation of software signature is too high.
Therefore, a less secure but cheaper solution might be a more suitable option.

As mentioned before, Bouncer's peer-group model eliminates the need for starting
servers and monitoring client and server ~ailures. As a consequence, few changes (if any) will
have to be made on the documentation of protected applications, and less burden is put on
system administrators. ln its most secure form, Bouncer' s only requirement is that a file
containing the software signature be accessible by ali hosts where the protected application
may execute. An appropriate installation script rnay also hide this fact from the user. Further,
since there is no need for a hardware device to be shrink wrapped with the software,
applications protected by the Bouncer LMS may use electronic distribution procedures.

ln summary, the Bouncer LMS provides a very flexible protection service, with varying
security properties and associated costs. Software developers may choose from a simple
protection scheme allowing only license agreement enforcement with litt.le modifications on the
software production process, to sophisticated ones allowing both license agreement
enforcement and copying prevention, but requiring some modifications on the production
process. ln ali cases however, little extra technical support is needed, since the protection
service is transparent to users and system administrators.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

28 XI - SBES

5. Conclusions

Software production can be a very costly activity, demanding large investments of money
and time. Firstly, there is the need for contracting qualified personnel (programmers, software
engineers, managers, techrlical support staff, etc.); secondly, several software development
tools (compilers, .third party libraries, CASE tools, etc.) and different hardware platforms (e.g.
for porting) must be acquired; thirdly, marketing the product accounts for costs related to
hi.ring graphical designers and marketing experts as weU as producing and publishing publicity
material; finaUy technical support has to be provided. Nevertheless, the product of ali this
effort can be illegally appropriated though a non-authorised copy.

ln this paper we have discussed the role of software protection within the commercial
software production process. We have presented several ways of protecting software, paying
special attention to protection mechanisms based on license management services (LMSs). We
have analysed their advantages and drawbacks, and introduced an LMS that tries to eliminate
problems founded on others approaches currently available.

Although our approach presents robustness and flexibility characteristics not present in
other solutions, it also presents some drawbacks. First, support-free protection solutions can
only be provided with substantial decrease on the security of the protection mechanism.
Second, replicating the server on every host that executes a protected application increases the
amount of resources needed to execute the application. FinaUy, illegal executions of a
protected software are possible when the network is partitioned. Despite these disadvantages,
we believe that the advantages presented by our approach outweigh the disadvantages, making
it a better solution for a wider range of applications.

Currently an implementation of the Bouncer LMS is under development. The enterprise
receives financial support from the Brazilian program Softex 2000, through one of its Genesis
consortium [Poligene 97].

Acknowledgements

Authors would like to thank financial support provided by CNPq (grants 380.076/94-2,
300.646/96-8), CAPES (grant BEX2428/95-4), and CNPq/PNUD (grant 680071 /94).

Referentes

[Ailadin 97)

[Aoyama 93]

[Basili et ai. 91]

(BBC 97]

Alladin Knowledge Systems, lnc. HASP Home Page,
http://www.aks.com/, 1997.

M. Aoyama, "Concurrent Development Process Model," IEEE
Software, Vol. 10, N. 4, pp. 46-55, July 1993 .

V. Basili et ai., "SEL's Software Process-Improvement Program,"
IEEE Software, Vol. 12, N. 6, pp 83-87, November 1995.

T.R. Bezerra, F.V. Brasileiro, and W.C. Cime Filho, "Bouncer - Um
Serviço Distribuldo e Tolerante a Faltas para Controle de Licenças de
Software," (in Portuguese), submitted to the VII Symposium on
Fault-Tolerant Computers, March 1997.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI - Simpósio Brasileiro de Engenharia de Software 29

[BMJH 97)

(Casey 97)

[Éian 95]

[ÉianLM 95]

[FlexLM 96)

[FiexTO 96]

[Gradient 95]

[IS09126)

[MMM95]

[NSTL 95)

[Poligene 97]

[Potts 93]

[Rainbow 97]

[RS 87)

[Schneier 96]

[Yeh et ai. 91]

T. Bruckhaus, N.H. Madhavji, I. Janssen, and J. Henshaw, "The
Impact ofTools on Software Productivity," IEEE Software, Vol. 13,
N. 5, pp. 29-38, September 1996.

L .. Casey, "Network License management Solutions," Rainbow
Technologies, http://www.mbo.com/SENTINELLM/Article.html,
1997.

Élan Computer Group. Executive Brief of License Management,
http://www.elan.com/ebintro.html, 1995.

Élan Computer Group. Élan License Manager Technical Overview,
http://www.elan.com/elanlm.html, 1995.

GLOBEtrotter Software, lnc. FlexLM End User Manual,
http://www.globes.com/manual.html, 1996.

GLOBEtrotter Software, lnc. FlexLM Technical Overview,
http://www.globes.com/flexto.html, 1996.

Gradient Technologies, lnc., iFORILS Quick Start Guide, Version 2,
http://www.gradient.com/, 1996.

Infonnation Technology - Software Product Eva1uation - Quality
Characteristics and Guidelines for their Use, IS0-9126, 1991.

L.M.F. Martins, J.A.B. Moura, and A.F.C. Medeiros, "R-Cycle: Um
Molde para o Processo de Produçlo, Disporúbilizaçlo e Evoluçaão
de Software," (in · Ponuguese), Proceedings of the IX Brazilian
Symposium on Software Engineering, 1995.

National Software Testing Laboratories. NSTL Dongle Security
Comparative Evaluation, October 1995.

Núcleo Poligene. Home Page, http://www.dsc.ufpb.br/-genesis.

C. Potts, "Software Engineering Research Revisited," IEEE
Software, Vol. 10, N. S, pp. 19-28, September 1993.

Rainbow Technologies, SentineiLM Home Page,
http://www.mbo.com/SENTINELLM/home.html, 1997.

D. Remer and E. Stephen, Leaal Care for your Software - a Step by
Steo Gujde for Coropyter Software Ri&hts and Publishers, 3"' edition,
1987.

8 . Schneier, Applied Cryptography, 2114 edition, John Wiley & Sons,
Inc., New Y ork, 1996.

R.T. Yeh et ai., "A Commonsense Management Model," IEEE
Software, Vol. 8, N. 6, pp. 23-33, November 1991.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	Z0001
	Z0002
	Z0003
	Z0004
	Z0005
	Z0006
	Z0007
	Z0008
	Z0009
	Z0010
	Z0011
	Z0012
	Z0013
	Z0014
	Z0015
	Z0016
	Z0017
	Z0018
	Z0019
	Z0020
	Z0021
	Z0022
	Z0023
	Z0024
	Z0025
	Z0026
	Z0027
	Z0028
	Z0029
	Z0030
	Z0031
	Z0032
	Z0033
	Z0034
	Z0035
	Z0036
	Z0037
	Z0038
	Z0039
	Z0040
	Z0041
	Z0042
	Z0043
	Z0044
	Z0045
	Z0046
	Z0047
	Z0048
	Z0049
	Z0050
	Z0051
	Z0052
	Z0053
	Z0054
	Z0055
	Z0056
	Z0057
	Z0058
	Z0059
	Z0060
	Z0061
	Z0062
	Z0063
	Z0064
	Z0065
	Z0066
	Z0067
	Z0068
	Z0069
	Z0070
	Z0071
	Z0072
	Z0073
	Z0074
	Z0075
	Z0076
	Z0077
	Z0078
	Z0079
	Z0080
	Z0081
	Z0082
	Z0083
	Z0084
	Z0085
	Z0086
	Z0087
	Z0088
	Z0089
	Z0090
	Z0091
	Z0092
	Z0093
	Z0094
	Z0095
	Z0096
	Z0097
	Z0098
	Z0099
	Z0100
	Z0101
	Z0102
	Z0103
	Z0104
	Z0105
	Z0106
	Z0107
	Z0108
	Z0109
	Z0110
	Z0111
	Z0112
	Z0113
	Z0114
	Z0115
	Z0116
	Z0117
	Z0118
	Z0119
	Z0120
	Z0121
	Z0122
	Z0123
	Z0124
	Z0125
	Z0126
	Z0127
	Z0128
	Z0129
	Z0130
	Z0131
	Z0132
	Z0133
	Z0134
	Z0135
	Z0136
	Z0137
	Z0138
	Z0139
	Z0140
	Z0141
	Z0142
	Z0143
	Z0144
	Z0145
	Z0146
	Z0147
	Z0148
	Z0149
	Z0150
	Z0151
	Z0152
	Z0153
	Z0154
	Z0155
	Z0156
	Z0157
	Z0158
	Z0159
	Z0160
	Z0161
	Z0162
	Z0163
	Z0164
	Z0165
	Z0166
	Z0167
	Z0168
	Z0169
	Z0170
	Z0171
	Z0172
	Z0173
	Z0174
	Z0175
	Z0176
	Z0177
	Z0178
	Z0179
	Z0180
	Z0181
	Z0182
	Z0183
	Z0184
	Z0185
	Z0186
	Z0187
	Z0188
	Z0189
	Z0190
	Z0191
	Z0192
	Z0193
	Z0194
	Z0195
	Z0196
	Z0197
	Z0198
	Z0199
	Z0200
	Z0201
	Z0202
	Z0203
	Z0204
	Z0205
	Z0206
	Z0207
	Z0208
	Z0209
	Z0210
	Z0211
	Z0212
	Z0213
	Z0214
	Z0215
	Z0216
	Z0217
	Z0218
	Z0219
	Z0220
	Z0221
	Z0222
	Z0223
	Z0224
	Z0225
	Z0226
	Z0227
	Z0228
	Z0229
	Z0230
	Z0231
	Z0232
	Z0233
	Z0234
	Z0235
	Z0236
	Z0237
	Z0238
	Z0239
	Z0240
	Z0241
	Z0242
	Z0243
	Z0244
	Z0245
	Z0246
	Z0247
	Z0248
	Z0249
	Z0250
	Z0251
	Z0252
	Z0253
	Z0254
	Z0255
	Z0256
	Z0257
	Z0258
	Z0259
	Z0260
	Z0261
	Z0262
	Z0263
	Z0264
	Z0265
	Z0266
	Z0267
	Z0268
	Z0269
	Z0270
	Z0271
	Z0272
	Z0273
	Z0274
	Z0275
	Z0276
	Z0277
	Z0278
	Z0279
	Z0280
	Z0281
	Z0282
	Z0283
	Z0284
	Z0285
	Z0286
	Z0287
	Z0288
	Z0289
	Z0290
	Z0291
	Z0292
	Z0293
	Z0294
	Z0295
	Z0296
	Z0297
	Z0298
	Z0299
	Z0300
	Z0301
	Z0302
	Z0303
	Z0304
	Z0305
	Z0306
	Z0307
	Z0308
	Z0309
	Z0310
	Z0311
	Z0312
	Z0313
	Z0314
	Z0315
	Z0316
	Z0317
	Z0318
	Z0319
	Z0320
	Z0321
	Z0322
	Z0323
	Z0324
	Z0325
	Z0326
	Z0327
	Z0328
	Z0329
	Z0330
	Z0331
	Z0332
	Z0333
	Z0334
	Z0335
	Z0336
	Z0337
	Z0338
	Z0339
	Z0340
	Z0341
	Z0342
	Z0343
	Z0344
	Z0345
	Z0346
	Z0347
	Z0348
	Z0349
	Z0350
	Z0351
	Z0352
	Z0353
	Z0354
	Z0355
	Z0356
	Z0357
	Z0358
	Z0359
	Z0360
	Z0361
	Z0362
	Z0363
	Z0364
	Z0365
	Z0366
	Z0367
	Z0368
	Z0369
	Z0370
	Z0371
	Z0372
	Z0373
	Z0374
	Z0375
	Z0376
	Z0377
	Z0378
	Z0379
	Z0380
	Z0381
	Z0382
	Z0383
	Z0384
	Z0385
	Z0386
	Z0387
	Z0388
	Z0389
	Z0390
	Z0391
	Z0392
	Z0393
	Z0394
	Z0395
	Z0396
	Z0397
	Z0398
	Z0399
	Z0400
	Z0401
	Z0402
	Z0403
	Z0404
	Z0405
	Z0406
	Z0407
	Z0408
	Z0409
	Z0410
	Z0411
	Z0412
	Z0413
	Z0414
	Z0415
	Z0416
	Z0417
	Z0418
	Z0419
	Z0420
	Z0421
	Z0422
	Z0423
	Z0424
	Z0425
	Z0426
	Z0427
	Z0428
	Z0429
	Z0430
	Z0431
	Z0432
	Z0433
	Z0434
	Z0435
	Z0436
	Z0437
	Z0438
	Z0439
	Z0440
	Z0441
	Z0442
	Z0443
	Z0444
	Z0445
	Z0446
	Z0447
	Z0448
	Z0449
	Z0450
	Z0451
	Z0452
	Z0453
	Z0454
	Z0455
	Z0456
	Z0457
	Z0458
	Z0459
	Z0460
	Z0461
	Z0462
	Z0463
	Z0464
	Z0465
	Z0466
	Z0467
	Z0468
	Z0469
	Z0470
	Z0471
	Z0472
	Z0473
	Z0474
	Z0475
	Z0476
	Z0477
	Z0478
	Z0479
	Z0480
	Z0481
	Z0482
	Z0483
	Z0484
	Z0485
	Z0486
	Z0487
	Z0488
	Z0489
	Z0490
	Z0491
	Z0492
	Z0493
	Z0494
	Z0495
	Z0496
	Z0497
	Z0498
	Z0499
	Z0500
	Z0501
	Z0502
	Z0503

