
XI- Simp6slo Brasileiro de Engenharia de Software 165

A Framework for Developing Confl.gurable Objects

Dilma M. Silva

Computer Science Dei>artment
University of Sã.o Paulo

Rua do Matão, 1010
05508-900 São Pa.ulo'bBra.zil

dilmaOime.usp. r

Karsten Schwa.n

College of Computing
Georgia. lnstitute of Technlogy

Atlanta, GA 30332

schwanOcc.gatech.edu

Resumo
A crescente importância de novas áreas de aplicação como sistemas multimídia, siste

mas colaborativos e distribuição de informação na Internet vem aumentando a demanda
por flexibilidade no software. Este artigo apresenta um arcabouço (COBSOM) para a
construção de programas paralelos e distribuídos configuráveis onde a funcionalidade as
sociada ao tipo de um objeto é explicitamente separada de outras características como
desempenho, confiabilidade e propried~des temporais. COBsOMsustenta um modelo de
programação onde o manuseio da configuração é uma aspecto central no projeto, pro
ve.ndo abstrações para incorporar flexibi lidade em um sistema orientado a objetos de
forma met6dica. Além disto, aspectos de desempenho são explorados através de ajuste
dinâmicos (em tempo de execução) dos mecanismos que os influenciem. Apresentamos
os elementos básicos de nosso modelo de configuração, assim como Data_Qbject, um ob
jeto configurável complexo que encapsula os dados de saída de uma aplicação científica
paralela e distribuída de alto desempenho.
Palavras-chave: configuração, flexibilidade, projeto orientado a objetos, objetos distri
buídos

Abstract
The recent boom of new application categories, such as multi-mediasystems, groupwa

re, a.nd the wide area distribution of information across the Internet, has led to further
demands for flexibility in software. T his paper presents a framework (COBSOM) for buil
ding configurable parallel and distributed programs where type-dependent object functio
nality is explicitly separated from its characteristics subject to configuration, including
its performance, reliability, a.nd timing properties. COBsOMsupports a programming
model where dealing with configuration issues is a central part of the design. It provides
abstractions for incorporating flexibility into a distributed object-oriented application in
a methodical fashion. ln addition, performance issues are addressed by considering ruo
time execution adjustme.nts of the basic mechanisms that influence them. We introduce
the basic elements of the model. We also present Data_Object, which has been develo
ped with COBS0 M. Oata_Object is a complex configurable object that. encapsulates data
output from a high performance parallel and distributed scientific application.
Keywords: configuralion, flexibilily, object deoign,diotributed objé~h

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

166 ~- SBES

1 Introduction

Software fle:tibility is an important issue during the development of high performance and
real-time applications, reliable systcms, and in exploratory computing(27]. Furthermore,
flexibility is pcrceived as a generally desirable software characteristic, since it facilitates
the adaptation of a software product to new execution environments, usage constraints,
and functionality requirements. The recent boom of new application categories, such as
multi-media: systems and the wide area distribution of information across the Internet,
has led to further demands for flexibility in software. Namely, in ali such applications,
the attainment of reasonable leveis of performance requires the exploitation of specific
characteristics of their execution environments, typically by the execution of behaviors
specialized for them. As a consequence, the software development process should address
runtime fle:tibility as a crucial requirement for current and emerging application domains
by incorporating adaptation capabilities into software components. Specifically, we aim
to offer configurable objects as a means of achieving flexible systems in which runtime
execution adjustments lead to improved performance. Namely, a flexible software element
should be able to adjust itself to its current execution environment in such a way tbat it
can mimic the performance of an object customized for the environment. This not only
requires the element to be configurable, but also capable of understanding its execution
environment and its relationship with other software components.

Our work explores configurability ~sues. The goal of tbis work is the development of
programming environment support for reasoning about and dealing with configuration
issues. The framework we have constructed, COBSOM, (1) addresses performance issues
by considering the basic mechanisms that influence them; and (2) provides abstractions
for incorporating flexibility into a distributed object program in a methodical fashion .

Runtime adaptation of high performance scientific applications has been investigated
by our group for many years(9, 8]. ln collaboration with atmosphericscientists at Georgia
Tech, we have developed a parallel and distributed global chemical transport model(l6)
capable of running on any of the high performance engines in our computing environ
ment (Figure 1). Models Jike this are important tools for answering scientific questiona
concerning the distribution of chemical species such as chlrofluorocarbons, hydrochlo
rofluorocarbon, and ozone. This model generates a very large set of data at each time
step of the simulation. As a result, making the data available to the end user brings out
problems similar to data mining in large database systems. Using COBSOM , we develo
ped a configurable object that offers flexible and efficient access to the model's data, as
described in Section 4.

2 Related Work

Runtime flexibility per se is not a new concept, as evident from the early uses of self mo
difying code in operating systems. As hardware capabilities evolved, software technology
has advanced and it has become possible for program designers to consider a diversity
of strategies and paradigms in order to match widely varying application requirements.

Both the high performance computing and the operating system communities have

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio_ Brasileiro de Engenharia de Software

I
,.

liN - . '
Coonpulo.....,_ ---·--

167 --

Figura 1: The computing environment in the Distributed Laboratories Project at Georgia
Tech.

used program configuration to improve performance or reliability. A variety of research
results has enabled the runtime configuration of operating systems in order to impro
ve the performance of specific user programs, including the early work on the remova)
of operating system services from 'fixed' kernels to the configurable user levei in the
Mach[22) and NT[6) operating systems, the specialization of criticai fragments of code in
Synthesis[19), and the notion of micro-kernels and user-levellibraries for implementing
customized operating system abstractions[10). ln effect, such research has established the
fact that application programs may be 'combined' with operating system functions such
that both may be configured jointly, using the sarne programming techniques and soft
ware infrastructures. Such joint configuration is explored in severa! recent object-based
efforts[14), including the Choices[4), Spring[l3), Chaos[24), Apertos[28), and ACE[23)
operating systems.

For parallel programming, the chosen leveis of parallelism, scheduling, and synchro
nization mechanisms may vary based on the data and resources available. ln the work
described in [20) we achieved performance improvements through the dynamic adaptation
of object and invocation implementations. We built a Configuration Toolkit (CTK)[26],
which is a library for constructing configurable object-based abstractions implementing
multiprocessor programs or operating system components. The library is unique in its
exploration of runtime configuration for attaining performance improvements: (1) its pro
gramming model facilitates the expression and implementation of program configuration,
and (2) its efficient runtime support enables performance improvements by configura
tion of program components during their execution. Program configuration is attained
without compromising the encapsulation or the reuse of software abstractions, by expli
citly separating the type-dependent object functiona.lity from its properties subject to
configuration, including its performance, reliability, and timing properties. Using CTK,
objects may be specialized using diverse techniques, including parameterization and in-

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

/68 Xl-SBES

terposition. Multiple specializations may be applied simultaneously by association of
multiple policies with objects, resulting in dynamically configurable systems where attri
butes resemble 'knobs' being manipulated at runtime and policies implement the changes
resulting from such manipulations.

The development of object oriented technology incited new ways of structuring imple
mentations. lt became common sense that in some arenas (e.g., operating systems, real
time systems, distributed applications) many implementation decisions did not represent
"just details"; on the contrary, they had a crucial impact on performance ((14]). 01>
ject orientation was proposed as a way of promoting incremental design, robustness and
incorporating diverse implementation alternatives. ln particular, object oriented langua
ges that directly support the use of reflective programming ((17)) and meta-objects ((12),
(7)) such as Smalltalk and CLOS are advocated by researchers in the object oriented
community as ideal environments for developing flexible systems. The meta-objects are
similar to the configuration abstraction provided by COBSOM . Both approaches pro
vide mechanisms for changing an object's behaviors dynamically in most of its aspects
(object creation, method invocation, etc), but in general, meta-object protocols address
configuration problems for which efficient runtime configuration is not crucial.

ln SOM(7) or CLOS(21), reflection principies are used for changing object behavior
by invoking the methods available to create and initialize classes, to compose their me
thods tables, etc. As a result, object descriptions may be altered at runtime by invoking
the inherited methods for dealing with class objects, thereby attaining configuration by
manipulation of a potentially complex class description. ln comparison, object configu
ration in our work is relatively ' lightweight' since it involves only the manipulation of
objects that have been specifically created for purposes of object configuration. This
makes our framework more suitable for attaining performance gains via configuration,
whereas SOM and CLOS address issues like the evolution of compatible object libraries
by configuration of entire object system structures.

The open implementation approach was proposed in the context of meta-objects and
reflective programming(11), and evolved into the use of those ideas in environments where
performance requirements prohibit the maintenance of a complete framework for inter
preting and redefining object properties. Recent work on the dynamic configuration of
distributed and object-based systems(S) (such as Polylith(1), Regis(IS), Equus(1S]) of
ten concerns specific configuration methods or general (rather than high performance)
frameworks for implementing dynamically configurable applications.

3 Objects, Configuration Entities and Configuration
Channels

ln this work, we assume flexible systems as being composed of abstractions that can be
dynamically configured in terms of (1) tbeir implementations, (2) how tbey use other
resources in the system, and (3) their requirements in terms of performance, reliability,
or application needs. Such abstractions can be built and tailored for specific needs by
connecting a set of objects; some objects encapsulate tbe desired basic functionality while
others carry out the work related to each one of the configurable facets of object behavior.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simp6sio Brasileiro de Engenharia de Software 169

ln other words, our object abstractions:
• encapsulate some basic functionality;
• are able to accommodate dynamic changes in how their functionality is implemen

ted;
• permit the dynamic addition or subtraction of features; and
• can express changes in execution behaviors and needs using attributes.

The intent of our novel framework for building such object-based abstractions is to:
• explore performance issues;
• offer mechanisms for achieving configuration that are lightweight and of general

applicability;
• pursue flexibility simultaneously at many leveis (ranging from user levei objects to

operating system services) in complex distributed applications;
• separate basic functionality from configuration issues, both being encapsulated in

different components of the framework; a.nd
• promote a model for designing ftexible systems and reasoning about configuration

possibilities.

The framework, COBsOM, bas three kinds of elements: (l)objects, (2) configuration
entities and (3) configuration channels, wbich integrate (1) and (2) during execution. An
object is described by an IDL interface[25] and an implementation module providing code
for its methods. A configuration entity encapsulates the information needed to carry out
actions related to configuring a given characteristic of an object. lt is built separately
from the object; the idea is that in tbe sarne way that we want to bave classes of objects
available when building applications, we also want to structure our ftexible systems in a
manner that classes of configuration may be reused. The appHcation designer composes
a configurable/flexible application element by coupling basic functionality (objects) to
the components that describe each configuration aspect being explored (configuration
objects). This approach makes "configuration" a first class element in our programming
model. The usual object-oriented programming model, that comprises a collection of
objects that communicate through method invocations, is now extended to include the
presence of configuration objects that, once associated with an object, are able to direct
the changes in its behavior. The úsociation between object and configuration object
via· configuration channels is explicitly and dynamically specified. The configuration
channel provides information that determines how the interaction between the objects
and configuration objects is implemented. ·

Before coming up with detailed mechanisms for the interaction (i.e., how to make ob
jects and configuration entities work together) , we address a more elementary problem:
when a designer finds a convenient configuration entity in the configuration library, how
can she assure that it can be integrated with the particular object to be enhanced with
fluible behavior~ A complete answer to this question would imply the use of knowled
ge about the component's semantics. ln general, applications where high performance
is important do not employ programming environments, languages or tools that make
information about the software elements at such a levei of detail. Research results in
analyzing class hierarchies for reuse(3] indicate that, even with appropriate formal mo
deis and specification leveis, the solution can be too computationally intensive to be used

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

170 XI-SBES

at runtime. ln coasOM, we adopt a simple solution for checking if objects and configu
ration entities can be integrated into a. configura.ble software element. Na.mely, we define
compatibility in terms of the the basic object's interface and the informa.tion available in
the configuration entity's description. The configuration entity specifies its requirements
on the object by enumerating the methods it expects to have available in the object's
interface. We refer to these methods as required methods; they represent hooks that can
be used by the configura.tion object in order to (1) get information from the object a.nd
(2) impose -behavior or state cbanges that may be needed so that configura.tion a.ctions
ca.n be carried out.

Figure 2 pictures three basic objecta (PriorityQueue, SimpleDataBase, and LinkedList
and one configuration entity enumerating its required methods. Objects PriorityQueue
and SimpleDataBase are both compatible with the (partially depicted) configuration en
tity; object LinkedList is not.

object

B '""" r.mov•
dump
lnh

SimpltDa\&Bu.
lnsen ,
qucry

tiu

..__u_'*_odl.b_• _ _,~ :=..

conDJURiion entlty

Figura 2: Exemplifying the compa.tibility notion between object interfaces and configu
ration cntities

Notice that the design a.nd implementation of a. configuration entity module should
not rely on any specific information of tbe object being configured, since at compile time,
the only information about such an object is tbat it provides the required methods.

Multiple objects from difTerent classes may be simultaneously attached to a. given
configura.tion entity, thereby allowing a single configuration object to manage the con
figuration of multiple ba.sic objects. When the configura.tion object invokes one of the
required methods, the runtime system ha.s to map this invoca.tion into the respective me
thod belonging to the specific object that is interacting with the configuration object
when the invocation is issued.

Configuration entities are objects, therefore they also offer a.n interface. The methods
in this interface represent configuration actions that ca.n be initiated by explicit appli
cation demand. ln this sense, the configuration entity is expa.nding the basic object's
interface by offering configuration-specific methods.

The configurable objects composed by the association of objecta and configuration
objects can be varied at runtime, with parta being efficiently added or eliminated dy
namically. More importa.ntly, this association can be specified at the operation levei,

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 171

allowing a single object to carry out very different configuration approaches, accordingly
to which metbod is being invoked.

Configuration channels abstract how invocations on the object interact with the con
figuration e.ntity. They represent the link integrating objects and configuration entities,
and they define how implicit configuration actions are activated during execution. Confi
guration channels are defined in the specification of the configuration entity, i. e., for eacb
available channelto a configuration entity tberfollowing information is provided: (1) its
identificatian, (2) the code to run once the channel is activated, and (3) characteristics
determining bow the channel abstraction is realized in an implementation.

Figure 3 portrays one object, tbree configuration entities, and configuration cbannels.
Tbis example shows how configuration entities and configuration channels can be used
to compose a flexible distributed, persistent, monitored queue. ln our previous work
we showed that employing such a configurable queue in tbe implementation of a branch
and bound algorithm for the Traveling Salesperson Problem can result in significant
performance gains(26]. Tbe queue behavior can be dynamically changed by removing and
inserting configuration channels, and by cbanging the values of attributes tbat specify bow
a configuration entity acta. For example, by elirninating tbe link between one operation in
the queue and ·tbe Monitoring configuration entity, selective monitoring can be achieved.
By varying attributes values of the FragmentedList object, we can cbange how queue
distribution is carried out.

Figura 3: Configuration channels associate objects to configuration entities

Wben a configuration object is associated with an object (in our interface, via tbe
binding call), it becomes possible for the configuration object inte.rfere with the behavior

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

172 XI-SBES

of the basic object. Channels abstract association between entry points in the object
(methods) and configuration (channel specification in the configuration entity).

Channels can be opened in two ways:
• automatically, when a configuration entity is bound to an object, either at compile

time or during execution. This may be useful for composing applications where few
configuration channels are available, and there is an "all-~all" relationship among
objects and channels (Figure 3); and

• by explicit instruction from the application, which specify which method should be
associated to which channel.

Parameters that determine channel's implementation behavior include: (1) attribute
values in the configuration entity description, (2) values provided by the object when it
initiates an open_channel operation, and (3) the runtime library default values. Ali such
attribute values can be overridden at any time, thereby changing the channel's behavior.

The channel attributes a.vailable in COBSOM dea.l with the following issues:

• reuse of para.meter blocks;
• how to send information (operation para.meters, a.ttributes) through the configura-

tion channel:

- through a function call ;
- forking a thread for running the channel code;
- through a. condition signal waking up a pre-existing thread; and
- by explicit object invocation (through the Object Transport Layer developed

by our group);

• an indication of whether the object should wa.it for the execution in the configuration
entity's "side" of the channel; ·

• an indication of the metbod to be executed after the configuration entity's actuation;
and

• an indication of some extra acknowledgment being sent by the object through the
configuration channel to the configuration policy, after the channel code returns.

The object performs the following processing when responding to the invocation of a
method currently bound to a configuration channel:

• identify which invocation attributes relate to each active channel;
• deal with para.meter block creation (and marshaling, if needed);
• send the information through the channel;
• carry out post-configuration actions, as specified by tbe channel attributes.

The configuration primitives ofTered by COBsOM were designed to offer complex
configuration support efficiently. ln the example in Figure 3, the "fragmented list" confi
guration entity turns a simple "priority queue" object into a distributed one: it generates
name server information to be given to the transport layer, it creates the "priority queue"
fragments on the multi pie nodes, it allocates one local configuration entity to each of the
nodes, and it manages distribution transparently to the queue object's user. COBsOM,s
support facilitates the development of such a configurable abstraction, but the composed

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simp6sio Brasil~iro d~ Engenharia d~ Software 173

element would not be useful if the overheads imposed by configuration interactions were
high.

Configuration entities are implemented through objects, and therefore they can also
be configured by association with other configuration entities, resulting in complex hie
rarchies of objects and configuration objects. Figure 4 illustrates a hierarchy composed
by three kinds of basic objects: (1) BTree-A and BTree-B are instances of a binary tree
data structure, (2) Database is a complex object that has a collection of BTrees as part
of its state, and (3) Deuice-1 and Deuice-f represent output devices. The other objects
in the figure, represented by ellipses, are configuration objects. PersistenceConfig is ad
ding persistence to the behavior of BTree-A, BTree-B, and one of the Database's internal
binary trees. PersistenceConfig itself is linked via channels to configuration objects Che
ckPoint and lncrementa/Log. As a result, the way in that persistence actions are carried
out can be changed dynamically. Deuice-1 is a component of PersistenceConfig that can
be associated with SocketOutput or FileOutput. These two configuration objects manage
multiple Deuice instances by storing one file descriptor (fá) for each basic object they
configure.

Figura 4: Hierarchy of objecta aod coofiguratioo objects

ln summary, COBsOM offers the approacbes for fiexibility considered more important
in the literature:

• Parametric uariation: tbe application ensures that relevant information about cur
rent demands and preferences about an available service are transferred to the
service, which will then take appropriate actions to meet tbeir requirements. Tbis

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

lU XI-SBES

appears in the COBSOM through the use of attrihutes that are passed from invoca
tions to the configuration objects. Each configuration object defines and enforces
semantics to its attribute values.

• Interposition: the flexible service maintains a fixed interface, but application-level
code can be interposed between the uses of the service and the available service
implementation. ln this fashion, the application developer incrementalj changes
the semantics of a service, without altering the service itself. ln COBSO , this can
be e~ily achieved by dynamic association of configuration objects with specific
methods (services) via configuration channels that are created using the default
values for channel attributes.

• Synthesis: the application developer is allowed to synthesize an additional service,
by specifying both its interface and its implementation. These new services should
be treated as basic services, for example as an extension to the operating system
or basic parallel programming support. An example of this is the synthesis of a
distributed persistent monitored queue at runtime.

4 The Data_Object Abstraction

ln this section we outline one configurable abstraction built with COBSOM: the Da
ta_Object. This object makes the output data from the Atmospheric Application (Sec
tion 1) available to the tools performing visualization and application steering(8j.

Like most scientific applications, the global chemical transport model produces a large
amount of data. Through the Data_Qbject 's uniform interface, interactive tools can access
this data flexibly:

• Data can be obtained from a running model or from previous executions' stored
results. ln both cases, the data source may be distributed across severa! compu
ting/storing nodes.

• Data_Qbject's users can request the specific simulation time steps and atmospheric
leveis in which they are interested, thereby decreasing the communication costs
involved in attaining model data as it is produced (ali leveis for each time step).

• The Data_Qbject can deliver data to the visualization tools in both spectrum and
grid point formats. Even though using the spectrum format generally results in
more compact representations of atmospheric level's data, communication costs can
be decreased for small grid regions requests by having the spectrum-to-gtid point
transformations performed at the data. source's nodes. Moreover, the transformation
is time consuming and ma.y benefit from execution in a parallel platform.

• multi pie users can simultaneously examine the date..

Figure 5 portrays the Data_Qbject la.yout when de.te. is retrieved from two files produ
ced by the model. The object is fragmented such that the interface to the application code
(e.g., visualize.tion too!) is available in fragmentA . When a request for grid point data. is
issued, A will infer which node(s) store the data and then invoke the appropriate(s) object
fragment(s). The application can dynamica.lly attach filters to object fragments, thereby
refining the data before it is sent through the communication link. ln Figure 6, data is
retrieved from a running model through sockets. The Data_Qbject initiates its execution

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 175

by opening connections to the sockets where the data model is depositing output data
as a stream of events. Each event contains spectrum information about ali leveis for a
given simulation time step. Data.Object is fragmented i o two kinds of objects: interface
objects and concentrators. The interface objects (X and Y in Figure 6) are equivalent to
the objectA (Figure 5), each one serving one Data.Object's user. Object fragments Z and
T act like concentrators, meaning that they temporarily store and manage the data being
produced by the model. The number and locality of concentrators can be dynamically
configured. They can serve multiple interface objects.

baltcc

ífij;"l
~

Figura 5: Data.Object obtaining input from files

Experimenta are being made in order to measure the performance impact of using
Data.Objects, both in terms of access' latency and throughput rate.

5 Implementation Issues

COBSOM,s design incorporated insights derived from our previous work on supporting
configuration in multiprocessor environments(20, 26j. While developing CTK (a. toolkit
for building multiprocessor configurable objecta) we learned that (1) complex configura
ble abstractions require n-to-n relationships between objects and configuration compo
nents in order to achieve efficient use of resources and (2) support for object replication
facilitates exploration of locality. The CTK toolkit provides compiler support for a C
extension programming language that combines object implementation and configuration
components description into a single module. Besides controlling initialization and usage
of the underlying thread system, the CTK's runtime system entails detailed information
about classes, objects, operation's signatures, and compile-time configuration setup. ln
COBSOM, the amount of static information about objects manipulated during runtime

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

176 XI-SBES

Figura 6: Data_Object layout for data obtained from running model

is kept to a minimum, thereby facilitating e.fficient management of distributed objects.
COBSOM takes a library approach, by this means increasing the model's strength in
three ways: (1} legacy objects and implementations can be integrated with COBSOM,s
objects, (2) configuration appears as a first class element in the model, i.e., , applica
tion's programmers are able to manipulate configuration abstractions and freely alter
their composition, and (3} parts of COBSOM 's functionality (e.g., the support for object
fragmentation) can be easily reused.

Objects are described by an IDL interface, and the user provides an implementation
model which associates code with the methods offered in the interface. Using an IDL
compiler front end, we have constructed an IDL to C compiler which generates: (1} a
header file describing defined types and method prototypes, and (2) a meta-description
of the interface. Tbis intermediate description form is created so tbat the IDL to C
compiler front end is decoupled from our object model support. The usualiDL attribute
semantics is offered and mapped to the attribute implementation offered by Eisenhauer's
work on the COBS project[2].

COBsOM offers some tools to facilitate the developer's job. For example, the tool
code~en consumes the meta-description of an IDL interface and generates class specific
implementation routines for the creation of objects, allocation of parameter blocks for
the methods, and invocation of methods. lt also exports the interface description to
the Interface Repository, so that available information about the class can be queried at
runtime for checking composition compatibility.

The configuration entity descriptions are processed by the too) conf~en . As is the
case with code_gen, code is generated from the description to deal with the manipulation

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI· Simpósio Brasileiro de Engenharia de Software 177

of configuration entities, and a configuration description file is stored in the repository.
ln order to facilitate the process of building applications, we allow the.ir specifica

tion in terms of which classes (of objects and configuration objects) it uses. From this
description, the tool app~en generates a makefile, ensuring that all the necessary com
pilation steps and COBS · M tools are applied. Another relevant functioo of app.gen is
to generate code for the initialization step in building a distributed application; this is
accomplished by building a specific object server for the application. This server is the
available interface for requesting the creation of objects on a remote node.

The framework library provides the runtime support for objects, confi~uration objects,
configuration channels, and manipulation of basic IDL types. COBS M can be used
with a threads package, thereby allowing the use of its concurrencyfparallelism support
through the object model.

COBsOM bas been integrated with the 06ject Transport Layers (COBSOTL) package
that offers support for efficient and flexible remote invocation, so objects can be distri
buted in a network of workstations. With just one call and the specification of a few
attributes, it is possible to transform a program that utilizes only local objects into a
program where the objects reside on different notes.

6 Conclusion

The framework presented in this paper provides a programming model and environment
where llexible software can be developed by designing configurable objects. COBSOM 's
efficient runtime support enables performance improvements by configuration of program
components during their execution. Program configuration is attained without compro
mising the encapsulation or the reuse of software abstractioos, by explicitly separating the
type-dependent object functionality from its properties subject to configuratioo, inclu
ding its performance, reliability, and timing properties. 06jects and configuration objects
can be combined in complex ways, and the composition can be changed dynamically wi
thout the imposition of unreasonable overheads. Ou r experience in building configurable
objects, in particular the Data.Object presented in this paper, indicates that COBs0 Mis
suitable for building high performance distributed and parallel objects that can acbieve
llexible and complex behavior in runtime. Moreover, the programming model offered by
COBSOM encourages incremental design and reuse of components.

Acknowledgments

Greg E.isenbauer has contributed a lot to this work with valuable ideas and full prompt
support in the use of OTL/pbiO libraries. Tbis research has been supported in
part by CNPq-Brazil (No 200199/90-1), DARPA (DABT63-95-C-0125), and FAPESP
(523037/96-1).

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

178 Xl - SBES

Referências
(1) B. Agnew, C. Hofmeister, and J. Purtilo. Planning for change: A reconfiguration language

for distributed systems. ln Proc. of the Second lnternational Workshop in Configuruble
Distributed Systems, pages 15- 22. IEEE Computer Society Press, May 1994.

[2) M. Ahamad and K. Schwan. The COBS Project. http:/ /www.cc.gatech.edu/systems/
projects/COBS, 1995.

(3) H. Astudillo. Evoluation and Realization of Modeling Alternati11ts: Supporting Dtri11ation
ond Enhoncement. PhD thesis, College of Computing, Georgia lnstitute of Technology,
Aprll 1996.

(4) R. Campbell, V. Russo, and G . Johnson. Choices (class hierarchical open interface for
custom embedded systems) . ACM Operoting Systems Re11iew, 21(3):9-17, July 1987.

(5) Proceedings of the 3rd lntemotionol Conference on Configuroble Distributed S11stems. IE
EE Computer Society Press, May 1996.

(6) H. Custer. Inside Window1 NT. Microsoft Press, Redmond , Washington , 1993.

(7) S. Danforth and I. Forman. Reflections on metaclass programming in SOM. ln Proc. of
OOPSLA '94, pages 440- 452. ACM Press, October 1994.

(8) G. Eisenhauer, B. Schroeder, and K. Schwan. From interactive high performance programa
to distributed laboratories: A research agenda. ln Proc. of the SPDP'96 Workshop on
Progrom Visuolization and Instromentation , October 1996.

(9) G. Eisenhauer and K. Schwan . Parallelization of a molecular dynamics code. Joumol of
Paro/lei and Distributed Computing (SPDT} , 34(2) , May 1996.

[10) O. R. Engler, M. F . Kaashoek, and J. O. Jr. Exokernel: An operating system architecture
for application-level resource management. ln Proc. o/ the 15th Symposium on Operoting
Systems Principies. ACM Press, December 1995.

[11] G. K. et ai. Open implementations: A metaobject protocol approach . ln Proc. of the 9th
Con/erence on Object-Oriented Progrommíng S11stem81 Longuage, and Applications, 1994.
Thtorial notes.

(12) I. Froman, S. Danforth , and H. Madduri. Composition ofbefore/after metaclasses in SOM.
ln Proc. of OOPSLA '94, pages 427-439. ACM Press, October 1994.

(13) G . Hamilton, M. Powell, and J . Mitchell. Subcontract: A flexible base for distributed
computing. ln Proc. o/lhe 14th ACM Symposium on Operoting Systems Principies, pages
69- 79. ACM Press, December 1993.

(14) G. Kiczales and J . Lamping. Operating systems: Why object oriented? ln Jntemotional
Workshop in Object Oriented Operoting Systems, pages 25-30, December 1993.

(15) T . Kindberg, A. Sahiner, and Y. Paker. Adaptive parallelism under Equus. ln Proc. of the
2nd lntemationol Workshop in Configuroble Dístributed Systems, pages 172- 182. IEEE
Computer Society Press, May 1994.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 179

(16] T. Kindler, K. Schwan, D. M. Silva, M. Trauner, and F. Alyea. Parallelization of spec
tral models for atmospheric transport processes. Concurrency: Practice and Experience,
8(9):639- 666, November 1996.

(17] P. Maes. Concepts and experiments in computational reflection . ln Proc. of OOPSLA '87,
' pages 147- 155. ACM Press, October 1987.

(18] J . Magee, N. Dulay, and J . Kramer. A constructive development environment for parallel
and dist-ributed programa. ln Proc. of lhe Second Jntemational Worklhop in Configurable
Distributed Systems, pages 4- 14. IEEE Computer Society Press, May 1994.

(19) H. Massalin. Synthesis: An Efficient lmplementation of Operational Syslem Sen~ices. PhD
thesis, Columbia University, 1992.

(20) 8 . Mukherjee, D. Silva, K. Schwan, and A. Gheith. Ktk: kernel support for configurable
objects and invocations. Distributed Systems Engineering Joumo/, 1:259-270, 1994.

(21) A. Paepcke, editor. Object-Oriented Programming - The CLOS Perspective. MIT Press,
1993.

(22) R. Rashid, D. Julin, and et ai. Mach: A aystem software kernel. ln Proc. of the 9./th IEEE
Computer society lntemational Conference (COMPCON 89}, pages 176- 178, February
1989.

(23] D. Schmidt. The adaptive communication environment. ln Proc. of the 1 Jth Sun U1er
Group Conference, 1993.

(24) K. Schwan, A. Gheith, and H. Zhou. Chaos-arc: A kernel for predictable programs in
dynamic real-time systems. ln 7th IEEE Workshop on Real-Time Operating Systems and
Software, Univ. of Virgínia, Charloltesville, pages 11-19, May 1990.

(25) J. Siegel. CORBA Fundamentab and Programming. John Wiley &r. Sons, lnc., 1996.

(26] D. M. Silva and K. Schwan. CTK: configurable object abstractions for multiprocessors.
Technical Report GIT-CC-97-03, Georgia Institute of Technology, Atlanta, GA 30332,
January 1997. Submitted to IEEE Transactions on Software Engineering.

(27) I. Sommervile. Software Engineering. Addison-Wesley Pub Co, 4th edition , 1992.

(28) Y. Yokote. The Apertos reflective operating syst~m: T he concept and its implementation.
ln Proc. of OOPSLA '92, pages 414-434. ACM Press, October 1992.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	Z0001
	Z0002
	Z0003
	Z0004
	Z0005
	Z0006
	Z0007
	Z0008
	Z0009
	Z0010
	Z0011
	Z0012
	Z0013
	Z0014
	Z0015
	Z0016
	Z0017
	Z0018
	Z0019
	Z0020
	Z0021
	Z0022
	Z0023
	Z0024
	Z0025
	Z0026
	Z0027
	Z0028
	Z0029
	Z0030
	Z0031
	Z0032
	Z0033
	Z0034
	Z0035
	Z0036
	Z0037
	Z0038
	Z0039
	Z0040
	Z0041
	Z0042
	Z0043
	Z0044
	Z0045
	Z0046
	Z0047
	Z0048
	Z0049
	Z0050
	Z0051
	Z0052
	Z0053
	Z0054
	Z0055
	Z0056
	Z0057
	Z0058
	Z0059
	Z0060
	Z0061
	Z0062
	Z0063
	Z0064
	Z0065
	Z0066
	Z0067
	Z0068
	Z0069
	Z0070
	Z0071
	Z0072
	Z0073
	Z0074
	Z0075
	Z0076
	Z0077
	Z0078
	Z0079
	Z0080
	Z0081
	Z0082
	Z0083
	Z0084
	Z0085
	Z0086
	Z0087
	Z0088
	Z0089
	Z0090
	Z0091
	Z0092
	Z0093
	Z0094
	Z0095
	Z0096
	Z0097
	Z0098
	Z0099
	Z0100
	Z0101
	Z0102
	Z0103
	Z0104
	Z0105
	Z0106
	Z0107
	Z0108
	Z0109
	Z0110
	Z0111
	Z0112
	Z0113
	Z0114
	Z0115
	Z0116
	Z0117
	Z0118
	Z0119
	Z0120
	Z0121
	Z0122
	Z0123
	Z0124
	Z0125
	Z0126
	Z0127
	Z0128
	Z0129
	Z0130
	Z0131
	Z0132
	Z0133
	Z0134
	Z0135
	Z0136
	Z0137
	Z0138
	Z0139
	Z0140
	Z0141
	Z0142
	Z0143
	Z0144
	Z0145
	Z0146
	Z0147
	Z0148
	Z0149
	Z0150
	Z0151
	Z0152
	Z0153
	Z0154
	Z0155
	Z0156
	Z0157
	Z0158
	Z0159
	Z0160
	Z0161
	Z0162
	Z0163
	Z0164
	Z0165
	Z0166
	Z0167
	Z0168
	Z0169
	Z0170
	Z0171
	Z0172
	Z0173
	Z0174
	Z0175
	Z0176
	Z0177
	Z0178
	Z0179
	Z0180
	Z0181
	Z0182
	Z0183
	Z0184
	Z0185
	Z0186
	Z0187
	Z0188
	Z0189
	Z0190
	Z0191
	Z0192
	Z0193
	Z0194
	Z0195
	Z0196
	Z0197
	Z0198
	Z0199
	Z0200
	Z0201
	Z0202
	Z0203
	Z0204
	Z0205
	Z0206
	Z0207
	Z0208
	Z0209
	Z0210
	Z0211
	Z0212
	Z0213
	Z0214
	Z0215
	Z0216
	Z0217
	Z0218
	Z0219
	Z0220
	Z0221
	Z0222
	Z0223
	Z0224
	Z0225
	Z0226
	Z0227
	Z0228
	Z0229
	Z0230
	Z0231
	Z0232
	Z0233
	Z0234
	Z0235
	Z0236
	Z0237
	Z0238
	Z0239
	Z0240
	Z0241
	Z0242
	Z0243
	Z0244
	Z0245
	Z0246
	Z0247
	Z0248
	Z0249
	Z0250
	Z0251
	Z0252
	Z0253
	Z0254
	Z0255
	Z0256
	Z0257
	Z0258
	Z0259
	Z0260
	Z0261
	Z0262
	Z0263
	Z0264
	Z0265
	Z0266
	Z0267
	Z0268
	Z0269
	Z0270
	Z0271
	Z0272
	Z0273
	Z0274
	Z0275
	Z0276
	Z0277
	Z0278
	Z0279
	Z0280
	Z0281
	Z0282
	Z0283
	Z0284
	Z0285
	Z0286
	Z0287
	Z0288
	Z0289
	Z0290
	Z0291
	Z0292
	Z0293
	Z0294
	Z0295
	Z0296
	Z0297
	Z0298
	Z0299
	Z0300
	Z0301
	Z0302
	Z0303
	Z0304
	Z0305
	Z0306
	Z0307
	Z0308
	Z0309
	Z0310
	Z0311
	Z0312
	Z0313
	Z0314
	Z0315
	Z0316
	Z0317
	Z0318
	Z0319
	Z0320
	Z0321
	Z0322
	Z0323
	Z0324
	Z0325
	Z0326
	Z0327
	Z0328
	Z0329
	Z0330
	Z0331
	Z0332
	Z0333
	Z0334
	Z0335
	Z0336
	Z0337
	Z0338
	Z0339
	Z0340
	Z0341
	Z0342
	Z0343
	Z0344
	Z0345
	Z0346
	Z0347
	Z0348
	Z0349
	Z0350
	Z0351
	Z0352
	Z0353
	Z0354
	Z0355
	Z0356
	Z0357
	Z0358
	Z0359
	Z0360
	Z0361
	Z0362
	Z0363
	Z0364
	Z0365
	Z0366
	Z0367
	Z0368
	Z0369
	Z0370
	Z0371
	Z0372
	Z0373
	Z0374
	Z0375
	Z0376
	Z0377
	Z0378
	Z0379
	Z0380
	Z0381
	Z0382
	Z0383
	Z0384
	Z0385
	Z0386
	Z0387
	Z0388
	Z0389
	Z0390
	Z0391
	Z0392
	Z0393
	Z0394
	Z0395
	Z0396
	Z0397
	Z0398
	Z0399
	Z0400
	Z0401
	Z0402
	Z0403
	Z0404
	Z0405
	Z0406
	Z0407
	Z0408
	Z0409
	Z0410
	Z0411
	Z0412
	Z0413
	Z0414
	Z0415
	Z0416
	Z0417
	Z0418
	Z0419
	Z0420
	Z0421
	Z0422
	Z0423
	Z0424
	Z0425
	Z0426
	Z0427
	Z0428
	Z0429
	Z0430
	Z0431
	Z0432
	Z0433
	Z0434
	Z0435
	Z0436
	Z0437
	Z0438
	Z0439
	Z0440
	Z0441
	Z0442
	Z0443
	Z0444
	Z0445
	Z0446
	Z0447
	Z0448
	Z0449
	Z0450
	Z0451
	Z0452
	Z0453
	Z0454
	Z0455
	Z0456
	Z0457
	Z0458
	Z0459
	Z0460
	Z0461
	Z0462
	Z0463
	Z0464
	Z0465
	Z0466
	Z0467
	Z0468
	Z0469
	Z0470
	Z0471
	Z0472
	Z0473
	Z0474
	Z0475
	Z0476
	Z0477
	Z0478
	Z0479
	Z0480
	Z0481
	Z0482
	Z0483
	Z0484
	Z0485
	Z0486
	Z0487
	Z0488
	Z0489
	Z0490
	Z0491
	Z0492
	Z0493
	Z0494
	Z0495
	Z0496
	Z0497
	Z0498
	Z0499
	Z0500
	Z0501
	Z0502
	Z0503

