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Abstract 

The dramatic growth of the Internet and the World Wide Web crestes great demand 
for tools to support the construction and maintenance of WWW sites. CGILua 
intends to simplify the task of creating dynamic Web pages, supporting three dif­
ferent paradigms for describing dynamic Web pages: Programming, templates, and 
database. Besides fully supporting these three paradigma, the user can also freely 
mix them, allowing the use of CGILua in new interesting ways, even in the descrip· 
tion of static pages. CGILua is fully implemented , and is already being used in 
industrial sites. 
Keywords: HTML, WWW, CGI, dynamic pages 

Resumo 

O enorme crescimento da Internet e do WWW cria uma grande demanda para 
ferramentas de suporte à construção e manutenção de "sites" WWW. CGILua foi 
desenvolvido visando simplificar a tarefa de criação de páginas Web dinâmicas, ofer­
ecendo suporte a três diferentes paradigmas: programação, modelos ("templates" ) 
e bancos de dados. Além de suportar integralmente os três paradigmas, o usuário 
pode combiná-los livremente, permitindo o uso de CGILua de novas e interessantes 
maneiras, mesmo. para descrição de páginas estáticas. CG!Lua está completamente 
implementado, e está sendo usado em diversos "sites" comerciais. 
Palavras-chave: HTML, WWW, CGI, páginas dinàmicas 

1 Introduction 

347 

Dueto the growth of the Internet and the World Wide Web there is an increasing demand 
for the use of WWW as a dynamic media. Two aspects should be considered to achieve 
this goal: Web pages should be created based on real time information, and there must 
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be conditions for the construction and maintenance of the Web sites in a practical and 
effective way. 

Many tools have been developed to fulfill these two requirements. A strategy is to 
take advantage of the fact that a Web server can execute a program as a response to 
a Web resource request. This program can then create a dynamic page, based on the 
information acquired on execution time. 

ln order to receive and send data to the Web server, such programs use a communica­
tion protocol. Among these protocols, the most widely used is CGI (Common Gateway 
Interface) (2]. For this reason, programs activated by the server are also called CGI 
application$. 

Most tools for creating CGI applications can be classified in three broad paradigms: 

programming The more "traditional" way for building CGI applications is using a full­
Aedged programming language, typically C or Per! , sometimes with the help of a 
specific library, such as CGI.pm (16] and libcgi (19] . The main advantage of this 
approach is its expressiveness. Also, some programmers find it convenient because 
they can still use a conventional programming style. Nevertheless, this approach 
is quite difficult for non-programmers, and even for programmers it is not very 
effective, since it operates on a very low abstraction levei. 

templates This class includes tools such as Web• (11] . ln this paradigm, a dynamic page 
is always based on a static version of the page, the template {or outline). Usually, 
the template is written directly in HTML, with "escapes" to mark flelds to be filled 
in. When the page is accessed, the template feeds a pre-processor that creates t he 
final page. 

The main advantage of this approach is that it allows the use of conventional 
HTML editors, such as Microsoft's Front Page, for building the template, requiring 
no programming knowledge. There are some systems based on templates that use 
an embedded programming language (like Tcl [15]) to describe how to flll in each 
field . However , the paradigm imposes severe limits on what can be done with the 
language, since it must be used within the template. For instance, it is impossible to 
use the conditional mechanism of the language to select among different templates 
based on some condit ion. 

data bases This paradigm, best illustrated by Microsoft's IDC [4], sees accesses to a 
server as queries to a data base. A page is described mainly by the SQL statement 
to perform the query. It also uses templates, but only to specify how to show a 
query result. 

The main advantage of this approach is its high levei of abstraction, which greatly 
simplifies the creation of pages, as long as they are in fact answers to database 
queries. An interesting feature of these systems, when compared to simple tem­
plates, is their a.bility to repeat a piece of a templa.te, in order to show multiple 
results of a query. Therefore, a fixed template is able to show variable size infor­
mation. 

ln this paper, we prescnt CGILua, another system for developing CGI applica.tions. 
The main novelty of CGJLua is that it fully integrates the three paradigms in a sin-
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gle system. Besides supporting each individual paradigm style, users can combine the 
paradigms. This allows the use of CGILua in other useful ways. For instance, templates 
can be used inside other scripts to describe common patterns shared by many different 
pages. 

CGILua uses the extension language Lua [6] both in its implementation, as a config­
uration language for the whole package, and as the scripting language for writing CGI 
pages. Therefore, CGILua inherits most of Lua features: Portability, a simple Pascal-like 
syntax, small size, and flexibility (10]. Most of its flexibility is due to its architecture, 
based on the use of an extension language (3]. A kemel, written in C, provides basic 
generic services. Upon it, a configuration part, written in Lua, gives the program its 
final shape. With this architecture, many characteristics, like security policies and the 
inclusion of extra libraries, can be easily tailored in each individual site. 

CGILua is fully implemented, and is being used in real applications since 1996. lts 
documentation and code can be accessed at 

http://wvv.tecgraf.puc-rio.br/manuais/cgilua 

The next section describes how CG!Lua supports each individual paradigm presented 
above, and how they can be merged. The architecture of CGILua is described in Section 3, 
and Section 4 compares CGILua with other proposals. The last section is reserved for 
some final remarks; it briefly presents some current commercial uses, portability issues, 
and other features of CGILua. 

2 An Overview of CGILua 

This section shows the use of CGILua using the three paradigms described above: Pro­
gramming, templates, and database. 

Following the first paradigm, a dynamic WWW page is simply a program; when the 
page is accessed, the program is ran and its output is interpreted as the final HTML page 
sent to the browser. ln CGILua, these programs are written in Lua. Figure 1 illustrates 
this paradigm with a simple script, which writes the Collatz sequence of a given number. 
Notice that ali form data is previously decoded by CGILua and stored in a table called 
cgi. Therefore, the expression cgi. number results in the field number given to the script. 

As already stated, the main advantage of this paradigm is its power. The full flexibility 
of"Lua is available in the creation of a page. That includes ali abstraction facilities of a 
programming language, plus pre-defined functions for pattern-matching and thE: like. 

The second paradigm considers a script as a template: An HTML document where 
special marks indicate fields to be handled by the preprocessor. CGILua supports three 
kinds of fields: Statement fields, expression fields, and control fields. Statement fields 
contain Lua statements to be executed by the preprocessor; they generate no implicit 
output, although they can explicitly write anything to the final page. Such fields are 
written between the marks <! --$$ and $$-->. Expression fields contain Lua expressions, 
which are evaluated by the preprocessor, with the result used as the final text of the field . 
Such fields are written between the marks $1 and I$. Finally, control fields indicate parts 
of the document to be repeated or conditionally inserted. Ali these kinds of fields are 
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defines function coll (thia line is a comment) 
function coll (x) 

if mod(x,2) z• O then return x/2 
else return 3+x+1 end 

end 

write("Content-type: text/html\n\n") 
write ( "<html><head><ti tle>Collatz Sequence</ti tle></head><body>") 
write("<b1>Tbe number you bave cbosen ia : ", cgi.number, "</bl>") 
n • cgi.number; 
while n -. 1 do write(n, "<br>"); n•coll(n) end 
write("</body></html>" ) 

Figure 1: A simple CGILua script 

Xl-SBES 

shown in Figure 2, which again describes a page to s~ow the Collatz sequence of a given 
number. 

The LOOP construct acts as a C for statement: lt repeats ali the text between it and 
the matching ENDLOOP. The fields start, test and a.ction contain the Lua code that 
controls the loop. Loop constructs can be freely nested in a template, whenever more 
complex structures are needed. 

lt is interesting to notice that ali marks h ave been carefully chosen so that a template 
has a sensible appearance in a browser even when it is not preprocessed. Statement 
and control marks, which do not generate any implicit output, are handled as comments 
by HTML syntax, while expression marks appear literally in the browser, acting as a 
place-holder. ln this way, a template can be edited as a regular static HTML page. 

ln the last paradigm, a dynamic access is mainly a database query. This paradigm, 
in CG!Lua, is quite similar to templates, but uses functions to access a database. These 
functions are simply Lua functions provided by a database library. Figure 3 is an example 
of a page created from database access. F\.tnction DBOpen establishes a connection with 
a database, function DBExec executes an SQL statement, and function DBRow traverses 
the resulting table. Each row is returned as a Lua table, which is then stored in variable 
m. lt is interesting to notice in this example the interaction between the control marks and 
tlie HTML marks to formata table. The final result of this template, after preprocessing, 
is shown in Figure 5. . 

Traditionally, templates are used for more declarative, static uses, while programming 
is used when there is a need for control structures and dynamic descriptions. CGILua 
allows a reverse in this conventional use: A template can be used as a kind of subroutine, 
while Lua is used as the declarative language. Figures 6 and 7 illustrate this style. 
Function cgilua.preprocess provides a degree of rcflexivity: lt allows a Lua script to 
explicitly process a template, as if the user had accessed that template. Notice that the 
file f orm. html describes how to show a generic form. The abstract specification of the 
form , on the other hand, is given in script form.lua, in the format of a table (field). 
The sarne table (field), which gives the abstract specification of the form, can be used 
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<html> 
<head><title>Collatz Sequence</title></head> 
<body> 

<!--$$ 
defines function coll 

function coll (x) 
if mod(x,2) •• O then return x/2 
else return 3•x+1 end 

end 
$$--> 
<hl>The number you have choaen ia: $1 cgi.number I$ </hl> 
<1--$$ LOOP atart•"n•cgi.number", teat•"n -. 1", action•"n•coll(n)" $$--> 

$1 n l$<br> 
<1--$$ ENDLOOP $$--> 

</body></html> 

Figure 2: A CGILua template 

<html> 
<head><title>Hembers</title></head> 
<body> 

<hl>Club member list</hl> 
<! --$$ DBOpen ( "DSN•club;" $$--> 
<table border• l vidth•lOOY.> 

<tr align•center> 
<td><strong>First Name</strong></td> 
<td><atrong>Laat Name</atrong></td> 

</tr> 
<1--$$ LOOP 
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start•"DBExec('SELECT firatname,lastname PROH Hembers'), m • DBRov()", 
test•"m ... nil", 
action•"m • DBRovO" $$--> 

<tr> 
<td>$1 m.firatname 1$</td> 
<td>$1 m. lastname 1$</td> 

</tr> 
<!--$$ ENDLOOP $$--> 
</table> 

</body></html> 

Figure 3: A database query in CGILua 
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Figure 4: Template without preprocessing 

Figure 5: Final result of the template 
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<html> 
<head><title>Example Form</title></head> 
<body> 

<form metbod•"POST" ac:tion•"validate.lua"> 
<! --$$ LOOP start•"i•1", test•":tield[i]", ac:tion• "i•i+1" $$--> 

$lfield[i] . labell$: 
<input type•"text" 

name•"$1field[i] . name I$" 
value•"$1 c:gi[field[i] . name] I $"><br> 

<!--$$ ENDLOOP $$--> 
<input type• aubmit> 

</:torm> 
<font c:olor•lff0000>$1error_measagel$</font> 

</body></btml> 

field • { 

} 

Figure 6: File form . html 

{ name•"projec:t", 
{ name• "year11 

• 

{ name•11 code 11 , 

label•"Projec:t" }. 
label•"Baae year" } , 
label•"Projec:t c:ode" } 

c:gilua . preproceas ("form. btml") 

Figure 7: File form.lua 

353 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


JS4 

field = { 

i - 1 

} 

{ name•"project", 
{ name•"year", 
{ name•11code 11

• 

while field[i) and not fail do 

label•"Project" }, 
label•"Baae year" }, 
label•"Project code" } 

if cgi[field[i) .name] •• "" then 
fail " 1 

end 
i " i + 1 

end 
if fail then 

error_message z "Pleaae fill out all the fielda . " 
cgilua. preproceas ( "form. html") 

else 
cgilua. preproceas ( "liet-db. html ") 

end 

Figure 8: Valida.ting data. from a form 
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to drive the creation of other pages; Figure 8 shows a script that validates the data from 
such a form. Clearly, in a real case, table field would have a single definition shared 
between both scripts. 

Notice how CG!Lua can improve the management of Web sites even when used for 
static pages, since the use of parametric pages allows a developer to work in a higher 
abstraction levei. For instance, the sarne template shown in Figure 6 can be used to 
create many different forms, when fed with different values for table field. 

3 The Architecture 

Like many programs that use a scripting language, CG!Lua has two main modules: 
A kemel, written in C, and a configuration 3cript, written in Lua. The kernel is the 
program called by the CGI server when a user accesses a CG!Lua page. It creates a Lua 
environment, defines some new functions to Lua and then runs the configuration script. 
This script decodes the data in the query, redefines some Lua functions to provide a 
secure environment where the user script will run , locates the user script and then runs 
it. Notice that, as ali these steps are done by a script, they can be easily adapted to local 
needs by the system administrator. Also, a site may ho.ve severa! configuration scripts, 
allowing differentiated environments for different projects. For instance, institutional 
pages may have a weaker security policy than the one enforced on personal user pages. 

Figure 9 shows how a client request is processed , since its arrival at the server until 
its final result. The request URL always has a virtual path that points to the script to 
be ran. Eventually, the request may also contain codified data, for instance from form 
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Figure 9: CG!Lua architecture 

contents. CGILua identifies the script type - a Lua program or an HTML template -
based on the path extension. If it is a Lua program, CGILua simply runs it. Otherwise, 
the configuration script calls the preprocessor to run the script as a template. The 
preprocessor itself is defined in the configuration script, and is completely written in 
Lua. This fact enhances the reflexivity of the tool, since the preprocessor can be called 
not only by the kernel, but at any moment by the script, as shown in Section 2. 

CG!Lua also offers a debugger to help the development of scripts. When in debugging 
mode, the debugger acts as the HTTP server, running the script and interacting with it 
through CGI. lt also enables ali usual debugger facilities offered by the Lua debugger [8] , 
such as step by step execution, inspection of the execution stack, etc. 

Security Issues 

A CGI script has the sarne security problems of any network server [7] , since it is invoked 
by remote requests; from this point of view, any CGI script can be considered a mini­
server. Since CGILua activates user's Lua scripts, ali security concerns must be extended 
to these scripts too. 

Most software developers do not have the know-how to implement secure servers in 
a public network. Security holes may occur when the program accesses non initialized 
memory, runs other programs, accesses files, etc. Most of these problems happen when 
the server receives unanticipated wrong data: An apparently inoffensive server can allow 
the execution of almost any command by an intruder, in such fau lty conditions. A typical 
example is a simple piece of program that receives an e-mail address from an HTML form 
and uses it to send a message, using the C function popen: 

sprintf(cmd, "mail Y.s" , user); 
file • popen(cmd); 
I • writes message to file • / 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


' 

356 XI -SBES 

This code works without problems as long as the user string, supplied by an ex­
terna! client, is an e-mail a.ddress. However, this string can be used to execute any 
Unix command. For instance, if the supplied "e-mail address" is the string "I: cd I; 
rm -fr •", the server script will attempt to crase ali server files; the string "I: xtei111 
-display intruder. com: O. 0" will open a terminal with ali rights of the server script 
at the intruder console. 

Lua is a language with a secure semantics. There are no language constructions 
with undefined behavior. Lua programs are translated into byte-codes, which are then 
interpreted in a protected environment. There are no instructions to do real memory 
access or to call arbitrary C functions; the stack is fully controlled. Besides pure resource 
consumption, the only way a Lua program interacts with the externa! environment is 
through function calls. Therefore, in the realm of a Lua program, security issues can be 
focused on how to control the use of insecure functions. 

ln Lua, functions are first class values; Lua programs can freely create, redefine or 
crase functions at run time. Therefore, a simple solution for a secure environment would 
be the configuration script to crase ali "dangerous" functions before calling the user 
script. That solution is clearly too much restrictive, since most of these functions can 
be used in restricted ways without security holes. For instance, a generic open function, 
which allows a script to write to any file, may be dangerous, but it could be restricted to 
only open files in a. pre-defined directory sub-tree. 

The solution adopted by CGILua has two parts. The kernel introduces a single generic 
facility that allows a. Lua script to erase a. global function while keeping a private access 
to it. With these fa.cilities, the configuration script redefines the "dangerous" functions 
to more secure versions. Notice that the original functions are still accessible by the 
configuration script, and are used in the implementation of the restricted versions. With 
this solution, the whole Lua environment is configured in Lua itself, with the usual 
benefit: Flexibility. System a.dministrators can change the configuration script to a.dapt 
the protected environment to their specific needs. 

Notice how this solution differs from the one a.dopted by Perl, which uses a modified 
intcrpreter, called tainted Perl. ln this mode, the interpreter forbids the execution of any 
command dependent of externa! data. With this approach, despite its complexity, the 
security levei is fixed a.nd "wired" in the language implementation. 

Extensibility 

As alrea.dy explained, the configura.tion file can define new Lua functions. ln this way, Lua 
libraries can be automatically loa.ded before the execution of the use r scripts, offering new 
facilities. Sometimes, however, such extension should be written in C, either for efficiency 
reasons, like a cryptography package, or beca.use it accesses pre-defined C interfaces, like 
a database. 

Again, the solution adopted by CGlLua has the sarne general pattern: The kernel 
implements a generic mechanism for dynamic library loading, and the configuration script 
specifies which and how each package will be loaded. After this step, t he script erases 
these loading facilities, thereby restricting the use of any unauthorized extension. 

The main example of use of this facility is the database package. Lua itself offers no 
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database facilities. lts standard libraries offer only access to files in conformance to the 
ANSI C facilities. DBLua is a Lua library that interfaces Lua with a standard database 
API , called DBGraf (13), which offers access to different database systems, like mini-SQL 
and ODBC. This library is dynamically loaded by the configuration script, therefore 
offering ali database facilities of CG!Lua. 

4 Related Work 

This section compares CGILua with other packages for building dynamic pages. These 
packages are presented according to the adopted paradigms. 

Many avaílable tools for creating dynamic Web pages are based on the programming 
paradigm. Severa! publications (14, 5, 9) assume that C and Perl are the most widely 
used languages for this task. C, like most "general purpose" programming languages, is 
very low levei. Mainly, C lacks automatic memory management, and particularly lacks 
support for dynamic strings. This not only complicates string manipulation, a most 
common operation in Web scripts, but also opens the possibility of memory overflow, 
which can lead to security boles. Moreover, C is a compiled language, and the compilation 
time can h ave a negative impact in the development of such small programs. Most scripts 
go through many small changes until their finallook. On the other hand, the efficiency 
of a compiled language is hardly relevant in a page access, since the whole access time 
includes network communication, process creation, program load, file access, etc. The 
time to execute the script itself is usually much smaller than this total time. 

For those reasons, severa! interpreted languages has been used for the development 
of CGI scripts (12, 18). Among them, Perl seems to be the most widely used. Perl is an 
interpreted language, with strong string support and pattern-matching facilities. So is 
Lua. Perl is certainly more powerful than Lua, in the sense that it has a much bigger 
built-in library. On the other hand, Lua is much simpler than Perl: It has a Pascal-like 
syntax, anda simple formal semantics. lts executable file is almost ten times smaller than 
Perl's (lO). lt is not difficult to write libraries for Lua, both in Cor in Lua, and CG!Lua 
can transparently load these libraries, if required. Moreover, its reftexive facilities allow 
easy configuration of what is available to the final scripts, improving their security levei. 

Although it is not uncommon to use the bare language when programming CGI 
scripts, many developers use specific libraries for the task. CGI.pm (16, 17) is a package 
for Perl5. The package offers facilities for parsing form parameters, generation of headers 
and creation of forms. 

CGI.pm main features are its functions for form design and management, which en­
capsulate the creation of form elements in HTML. It can also automatically reinitialize 
a form with the data from the previous interaction, a useful feature in error situations or 
data checking. CGILua also parse form parameters, in a way completely transparent to 
the script. As we have seen in Section 2, field values are directly accessible as fields of a 
dynamic "record" called cgi. CGILua has a weaker set of functions for creating HT.ML 
elements. ln fact, thesc functions are seldom used, since most CGILua users prefer to 
use templates when more complex elements are involved in a page. 

Libcgi (19) is a C library for the description of CGI pages. It also offers facilities for 
parsing form data, and for building HTML elements. Despite its features, it cannot coun-
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ter balance the weakness of C for the task. A script still has to handle memory allocation, 
data conversion, and other details. Moreover, there is the overhead of compilation-link 
phase while developing a page. 

Web*!ll) is a tool that adopts the template paradigm. Their templates, called "layout 
pages", are essentially an HTML document with Tcl code embedded in it. This Tcl code 
is always handled as expressions; there is no support for control fields, like in CG!Lua. 
As in CG!Lua, form data are automatically available to a script through Tcl variables, 
and there is support to save part of the script state from one page to the next . Web* 
offers support for neither database access, nor for writing CGI scripts outside templates. 
An interesting feature of Web* is its support for CORDA access. A similar feature is 
available in CG!Lua, using the LuaOrb package (1) . 

Microsoft's IDC (4) (IDC stands for Internet Database Connector) is a typical tool 
using the database paradigm. lts main advantage is its high abstraction levei. lt uses 
two files to describe a script: One describes, in SQL, t he query to be executed when t he 
script is accessed. The other fi le is an HTML template, to be filled by the SQL results. 
The Jack of a full -ftedged programming language imposes limits to its ftexibility. For 
instance, loop fields in a template can only be used to show query results; the template 
fields must be filled with the bare results of the query, without further processing. IDC 
is non portable, being available only on Microsoft Windows platform. 

5 Final Remarks 

CG!Lua h as been described, as a tool for building dynamic Web pages. CG!Lua allows a 
user to develop its pages using three different paradigms: Programming, templates, and 
databases. Moreover, it fully integrates t hem, allowing the creation of new development 
styles with a mix of mechanisms from these paradigms. 

Besides the support of multiple paradigms, CG!Lua also presents the following fea­
tures: 

fiexibility T he use of an extensiqn language in the architecture of CG!Lua makes the 
tool highly ftexible. Many characteristics, from error hand ling to security policies, 
can be easily tailored by t he system administrator. Both Lua and C libraries can 
be dynamically loaded, in order to offer new functionality, like cryptography. 

simplicity T he whole system has 1500 lines of code. Ali its sources and binaries can 
be put in a single ftoppy disk. lts use is also simple. Most users are able to start 
using CGILua in less than half an hour. Templates are written mostly in HTML, 
database accesses are written in SQL, and programs are written in Lua. Lua is a 
smalllanguage, with a simple Pasca.I-Iike syntax, simple semantics, and automatic 
memory management. 

scalability With the loop constructor, fixed templates can be used for variable size 
information. Moreover, a judicious choice of syntax allows t he use of conventional 
HTML editors to manipulate these templates. 

portability CGILua runs on Windows NT, Windows 95, Linux, IRIX, Sun-OS, Solaris, 
A IX, HP-UX, FreeDSD, Unixware, SCO, OSF, and other platforms with essentially 
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the sarne source code. Applications are fully portable: Any script written in one 
platform needs no changes to run in other system. 

CGILua is fully implemented, and currently is being used for severa( industrial appli­
cati.ons. Below is a list of its maio applications. 

SIGMA is a WWW system being developed to PETRODRAS (The Brazilian Petro­
leum Company). lts purpose is to manage the procedure of obtaining environmental 
licenses and to inform about rules and technical procedures. The system generates and 
collects information through an active communication with a database. A group of 
six people has been developing the system, having produced, to this date, around ten 
thousand lines of HTML templates and Lua oode. The system is part of a strategy to 
obtain the ISO 14000 certificate. Around one hundred people will use SIGMA as a work 
tool daily. Moreover, parts of the system will be available to the general public. 

CGILua has also being used to build RPA, an Intranet system used by PUC-Rio 
(The Pontifical Catholic University of Rio de Janeiro) to keep track of the academic 
production of its faculty. Currently the system is being used by more than one hundred 
faculty members and staff, from eight different departments. 

Finally, Medialab, a Brazilian company that develops WWW sites for industries like 
Shell and Microsoft, has been using CGILua for the creation of dynamic pages in eleven 
sites, among them the si te of Volkswagen do Brasil and Dutyfree. 
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