
XI- Simpósio Brasileiro de Engenharia de Software

CGILua: A Multi-Paradigmatic Tool for Creating
Dynamic WWW Pages

Anna M. Hester Renato Borges
Roberto Ierusalimschy

TeCGrai, Departamento de Informática, PUC-R.io

{anna,rborgea,roberto}Otecgrat.puc-rio.br

Abstract

The dramatic growth of the Internet and the World Wide Web crestes great demand
for tools to support the construction and maintenance of WWW sites. CGILua
intends to simplify the task of creating dynamic Web pages, supporting three dif­
ferent paradigms for describing dynamic Web pages: Programming, templates, and
database. Besides fully supporting these three paradigma, the user can also freely
mix them, allowing the use of CGILua in new interesting ways, even in the descrip·
tion of static pages. CGILua is fully implemented , and is already being used in
industrial sites.
Keywords: HTML, WWW, CGI, dynamic pages

Resumo

O enorme crescimento da Internet e do WWW cria uma grande demanda para
ferramentas de suporte à construção e manutenção de "sites" WWW. CGILua foi
desenvolvido visando simplificar a tarefa de criação de páginas Web dinâmicas, ofer­
ecendo suporte a três diferentes paradigmas: programação, modelos ("templates")
e bancos de dados. Além de suportar integralmente os três paradigmas, o usuário
pode combiná-los livremente, permitindo o uso de CGILua de novas e interessantes
maneiras, mesmo. para descrição de páginas estáticas. CG!Lua está completamente
implementado, e está sendo usado em diversos "sites" comerciais.
Palavras-chave: HTML, WWW, CGI, páginas dinàmicas

1 Introduction

347

Dueto the growth of the Internet and the World Wide Web there is an increasing demand
for the use of WWW as a dynamic media. Two aspects should be considered to achieve
this goal: Web pages should be created based on real time information, and there must

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

348 XI - SBES

be conditions for the construction and maintenance of the Web sites in a practical and
effective way.

Many tools have been developed to fulfill these two requirements. A strategy is to
take advantage of the fact that a Web server can execute a program as a response to
a Web resource request. This program can then create a dynamic page, based on the
information acquired on execution time.

ln order to receive and send data to the Web server, such programs use a communica­
tion protocol. Among these protocols, the most widely used is CGI (Common Gateway
Interface) (2]. For this reason, programs activated by the server are also called CGI
application$.

Most tools for creating CGI applications can be classified in three broad paradigms:

programming The more "traditional" way for building CGI applications is using a full­
Aedged programming language, typically C or Per! , sometimes with the help of a
specific library, such as CGI.pm (16] and libcgi (19] . The main advantage of this
approach is its expressiveness. Also, some programmers find it convenient because
they can still use a conventional programming style. Nevertheless, this approach
is quite difficult for non-programmers, and even for programmers it is not very
effective, since it operates on a very low abstraction levei.

templates This class includes tools such as Web• (11] . ln this paradigm, a dynamic page
is always based on a static version of the page, the template {or outline). Usually,
the template is written directly in HTML, with "escapes" to mark flelds to be filled
in. When the page is accessed, the template feeds a pre-processor that creates t he
final page.

The main advantage of this approach is that it allows the use of conventional
HTML editors, such as Microsoft's Front Page, for building the template, requiring
no programming knowledge. There are some systems based on templates that use
an embedded programming language (like Tcl [15]) to describe how to flll in each
field . However , the paradigm imposes severe limits on what can be done with the
language, since it must be used within the template. For instance, it is impossible to
use the conditional mechanism of the language to select among different templates
based on some condit ion.

data bases This paradigm, best illustrated by Microsoft's IDC [4], sees accesses to a
server as queries to a data base. A page is described mainly by the SQL statement
to perform the query. It also uses templates, but only to specify how to show a
query result.

The main advantage of this approach is its high levei of abstraction, which greatly
simplifies the creation of pages, as long as they are in fact answers to database
queries. An interesting feature of these systems, when compared to simple tem­
plates, is their a.bility to repeat a piece of a templa.te, in order to show multiple
results of a query. Therefore, a fixed template is able to show variable size infor­
mation.

ln this paper, we prescnt CGILua, another system for developing CGI applica.tions.
The main novelty of CGJLua is that it fully integrates the three paradigms in a sin-

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 349

gle system. Besides supporting each individual paradigm style, users can combine the
paradigms. This allows the use of CGILua in other useful ways. For instance, templates
can be used inside other scripts to describe common patterns shared by many different
pages.

CGILua uses the extension language Lua [6] both in its implementation, as a config­
uration language for the whole package, and as the scripting language for writing CGI
pages. Therefore, CGILua inherits most of Lua features: Portability, a simple Pascal-like
syntax, small size, and flexibility (10]. Most of its flexibility is due to its architecture,
based on the use of an extension language (3]. A kemel, written in C, provides basic
generic services. Upon it, a configuration part, written in Lua, gives the program its
final shape. With this architecture, many characteristics, like security policies and the
inclusion of extra libraries, can be easily tailored in each individual site.

CGILua is fully implemented, and is being used in real applications since 1996. lts
documentation and code can be accessed at

http://wvv.tecgraf.puc-rio.br/manuais/cgilua

The next section describes how CG!Lua supports each individual paradigm presented
above, and how they can be merged. The architecture of CGILua is described in Section 3,
and Section 4 compares CGILua with other proposals. The last section is reserved for
some final remarks; it briefly presents some current commercial uses, portability issues,
and other features of CGILua.

2 An Overview of CGILua

This section shows the use of CGILua using the three paradigms described above: Pro­
gramming, templates, and database.

Following the first paradigm, a dynamic WWW page is simply a program; when the
page is accessed, the program is ran and its output is interpreted as the final HTML page
sent to the browser. ln CGILua, these programs are written in Lua. Figure 1 illustrates
this paradigm with a simple script, which writes the Collatz sequence of a given number.
Notice that ali form data is previously decoded by CGILua and stored in a table called
cgi. Therefore, the expression cgi. number results in the field number given to the script.

As already stated, the main advantage of this paradigm is its power. The full flexibility
of"Lua is available in the creation of a page. That includes ali abstraction facilities of a
programming language, plus pre-defined functions for pattern-matching and thE: like.

The second paradigm considers a script as a template: An HTML document where
special marks indicate fields to be handled by the preprocessor. CGILua supports three
kinds of fields: Statement fields, expression fields, and control fields. Statement fields
contain Lua statements to be executed by the preprocessor; they generate no implicit
output, although they can explicitly write anything to the final page. Such fields are
written between the marks <! --$$ and $$-->. Expression fields contain Lua expressions,
which are evaluated by the preprocessor, with the result used as the final text of the field .
Such fields are written between the marks $1 and I$. Finally, control fields indicate parts
of the document to be repeated or conditionally inserted. Ali these kinds of fields are

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

350

defines function coll (thia line is a comment)
function coll (x)

if mod(x,2) z• O then return x/2
else return 3+x+1 end

end

write("Content-type: text/html\n\n")
write ("<html><head><ti tle>Collatz Sequence</ti tle></head><body>")
write("<b1>Tbe number you bave cbosen ia : ", cgi.number, "</bl>")
n • cgi.number;
while n -. 1 do write(n, "
"); n•coll(n) end
write("</body></html>")

Figure 1: A simple CGILua script

Xl-SBES

shown in Figure 2, which again describes a page to s~ow the Collatz sequence of a given
number.

The LOOP construct acts as a C for statement: lt repeats ali the text between it and
the matching ENDLOOP. The fields start, test and a.ction contain the Lua code that
controls the loop. Loop constructs can be freely nested in a template, whenever more
complex structures are needed.

lt is interesting to notice that ali marks h ave been carefully chosen so that a template
has a sensible appearance in a browser even when it is not preprocessed. Statement
and control marks, which do not generate any implicit output, are handled as comments
by HTML syntax, while expression marks appear literally in the browser, acting as a
place-holder. ln this way, a template can be edited as a regular static HTML page.

ln the last paradigm, a dynamic access is mainly a database query. This paradigm,
in CG!Lua, is quite similar to templates, but uses functions to access a database. These
functions are simply Lua functions provided by a database library. Figure 3 is an example
of a page created from database access. F\.tnction DBOpen establishes a connection with
a database, function DBExec executes an SQL statement, and function DBRow traverses
the resulting table. Each row is returned as a Lua table, which is then stored in variable
m. lt is interesting to notice in this example the interaction between the control marks and
tlie HTML marks to formata table. The final result of this template, after preprocessing,
is shown in Figure 5. .

Traditionally, templates are used for more declarative, static uses, while programming
is used when there is a need for control structures and dynamic descriptions. CGILua
allows a reverse in this conventional use: A template can be used as a kind of subroutine,
while Lua is used as the declarative language. Figures 6 and 7 illustrate this style.
Function cgilua.preprocess provides a degree of rcflexivity: lt allows a Lua script to
explicitly process a template, as if the user had accessed that template. Notice that the
file f orm. html describes how to show a generic form. The abstract specification of the
form , on the other hand, is given in script form.lua, in the format of a table (field).
The sarne table (field), which gives the abstract specification of the form, can be used

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software

<html>
<head><title>Collatz Sequence</title></head>
<body>

<!--$$
defines function coll

function coll (x)
if mod(x,2) •• O then return x/2
else return 3•x+1 end

end
$$-->
<hl>The number you have choaen ia: $1 cgi.number I$ </hl>
<1--$$ LOOP atart•"n•cgi.number", teat•"n -. 1", action•"n•coll(n)" $$-->

$1 n l$

<1--$$ ENDLOOP $$-->

</body></html>

Figure 2: A CGILua template

<html>
<head><title>Hembers</title></head>
<body>

<hl>Club member list</hl>
<! --$$ DBOpen ("DSN•club;" $$-->
<table border• l vidth•lOOY.>

<tr align•center>
<td>First Name</td>
<td><atrong>Laat Name</atrong></td>

</tr>
<1--$$ LOOP

351

start•"DBExec('SELECT firatname,lastname PROH Hembers'), m • DBRov()",
test•"m ... nil",
action•"m • DBRovO" $$-->

<tr>
<td>$1 m.firatname 1$</td>
<td>$1 m. lastname 1$</td>

</tr>
<!--$$ ENDLOOP $$-->
</table>

</body></html>

Figure 3: A database query in CGILua

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

351 XI - SBES

Figure 4: Template without preprocessing

Figure 5: Final result of the template

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI · Simp6slo Brasileiro de Engenharia de Software

<html>
<head><title>Example Form</title></head>
<body>

<form metbod•"POST" ac:tion•"validate.lua">
<! --$$ LOOP start•"i•1", test•":tield[i]", ac:tion• "i•i+1" $$-->

$lfield[i] . labell$:
<input type•"text"

name•"$1field[i] . name I$"
value•"$1 c:gi[field[i] . name] I $">

<!--$$ ENDLOOP $$-->
<input type• aubmit>

</:torm>
$1error_measagel$

</body></btml>

field • {

}

Figure 6: File form . html

{ name•"projec:t",
{ name• "year11

•

{ name•11 code 11 ,

label•"Projec:t" }.
label•"Baae year" } ,
label•"Projec:t c:ode" }

c:gilua . preproceas ("form. btml")

Figure 7: File form.lua

353

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

JS4

field = {

i - 1

}

{ name•"project",
{ name•"year",
{ name•11code 11

•

while field[i) and not fail do

label•"Project" },
label•"Baae year" },
label•"Project code" }

if cgi[field[i) .name] •• "" then
fail " 1

end
i " i + 1

end
if fail then

error_message z "Pleaae fill out all the fielda . "
cgilua. preproceas ("form. html")

else
cgilua. preproceas ("liet-db. html ")

end

Figure 8: Valida.ting data. from a form

Xl-SBES

to drive the creation of other pages; Figure 8 shows a script that validates the data from
such a form. Clearly, in a real case, table field would have a single definition shared
between both scripts.

Notice how CG!Lua can improve the management of Web sites even when used for
static pages, since the use of parametric pages allows a developer to work in a higher
abstraction levei. For instance, the sarne template shown in Figure 6 can be used to
create many different forms, when fed with different values for table field.

3 The Architecture

Like many programs that use a scripting language, CG!Lua has two main modules:
A kemel, written in C, and a configuration 3cript, written in Lua. The kernel is the
program called by the CGI server when a user accesses a CG!Lua page. It creates a Lua
environment, defines some new functions to Lua and then runs the configuration script.
This script decodes the data in the query, redefines some Lua functions to provide a
secure environment where the user script will run , locates the user script and then runs
it. Notice that, as ali these steps are done by a script, they can be easily adapted to local
needs by the system administrator. Also, a site may ho.ve severa! configuration scripts,
allowing differentiated environments for different projects. For instance, institutional
pages may have a weaker security policy than the one enforced on personal user pages.

Figure 9 shows how a client request is processed , since its arrival at the server until
its final result. The request URL always has a virtual path that points to the script to
be ran. Eventually, the request may also contain codified data, for instance from form

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 355

' [o.~MtJ

Figure 9: CG!Lua architecture

contents. CGILua identifies the script type - a Lua program or an HTML template -
based on the path extension. If it is a Lua program, CGILua simply runs it. Otherwise,
the configuration script calls the preprocessor to run the script as a template. The
preprocessor itself is defined in the configuration script, and is completely written in
Lua. This fact enhances the reflexivity of the tool, since the preprocessor can be called
not only by the kernel, but at any moment by the script, as shown in Section 2.

CG!Lua also offers a debugger to help the development of scripts. When in debugging
mode, the debugger acts as the HTTP server, running the script and interacting with it
through CGI. lt also enables ali usual debugger facilities offered by the Lua debugger [8] ,
such as step by step execution, inspection of the execution stack, etc.

Security Issues

A CGI script has the sarne security problems of any network server [7] , since it is invoked
by remote requests; from this point of view, any CGI script can be considered a mini­
server. Since CGILua activates user's Lua scripts, ali security concerns must be extended
to these scripts too.

Most software developers do not have the know-how to implement secure servers in
a public network. Security holes may occur when the program accesses non initialized
memory, runs other programs, accesses files, etc. Most of these problems happen when
the server receives unanticipated wrong data: An apparently inoffensive server can allow
the execution of almost any command by an intruder, in such fau lty conditions. A typical
example is a simple piece of program that receives an e-mail address from an HTML form
and uses it to send a message, using the C function popen:

sprintf(cmd, "mail Y.s" , user);
file • popen(cmd);
I • writes message to file • /

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

'

356 XI -SBES

This code works without problems as long as the user string, supplied by an ex­
terna! client, is an e-mail a.ddress. However, this string can be used to execute any
Unix command. For instance, if the supplied "e-mail address" is the string "I: cd I;
rm -fr •", the server script will attempt to crase ali server files; the string "I: xtei111
-display intruder. com: O. 0" will open a terminal with ali rights of the server script
at the intruder console.

Lua is a language with a secure semantics. There are no language constructions
with undefined behavior. Lua programs are translated into byte-codes, which are then
interpreted in a protected environment. There are no instructions to do real memory
access or to call arbitrary C functions; the stack is fully controlled. Besides pure resource
consumption, the only way a Lua program interacts with the externa! environment is
through function calls. Therefore, in the realm of a Lua program, security issues can be
focused on how to control the use of insecure functions.

ln Lua, functions are first class values; Lua programs can freely create, redefine or
crase functions at run time. Therefore, a simple solution for a secure environment would
be the configuration script to crase ali "dangerous" functions before calling the user
script. That solution is clearly too much restrictive, since most of these functions can
be used in restricted ways without security holes. For instance, a generic open function,
which allows a script to write to any file, may be dangerous, but it could be restricted to
only open files in a. pre-defined directory sub-tree.

The solution adopted by CGILua has two parts. The kernel introduces a single generic
facility that allows a. Lua script to erase a. global function while keeping a private access
to it. With these fa.cilities, the configuration script redefines the "dangerous" functions
to more secure versions. Notice that the original functions are still accessible by the
configuration script, and are used in the implementation of the restricted versions. With
this solution, the whole Lua environment is configured in Lua itself, with the usual
benefit: Flexibility. System a.dministrators can change the configuration script to a.dapt
the protected environment to their specific needs.

Notice how this solution differs from the one a.dopted by Perl, which uses a modified
intcrpreter, called tainted Perl. ln this mode, the interpreter forbids the execution of any
command dependent of externa! data. With this approach, despite its complexity, the
security levei is fixed a.nd "wired" in the language implementation.

Extensibility

As alrea.dy explained, the configura.tion file can define new Lua functions. ln this way, Lua
libraries can be automatically loa.ded before the execution of the use r scripts, offering new
facilities. Sometimes, however, such extension should be written in C, either for efficiency
reasons, like a cryptography package, or beca.use it accesses pre-defined C interfaces, like
a database.

Again, the solution adopted by CGlLua has the sarne general pattern: The kernel
implements a generic mechanism for dynamic library loading, and the configuration script
specifies which and how each package will be loaded. After this step, t he script erases
these loading facilities, thereby restricting the use of any unauthorized extension.

The main example of use of this facility is the database package. Lua itself offers no

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpósio Brasileiro de Engenharia de Software 357

database facilities. lts standard libraries offer only access to files in conformance to the
ANSI C facilities. DBLua is a Lua library that interfaces Lua with a standard database
API , called DBGraf (13), which offers access to different database systems, like mini-SQL
and ODBC. This library is dynamically loaded by the configuration script, therefore
offering ali database facilities of CG!Lua.

4 Related Work

This section compares CGILua with other packages for building dynamic pages. These
packages are presented according to the adopted paradigms.

Many avaílable tools for creating dynamic Web pages are based on the programming
paradigm. Severa! publications (14, 5, 9) assume that C and Perl are the most widely
used languages for this task. C, like most "general purpose" programming languages, is
very low levei. Mainly, C lacks automatic memory management, and particularly lacks
support for dynamic strings. This not only complicates string manipulation, a most
common operation in Web scripts, but also opens the possibility of memory overflow,
which can lead to security boles. Moreover, C is a compiled language, and the compilation
time can h ave a negative impact in the development of such small programs. Most scripts
go through many small changes until their finallook. On the other hand, the efficiency
of a compiled language is hardly relevant in a page access, since the whole access time
includes network communication, process creation, program load, file access, etc. The
time to execute the script itself is usually much smaller than this total time.

For those reasons, severa! interpreted languages has been used for the development
of CGI scripts (12, 18). Among them, Perl seems to be the most widely used. Perl is an
interpreted language, with strong string support and pattern-matching facilities. So is
Lua. Perl is certainly more powerful than Lua, in the sense that it has a much bigger
built-in library. On the other hand, Lua is much simpler than Perl: It has a Pascal-like
syntax, anda simple formal semantics. lts executable file is almost ten times smaller than
Perl's (lO). lt is not difficult to write libraries for Lua, both in Cor in Lua, and CG!Lua
can transparently load these libraries, if required. Moreover, its reftexive facilities allow
easy configuration of what is available to the final scripts, improving their security levei.

Although it is not uncommon to use the bare language when programming CGI
scripts, many developers use specific libraries for the task. CGI.pm (16, 17) is a package
for Perl5. The package offers facilities for parsing form parameters, generation of headers
and creation of forms.

CGI.pm main features are its functions for form design and management, which en­
capsulate the creation of form elements in HTML. It can also automatically reinitialize
a form with the data from the previous interaction, a useful feature in error situations or
data checking. CGILua also parse form parameters, in a way completely transparent to
the script. As we have seen in Section 2, field values are directly accessible as fields of a
dynamic "record" called cgi. CGILua has a weaker set of functions for creating HT.ML
elements. ln fact, thesc functions are seldom used, since most CGILua users prefer to
use templates when more complex elements are involved in a page.

Libcgi (19) is a C library for the description of CGI pages. It also offers facilities for
parsing form data, and for building HTML elements. Despite its features, it cannot coun-

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

358 XI-SBES

ter balance the weakness of C for the task. A script still has to handle memory allocation,
data conversion, and other details. Moreover, there is the overhead of compilation-link
phase while developing a page.

Web*!ll) is a tool that adopts the template paradigm. Their templates, called "layout
pages", are essentially an HTML document with Tcl code embedded in it. This Tcl code
is always handled as expressions; there is no support for control fields, like in CG!Lua.
As in CG!Lua, form data are automatically available to a script through Tcl variables,
and there is support to save part of the script state from one page to the next . Web*
offers support for neither database access, nor for writing CGI scripts outside templates.
An interesting feature of Web* is its support for CORDA access. A similar feature is
available in CG!Lua, using the LuaOrb package (1) .

Microsoft's IDC (4) (IDC stands for Internet Database Connector) is a typical tool
using the database paradigm. lts main advantage is its high abstraction levei. lt uses
two files to describe a script: One describes, in SQL, t he query to be executed when t he
script is accessed. The other fi le is an HTML template, to be filled by the SQL results.
The Jack of a full -ftedged programming language imposes limits to its ftexibility. For
instance, loop fields in a template can only be used to show query results; the template
fields must be filled with the bare results of the query, without further processing. IDC
is non portable, being available only on Microsoft Windows platform.

5 Final Remarks

CG!Lua h as been described, as a tool for building dynamic Web pages. CG!Lua allows a
user to develop its pages using three different paradigms: Programming, templates, and
databases. Moreover, it fully integrates t hem, allowing the creation of new development
styles with a mix of mechanisms from these paradigms.

Besides the support of multiple paradigms, CG!Lua also presents the following fea­
tures:

fiexibility T he use of an extensiqn language in the architecture of CG!Lua makes the
tool highly ftexible. Many characteristics, from error hand ling to security policies,
can be easily tailored by t he system administrator. Both Lua and C libraries can
be dynamically loaded, in order to offer new functionality, like cryptography.

simplicity T he whole system has 1500 lines of code. Ali its sources and binaries can
be put in a single ftoppy disk. lts use is also simple. Most users are able to start
using CGILua in less than half an hour. Templates are written mostly in HTML,
database accesses are written in SQL, and programs are written in Lua. Lua is a
smalllanguage, with a simple Pasca.I-Iike syntax, simple semantics, and automatic
memory management.

scalability With the loop constructor, fixed templates can be used for variable size
information. Moreover, a judicious choice of syntax allows t he use of conventional
HTML editors to manipulate these templates.

portability CGILua runs on Windows NT, Windows 95, Linux, IRIX, Sun-OS, Solaris,
A IX, HP-UX, FreeDSD, Unixware, SCO, OSF, and other platforms with essentially

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

XI- Simpó~io Brasileiro de Engenharia de Software 359

the sarne source code. Applications are fully portable: Any script written in one
platform needs no changes to run in other system.

CGILua is fully implemented, and currently is being used for severa(industrial appli­
cati.ons. Below is a list of its maio applications.

SIGMA is a WWW system being developed to PETRODRAS (The Brazilian Petro­
leum Company). lts purpose is to manage the procedure of obtaining environmental
licenses and to inform about rules and technical procedures. The system generates and
collects information through an active communication with a database. A group of
six people has been developing the system, having produced, to this date, around ten
thousand lines of HTML templates and Lua oode. The system is part of a strategy to
obtain the ISO 14000 certificate. Around one hundred people will use SIGMA as a work
tool daily. Moreover, parts of the system will be available to the general public.

CGILua has also being used to build RPA, an Intranet system used by PUC-Rio
(The Pontifical Catholic University of Rio de Janeiro) to keep track of the academic
production of its faculty. Currently the system is being used by more than one hundred
faculty members and staff, from eight different departments.

Finally, Medialab, a Brazilian company that develops WWW sites for industries like
Shell and Microsoft, has been using CGILua for the creation of dynamic pages in eleven
sites, among them the si te of Volkswagen do Brasil and Dutyfree.

Acknowledgements

The authors would like to thank André Clinio, who helped the development of the very
first version of the kernel; André Carregal, who first suggested the idea of control fields
in templates; and Mônica Leitão, for pioneering the use of CGILua in real applications.
This work has been partially supported by CNPq and MCT.

References

[1) R. Cerqueira, N. Rodriguez, and R. lerusalimschy. Using Lua to access CORBA
objects. Monografias em ciência da computação, PUC-Rio, Rio de Janeiro, Brazil ,
1997.

[2) CGI - Common Gateway Interface. W3C - World Wide Web Consortium, URL:
http://www.w3.org/pub/WWW /CGI/, 1996.

(3) D. Cowan, R. lerusalimschy, and T. Stepien. Programming environments for end­
users. ln 12th World Computer Congress, volume 3, pages 54-60, Madrid, Sep 1992.
IFIP.

(4) C. Doyle, editor. Microsoft Windows NT Server Internet Cuide. :.\1icrosoft Press,
1996.

(5] M. Erwin, J. Dwight, et ai. Specia/ Edition Using CGI. QUE, Aprill996.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

360 XI-SBES

[6] L. H. Figueiredo, R. lerusalimschy, and W. Ceies. Lua.- an exteosible embedded
language. Dr. Dobb's Journal, 21(12):26-33, 1996.

[7} S. Garfinkel and G. Spafford. Practical UNIX & Internet Security. O'Reilly &
, Associates, lnc. , second edition, 1996.

[8} T . G. Gorham and R. lerusalimschy. Um sistema de depuração reflexivo para uma
linguagem de extensão. ln Roberto Bigonha, editor, I Simp6sio Brasileiro de Lin­
guagens de Programação, pages 103-114, Belo Horizonte, September 1996.

[9} S. Gundavaram. CGI Programming on the World Wide Web. O'Reilly & Associates,
lnc., 1996.

[10) R. lerusalimschy, L. H. Figueiredo, and W. Ceies. Lua-an extensible extension
language. Software: Practice & Experience, 26(6):635-652, 1996.

[11) V. Jagannathan, G. Almasi, and A. Suvaiala. Collaborative infrastructures using
the WWW and CORBA-based environments. ln Proceedings of the IEEE Fifth
Workshop3 on Enabling Technologies: lnfrastructure for Collaborative Enterprises
June 19-21, 1996, Stanford, CA. IEEE Computer Society Press, 1996.

[12] D. Libes. Writing CGI scripts in Tcl. ln Tcl 96 Conference, May 1996.

[13} M. Mediano. DBGraf - Manual de Referência. TeCGraf, May 1996.

[14] R. J . Mudry. Serving the Web. Coriolis Groups Books, 1995.

[15} J . Ousterhout. Tcl: an embeddable command language. ln Proceedings of the 1990
Winter USENIX Conference. USENIX Association, 1990.

116} L. Stein. CGI.pm - a Perl 5 CGI library. URL: http:/ fwww.genome.wi.mit.edu/
ftp/distributionfsoftware/WWW /, April 1997.

[17} L. Stein. A Perl library for writing CGI scripts. Web Techniques, 2(2}, February
1997.

[18} M. Vanaken. Writing CGI scripts in Python. Linux Journal, 34, February 1997.

[19} J . Weber. libcgi. URL: http:/ /wsk.eit.com/wsk/, 1996.

[20} Yahoo! URL: http:/ fwww .yahoo.com/Computers_and_Internet/lnternet/World_
Wide_Web/CGI_ Common_Gateway_lnterface/, April1997.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	Z0001
	Z0002
	Z0003
	Z0004
	Z0005
	Z0006
	Z0007
	Z0008
	Z0009
	Z0010
	Z0011
	Z0012
	Z0013
	Z0014
	Z0015
	Z0016
	Z0017
	Z0018
	Z0019
	Z0020
	Z0021
	Z0022
	Z0023
	Z0024
	Z0025
	Z0026
	Z0027
	Z0028
	Z0029
	Z0030
	Z0031
	Z0032
	Z0033
	Z0034
	Z0035
	Z0036
	Z0037
	Z0038
	Z0039
	Z0040
	Z0041
	Z0042
	Z0043
	Z0044
	Z0045
	Z0046
	Z0047
	Z0048
	Z0049
	Z0050
	Z0051
	Z0052
	Z0053
	Z0054
	Z0055
	Z0056
	Z0057
	Z0058
	Z0059
	Z0060
	Z0061
	Z0062
	Z0063
	Z0064
	Z0065
	Z0066
	Z0067
	Z0068
	Z0069
	Z0070
	Z0071
	Z0072
	Z0073
	Z0074
	Z0075
	Z0076
	Z0077
	Z0078
	Z0079
	Z0080
	Z0081
	Z0082
	Z0083
	Z0084
	Z0085
	Z0086
	Z0087
	Z0088
	Z0089
	Z0090
	Z0091
	Z0092
	Z0093
	Z0094
	Z0095
	Z0096
	Z0097
	Z0098
	Z0099
	Z0100
	Z0101
	Z0102
	Z0103
	Z0104
	Z0105
	Z0106
	Z0107
	Z0108
	Z0109
	Z0110
	Z0111
	Z0112
	Z0113
	Z0114
	Z0115
	Z0116
	Z0117
	Z0118
	Z0119
	Z0120
	Z0121
	Z0122
	Z0123
	Z0124
	Z0125
	Z0126
	Z0127
	Z0128
	Z0129
	Z0130
	Z0131
	Z0132
	Z0133
	Z0134
	Z0135
	Z0136
	Z0137
	Z0138
	Z0139
	Z0140
	Z0141
	Z0142
	Z0143
	Z0144
	Z0145
	Z0146
	Z0147
	Z0148
	Z0149
	Z0150
	Z0151
	Z0152
	Z0153
	Z0154
	Z0155
	Z0156
	Z0157
	Z0158
	Z0159
	Z0160
	Z0161
	Z0162
	Z0163
	Z0164
	Z0165
	Z0166
	Z0167
	Z0168
	Z0169
	Z0170
	Z0171
	Z0172
	Z0173
	Z0174
	Z0175
	Z0176
	Z0177
	Z0178
	Z0179
	Z0180
	Z0181
	Z0182
	Z0183
	Z0184
	Z0185
	Z0186
	Z0187
	Z0188
	Z0189
	Z0190
	Z0191
	Z0192
	Z0193
	Z0194
	Z0195
	Z0196
	Z0197
	Z0198
	Z0199
	Z0200
	Z0201
	Z0202
	Z0203
	Z0204
	Z0205
	Z0206
	Z0207
	Z0208
	Z0209
	Z0210
	Z0211
	Z0212
	Z0213
	Z0214
	Z0215
	Z0216
	Z0217
	Z0218
	Z0219
	Z0220
	Z0221
	Z0222
	Z0223
	Z0224
	Z0225
	Z0226
	Z0227
	Z0228
	Z0229
	Z0230
	Z0231
	Z0232
	Z0233
	Z0234
	Z0235
	Z0236
	Z0237
	Z0238
	Z0239
	Z0240
	Z0241
	Z0242
	Z0243
	Z0244
	Z0245
	Z0246
	Z0247
	Z0248
	Z0249
	Z0250
	Z0251
	Z0252
	Z0253
	Z0254
	Z0255
	Z0256
	Z0257
	Z0258
	Z0259
	Z0260
	Z0261
	Z0262
	Z0263
	Z0264
	Z0265
	Z0266
	Z0267
	Z0268
	Z0269
	Z0270
	Z0271
	Z0272
	Z0273
	Z0274
	Z0275
	Z0276
	Z0277
	Z0278
	Z0279
	Z0280
	Z0281
	Z0282
	Z0283
	Z0284
	Z0285
	Z0286
	Z0287
	Z0288
	Z0289
	Z0290
	Z0291
	Z0292
	Z0293
	Z0294
	Z0295
	Z0296
	Z0297
	Z0298
	Z0299
	Z0300
	Z0301
	Z0302
	Z0303
	Z0304
	Z0305
	Z0306
	Z0307
	Z0308
	Z0309
	Z0310
	Z0311
	Z0312
	Z0313
	Z0314
	Z0315
	Z0316
	Z0317
	Z0318
	Z0319
	Z0320
	Z0321
	Z0322
	Z0323
	Z0324
	Z0325
	Z0326
	Z0327
	Z0328
	Z0329
	Z0330
	Z0331
	Z0332
	Z0333
	Z0334
	Z0335
	Z0336
	Z0337
	Z0338
	Z0339
	Z0340
	Z0341
	Z0342
	Z0343
	Z0344
	Z0345
	Z0346
	Z0347
	Z0348
	Z0349
	Z0350
	Z0351
	Z0352
	Z0353
	Z0354
	Z0355
	Z0356
	Z0357
	Z0358
	Z0359
	Z0360
	Z0361
	Z0362
	Z0363
	Z0364
	Z0365
	Z0366
	Z0367
	Z0368
	Z0369
	Z0370
	Z0371
	Z0372
	Z0373
	Z0374
	Z0375
	Z0376
	Z0377
	Z0378
	Z0379
	Z0380
	Z0381
	Z0382
	Z0383
	Z0384
	Z0385
	Z0386
	Z0387
	Z0388
	Z0389
	Z0390
	Z0391
	Z0392
	Z0393
	Z0394
	Z0395
	Z0396
	Z0397
	Z0398
	Z0399
	Z0400
	Z0401
	Z0402
	Z0403
	Z0404
	Z0405
	Z0406
	Z0407
	Z0408
	Z0409
	Z0410
	Z0411
	Z0412
	Z0413
	Z0414
	Z0415
	Z0416
	Z0417
	Z0418
	Z0419
	Z0420
	Z0421
	Z0422
	Z0423
	Z0424
	Z0425
	Z0426
	Z0427
	Z0428
	Z0429
	Z0430
	Z0431
	Z0432
	Z0433
	Z0434
	Z0435
	Z0436
	Z0437
	Z0438
	Z0439
	Z0440
	Z0441
	Z0442
	Z0443
	Z0444
	Z0445
	Z0446
	Z0447
	Z0448
	Z0449
	Z0450
	Z0451
	Z0452
	Z0453
	Z0454
	Z0455
	Z0456
	Z0457
	Z0458
	Z0459
	Z0460
	Z0461
	Z0462
	Z0463
	Z0464
	Z0465
	Z0466
	Z0467
	Z0468
	Z0469
	Z0470
	Z0471
	Z0472
	Z0473
	Z0474
	Z0475
	Z0476
	Z0477
	Z0478
	Z0479
	Z0480
	Z0481
	Z0482
	Z0483
	Z0484
	Z0485
	Z0486
	Z0487
	Z0488
	Z0489
	Z0490
	Z0491
	Z0492
	Z0493
	Z0494
	Z0495
	Z0496
	Z0497
	Z0498
	Z0499
	Z0500
	Z0501
	Z0502
	Z0503

