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1 Introduction

Exception Handling Mechanisms (EHMs) have been widely recognized as useful in Object
Oriented Languages (OOLs), and have been introduced in languages such as C+4 [ES90],
Eiffel |[Mey88], and Sather [SOM93]. Nevertheless, the use of EHMs is still controversial, and
there is no unanimous opinion on the subject: some OOLs use no EHM at all, and each of the
languages that include exception handling does it in a different way.

This paper describes the EHM of the programming language School. School [RIR93] is
an OOL featuring separate hierarchies for specifications and implementations, structural sub-
typing, and generic types with restrictions. The main goal of School is to provide the same (or
higher) degree of reuse and flexibility attained in other OOLs while guaranteeing the absence
of execution errors due to type problems.

In School, a type corresponds to a partial specification, mainly stating the names, parame-
ters and results types for the operations valid on all objects it describes. Exception signaling
is viewed as one form of returning from a method, with the exception viewed as the result
returned in this case. The result type of a method can thus be considered the union of the
“normal” result type and of the type of the exceptions possibly signaled by this method. The
reason for this approach is that the exclusion of the exceptional result from the type specifica-
tion would defeat our goal of complete static checking, since in this case an operation would
have the possibility of finishing without returning the stated result type.

Adding exceptions to specifications brings in a new problem, namely, their integration into
the sub-typing rules. The EHM we propose for School in this paper deals with this problem;
we define rules for inheritance which permit the inclusion of exceptions while still guaranteeing
the absence of dynamic type errors.

The proposed rules are quite intuitive; exceptions are viewed as objects and are required
to follow the subtype patterns defined by the types in which they are signaled, in much the
same way as parameters to methods. At first glance, this approach could seem to have the
consequence of forcing all subtypes of a given type T to signal at least the exceptions signaled
in T. This would be 0, since the refinement of a method may eliminate its exceptions. Our
proposal handles this situation adequately, as we will see,

2 Related Work

In this section we briefly discuss some proposals for exception handling, attempting to establish
their relation to our work.

Exception handling is viewed in two main ways. Some authors, such as [LS79] and [YB85]
consider it to be an important linguistic facility, to be used by programmers in the treatment of
cither errors or simply unusnal conditions. This can be contrasted with the paradigm presented
in the Ada rationale, where exceptions were introduced for dealing with fatal errors, making
the provision of “graceful degradation™ the main role of the EHM.

In the object oriented world, "+ 4 and Sather are the main representatives of the first
approach, where exception handling is viewed as a general programming [acility, In C4+,
an exception can be signaled at any point in the code by throwing an object. When a throw
statement is execnted, a corresponding cateh statement is songht along the dynamic chain.
A ecatch statement matches a throw statement if it specifies a class which is the same or a
superclass of the thrown object. A similar exception handling mechanism is defined for Sather
([SOM93)).

One point in these proposals which seems to present a problem is the fact that they introduce
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a possible way of determining the exact type of an object at runtime. For instance, if a
C++ class ' has as descendants classes €'y, C3, and €3, a member function may receive as
a parameter a polymorphic object of class ¢ and throw it, and with handlers defined in its
caller for classes €'y, C'y, and Cjy, the execution path will correspond to a test of the class of
the thrown object. The use of dynamic tests for establishing the real type of a polymorphic
variable is a controversial issue; the case against it is argued, for instance, in [Mey88].

Another controversial point in the C4+ and Sather EIIMs is the uncontrolled search of
handlers along the dynamic chain, as will be discussed in section 4.1.

The programming language Eiffel [Mey88| also includes exception handling. However, dif-
ferently from what we have here, the approach used in that proposal is that an exception
corresponds to a failure, or to the “inability of a routine to maintain its part in a contract”.

[Car92] presents another proposal for exception handling in OOLs, which presumes the
definition of different levels of handling. When an exception e is signaled by a method M,
there may, in the first place, exist a local handler for e in M itsell. In this case, this code is
executed and execution proceeds normally. Handlers may also be defined at the class level. If
a local handler is not defined for e, and the class €' which contains M contains a (defined or
inherited) handler for ¢, M will be terminated, this handler will be executed and control will
be returned to the caller of M with no indication that an exception has occurred. Finally, if
class C' does not contain a handler for ¢, ¢ will be propagated to the caller of M. In this case,
the search for a handler will follow the same steps described above.

The proposal described above has as a goal the conciliation of object oriented features with
efficiency. However, from the point of view of strong typing, it poses some problems. In Tool
[SPA92], the base language used in that proposal, exception handlers are not defined in class
interfaces, thus making it difficult for a programmer who is using a class to understand the
sequence of flow in the case of signaling. Desides, after the execution of a handler, control is
directly returned to the caller of the signaling method; to guarantee static checking, the handler
must then return a value of the same type as the declared returned value of the signaling
method, but this cannot possibly be enforced by the compiler in the presence of automatic
propagation. Finally, it seems to us that an exception which the class itsell knows how to
handle is not really an exception, being maybe more adequately programmed as a normal call
to a local method. The gain in efficiency resulting from the fact that control does not return
to the signaling method before returning to its caller could he achieved by introducing tail call
elimination in the compiler.

In non object oriented languages, several proposals for exception handling exist, as described
in [GooT5], [Lev77), (LS79], [YB85], and [1*79]. These differ mainly in the goal of the exception
handling mechanism, in the choice of paradigms for association of signalers to handlers and
also between termination and resumption after handling has taken place. These issnes will be
discussed in section 4.1,

Black [Dla82] argues the case against exception handling mechanisms. He discusses how
conventional programming language mechanisms may be used in many typical exception han-
dling examples. To describe the possibility of exceptional termination of a routine, Black
proposes the use of unions in return type declarations. In this aspect, the approach used in
School is similar to Black’s. Ilowever, in his proposal, no semantic distinction is made between
normal and exceptional cases, making it mandatory that the programmer explicitly test the
result tvpe after each routine call. As discussed in [Rod90], the fact that a mechanism may
be simulated by other features of a language is not sufficient reason for excluding it from the
language; otherwise, assemhly wounld be in common use to this day.
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3 School

School is a programming language designed to keep the basic semantics of object-oriented
languages, mainly Smalltalk, while offering a secure type system. All values in School are
objects. Variables do not contain ohjects, but references to them, and both assignment and
parameler passing manipulate references. All communication between objects is based on
late-binding, and the binding depends solely on the receiver.

The rule that has guided the development of School's type system has been to avoid any
constriuction thal can cause a “message not understood” error at run-time; obeying this rule,
we have Lried to make the language as flexible as possible. In order to achieve higher flexibility,
separate hierarchies for types and classes (specifications and implementations), structural sub-
typing, and constrained genericity were introduced in School. As a result, we obtained a terse
language that can model most type facilities presented by other OOLs.

The importance of separate hierarchies in an OOL is now widely recognized [Val]. The
main idea underlying this concept is the understanding of types as specifications, and classes
as implementations. The type of an object is its external appearance, that is, its interface to
the outside world. In School, a type declaration states all operations available in objects of
that type, and the types of parameters and eventual results of each operation. For example, a
point could be declared as:

type Point is

proc x => Int;

proc y => Int;

proc moveBy (p : Point);
end Point;

On the other hand, the class of an object dictates its internal shape, that is, its structure
and the code to handle it. A possible School implementation for points is shown below. Class
declaration headings may include the external object type ( Point, in the case of objects of the
class PointCart).

class PointCart : Point is
var zPos,yFos : Int ; ~-- inatance variables
constructor newC (xi, yi: Int) is
zPos := xi; yPos := yi;
and;
proc x () => Int is Result := xPos end;
proc y () -> Int is Result := yPos end;
proc moveBy (p : Point) is
xPos := xPos + p.x;
yPos := yPos + p.y;
end;
end PointCart;

Note that the external type Poimnl of objects of class PointCart is declared after the class
name. In general, a type may have several implementations. In declarations of variables.
parameters, ete.. only the type is given; the class must be specified only at the time of the
creation of an object. As stated above, School adopts referential semantics. so that variables
contain only references Lo objects; until an object is created for a variable, it refers to the nil
object. The nil object is the sole value of type Nil, which is defined as a subtype of any type
possibly declared in School. A consequence of this definition is that no type can be a subtype
of Nil,
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New objects are created through calls to constructors, which explicitly refer to the class
name, with the *!" syntax, as in

p := PointCart!new(C(10,20)

A call to a constructor allocates space for the created object, after which the constructor code
is executed, initializing the object. Constructors are not part of type specifications. One of the
reasons for this is that the creation of an object is dependent on its implementation, and so
it does not make sense to specify the nceded information (initialization parameters) in a type
description. Besides, some classes may need several different constructors, which would make
the specification rather awkward.

To say that a type A is a subtype of a type B means that A is compatible, from an external
point of view, with B. In other words, an object of type A can be used wherever an object of
type B is expected. Notice that A and B do not need to have similar implementations. On the
other hand, to say that a class A is a subelass of a class Il means that A inherits methods and
variables from B. As they do not need to have compatible interfaces, A can freely modify the
inherited features. Using the classification proposed in [WZ88], sub-typing must have behavior
compatibility, or at least signature compatibility, while sub-classing is free to adopt cancel
compatibility. Therefore, there is no compromise between the flexibility of cancel compatibility
and the security of strong typing.

The independence between sub-typing and sub-classing allows a programming language to
adopt structural type compatibility. That means that a type is a subtype of another one as a
consequence of their compatibility. and not the other way round. The problem which remains
is how to assess compatibility.

Following our main rule, stated above, we want to allow a type A to be a subtype of B as
long as there is no possibility of errors when using an A object in the place of B, “Message not
understood” errors (no such method in an object) can he avoided by defining that a type A is a
subtype of 8 (A < B) if and only if, for each method X in B, with signature Py, x...x Py, —
Rg, x...x Ry, there is a method X in A, with signature Py, x...x Py, = Ry, x...x Ra,,,
where for all i < m, Ry, < Rp, and. for all i < n, Pg, < Py,. If this condition is satisfied, we
say that the signature of X in A is a subsignature of the signature of X in 8. The apparent
inversion in the last condition is known as the “contra-variance rule”, and is needed to assure
correctness [CWR5]. A formal definition of sub-typing is given in [Ter92]. In that paper, it
is shown that this definition is not only sufficient bunt also necessary to ensure the absence of
run-time errors. In any language accepting A in place of B with A £ B, it is possible to write
a routine that generates a run-time error.

As an example of sub-typing, consider the declarations:

type Point is

proc x => Int;

proc y -> Int;

proc moveBy (p : Point);
and Point;

type Pointl is
proc x () -> Imt;
proc ¥ () -> Int;
proc moveBy (p : Pointi);
proc copy () -» Pointi;
end Pointl;

type Point2 is
proc x () => Int;
proc y () -> Int;
proc moveBy (p : Point);
proe copy () =-> Point2;
end Point2;
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‘We have: Point2 < Point, but not: Pointi < Point (incompatible parameter for method
moveBy). or Point < Point1 (missing method copy).

The main advantage of structural compatibility is its flexibility. However, this same flexi-
bility is sometimes considered a drawback. The argument is that a type can be a subtype of
another one by mistake. This problem can be avoided with the use of properties [AvdL90]. A
property is just a name attached to a type, intended to represent a characteristic of the type.
For instance, a type Stack could have LIFD as one property. A type A is then considered
subtype of B only if, besides the above condition, A includes all properties of B. Because
properties can be easily simulated through dummy functions, having the property name and
no parameters or results, School does not include this facility.

While the type hierarchy is automatically deduced from the types (structural compatibility),
the class hierarchy is built on explicit declarations (nominal compatibility). When a class is
declared as including other classes it inherits, by default, all variables and methods from them.

The collection of headers of all procedures of a class (locally defined or inherited from
included classes) compose the internal type of a class. If a type is given in the class definition,
this type is the external type of the class, and it must be a super-type of the internal type. If
a type is not given, the external type of a class is its internal type. If a class includes another
one, its internal type must be a subtype of the internal type of the included class.

In order to keep independent hicrarchies, the external type of a class has no relationship
with the external types of included classes.

4 Exception Handling

Before describing a specific proposal for Exception Handling, we discuss in Section 4.1 some
basic issues this proposal must address. Section 4.2 presents exception handling in School.

4.1 Basic Principles for Exception Handling

A first issue to be considered is the choice between the termination and resumption paradigms.
In the termination model, the routine where an exception is signaled is interrupted at the
point of signaling and its current activation is terminated. This is the model used in C++,
CLU, and Ada. In the resumption model, execution of the signaling routine is resumed after
_the handler has finished its job. The idea is that the handler may “clear” the exceptional
condition, allowing the signaling routine to proceed with its work. This model is supported,
along with termination, in [Lev77] and [YB8S).

The advantages of supporting resumption are basically connected to the programming flex-
ibility which may be gained. In what follows, we argue that this flexibility comes at a very
high cost, explaining our choice for termination.

Our first argument agaiust resumption is based on the reasoning presented in [Cri70]. If a
program unit M calls another unit N, and N signals an exception, resumption implies that the
handler in M should, at this point, reestablish some assertion which has been negated (so as
to allow the execution of an operation which has heen diagnosed us invalid). This condition
may be a precondition or any other invariant in the body of N. If it is a precondition of N,
then it seems 10 make more sense for M to call N again with the correct parameters. If it is
not, it is some intermediate condition in the implementation of V. But in this case, in order
to reestablish it, or in fact even o understand it, it will be necessary for M to have knowledge
about invariants in N which might include variables and values not apparent from the outside,
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which means knowledge about N's internal state. This is in disagreement with the principles
of abstraction and modularity.

Another argument against resumption is that, after the handler has executed, it will be
necessary for the signaling routine to once more test the offending condition, since it is possible
that the handler has not been able to correct it. In this case, a stronger exception will have to
be signaled, or a loop inserted to guarantee a valid final state. This implies greater complexity
in the programming of a signaling routine.

It has also been pointed out ([Bla82]) that the cases where it is really possible to call
a handler and continue execution without any' undue interaction between different levels of
abstraction can be very well modeled by the use of procedure parameters. This is specially
natural in the context of object orientation, as will be discussed in section 5.

The discussion above has led us to the conclusion that the expressive power gained by
introducing resnmption in an EHM does not compensate the increased programming complexity
and lack of programming modularity which come as consequences. Resumption is thus not
included in the EHM proposed for School. Therefore, the signaling of any exception always
implies in the termination of the signaling method.

Another important issue in the definition of an EHM is the rule for association between
signaler and handler. Some proposals, such as [Ada83] and [Str92), allow a search along the
dynamic chain until a handler for the signaled exception is found. This requires a default
handler at the outermost level, so that a handler is always found. Others, such as [LS79] and
[YB85], require that a handler be present in any routine which executes a call to a potentially
signaling routine.

We consider this second option to be more appropriate. Again we adopt arguments based on
principles of modularity, presented in [YB85] and [Cri79]. The implementation of each routine
in a program must be based on calls to other routines whose specification (parameters, results,
and signaled exceptions) is known but whose implementation should be irrelevant to the new
routine. Thus, it cannot be expected that a routine define adequate handlers for exceptions
signaled by routines not directly called by it.

Another relevant point is that dynamic search for a handler must necessarily allow for the
possibility of no handler being found. This situation typically results in an execution error.
Since we consider the exception signaling to be part of type definitions, this would be an
execution error due to typing, which is exactly the kind of errors we are trying to eliminate.

Therefore, in Schoal, every exception signaled by a routine must be handled in the caller of
this routine, using the handler associated to the innermost block enclosing the call. Since the
declaration of possibly signaled exceptions is part of the declaration of methods, the compiler
can easily check that all calls are appropriately associated to handlers.

Note that the handler may simply pass the signal up the dynamic chain, if the same ex-
ception is declared in the calling routine. In such cases, the implementation may guarantee
the *direct jump” to the effective handler, not wasting the time to go through each step in the
calling chain; coneeptually, however, this is not important.

4.2 Exceptions and Sub-typing

In School. exceptions are signaled by a signal statement; when this statement is executed, the
current routine is terminated. Signatures of routines must list the exceptions possibly generated
by them, as in CLU. Haudlers for exceptions are defined in except when statements, which can
be hound to any structured or simple statement, using the syntax:

except when <exceptionType> do <handler> end
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As in C++, a handler matches an exception if it specifies any super-type of this exception.
Any call 10 a routine must lie in the scope of exception handlers for exceptions possibly signaled
by the routine. So, signaling in School is similar to throwing in C4 4, with the imposition that
the exception be necessarily caught in the routine which made the call to the signaling routine.

In order to statically ensure the above condition, exceptions must now be taken into consid-
eration when comparing routine signatures. We will consider in the following discussion that
each method signals al most one exception. We will see later that in fact only one exception
type is necessary.

We extend the definition in the previous section, saying now that a type A is a subtype of
B (A < B) il and only if, for each method X in B, with signature

Py, x ...x Pg, = Rp, x ... % Rp,, signals Ej,
there is a method X in A, with signature
Pay X ...x Py, = Ry, x ... % Ry, signals E,,

where for all i < m, Ry, < Rp,, for all i < n, Pg, < P4, and E, < Ej.

To see why the exception signaled by a method X in a type A must indeed be a subtype
of the exception signaled by method X in any super-type of A to guarantee static checking,
consider the following example.

type B is
proc m() signals E;
end B;

var b: B;

"b:;() except when E: ...

The compiler is able to check that the call b.m() is in the scope of a handler for an exception
of type E. Consider now that at runtime the value of variable b is an object of type A, a subtype
of B. If method X in A signals an exception of type I, and if / is not a subtype of E, we may
incur in an execution error, for there is no handler for this type of exception.

The restriction above is also intuitive, since it seems natural that subtypes define more
specific descriptions of the values their methods may return than their super-types.

Methods in School are limited to signaling at most one type of exception. This is not a
severe limitation, because such type may be in fact a super-type of several different types of
exceptions signaled by the method. or, in particular. a type implemented by different classes
of exceptions, as will be discussed in the examples.

From the discussion above, it may seem that, when a programmer defines a type T meant
to be a subtype of a type 8, each method in type T is required to signal at least the exception
signaled by the corresponding method in §. This requirement would be rather inconvenient.
As mentioned in the introduction, it is quite natural for a refinement of a method m to deal
better with exceptional cases, and possibly eliminate exceptions signaled in m. This is dealt
with in School in the following way. A method declaration containing no signaled exceptions
is treated by the compiler as syntactic sagar for the same declaration with the signaling of an
exception of type Nil, SinceNil is a subtype of any type. a methad signaling no exceptions
creates no clash whatsoever with the subiype hierarchy,

168


http://www.cvisiontech.com

Unhandled Exceptions

In this proposal we repeatedly stress the need to avoid the possibility of unhandled exceptions
since these can lead to unexpected execution errors. llowever, it may be considered too hard
on the programmer to be forced to always define handlers for all exceptions possibly signaled,
even when he is sure that signaling will not occur, Most EH proposals offer some facility for
dealing with this situation. One example of such a facility is automatic propagation, discussed
in section 4.1, CLU offers a limited form of automatic propagation. If a signaled exception
does not have a corresponding handler in the calling routine, this routine terminates signaling
the predefined exception failure. Although this makes automatic propagation take on a much
more controlled form, it still allows programs to terminate due to execution errors (unhandled
exception) which could have been foreseen by the compiler.

Anather solution offered in several languages is to adopt a predefined name which encom-
passes all exceptions. Examples of this are the names others in Ada and CLU and ... in C4+.
A handler associated to this name will match the occurrence of any exception, making it easy
for the programmer to define a “default” handler in a module or routine.

This facility is offered in School by requiring that all possibly signaled exceptions be sub-
types of a predefined type Ezception, defined as:

type Exception is
proc GetMsg -> String;
end Exception;

Since all exceptions must be subtypes of Ezception, a default handler can be defined using
this type. Thus, to propagate exceptions in any block, one may associate to the block a handler
like:

except when (e:Exception) do

signal e;
end

5 Examples

In this section some programming examples are used Lo illustrate the proposed EHM. In order to
make the analysis of the application of the proposed mechanism more interesting, the examples
in this section have been selected from the existing Exception Handling literature. This allows
for comparison with other proposed solutions, and avoids the pitfall of specially chosen “well-
behaved” examples.

The first example is drawn from [LS79), and is also discussed in [YB85]. In this example,
sum_siream is a procedure which reads decimal numbers from a character stream and teturns
their sum. Input must contain a sequence of number fields separated by blank spaces. Each
number field must consist of a nonempty sequence of digits, optionally preceded by a single
minus sign. sum_stream signals overflow if the sum of numbers or an intermediate sum is out
of the implemented range of integers. Unrepresentable_integer is signaled if the stream contains
an individual number that is out of the implemented range of integers, Bad_formal is signaled
if the stream contains a field that is not an integer.

The implementation of sum_stream presented in [1.579] consists of a simple loop which ac-
cumulates the sum, using a procedure gef_number 1o remove the next integer from the stream.
get_number signals end_of_file if the stream contains no more fields, in which case sum_stream
will return the acenmulated sum. get_number also signals bad_format. if an illegal input field
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type badFormat is : class unreplnt: badFormat is

proc GetMsg() -> String; var
proc DefaultResult() -> Int; msg: String;
proc OffendingString() -> String; Gy
proc End0fFile() -> Boolean; constructor Newlnrep (off: String) is
end badFormat; msg = cString!New(oft);
end NewlUnrep;

proc DefaultResult() -> Int is
Result := MAXINT;
end DefaultResult;

IM unreplnt;
Figure 1: Declaration of exceptions used by sum_stream

in encountered, and unrepresentable_integer, if the number is too large for the machine repre-
sentation; these exceptions are passed upward by sum_stream. Finally, a handler for overflow
in sum_stream catches exceptions signaled by the integer adding routine.

This example is quite naturally translated into School. The main interest of this imple-
mentation s in dealing with methods which signal different exceptions using a mechanisms
which allows only one type of exception to be signaled. Figure | shows the specification of
an exception type, badFormat, which is used to describe the different exceptions signaled by
get.number. The same figure presents the definition of one of the classes which implements this
type. The other classes would be similar and are not shown due to lack of space.

Different classes invChar, unrepint, and endOfFile may implement the same type bad-
Format, representing, respectively, an invalid character, a sequence of valid characters which
compose an illegal integer, and end of file.

Figure 2 shows the implementation of methods getNumber and sumStream. The implemen-
tation of sumStream shows how, on return from getNumber, a calling method may use the
different possible results by calling the specified methods for badFermat. A small simplification
is introduced. The same exception, unreplnt, is signaled in the case of one individual number
in the input stream being too large and in the case of overfiow in the sum of the numbers.

Note the use of the notation <name>: <ezception Type> to declare the exception which is
being handled.

The important point in the example is that, since signaling corresponds to returning an “ex-
ception object™, this object may carry with it all necessary information. In non-object oriented
languages, different exceptions must be signaled to convey information about the exceptional
event necessary to its handling, In an object oriented framework, objects carry information
with themselves: thus, one type is sufficient for the description of different exceptional events.

T'he next example is drawn from [(°G02]. which explores the idea of dala ortented exceptions.
This idea was also present in Levin's work. and allows for the association of handlers to data
instead of blocks of code. [CG92| proposes an extension to Ada. In this extension. any new
data type must declare the exceptions possibly signaled by its operations, and the declaration
of variables must associate handler routines to each of these exceptions.

In an object oriented language this can be easily modeled: the definition of a data type
may include handling routines. Different implementations of this type may code this handling
in different ways. Figure 3 shows the coding in School of one of the examples in [CG9O2].
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proc getNumber() -> Int
signals badFormat
is
f : String := getField(input);
except vhan (e: badFormat) do
signal
end;
Result := f.s82i();

proc sum_stream() -> Int
signals badFormat
wvhile true loop
s := 5 + getNumber();
end;
excoept when (e: badFormat) do
if o.EndOfFile() then

except when (e:badFormat) do Result := &
signal else
end; Err.Write(e.GetMsg());
end getNumber; signal e
end;

end;

I‘nd sum_stream;
Figure 2: Implementation of getNumber and sum_stream

In this example, different instances of type Stack must deal differently with overflow. Type
tStack specifies that every stack must have a handler for overflow. Classes Stack! and Stack2
implement different handlers. The code contains a method M which receives a stack object as
a parameter and executes a call to method Push. The handler for exception overflow, signaled
by Push, simply calls the specific handler for this object, which will depend of its class.

6 Final Remarks

This work is part of a project where the goal is to study the meaning of types in object
oriented languages and to extend this meaning in order to allow the type system to check
different interesting properties in a program. The programming language School, as described
in [RIR93], was developed as a first phase towards this goal. Its main contribution was to show
that it is possible to abolish all run time type errors from an object oriented language while
still retaining programming flexibility. The central idea used for this is the concept of a type
as a specification of an object’s behavior.

The work presented in this paper is an extension of this first phase. We believe that the
addition of exception handling to a language enhances programming flexibility. However, to
maintain the concept of a type as a specification of an object's behavior, it has been necessary
to describe the possibility of a method terminating through signaling in the type declaration, ie,
in the wethod’s header. This in turn implied in studying the role of exception signaling in the
subtype rules. The EHM described for School deals with these issues, integrating exceptions
and sub-typing in order to guarantee static checking.

The School project has been investigating the role of type systoems in ensuring other proper-
ties hesides the absence of execution errors, Specifically, a solution to the problem of statically
determining whether a function is side-effect free has been proposed. This solution, which relics
completely on the type system, is described in [R194].

We are now working on an extension to School for distributed programming. The goal
again is to investigate the role of the type system in the provision of a programming facility,
in this case distribution.
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type tStack{T} is
proc Push(T) signals overflow;

proc OverFlowBandler();
end tStac;

class Stack1{T}: tStack{T} is
px'oc OverFlowHandler is
Expand(grovthRate)
end OverFlowHandler;
end Stacki;
class Stack2{T}: tStack(T} is
proc OverFlowHandler is
Retain(90);

end OverFlowHandler;
end Stack2;

“3.)\1'“ M(s: tStack{Int}) is
5. Push(4)
except when overflow do
s.OverFlowHandler()
end;

end M

Figure 3: implementation of data oriented exceptions in School
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