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Abstract

The application of Petri nets for the modeling and verification of systems, at spec-
ification and design levels are well know. Despite of powerful structuring mechanisms
available in the Petri nets theory for the construction of the model of complex systems,
the designer is still likely to face the problem of state explosion, when analyzing and
verifying large systems. Also, when dealing with real-time systems, the verification of
timing properties is necessary. A model, named -Nets, and a time extension, named
Fuzzy Time G-Nets, were introduced to the the modular analysis of complex real-time
software systems. In this work we introduce an environment for logical and timing

analysis based on this two kind of Petri nets.
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1 Introduction

One of the most important aspect that must be considering when specifying and designing
a complex distributed software system is its inherent concurrency. Besides this, one must
consider structural properties of the system, as well as the behaviors of the components of
the system and the communication messages exchanged among these components. Formal
techniques must be employed, because they allow the specifier to write unambiguous, clear,
and concise specifications, providing a foundation for analyzing specifications for correctness.

The G-Net model [7, 14] and the Fuzzy Time G-Nets [5, 4, 17, 6], that explores the possi-
bility of using the natural decomposition of distributed systems, are used to the design and
implementation of a verification environment to the modular logical and temporal analysis
of complex software systems. The logical analysis is based on the so called assume /guarantee
paradigm [10]. This modular analysis methodology allows the designer to reason about com-
ponents, processes or software modules, and their interactions with an environment. When
designing a component, assumptions are made about the behavior of the environment so that
the local behavior of a component can be specified and verified. When designing the com-
ponents that compose the environment of another component, the designer must guarantee
that these components behave as assumed. Indeed, the designer guarantees the commitment
of the environment with respect to the assumed environmental behavior.

In the case of real-time systems, besides the logical analysis, the analysis of timing aspects
must be taken into account. Considering Petri, a variety of medifications have been proposed
in order to extend Petri nets [11, 20, 21] and/or stochastic [12]. One of the major problem
with this approaches when analyzing complex systems is the lack of modular techniques.

In order to perform timing analysis of complex real-time software systems, we introduced
an extension for the Petri Net model in order to characterize timing constraints [1, 4, 6, 17].
In this extension, the positive aspects of the deterministic and stochastic approaches are
combined in a complementary fashion, i.e., the proposed extended Petri net is amenable
to model real-time systems and to make performance analysis of systems. The extension,
called Fuzzy Time Petri Net (FTPN), uses a fuzzy approach based in the fuzzy set theory

introduced by Zadeh [22]. In this fuzzy approach, the tokens carry a fuzzy time function
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that characterizes the possibility of there being a token in a place in a given instant of
time. Also, fuzzy time intervals are associated with the transitions to provide ability to
represent timing restrictions. The fuzzy time intervals associated with the transitions allows
the representation of the three general categories of timing constraints that are considering
in real-time systems [3: maximum timing constraints, minimum timing constraints and
durational timing constraints. This extension is good to evaluate performance of systems
modeled by a Petri net. For example, for a given system it is possible to compute the
minimum, maximum and most probable response time needed to reach a given state from
an initial state. Also, aggregate performance indices may be computed.

We integrated the proposed FTPN together with G-Nets, in order to define a modular
approach to perform timing analysis of systems. The integration is called Fuzzy Time G-
Nets. Then, using the concept of Fuzzy Time G-Nets, we can divide a complex system in
subsystems which are studied in isolation and the results later combined in order to compute
the global solution for the entire system [6].

Besides the theoretical foundation, it is necessary to provide to designers environments,
e.g. graphic editors, simulators, and so on. In this paper we introduce the concepts behind
G-Nets and Fuzzy Time G-Nets, and describe an environment to help designers to develop
the design of real-time distributed software systems. In this work the emphasis is given to
logical and timing analysis modules implemented.

The rest of this paper is structured as follows. Section 2 presents the background and the
application of G-Nets and G-Net systems. Section 3 outlines the logical analysis, Section 4
discusses the timing analysis, In Section 5 we briefly introduce the verification environment
for G-Net systems. Finally, in Section 6, we present some discussion and the conclusion of

this paper.

2 G-Nets and G-Net Systems

In [7] the concept of G-Nets and G-Net systems were introduced. G-Nets are a Petri net
based framework for the modular design and specification of distributed information sys-

tems. The framework is an integration of Petri net theory with the object oriented software
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Figure 1: Notations used to represent a (G-Net

engineenng approach for system design. The motivation of this integration is to bridge the
gap between the formal treatment of Petri nets and a modular, object-oriented approach for
the specification and prototyping of complex software systems. The G-Net notation incorpo-
rates the notions of module and system structure into Petri nets, and promotes abstraction,
encapsulation and loose coupling among the modules.

A specification or design based on (G-Nels consists of a set of independent and loosely-
coupled modules (G-Nets) organized in terms of various system structures. A G-Net is
encapsulated in such a way that a module can only access another module through a well
defined mechanism called -Net abstraction, avoiding interference in the internal structure
of another module.

A G-Net GG, is composed of two parts: a special place called Generie Switch Place (GSF)
and an Internal Structure (1S). The GSP provides the abstraction of the module, and serves
as an interface between the G-Net and other modules. The internal strocture is a modified
Petri net, and represents the detailed internal realization of the modeled application. The
notation for G-Nets is very close to the Petri net notation [13]. Among other features, this
notation allows the user Lo indicate communication among G-Nefs and termination. The

notation for G-Nets is shown in Figure 1, and is explained as follows:

The IS5 of the net is enclosed by a rounded comer rectangle, defining the internal
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structure boundary. The GSP is indicated by the ellipse in the left upper corner of the
rectangle defining the IS boundary. The inscription GSP(net.name) defines the name
of the net to be referred by other G-Nets. The rounded corner rectangle in the up-
per right corner of the IS boundary is used to identify the methods and attributes for
the net, where: (attribute_name) = {{type)} defines the attribute for the net where:
(attribute_name) is the name of the attributes, and (type) is a type for the attribute.
{method_name) is the name for a method, (description) is a description for the method.
{p! : description,- - -, pn : description) is a list of arguments for the method. Finally, (sp) is
the name of the initial place for the method. A circle represents a normal place. An ellipse
in the internal structure represents an stantiated suitching place (1sp). The 15p is used to
provide inter-(-Nel communication. The inscription isp(G'.mi) indicates the invocation of
the net G' with method mi. A rectangle represents a transition, that may have an inscrip-
tion associated with it. This inscriptions may be either an attribution or a firing restriction.
We will use the standard Language C notation lor both attributions and firing restrictions.
A double circle represents the termination place or goal place. Places and transitions are

connected through arcs that may carry an expression.

The GSP of a G-Net G, denoted by GSP(net_name) in the ellipse of Figure 1, uniquely
identifies the module. The rounded-corner rectangle in the GSP side contains a description
of one or more methods, which specify the functions, operations or services defined by the net,
and a set of attributes specifying the passive properties of the module (if any). The detailed
structures and information flows of each method are defined by a modified high-level net in
the internal structure. More specifically, a method defines the input parameters, the initial
marking of the corresponding internal high-level net (the initial state of the execution). The
collection of the methods and the attributes (if any) provides the abstraction or the external

view of the module.

In the internal structure, places represent primatives, and transitions, together with arcs,
represent connections or relations among the primitives. These primitives may be actions,
predicates, data entities, and instantiated switch places (1sp’s). A set of special places called

Goal Places represents the final state of the exccution, and the results (if any) to be returned.
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A transition, together with arcs, defines the synchronization and coordinates the information
transfer between its input and output places.

Given a G-Net G, an isp of G is denoted by 1sp(G . ame.mtd) (or simply 1sp(G) if no
ambiguity occurs), where G, . is the unique identification of (7, and mtd is a defined
method for G. An isp(G,,qm..mtd) denotes an instantiation of the G-Net GG, i.e., an instance
of invocation of @ based on the method mtd. Therefore, executing the isp primitive implies
invoking (& (by sending a token to G) based on the specified method. This token contains
the parameters needed to define the tokens for the initial marking of the invoked net. This
interaction between (G- Nets can be compared to the mechanism of remote procedure call. The
1sp notation serves as the primary mechanism for specifying the connections or relationships
between different G-Nets (modules). Embedding an isp of a lower level G-Net into the
internal structure of a higher level G-Net specifies a hierarchical configuration. A formal

introduction to G-Nets can be found in [7].

3 Logical Analysis

In this section we outline a modular logical analysis methodology for G-Net systems The
modular logical analysis allows the composition of a system in a modular fashion. Therefore,
providing mechanisms by which it is possible to consider different components of a model,
based on a rigorous structure, allowing the designer to have a better control of the complexity
of the system. Hence, different parts of the model might be independently considered.
Moreover, analysis, reuse, and correction should be localized and performed at the component
level, as long as the component interface remains unchanged. To be able to take advantage

of the benefits of such a modular approach, a component must present two characteristics:

® The external view of the components must be loosely coupled, so that independence
among components can be as high as possible and only a few well defined relationships

are allowed.

e Externally a component must present a very high-level of functional cohesion, so that

the role and the contribution of each component to the entire system are clearly defined.
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G-Nets and (i-Net systems possess the above characteristics. In order to take advantage
of the above two general concepts, inherent to G-Nets, we have to define how G-Nets com-
municate with each other by means of a high-level protocol, which determines how G-Nets
are connected. As discussed before, the GSP of a G-Net provides the abstraction with ex-
plicit definition of the methods (services) available to other nets. Also the 1sp and the goal
places provide means by which a G-Net can be invoked and the processed result (if any) is
returned. The general principles that must be satisfied when G-Nets arc communicating is

very similar to the client-server protocol, and consists of the following steps:

1. The requester (-Net requests a service.
2. The called G-Net accepts or not the requested service.

3. Upon acceptance of the service, the called G-Net attends the request and provides the

results, otherwise the requester G- Net must issue another request.

4. The requester G-Net retrieves the result.

3.1 G-Net Systems Analysis

For analysis purpose a G-Net system will be considered as obtained by composing certain
number of (-Nets. Having in mind the objective of avoiding state explosion, an evident
method to analyze G-Net systems is decomposition. The intent is to verify properties of
individual components, validate if these properties hold for the entire system, and use them
to deduce additional properties of the system.

The methodology is a combination of behavioral and logical analysis. Behavioral analysis
is applied to verify the local behavior. In this step we can either use invariant analysis or
reachability trec analysis [13]. We use the reachability tree analysis for the reason that we
can also extract from the reachability tree the external or abserved behavior of a G-Net.

Logical analysis is based on the so called assume /guarantee paradigm for transition sys-
tems [19]. The objective is to verify properties of individual components, infer if these

properties hold in the complete system, and use them to deduce additional properties of the

247


http://www.cvisiontech.com

system. Furthermore, when verifying properties of the components, it may also be necessary
to make assumptions about the behavior of the environment.,

Assumptions and commitments may be given by temporal logic formulae. Generally, first
order temporal logic is necessary to describe the scrvices of a (-Net, as the realization of
the methods are given by a modified Predicate/Transition Net (0], but we may separate the
pure interaction (the protocol), which may be described using only propositional temporal
logic, from the proper service specification dealing with the computation of data, where first
order logic is necessary. Thus, in most cases, it is possible Lo separate the propositional part,
describing the pure interaction, and the first order part describing the data transformations.
Then the analysis or correctness verification can be done in two steps: first verifying the
pure interaction, e.g. by applying a model checking procedure, and second verifying the
correctness of the data transformations by the realization of the mternal structure by ap-
plying well know analysis methodologies for Predicate/Transition Nets like reachability and
invanant analysis.

To verify whether the implementation part satisfies the properties imposed in the interac-
tion between a G-Net and its environment, we have to construct a model (in this case the an
abstracted reachability graph) representing the implementation, in which the specification
or the desired properties can be interpreted.

Our target is to consider software components modeled by means of G-Nets. We consider
that these G-Nets are asynchronous components that communicates by means of synchro-
nized actions as in CSP. Therefore, we assume that there is no dependency among the clock

units of different components, i.e., there is no global clock.

4 Timing Analysis

For timing analysis we use Fuzzy Time Petri Nets, that are an extension of Petri nets which
use a fuzzy approach to introduce time into Petri nets. The model is intended to serve as a
tool which is suitable for modeling real-time systems and for computing selected performance
indices, i.e., this model combines the ability to model real-time systems of the deterministic

extensions and the ability to make performance evaluation of stochastic extensions. As
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shown later, this is accomplished through the combination of time intervals and fuzzy set
theory [8].

In the Fuzzy Time Petri Net model, tokens carry a fuzzy time function representing the
possibility of there being a token in a given place from a reference set. Besides the fuzzy
time function, two fuzzy intervals are associated with each transition. The enable interval
E represents the minimum and maximum time that must elapse between the enabling of a
transition and its firing time. The delay interval D represents the firing time, i.e., the delay
necessary to execute the action represented by the corresponding transition. The existence of
these time intervals associated with transitions is necessary in order to allow the modeling of
two different timing concepts: time-outs and processing delays, Moreover, these two types
of intervals are important when dealing with real-time systems. We can represent three
general categories of timing constraints for real-time systems, that are: maximum timing

constraints, minimum timing constraints and durational timing constraints [3].

The timing analysis is based on the fuzzy time function associated with the tokens. The
idea is to use the fuzzy reachability graph, where we have the complete state space, in order
to compute the FT F's.

The fuzzy reachability graph is a modified reachability graph which incorporates the
fuzzy time concepts defined in the FTPN model. The basic idea is to extend the concept of
reachability graph to include the Fuzzy Time Function (FTF) carried by the token, which is
computed after each transition firing, starting from the initial marking. Also, the modified
reachability graph considers the fuzzy time intervals associated with the transitions. Thus,

the fuzzy reachability graph is characterized by:

1) Assigning a FTF to each token on places in a given state.

2) Attaching to each edge of the graph the timing intervals associated with the corresponding

firing transition representing the time restrictions when firing a transition.

249


http://www.cvisiontech.com

4.1 Timing Analysis Issues

We assume that the FTFs associated with the initial tokens are known' and defined in
the fuzzy reachability graph by the FSET assigned to the root (initial state). Thus, from
the initial state in the fuzzy rcachability graph and the initial fuzzy time functions, we
can compute the FT'Fs in the others states of the fuzzy reachability graph. Informally
speaking, to compute these functions, it is necessary identify differences among the FSET's
of immediate reachable states. Considering two connected states in the FRG and their

respective FSET's, we have to consider two cases during the analysis:

1. common elements between FSETs.

2. different elements between FSETS.

Focusing on the dynamic behavior of a FTPN, item 1 indicates that tokens were not re-
moved after firing a transition. Item 2 may represent two things: tokens removed from input
places and tokens deposited in output places. According to the fuzzy function computation

rule, input tokens are combined to determine the FTF of the output tokens.

4.2 Timing Analysis Using Fuzzy Time G-Nets

For timing analysis purpose, we assume that the internal structure of a G-Net will be a
FTPN. When one G-Net invokes another G-Net with a given method m, this method defines
the initial marking for the invoked net. Since the internal structure is a Fuzzy Twme Petn
Net, the token that arrives in an isp is a fuzzy token. Thus, the initial marking for the
invoked net should be composed by fuzzy tokens. Once our main objective is the modular
analysis, we have to have conditions to study each G-Net in isolation, i.e., the individual
G-Net timing analysis must be independent of the analysis of the G-Net which is invoking
it. Due to the commutativity and distributivity properties of fuzzy sets, it is possible to
study each invoked G-Net considering that the tokens of the initial marking for the invoked

net are not fuzzy. The results are then combined via the isp, i.e., a fuzzy interval that

FThe initial FTF can be set to compnte specific indices or may represent some different situations.
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corresponds to the minimum and maximum cxecution time of the invoked net is computed
by combining the enable and delay intervals attached to its transitions. The computation
of this fuzzy interval resumes when a goal place is reached, indicating that the invocation
finished. Finally, this fuzzy interval is combined with the fuzzy time function assigned to the
tsp's token. The analysis of the invoked net depends of the method used in the invocation.

In order to define the Fuzzy Time G-Net (FTG-Net), we consider the elements that take
part in the interaction among G-Nets, that are the 1sp and the GSP, and the fuzzy time

intervals, defined delays, associated with the finng of transitions.

5 Verification Environment and Application

In this section we introduce the verification environment developed for G-Net systems. The
system was implemented in language C, and is portable to different machines. The actual
implementation runs on DECStations and SPARCstations under UNIX. The interface was
implemented based on the XWindows system.

In Figure 2 the block diagram of the vernification system is shown. From this figure,
we can identify the execution of two different kind of analysis: performance analysis and
behavioral analysis.

As we show in Figure 2, the verification system has as input a (- Net specification, actually
this is a text description as introduced by Chen in [2]. This text description is loaded by
the reachability tree generator, and is used to generate the reachability tree. Based on this
reachability tree and some additional information, we generate the reachability graph for the
specified net. The reachability graph is then used to perform re-entrance verification, local
structure and behavior verification, and interaction analysis. The performance analysis is
performed bascd on the concepts previously introduced for Fuzzy Time G-Nets Systems, and
the fuzzy reachability graph is derived from the reachability graph, generated in the logical
analysis.

The approach introduced in this paper has been used to model two different kind of

systems: a track vehicle transport system [15, 16] and for a flexible manufacturing systems
[18].

rJ
n


http://www.cvisiontech.com

7 . T4
>k e = ,_,_‘_/ \h_

X
| [ hoend [ thon | | throwghp renchablild
| | | smdbeharior | | nctien | -mJ | “,*’
- S | it \ I o . —

Figure 2: Block diagram of the verification system

In Figure 3 we show the screen-dump for the execution of the analysis procedure. Note
that not all of the analysis are implemented. We show in this figure the transitive closure for
the reachability graph. Based on the transitive closure we perform behavioral and structural
verification of the internal net implementing each method. At the end of the window we
present the places belonging to the interface of the net. With these information one can
verify the external behavior of one G-Net, and can also, based on the reachability tree
and reachability graph verify the internal behavior of the net. Details about the analysis

procedure can be found in [14].

The screen-dump depicted in Figure 4, presents a screen with the analytical results
obtained from the timing analysis algorithm as well as the corresponding Timing G-Nets
Interaction Graph {(TGIG) |6]. The TGIG is a 2D graph that depicts the timing and in-
teraction aspects between different G-Nets in a G-Net system. The TGIG can be used as
an alternative approach in order to determine some performance indices. From these two
screens, we can see that the time chart reflects the results obtained by using the algorithm.
For example, the F'T'F value associated with 1sp(C.ms) can be derived from the TGIG by

observing maximum values in the horizontal lines corresponding to the best and worst cases
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Figure 3: Screen dump for the consumer net showing the analysis

for G-Net/method G(C).ms

6 Conclusion

In this paper we described a system for the modular analysis for a class of high-level Petri
net named G-Nets. We described the motivation for such a modular analysis approach
the necessity to avoid the state explosion problem when analyzing a large complex software
system

The emphasis given on this paper is on the engineering aspects of the methodology. We
believe that the marriage between formal methods and engineering approaches is the best

way to face the difficulties associated with the design and verification of complex software
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Figure 4: Screen-dump for the timing analysis of the producer

systems. The advantages of this convenient marriage are evident. From one aspect it is
possible to share the methodological aspects inherent to an engineering approach for the
design and verification of complex software systems. On the other hand, powerful formal
methods are then available for the designer, so that early in the design phase of a system it

is possible to verify whether the system possesses or not the specified properties.

Actually we are developing a graphical editor and animator to be coupled to a simula-
tor for G-Net systems. Also we are working on the integration of the verification system

presented in this paper with the editor/animator,
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