A G-Net Based Environment for Logical and

Timing Analysis of Software Systems

Angelo Perkusich' and Jorge C.A. de Figueiredo®
'Departmento de Engenharia Elétrica
’Departamento de Sistemas e Computagao
Universidade Federal da Paraiba
Caixa Postal 10105
58109-970 - Campina Grande - PB - Brazil
Fone: +55 83 333 1000 R-412, Fax: +55 83 333 1650

e-mail: perkusic@dee.ufpb.br, abrantes@dsc.ufpb.br

Abstract

The application of Petri nets for the modeling and verification of systems, at spec-
ification and design levels are well know. Despite of powerful structuring mechanisms
available in the Petri nets theory for the construction of the model of complex systems,
the designer is still likely to face the problem of state explosion, when analyzing and
verifying large systems. Also, when dealing with real-time systems, the verification of
timing properties is necessary. A model, named -Nets, and a time extension, named
Fuzzy Time G-Nets, were introduced to the the modular analysis of complex real-time
software systems. In this work we introduce an environment for logical and timing

analysis based on this two kind of Petri nets.

241

http://www.cvisiontech.com

1 Introduction

One of the most important aspect that must be considering when specifying and designing
a complex distributed software system is its inherent concurrency. Besides this, one must
consider structural properties of the system, as well as the behaviors of the components of
the system and the communication messages exchanged among these components. Formal
techniques must be employed, because they allow the specifier to write unambiguous, clear,
and concise specifications, providing a foundation for analyzing specifications for correctness.

The G-Net model [7, 14] and the Fuzzy Time G-Nets [5, 4, 17, 6], that explores the possi-
bility of using the natural decomposition of distributed systems, are used to the design and
implementation of a verification environment to the modular logical and temporal analysis
of complex software systems. The logical analysis is based on the so called assume /guarantee
paradigm [10]. This modular analysis methodology allows the designer to reason about com-
ponents, processes or software modules, and their interactions with an environment. When
designing a component, assumptions are made about the behavior of the environment so that
the local behavior of a component can be specified and verified. When designing the com-
ponents that compose the environment of another component, the designer must guarantee
that these components behave as assumed. Indeed, the designer guarantees the commitment
of the environment with respect to the assumed environmental behavior.

In the case of real-time systems, besides the logical analysis, the analysis of timing aspects
must be taken into account. Considering Petri, a variety of medifications have been proposed
in order to extend Petri nets [11, 20, 21] and/or stochastic [12]. One of the major problem
with this approaches when analyzing complex systems is the lack of modular techniques.

In order to perform timing analysis of complex real-time software systems, we introduced
an extension for the Petri Net model in order to characterize timing constraints [1, 4, 6, 17].
In this extension, the positive aspects of the deterministic and stochastic approaches are
combined in a complementary fashion, i.e., the proposed extended Petri net is amenable
to model real-time systems and to make performance analysis of systems. The extension,
called Fuzzy Time Petri Net (FTPN), uses a fuzzy approach based in the fuzzy set theory

introduced by Zadeh [22]. In this fuzzy approach, the tokens carry a fuzzy time function

http://www.cvisiontech.com

that characterizes the possibility of there being a token in a place in a given instant of
time. Also, fuzzy time intervals are associated with the transitions to provide ability to
represent timing restrictions. The fuzzy time intervals associated with the transitions allows
the representation of the three general categories of timing constraints that are considering
in real-time systems [3: maximum timing constraints, minimum timing constraints and
durational timing constraints. This extension is good to evaluate performance of systems
modeled by a Petri net. For example, for a given system it is possible to compute the
minimum, maximum and most probable response time needed to reach a given state from
an initial state. Also, aggregate performance indices may be computed.

We integrated the proposed FTPN together with G-Nets, in order to define a modular
approach to perform timing analysis of systems. The integration is called Fuzzy Time G-
Nets. Then, using the concept of Fuzzy Time G-Nets, we can divide a complex system in
subsystems which are studied in isolation and the results later combined in order to compute
the global solution for the entire system [6].

Besides the theoretical foundation, it is necessary to provide to designers environments,
e.g. graphic editors, simulators, and so on. In this paper we introduce the concepts behind
G-Nets and Fuzzy Time G-Nets, and describe an environment to help designers to develop
the design of real-time distributed software systems. In this work the emphasis is given to
logical and timing analysis modules implemented.

The rest of this paper is structured as follows. Section 2 presents the background and the
application of G-Nets and G-Net systems. Section 3 outlines the logical analysis, Section 4
discusses the timing analysis, In Section 5 we briefly introduce the verification environment
for G-Net systems. Finally, in Section 6, we present some discussion and the conclusion of

this paper.

2 G-Nets and G-Net Systems

In [7] the concept of G-Nets and G-Net systems were introduced. G-Nets are a Petri net
based framework for the modular design and specification of distributed information sys-

tems. The framework is an integration of Petri net theory with the object oriented software

http://www.cvisiontech.com

(;ﬂﬂ'!m‘_n-ul. 3 | «narribuia_narmm s | <rypes |
e | omethod UG o Heapn

L

—

Figure 1: Notations used to represent a (G-Net

engineenng approach for system design. The motivation of this integration is to bridge the
gap between the formal treatment of Petri nets and a modular, object-oriented approach for
the specification and prototyping of complex software systems. The G-Net notation incorpo-
rates the notions of module and system structure into Petri nets, and promotes abstraction,
encapsulation and loose coupling among the modules.

A specification or design based on (G-Nels consists of a set of independent and loosely-
coupled modules (G-Nets) organized in terms of various system structures. A G-Net is
encapsulated in such a way that a module can only access another module through a well
defined mechanism called -Net abstraction, avoiding interference in the internal structure
of another module.

A G-Net GG, is composed of two parts: a special place called Generie Switch Place (GSF)
and an Internal Structure (1S). The GSP provides the abstraction of the module, and serves
as an interface between the G-Net and other modules. The internal strocture is a modified
Petri net, and represents the detailed internal realization of the modeled application. The
notation for G-Nets is very close to the Petri net notation [13]. Among other features, this
notation allows the user Lo indicate communication among G-Nefs and termination. The

notation for G-Nets is shown in Figure 1, and is explained as follows:

The IS5 of the net is enclosed by a rounded comer rectangle, defining the internal

244

http://www.cvisiontech.com

structure boundary. The GSP is indicated by the ellipse in the left upper corner of the
rectangle defining the IS boundary. The inscription GSP(net.name) defines the name
of the net to be referred by other G-Nets. The rounded corner rectangle in the up-
per right corner of the IS boundary is used to identify the methods and attributes for
the net, where: (attribute_name) = {{type)} defines the attribute for the net where:
(attribute_name) is the name of the attributes, and (type) is a type for the attribute.
{method_name) is the name for a method, (description) is a description for the method.
{p! : description,- - -, pn : description) is a list of arguments for the method. Finally, (sp) is
the name of the initial place for the method. A circle represents a normal place. An ellipse
in the internal structure represents an stantiated suitching place (1sp). The 15p is used to
provide inter-(-Nel communication. The inscription isp(G'.mi) indicates the invocation of
the net G' with method mi. A rectangle represents a transition, that may have an inscrip-
tion associated with it. This inscriptions may be either an attribution or a firing restriction.
We will use the standard Language C notation lor both attributions and firing restrictions.
A double circle represents the termination place or goal place. Places and transitions are

connected through arcs that may carry an expression.

The GSP of a G-Net G, denoted by GSP(net_name) in the ellipse of Figure 1, uniquely
identifies the module. The rounded-corner rectangle in the GSP side contains a description
of one or more methods, which specify the functions, operations or services defined by the net,
and a set of attributes specifying the passive properties of the module (if any). The detailed
structures and information flows of each method are defined by a modified high-level net in
the internal structure. More specifically, a method defines the input parameters, the initial
marking of the corresponding internal high-level net (the initial state of the execution). The
collection of the methods and the attributes (if any) provides the abstraction or the external

view of the module.

In the internal structure, places represent primatives, and transitions, together with arcs,
represent connections or relations among the primitives. These primitives may be actions,
predicates, data entities, and instantiated switch places (1sp’s). A set of special places called

Goal Places represents the final state of the exccution, and the results (if any) to be returned.

245

http://www.cvisiontech.com

A transition, together with arcs, defines the synchronization and coordinates the information
transfer between its input and output places.

Given a G-Net G, an isp of G is denoted by 1sp(G . ame.mtd) (or simply 1sp(G) if no
ambiguity occurs), where G, . is the unique identification of (7, and mtd is a defined
method for G. An isp(G,,qm..mtd) denotes an instantiation of the G-Net GG, i.e., an instance
of invocation of @ based on the method mtd. Therefore, executing the isp primitive implies
invoking (& (by sending a token to G) based on the specified method. This token contains
the parameters needed to define the tokens for the initial marking of the invoked net. This
interaction between (G- Nets can be compared to the mechanism of remote procedure call. The
1sp notation serves as the primary mechanism for specifying the connections or relationships
between different G-Nets (modules). Embedding an isp of a lower level G-Net into the
internal structure of a higher level G-Net specifies a hierarchical configuration. A formal

introduction to G-Nets can be found in [7].

3 Logical Analysis

In this section we outline a modular logical analysis methodology for G-Net systems The
modular logical analysis allows the composition of a system in a modular fashion. Therefore,
providing mechanisms by which it is possible to consider different components of a model,
based on a rigorous structure, allowing the designer to have a better control of the complexity
of the system. Hence, different parts of the model might be independently considered.
Moreover, analysis, reuse, and correction should be localized and performed at the component
level, as long as the component interface remains unchanged. To be able to take advantage

of the benefits of such a modular approach, a component must present two characteristics:

® The external view of the components must be loosely coupled, so that independence
among components can be as high as possible and only a few well defined relationships

are allowed.

e Externally a component must present a very high-level of functional cohesion, so that

the role and the contribution of each component to the entire system are clearly defined.

246

http://www.cvisiontech.com

G-Nets and (i-Net systems possess the above characteristics. In order to take advantage
of the above two general concepts, inherent to G-Nets, we have to define how G-Nets com-
municate with each other by means of a high-level protocol, which determines how G-Nets
are connected. As discussed before, the GSP of a G-Net provides the abstraction with ex-
plicit definition of the methods (services) available to other nets. Also the 1sp and the goal
places provide means by which a G-Net can be invoked and the processed result (if any) is
returned. The general principles that must be satisfied when G-Nets arc communicating is

very similar to the client-server protocol, and consists of the following steps:

1. The requester (-Net requests a service.
2. The called G-Net accepts or not the requested service.

3. Upon acceptance of the service, the called G-Net attends the request and provides the

results, otherwise the requester G- Net must issue another request.

4. The requester G-Net retrieves the result.

3.1 G-Net Systems Analysis

For analysis purpose a G-Net system will be considered as obtained by composing certain
number of (-Nets. Having in mind the objective of avoiding state explosion, an evident
method to analyze G-Net systems is decomposition. The intent is to verify properties of
individual components, validate if these properties hold for the entire system, and use them
to deduce additional properties of the system.

The methodology is a combination of behavioral and logical analysis. Behavioral analysis
is applied to verify the local behavior. In this step we can either use invariant analysis or
reachability trec analysis [13]. We use the reachability tree analysis for the reason that we
can also extract from the reachability tree the external or abserved behavior of a G-Net.

Logical analysis is based on the so called assume /guarantee paradigm for transition sys-
tems [19]. The objective is to verify properties of individual components, infer if these

properties hold in the complete system, and use them to deduce additional properties of the

247

http://www.cvisiontech.com

system. Furthermore, when verifying properties of the components, it may also be necessary
to make assumptions about the behavior of the environment.,

Assumptions and commitments may be given by temporal logic formulae. Generally, first
order temporal logic is necessary to describe the scrvices of a (-Net, as the realization of
the methods are given by a modified Predicate/Transition Net (0], but we may separate the
pure interaction (the protocol), which may be described using only propositional temporal
logic, from the proper service specification dealing with the computation of data, where first
order logic is necessary. Thus, in most cases, it is possible Lo separate the propositional part,
describing the pure interaction, and the first order part describing the data transformations.
Then the analysis or correctness verification can be done in two steps: first verifying the
pure interaction, e.g. by applying a model checking procedure, and second verifying the
correctness of the data transformations by the realization of the mternal structure by ap-
plying well know analysis methodologies for Predicate/Transition Nets like reachability and
invanant analysis.

To verify whether the implementation part satisfies the properties imposed in the interac-
tion between a G-Net and its environment, we have to construct a model (in this case the an
abstracted reachability graph) representing the implementation, in which the specification
or the desired properties can be interpreted.

Our target is to consider software components modeled by means of G-Nets. We consider
that these G-Nets are asynchronous components that communicates by means of synchro-
nized actions as in CSP. Therefore, we assume that there is no dependency among the clock

units of different components, i.e., there is no global clock.

4 Timing Analysis

For timing analysis we use Fuzzy Time Petri Nets, that are an extension of Petri nets which
use a fuzzy approach to introduce time into Petri nets. The model is intended to serve as a
tool which is suitable for modeling real-time systems and for computing selected performance
indices, i.e., this model combines the ability to model real-time systems of the deterministic

extensions and the ability to make performance evaluation of stochastic extensions. As

218

http://www.cvisiontech.com

shown later, this is accomplished through the combination of time intervals and fuzzy set
theory [8].

In the Fuzzy Time Petri Net model, tokens carry a fuzzy time function representing the
possibility of there being a token in a given place from a reference set. Besides the fuzzy
time function, two fuzzy intervals are associated with each transition. The enable interval
E represents the minimum and maximum time that must elapse between the enabling of a
transition and its firing time. The delay interval D represents the firing time, i.e., the delay
necessary to execute the action represented by the corresponding transition. The existence of
these time intervals associated with transitions is necessary in order to allow the modeling of
two different timing concepts: time-outs and processing delays, Moreover, these two types
of intervals are important when dealing with real-time systems. We can represent three
general categories of timing constraints for real-time systems, that are: maximum timing

constraints, minimum timing constraints and durational timing constraints [3].

The timing analysis is based on the fuzzy time function associated with the tokens. The
idea is to use the fuzzy reachability graph, where we have the complete state space, in order
to compute the FT F's.

The fuzzy reachability graph is a modified reachability graph which incorporates the
fuzzy time concepts defined in the FTPN model. The basic idea is to extend the concept of
reachability graph to include the Fuzzy Time Function (FTF) carried by the token, which is
computed after each transition firing, starting from the initial marking. Also, the modified
reachability graph considers the fuzzy time intervals associated with the transitions. Thus,

the fuzzy reachability graph is characterized by:

1) Assigning a FTF to each token on places in a given state.

2) Attaching to each edge of the graph the timing intervals associated with the corresponding

firing transition representing the time restrictions when firing a transition.

249

http://www.cvisiontech.com

4.1 Timing Analysis Issues

We assume that the FTFs associated with the initial tokens are known' and defined in
the fuzzy reachability graph by the FSET assigned to the root (initial state). Thus, from
the initial state in the fuzzy rcachability graph and the initial fuzzy time functions, we
can compute the FT'Fs in the others states of the fuzzy reachability graph. Informally
speaking, to compute these functions, it is necessary identify differences among the FSET's
of immediate reachable states. Considering two connected states in the FRG and their

respective FSET's, we have to consider two cases during the analysis:

1. common elements between FSETs.

2. different elements between FSETS.

Focusing on the dynamic behavior of a FTPN, item 1 indicates that tokens were not re-
moved after firing a transition. Item 2 may represent two things: tokens removed from input
places and tokens deposited in output places. According to the fuzzy function computation

rule, input tokens are combined to determine the FTF of the output tokens.

4.2 Timing Analysis Using Fuzzy Time G-Nets

For timing analysis purpose, we assume that the internal structure of a G-Net will be a
FTPN. When one G-Net invokes another G-Net with a given method m, this method defines
the initial marking for the invoked net. Since the internal structure is a Fuzzy Twme Petn
Net, the token that arrives in an isp is a fuzzy token. Thus, the initial marking for the
invoked net should be composed by fuzzy tokens. Once our main objective is the modular
analysis, we have to have conditions to study each G-Net in isolation, i.e., the individual
G-Net timing analysis must be independent of the analysis of the G-Net which is invoking
it. Due to the commutativity and distributivity properties of fuzzy sets, it is possible to
study each invoked G-Net considering that the tokens of the initial marking for the invoked

net are not fuzzy. The results are then combined via the isp, i.e., a fuzzy interval that

FThe initial FTF can be set to compnte specific indices or may represent some different situations.

250

http://www.cvisiontech.com

corresponds to the minimum and maximum cxecution time of the invoked net is computed
by combining the enable and delay intervals attached to its transitions. The computation
of this fuzzy interval resumes when a goal place is reached, indicating that the invocation
finished. Finally, this fuzzy interval is combined with the fuzzy time function assigned to the
tsp's token. The analysis of the invoked net depends of the method used in the invocation.

In order to define the Fuzzy Time G-Net (FTG-Net), we consider the elements that take
part in the interaction among G-Nets, that are the 1sp and the GSP, and the fuzzy time

intervals, defined delays, associated with the finng of transitions.

5 Verification Environment and Application

In this section we introduce the verification environment developed for G-Net systems. The
system was implemented in language C, and is portable to different machines. The actual
implementation runs on DECStations and SPARCstations under UNIX. The interface was
implemented based on the XWindows system.

In Figure 2 the block diagram of the vernification system is shown. From this figure,
we can identify the execution of two different kind of analysis: performance analysis and
behavioral analysis.

As we show in Figure 2, the verification system has as input a (- Net specification, actually
this is a text description as introduced by Chen in [2]. This text description is loaded by
the reachability tree generator, and is used to generate the reachability tree. Based on this
reachability tree and some additional information, we generate the reachability graph for the
specified net. The reachability graph is then used to perform re-entrance verification, local
structure and behavior verification, and interaction analysis. The performance analysis is
performed bascd on the concepts previously introduced for Fuzzy Time G-Nets Systems, and
the fuzzy reachability graph is derived from the reachability graph, generated in the logical
analysis.

The approach introduced in this paper has been used to model two different kind of

systems: a track vehicle transport system [15, 16] and for a flexible manufacturing systems
[18].

rJ
n

http://www.cvisiontech.com

7 . T4
>k e = ,_,_‘_/ \h_

X
| [hoend [thon | | throwghp renchablild
| | | smdbeharior | | nctien | -mJ | “,*’
- S | it \ I o . —

Figure 2: Block diagram of the verification system

In Figure 3 we show the screen-dump for the execution of the analysis procedure. Note
that not all of the analysis are implemented. We show in this figure the transitive closure for
the reachability graph. Based on the transitive closure we perform behavioral and structural
verification of the internal net implementing each method. At the end of the window we
present the places belonging to the interface of the net. With these information one can
verify the external behavior of one G-Net, and can also, based on the reachability tree
and reachability graph verify the internal behavior of the net. Details about the analysis

procedure can be found in [14].

The screen-dump depicted in Figure 4, presents a screen with the analytical results
obtained from the timing analysis algorithm as well as the corresponding Timing G-Nets
Interaction Graph {(TGIG) |6]. The TGIG is a 2D graph that depicts the timing and in-
teraction aspects between different G-Nets in a G-Net system. The TGIG can be used as
an alternative approach in order to determine some performance indices. From these two
screens, we can see that the time chart reflects the results obtained by using the algorithm.
For example, the F'T'F value associated with 1sp(C.ms) can be derived from the TGIG by

observing maximum values in the horizontal lines corresponding to the best and worst cases

252

http://www.cvisiontech.com

Baschatill ity Tres Generetion

iu-r—nl et e |)]

= = : l-t-.unu Gr mphy G WL Lon

[157 OF TRASEILTIONS FOM M1 COMS_Mat
[na e |IJM; reitioniiems Easbled. interval

Propast ham fealymis

e ramchuainl | iy groash s § ke
perwrwiing Lrarmltive clomss for (he reschabl ity graph. . done

wtariing plece For ssihod se is I8 s Is sarbed In the inliisl

-t g
wtarting plece For ssthod so in TC sl Lo serbed in the inlbisi
e 4 g

ar ¥ -lu- for methed me sre; TC.0FT

Figure 3: Screen dump for the consumer net showing the analysis

for G-Net/method G(C).ms

6 Conclusion

In this paper we described a system for the modular analysis for a class of high-level Petri
net named G-Nets. We described the motivation for such a modular analysis approach
the necessity to avoid the state explosion problem when analyzing a large complex software
system

The emphasis given on this paper is on the engineering aspects of the methodology. We
believe that the marriage between formal methods and engineering approaches is the best

way to face the difficulties associated with the design and verification of complex software

http://www.cvisiontech.com

I ——

analymie rewlt

Final V17 values
e - 1Y M)
FimpdC) = (10 793

Fiapd L me} = 111, 203

[]
->—"'--e-_-_-'--f LIy q_}-.‘\.f.:{._-r} el ’.._-I I | i
i R ' '
A
' 1
WED fomd g } i |
— e W s
— S

Figure 4: Screen-dump for the timing analysis of the producer

systems. The advantages of this convenient marriage are evident. From one aspect it is
possible to share the methodological aspects inherent to an engineering approach for the
design and verification of complex software systems. On the other hand, powerful formal
methods are then available for the designer, so that early in the design phase of a system it

is possible to verify whether the system possesses or not the specified properties.

Actually we are developing a graphical editor and animator to be coupled to a simula-
tor for G-Net systems. Also we are working on the integration of the verification system

presented in this paper with the editor/animator,

http://www.cvisiontech.com

References

i

2

(3]

14

(5]

7]

8

[9)

[10]

S.K. Chang, A. Perkusich, J.C.A. de Figueiredo, B. Yu, and M.J. Ehrenberger. The design of
real-time distributed information systems with object-oriented and fault-tolerant characteris-
ties. In Proc. of The Fifth International Conference on Software Engineering and Knowledge

Engineening, San Francisco, California, June 1993,

T.C. Chen, Y. Deng, and S.K. Chang. A simulator for distributed systems using g-nets. [
Proceedings of 1992 Pittsburgh Simulation Conference, Pittshurgh, PA, T'SA, May 1992,

B. Dasarathy. Timing constraints of real-time systems: Constructs for expressing tiem, meth-
ods of validating them. IEEE Transactions on Software Engineering, 11(1):80 - B6, January
1085.

J.C.A de Figeiredo, A. Perkusich, and S.K. Chang. Anticipated faults in real-time distributed
systems. In Proc. of The Seventh International Conference on Software Engineering and
Knowledge Engineerinag, SEKE'95, June 1995.

J.C.A de Figueiredo anc’ \. Perkusich. Fault tolerance in real-time distributed systems using
petri nets extension. In Proc. of Tth International Conference on Computing and Information,

1CCI'95, Trent University, Peterborough, Canada, July 1995.

1 J.C.A. de Figueiredo, A. Perkusich, and S.K. Chang. Timing anal: ys of real-time software

systems using fuzzy time petri nets. In Proc. of The Sizth International Conference on Software

Engineering and Knowledge Engineering, pages 243 253, Riga, Latvia, June 1994,

Y. Deng, S.K. Chang, J.C.A. de Figueiredo, and A. Perkusich. Integrating software engincering
methods and petri ne‘s for the specification and prototyping of complex software systems. In
M. Ajmene Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture
Notes in Computer Scrence, pages 206 - 223. Springer-Verlag, Chicago, USA, June 1993

D. Duboeis and H. Prade. Processing fuzzy temporal knowledge. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 19(4):729-T44, July 1980,

H.J. Genrich. Predicate/Transition nets. In W. Brauer, W. Reisig, and G. Rozembierg, editors,
Petri Nets: Central Models and Thewr Properties, volume 254 of Lecture Notes in Computer
Science, pages 207-247. Springer-Verlag, 1987.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer
Verlag, New York, NJ, 1992,

255

http://www.cvisiontech.com

[11]

(12]

[13]

[14]

(15]

(16}

(17]

(18]

[19]

[20)

P.M. Merlin and D.J. Farber. Recoverability of communication protocols - implications of a
theoretical study. IEEE Transactions on Communication, COM-24(9):1036-1043, September
1976.

M.K. Molloy. On the Integration of Dealy and Throughput Measures in Distributed Processing
Models. PhD thesis, UCLA, 1981.

T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4):541-580,
April 1989.

A. Perkusich. Analysis of G-Net Systems Based Upon Decomposition. PhD thesis, Department
of Electrical Engineering, Federal University of Paranba, Campina Grande, PB, Brazil, August
1994.

A. Perkusich and J.C.A de Figeiredo. Object oriented design of a track-vehicle system. In
Proc. of The Seventh International Conference on Software Engineering and Knowledge En-
gneerinag, SEKE'95, June 1995.

A. Perkusich and J.C.A. de Figeiredo. A petri net based approach to model objects for a
trach-vehicle control system. In Proc. of Tth International Conference on Computing and
Information, ICCI'95, Trent University, Peterborough, Canada, July 1995.

A. Perkusich, J.C.A. de Figueiredo, and S.K Chang. Embedding fault-tolerant properties in
the design of complex systems. Journal of Systems and Software, 2(25):23-37, 1994.

M.L.B. Perkusich, A. Perkusich, and U. Schiel. Object-oriented real-time database design and
hierarchical control systems. In Proc. of International Workshop on Active and Real-Time
Databases, ARTDB-95, Skovde, SE, June 1995.

A. Pnueli. In transition from global to modular temporal reasoning about programs. In K.R.
Apt, editor, Logics and Models of Concurrent Systems, NATO ASI series, Series F, Computer
and Systems Sciences, volume 13. Springer-Verlag, 1984.

C. Ramchandani. Analysis of asynchronous concurrent systems by petri nets. Technical Report
Project MAC-TR120, M.L.T., Cambridge, MA, 1974.

[21] 1. Sifakis. Performance evaluation of systems using nets. In Net Theory and Applications,

[22]

volume 84 of Lecture Notes in Computer Science. Springer-Verlag, 1980.

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

256

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	Z0217
	Z0218
	Z0219
	Z0220
	Z0221
	Z0222
	Z0223
	Z0224
	Z0225
	Z0226
	Z0227
	Z0228
	Z0229
	Z0230
	Z0231
	Z0232
	Z0233
	Z0234
	Z0235
	Z0236
	Z0237
	Z0238
	Z0239
	Z0240
	Z0241
	Z0242
	Z0243
	Z0244
	Z0245
	Z0246
	Z0247
	Z0248
	Z0249
	Z0250
	Z0251
	Z0252
	Z0253
	Z0254
	Z0255
	Z0256
	Z0257
	Z0258
	Z0259
	Z0260
	Z0261
	Z0262
	Z0263
	Z0264
	Z0265
	Z0266
	Z0267
	Z0268
	Z0269
	Z0270
	Z0271
	Z0272
	Z0273
	Z0274
	Z0275
	Z0276
	Z0277
	Z0278
	Z0279
	Z0280
	Z0281
	Z0282
	Z0283
	Z0284
	Z0285
	Z0286
	Z0287
	Z0288
	Z0289
	Z0290
	Z0291
	Z0292
	Z0293
	Z0294
	Z0295
	Z0296
	Z0297
	Z0298
	Z0299
	Z0300
	Z0301
	Z0302
	Z0303
	Z0304
	Z0305
	Z0306
	Z0307
	Z0308
	Z0309
	Z0310
	Z0311
	Z0312
	Z0313
	Z0314
	Z0315
	Z0316
	Z0317
	Z0318
	Z0319
	Z0320
	Z0321
	Z0322
	Z0323
	Z0324
	Z0325
	Z0326
	Z0327
	Z0328
	Z0329
	Z0330
	Z0331
	Z0332
	Z0333
	Z0334
	Z0335
	Z0336
	Z0337
	Z0338
	Z0339
	Z0340
	Z0341
	Z0342
	Z0343
	Z0344
	Z0345
	Z0346
	Z0347
	Z0348
	Z0349
	Z0350
	Z0351
	Z0352
	Z0353
	Z0354
	Z0355
	Z0356
	Z0357
	Z0358
	Z0359
	Z0360
	Z0361
	Z0362
	Z0363
	Z0364
	Z0365
	Z0366
	Z0367
	Z0368
	Z0369
	Z0370
	Z0371
	Z0372
	Z0373
	Z0374
	Z0375
	Z0376
	Z0377
	Z0378
	Z0379
	Z0380
	Z0381
	Z0382
	Z0383
	Z0384
	Z0385
	Z0386
	Z0387
	Z0388
	Z0389
	Z0390
	Z0391
	Z0392
	Z0393
	Z0394
	Z0395
	Z0396
	Z0397
	Z0398
	Z0399
	Z0400
	Z0401
	Z0402
	Z0403
	Z0404
	Z0405
	Z0406
	Z0407
	Z0408
	Z0409
	Z0410
	Z0411
	Z0412
	Z0413
	Z0414
	Z0415
	Z0416
	Z0417
	Z0418
	Z0419
	Z0420
	Z0421
	Z0422
	Z0423
	Z0424
	Z0425
	Z0426
	Z0427
	Z0428
	Z0429
	Z0430
	Z0431
	Z0432
	Z0433
	Z0434
	Z0435
	Z0436
	Z0437
	Z0438
	Z0439
	Z0440
	Z0441
	Z0442
	Z0443
	Z0444
	Z0445
	Z0446
	Z0447
	Z0448
	Z0449
	Z0450
	Z0451
	Z0452
	Z0453
	Z0454
	Z0455
	Z0456
	Z0457
	Z0458
	Z0459
	Z0460
	Z0461
	Z0462
	Z0463
	Z0464
	Z0465
	Z0466
	Z0467
	Z0468
	Z0469
	Z0470
	Z0471
	Z0472
	Z0473
	Z0474
	Z0475
	Z0476
	Z0477
	Z0478
	Z0479
	Z0480
	Z0481
	Z0482
	Z0483
	Z0484

