
Concurrency and Synchronisation in Actel

Zair Abdelouahab
Universidade Federal do Maranhão

Departamento de Engenharia de Eletricidade
Centro Tecnologico

Compus Universitario do Bacanga
S8o Luis 65080-400

MA- Brasil
E-mail: zair@fapema.br

Te/: +55 98 232 34 66 Rama/181
Fax: +55 98 232 2618

PeterM Dew
School ofComputer Studies

University of Leedr
Leed.s LS2 9Jf

E-mail : dew@uk..ac.leed.s.scs
Te/ : +44 - 532- 335432
Fax : +44- 532- 335468

Abstracl

This paper introduces concurn!ncy mechanism.r of a MW corteii/Tent object based longuage colled
Acte/. ln particular, it focuses on 1~ issues of how to explore parai/e/ computation with object
oriented lechniques, ltow to achieve a good run time efficiency, ond ltow to avoid the burden of
apliclt synchronlsation.

Actel ojfen a varlety of inter and intro-cbject mechanism.r to exp/oit coi'IC1llnncy ai se>Vralleve/s of
an object. A MW mode of me.uage passing cal/ed "semi-reftrence' is devi.sed to achieve an efficient
inter-cbject communication and to efficiently support inter-cbject parol/elism (coane grain). 1M
semi-reference allows rransmlssion of rtferences wlthln messages 10 ach/eve an efficient delegation
whilst preventlng inconslstencies. Parai/e/ fonction are allowed to execute inside an objecl to achieve
medium grain ofparallelism without recourse to implicit synchronisation Finer grain ofparal/elism
can bt obtai11ed by activatlng parai/e/ compaund statements inside parai/e/ fortetions. Multiple future
varlables (simple or overloaded) are provided to remove the burden of explicit synchronisation. to be
the pii!Ce holder of results from the parai/e/ fonctlons and compaund stalements and 10 maximlse
parallelism

259

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

I. latroductioa

Over the last decade, the concurrent object oriented programming methodology bas become
popular. Programs are Ullually ex:pressed as a set of independent and concurrent modules
called objects that interact via message passing. Message transmission may tak.e place
concurrently among objects, enabling these to be active in parallel and giving rise to inter
object concurrency. Upon receipt of a message, an object becomes active and executes the
appropriate function (or method) as specified by the received message. lt may also spawn
multiple, internal threads of execution, giving rise to intra-object parallelism.

The motivation of our study has been to generalise the object oriented techniques used in the
design of parallel solid modelling systems developed at Leeds [7] (e .g. Mistral-3). Shared
Objects (SO) [lO) is another system developed at Leeds as a highly parallel programming
environment. Our work has been to investigate the usage of SO as a target system.

Our survey of existing concurrent object oriented languages highlightned a number of
weaknesses which we have attempted to overcome in a new language called Actel. This has
been designed for high performance computers and in particular
• lt introduces a new message passing mode (semi-reference) to improve the efficiency of

languages that use delegation.
• lt explores a number of programming constructs for expressing parallelism at different

leveis of granularity within an object
• lt supports irnplicit synchronisation to releave the programmer from the burden of ex:plicit

synchronisation whenever multiple threads of activities are allowed within an object.

2. Revlew of Coacurreac:y aad Syacbroaiaatioa

2.1. Overview of later-Object Coacurreac:y
lnter-object concurrency, with message passing as the means to effect synchronisation and
conlrol flow, leads to fairly sirnple and elegant parallel programs. However, there is a
performance ovemead incurred with each transrnission of a message. This overhead becomes
significant when delegation is used, since the message may be re-transmitted severa! times
before it arrives at tbe final destination. A possible solution is to employ message passing by
reference, in which only the address ofthe message is initially transmitted--the rest being sent
directly to the fmal destination. This overcomes the inefficiencies associated with delegation,
but can introduce data inconsistencies; for example, when the source object updates the
message before it is dereferenced at the destination. ln this sirnple forrn, message passing by
reference violates the object oriented rule of encapsulation.

2.2. Overvlew ollatra-Object Coac:arreac:y
lntra-object concurrency refers to having more that one thread o f activity within a single
object. Syncbronisation is required to protect the shared state of the object and ensure that it
remains consistent. Contrai of concurrent access to the state is usually handled by the object
itself, based upon a centralised or decentralised algorithm

CeatraliMd Syacbroaisatioa : ln this model of synchronisation a single central controller or
procedure govems which method should execute and therefore gain access to the shared state.
Concurrent object languages based on this modelare ABCL [13], POOL [2] and the Extended

260
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Eiffel (4]. ln POOL, only one thread of executioo and one activity may be started at any time;
in ABCL, only one thread may be executing, but many activities may have started and
suspended---perhaps due to an express request. Languages based on lhis model of
concurrency restrict parallelism.

Deceatrallsed Syacllroaisatioa : ln lhe decentralised model of synchronisation, contrai is
distributed arnongst the melhods ralher lhan being centralised in a single procedure. There are
a variety of decentralised synchronisation algorithms, of which some utilise explicit
synchronisation techniques and olhers implicit or automatic techniques.

Synchronisation using critica/ regions: COOL (5], Concurrent Smalltalk [121, TreUis/Owl [61
are languages lhat use criticai regions. Multiple threads are allowed to execute concurrently,
but are required to explicitly lock and unlock shared variables. Whilst lhis ensures
consistency of state, it also complicates lhe prograrn. COOL addresses lhe problem wilh
future variables--predefined variables which contain lhe retum values of functions , but block
an accessing process if lhe variable has not yet be assigned. Uofortunately, COOL's simple
future mechanism is limited to one future variable per parallel functioo, any olher values must
be retumed through explicit synchronisation oflhe objects state.

Synchronisalion using specia/ monitors: COOL is a language that uses a special monitor
called mutex. A melhod associated wilh lhe mutex attribute is allowed to execute exclusively
wilhin an object. Other melhods are preveoted from running until the currently executing
melhod has terminated and released the monitor. This form of synchronisation leads to
deadlock when lhe monitor is not released.

Use of replacement behaviour: Actor languages such as Act2 [II 1 aod Act3 [I 1 use lhis type
of implicit synchronisation. An actor (or active object) creates a replacement actor which runs
concurrently wilh its creator and performs lhe rest of lhe computation. Synchronisation is
automatic because the two actors now have different states. Since actors are objects wilh fine
granularity, lhe efficiency of lhis model on curreot machines remains in doubt since the cost
of communication remains expensive.

lnter-object concurrency in Actel is achieved using asynchronous message passing to
maximise parallelism. Three modes of message passing are provided; the conventional modes
of by value and by priority (messages sent wilh a priority value), and a new mode for
delegation, by scmi-reference. ln this paper, details are given only on lhe semi-reference
mode of message passing.

The semi-reference mode of message passing in Acte l is based on sending references of data
wilhin lhe message ralher lhan lhe data itself. Modes of message passing based on reference
transmission usually lead to improved run time efficiency. However, simple reference
mechanism is unsuitable since it leads to violation of encapsulation and data inconsistencies.
ln Actel, a refmed reference technique semi-reference is employed in which access to lhe
referenced data is strictly controlled.

ln lhe ·semi-reference' communication mode, Actel allows lhe object to acquire a reference or
message data using a speeific referencing mechanism. Prior to sending lhe message lhe

26 1

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

sou.rce object has control of the reference; after the mess.age is sent, the source loses this
control. The destinarion object gains control of the reference upon receipt of the message. It
may dereference the message and thus obtain the data, or send the reference to another object.
The referencing technique is shown in figure I .

Constructs Meaning
ref = I> data acquiring a reference for data
data = <I ref data a~uires the content referenced by

ref.

Figure I : Referencing and Dereferencing Mechanisms in Actel

ln the semi-reference model only references are transmitted. Data is actually transferred only
when the message is dereferenced at its fmal destination. This mechanism is particularly
efficient when one object delegates work to a second, and this to a third, since only the
reference needs to be forwarded by the intermediate objects.

4. latra-Object Coaeurnacy aad Syaellroalaatioa la Adel

Aetel supports intra-object concwrency in severa! ways: by activating parallel functions inside
objects; by involúng parallel functions inside parallel functions; by allowing parallel
compound statCTnents to run inside parallel functions; and by executing severa! methods of
multi re-entrant (stateless) objects simultaneously.

4. l. Parallelilm Ualaa Parallel Faaetioa1 aad Maltiple Futures
Similar to COOL [S) and Parallel Eiffel (4] , Aetel parallel functions are spawned by a
function caU in which future variables are defmed to hold the function retum values. One
future is assigned to the parallel function retum value, others hold pararneter retum vaJues (i.e .
futures passed as parameters to the parallel function to hold retuming results). With each
parallel function it is therefore possible to associate 'multiple futures'. The caJiing process (or
creator) continues in parallel with the spawned parallel funcrion. When the creator requires
one or ali ofthe parallel function results, it blocks pending assignment ofthe future variables.
Methods in Aetel are able to block on specific future variables, and therefore only need to wait
for partial results from the paraJlel function. This means that a method may access results of a
future variable defined as pararneter while the function is still running. This mechanism.
which is specific to Actel, maximises internal parallelism.

Results of para] lei funct ions are retumed only through future variables; this has an advantage
over COOL since it relieves the programmer from the burden o f explicit synchronisation. ln
COOL, the only way to access partia! results of a parallel function is through their shared state
and this is done at a cost of explicit locking and unlocking. The latter mechanism may be
viewed as a complication to the program.

Eumple Usiac Maltlple Futures
To illustrate the use of multiple futures, a piece of Acte l code is presented in figure 2.

An object ' A' receives a message to carry a computation using a method 'compute' . When the
method is processing. a separa te thread of control is created through a parallel function func _a

262
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

to perform a part of the computation. The object and the function are therefore executing in
parallel. When the function terminates it retums an integer result which is assigned to the
future variable ' fut_ var'. Whenever, the object needs lhe result, it blocks at the future variable
· fut_ v ar' using · receive'. The content of the futtue variable is then transferred to the intege.r
variable ' res'. ln order to incresse parallelism, a future variable ' futl' is passed as a parameter
to the function. The future variable holds the partia) result retumed by ' func_a' through the
"reply' construct. When ' futl ' is needed by object 'A', it is accessed and used while the
function is still running. The access is done without recourse to explicit synchronisation.

begin object : fred
state (
int a,b,res ;
future futl, fut_ var;
)
begin methods

accept compute with a b
do

t• call a parallel func\ a •1
fut_var= func_a(a.b,futl);
1• do some more computation •1

t• access the future variable fut I •1
b = receive(futl);

1• use b •t
res = receive (fut_ var) ;

par_ functions
end

end methods

begin par_functions
int func_a(a,b,futl)
int a,b ;
future futl ;
{
int X;
1• make changes to b • I

reply b to fut I ;

1• compute x using a and b •1

1• retum x as the function value •t
retum (x);

t• use res subsequently •1 end

end object fred

Figure 2 : Parallelism Using Parallel Functions and Multiple Futures

Programming this exarnple with COOL would be more complicated (since explicit synchroni-

int func_ fi'ed(...)

int Sfut_ var ;
1• call a parallel func a •t
fut_ var = func_a (a, &b);
t• do some more computation •1

1• Access the variable b */
1• Use b subsequently •1

retum (b);

int func a(a,b)
int a,*b;
{

)

int X;

1• make changes to b •1
lock (b);
1• set lhe value ofb •1
unlock (b) ;
1• Compute x using a and b •t

t• retum x as the function value • 1
retum (x);

Figure 3: Parallelism With Parallel Functions in COOL

261

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

sation through mutex or lock variables is required) or less efficient since some of the
parallelism is lost by not obtaining partia! results. This is the case ofthe program presente<! in
figure 3. The parameter bis passe<! by reference using the C reference model fromfunc..fred
tofunc_a. The functionfunc..fred cannot access b before tbe functionfunc_a retums since it
rnay create an inconsistency. The locking mechanism used in this exarnple is not even useful
in this case because it is not known whicb process first accesses b (eitherfunc_a orfunc_fred).
The safest way to use b is after the function completes (i.e. by fll'St blocking on the future
variablefot_var and then access b)--this results in a loss ofpotential parallelism.

4.1.1. Future Variabla
ln Actel, future variables are defined using the type constructor future. They are specialised
variables whicb rnay store data of different types; for exarnple integers, floats, chars, arrays,
and complex structures. The type of a future variable is bound to the type of its value (that is,
at run time). Future variables provide a globalabstraction since they refer to locations wbere
the data is stored. 11ley rnay be passed to other objects or to other functions, causing a
synchronisation between each process that blocks wben accessing them. If it contains a value,
the future variable is said to be sei (or resolved); otherwise it is said to be umet (or
unresolveá). A future variable is set using the retum or the rep/y statements of the parallel
thread (e.g. parallel function). When the future becomes resolved, ali processes wbicb are
blocked waiting with a receive operation for the value are resumed.

4.2. Parallelilm Uaiag A.yacbroaoas Compoaad Statemeata
Actel supports another levei of parallelism based on creating parallel compound statements
inside functions to exploit a fmer grain of parallel computation. As with parallel functions,
the invocation of one or more compound statements lead to creation of asynchronous and
parallel threads. The calling thread associates one or more futures to hold return results ofthe
invokee. Results ofthe parallel threads (or parallel compound statements) are accessed in the
sarne way as with the parallel functions; that is, with blocking pending assignment on the
future variables. A parallel compound statement is defmed using one of the following forms
inside parallel functions.

Form-a

Form-b

withfutures (future _list) {
block statement

withfutures (future_ list) w!thparameters} (parameter_list) {
block statement

where the block statement describes the body of the parallel compound statement (composed
of declarations and constructs). withfotures is an Actel keyword used to defme a list of future
variables passed as parameters to the parallel compound statement to hold retuming results.
Other parameter types (e.g. C parameters) are either passed implicitly (form-a) or explicitly
using the expression withparameters (form-b). ln the former, any variable used and not
declared within the body of the parallel compound statement is automatically defined by the
compiler inside the parallel thread and its value is passed from the parallel function. ln (form-

264

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

b), the list of parameters which are passed to the thread are given by the expression
parameter _líst. This mechanism is more eflicient since it does not require the compi1er to
search for variables that are not declared in the body of a compound statement. The
component foture _list defmes a list of future variables. The first future variable of the list is
tenned the master future because its value is retumed from the parallel statement using a C
return statement. Other future variables are set by the parallel compound statement using the
reply statement shown in section 4 .I .

4.2.1 Slmultaaeous Parallel Compoaad Statemeab
ln Actel severa! threads may be created simultaneously using a C ileralive statement. lts
general forrn is:

for (i=O; i<n; i++)
withfunues(mfut[i]:: future_list) {

block statement

Its efTect is to creale n parallel threads executing simultaneously and in parallel rather than ooe
by one. Eacb thread is provided with future parameters lo maintain results; for example,
mfut{i] is the master future used to store the value of a thread i whereas the variables in
foture _list hold inlerrnediate results of each thread. Futures variables of future _list are
overloaded sioce severa! threads may retum severa! results lo the sarne location. The elC!ra
space used by these futures can be allocated dynamically and removed whenever they are not
required. This leads to improved utilisation ofthe memory space.

To access an overloaded future variable, Actel provides a mechanism which distinguishes
between difTerenl values of an overloaded future . It has a general forrn:

var = receive(mfut[i] ::fut);

Each value of a future variable can be identified by the th.read with which it is associated at
the time ofthe call. For instance, the value ofthe overloaded futurefut retumed by thread 1 is
given by the expression mfut[i}::fot . The expression var indicates the local variable to which
the value of the future is to be copied. The expression mfut{i} is the master future
corresponding to the thread i and ::is the overloading operalor.

4.3. Parallelism Uslog Parallel Fuactioos loside Parallel Fuoctioas
Aclel may express another forrn of parallelism inside a funclion; that is a function executing
on an objecl may invoke other parallel func1ions or itself The lechnique has been employed
by COOL lo express its fmer granularity of parallelism; bul in Aclel, ii is still possible to
express more fme grain computation with asynchronous compound statements which are
shown in section 4.2. The example presented in figure 3 shows a parallel funclion fone Jred
ofCOOL making a call tofunc_a . ln Aclel, such call can be made in a similar fashion.

4.4. Parallelism With Multi Metbod Executioo
ln Aclel severa! methods execute simulataneously and in parallel inside multi re-entranl
objects withoul a need lo explicil synchronisalion. Thc 1echmque has been employed by some
languages such as Emerald [3], bul explicil synchronisalion ~~ usually requ1red.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

4.5. Maalpulatioa Of Future Variables
Future Varlables Usage:
A future variable may be used by any object, parallel function or para! lei compound statement
wlúch refers it. lt may be set by a return or reply construct of a parallel function or a
compound statement. lt may also be re-set by any one of the above constructs if necessary.
However, re-sening a future variable will affect every thread whicb refers it. To avoid
ambiguities, Actel provides mechanisms which allow reuse of future variables in a more
consistent fashion. This is done in two ways. In tbe fJ.rSt, the future can be reused without
affecting other processes which refer it. This can be achieved by clearing the location locally
from ao object or a parallel function using:

clearloc(fut);

As a result of tbis operation, the location found inside the future variable fot will be cleared
anda new location is assigned. The future variablefot can therefore be passed to other objects
or function, whereas the old location can still be used by other threads.

ln the second, the value of a future variable is cleared. That is, the content of the location is
cleared. The future then becomes unreso/ved and ali the processes block until it is set by a
new value by the function. The operation for clearing a future variable has the form:

clearfut(fut);

Parallel Access to Future Variables:
When parallel functions and parallel compound statements are activated, tbey run
asynchronously. Future variables associated at the time of the call with the parallel threads
become resolved when tbese tenninate. However, it is not known which future is set fJ.rSt
since the execution of the threads is undetenninistic. An access to a future variable is
performed with a blocking receive operation. Therefore, accesses to severa! future variables
by a single threads can be done only sequentially and may generate delay. To avoid delay,
Actel prov1des a parloop mechanism which permits to block on severa! futures in parallel. lt
has the form:

begin parloop
varl = receive(futl) (

block _ statements _
}
var2 = receive(fut2) (

J
end parloop

block _ statements _ 2

For any future fotl or fot2 which become set, its value is accessed and its corresponding
block_statements_ l or b/ock_statemenls_2 is executed. The parloop statement terminate
when ali the future variables have been set.

4.6. Compared to Otber languages
Languages can be characterised by the concurrency model upon wbich they are founded (e.g.
inter and intra-object). For example, ABCL and POOL are languages that supports only inter
object concurrency. While these languages follow a simple model, they are less expressive
since they require the prograrnmer to structure an application as a set of objects that work

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

cooperatively. Actel, on the other hand, supports both inter and intra-object concurrency and
has the potential of expressing parallelism more naturally. COOL and Emerald provide
support for intra object coocurreocy, but require an explicit synchronisation which may
constrain the amount ofparallelism. ln Actel, synchronisation is implicit and is obtained with
message passing or future variables.

Parallel funct ions are the sole mechaoism in COOL for achieving concurrency (coarse to fme
grain) whereas Actel provides severa! mechanisms mcluding parallel compound statements
for an efficient fme grain parallelism.

Future variables in Actel are different from those provided by COOL. ln particular, they refer
to locations where lhe data is stored. They provide support for polymorphic type to store data
of any size and any type. ln addition. they may be overloaded in which case they can store
one or severa! results. Future variables can be passed from objects to parallel functions, from
parallel functions to parallel functions and from parallel functions to parallel compound
statements to achieve synchronisation and maximise parallelism. ln Actel. accesses to future
variables can be performed in parallel whereas in COOL 11 can be achicved only sequentially.
ln COOL, a future variable associated at lhe time of the call of a parallcl function may beco me
garbage ifthe caller exits without waiting (i.e. blocking) on the future var1able ln Actel, this
problcm does not occur because future variables prov1de a global abstraction

S. lmplemeallltioa

There are fundamentally two types of multiprocessor systems: tightly coupled shared memory
systems and loosely couplcd distributed memory systems. Shared memory systerns provide a
single address space accessible by ali processors. while distributed memory systerns provide
each processar with its own private address space and sharing of data takes place with explicit
message passing [I 0]. An altemative approach is to use a higher levei of abstraction that can
be mapped efficiently on to either of the above machines. This is provided by the Shared
Objects (SO) environment [I 0]. SO supports a model for inter-process communication
through shared abstract data types (e.g. queue, priority queue, bag, and stack) where user
processes are allowed to read and write these concurrently. An experimental system is
available at Leeds for a transputer network.

Actel has been implemented using SO and is currently running on a Meiko computing surface.
The implementation is based on the development of a translator that takes Acte! code as input
and produces a C program exploiting SO functions. The target code is directed at a
multiprocessor machine(e.g. the transpu ter network). Th1s output cons1sts of a set of parallel
processes or parallel servers which are mapped on to different processors at load time. They
exploit the user code and provide the functionality of the Run Time System (RTS). The major
issues of Actel implementation are: the RTS. the semi-reference mode of message passing,
the parallel threads and the future variables.

5.1. Tbe Rua Time System
The major responsibi lities ofthe Actel Run Time System are. creallon and management ofthe
dynamic objects. handling communication and bufTering. process task creation and process
task distribution. Tasks are created as a result of: creation of obJects. invocallOn of parallel
functions. activation of parallel compound statements and commun1cation. Each of these

267

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

created tasks is allocated sufficient resources and queued for processing at appropriate server.
The tasks in Actel are implemented as messages to request from servers the appropriate
operalion

Funct10ns ofthe Actel Run Time System are implemented within the server processes. There
are three types of server processes. The first process is called the process driver aod contains
method code. The sec:ond process is known as the function serve r and holds parallel functions
code of an obJecl type (i.e. class). The thinl process type termed compound statement server
h as the code of a single parallel compound statement of an object type. All of these processes
are replicated on every node ofthe parallel rnachine.

Each process server has a well defmed role. For instaoce, each process driver manages the
objects created or removed in its workspace, objects scheduling and descheduling for
processing and task management. Function server processes manage and schedule tasks
related to parallel functions for execution. Process compound servcrs are responsible for
executing tasks of appropriate compound statements. These processes also make use of the
target code of an 8pplication prograrn generated by the translator.

5.1.1 Task Mana1emeat aad Diltribatlon
Tasks in Actel are classified into two categories: specific and generic. Specific tasks refer to
tasks generated as 8 result of communication to specific objects. Generic tasks refer to those
which can be executed on any replic8ted process server (e.g. parallel function tasks,
compound statement tasks and multi re-entrant object tasks). Generic tasks are stored in
shared abstract data types aod are accessible by every process server. ln this way, load
balancing and distribution cao be achieved more efficiently. Specific tasks, on the other haod,
are stored in queues that are accessible only by specific servers on that processor.

5.2. lmplementatloa of Faa.re variables
Since future variables are locations for holding retuming results which might be accessed by
severa! processes, it is therefore more suitable to implement them as shared structures. For
this purpose, these are implemented as shared 8bstract data types provided by SO. Accessing
the future variables corresponds to the process of reading from the shared abstract data types.
This may happen only if the future variables have retumed (i.e. results are written to the
shared abstract data types). Attempts to read a variable before it is set are blocked by SO. SO
provides data synchronisation by suspending processes if necessary.

5.3. lmplemeatatioa of Messa1e Passing
Since SO provides an inter-process comrnunication through shared abstract data types, the
implementation ofthe semi-reference message passing is straightforward on a simple message
passing system that provides a write to destination. The implementation requires message
referentes rather than content to be transmined, and supervisory code to ensure that only one
active object owns the reference at any one time. This is achieved by making a copy of the
data and storing ii in 8 shared abstract data type. The address of the shared data is then sent to
the destination. AI the destination. the data is read from the shared abstract data type.

268

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

5.4. Performance RHults
Experiments have been compiled to measure the perfonnance of the serni-reference mode of
message passing and the mechanisms of activating parallel functions and pacallel compound
statements.

ln lhe fli'St set of experiments, a comparative study between the semi-reference and the value
mode of message passing is undertaken. First, a message is sent from node zero to anolher
node whose identifier is one using lhe vajue and lhe semi-reference modes of message
passing. 1be measurements are taken in m1croscconds and shown in figure 4. The results
sbow that lhe vaJue mode performs better lhan lhe semi-reference in case of transmission
di.rectly from source to destination. This is obvious since lhe cosi for sending a message by
semi-reference includes lhe cost of referencing and dereferencing a message.

VaJue
Semi-Reference

Figure 4: Cost of a Single lnteger Transmission

ln another experiment. lhe same message is passed between an object located on a node
identifier O to another on node I. The latter delegates lhe message to a third object on node 2.
then to a fourth on node 3, and so on. The same experiment is applied to networks of 4, 8, 12,
16, 20, 24, 28 and 32 processors T800.

110

IDO

tO

10
10 . .. ~ ~ ·- . ~--
lO ' ~ .. .

16 10 ll

Figure 5: Hopping 5 and 200 lntegers

269

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

The initial object records the average time to send a message from its source to its fmal
destination. The timings are collected in microseconds for messages of 5 and 200 integers and
are shown in the graph of figure 5. These results do not include the overhead of the
underlying system (SO). The cost ofhopping by value 5 (200) integers is between I to 1.2. (l
to 2) higher than the cost of hopping them by semi-reference. ln general the resuJts show that
the semi-reference is more efficient than the value and that the efficiency increases with
respect of the message size.

ln the second set of experiment, a comparison between ditferent parallel threads is also
undertaken. This experiment is conducted in three steps. First, 300 multi re-entrant objects
are created and sent communications to compute tasks of 100 ms each; their results are
retumed also through messages. Second, the sarne number of parallel functions are created to
compute similar tasks; their results are accessed pending assignment on the future variables.
Finally, the sarne experirnent described in step 2 is applied for the parallel compound
statements. ln each step, the initiator records the timings for the whole process to complete
for ditferent sizes of the network of processors. Results are shown the graph of figure 6.

•~oo

IODO
! PUUUf~ TPirtadl ll\th llt\[fl1 lh-•tltte ttt Objt;eta··...,..
• : ·• •! . ,..r•ll•l· Funct-l»nt·-·

1SOO . lODO

" 6~00

8 6000

: ~soo

)000
4 ~00 .. 4000

!: JSOO . lODO

~ H OO
2000
1!.00
1000

\ : ::::: ~ ~~::~~:1~~~:~:~:~: . .

·: \ ·; ·: J' ... ··:r: ·:::::::t::::::::::t:::::::::::t::::::::::
• o\ • i . ~ ' . . . ·:·

,~ :· r~. :: :· .. t .: -~
.. ~....

"""',:. . .. ···············-

r·--~~::.-:~~~~:i"';p~;;~~,~-~~~~~~:
•.• ··I· •··t••••••• • -~· ·········

>DO
o

12 l6 20 " "

Figure 6· Parallcl Threads Acti vation

270

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

The graph shows that the performance in each component incresses in proportion with the size
of the network. They also show that the cost of using multi re-entrant object is the highest of
them. This is expected since it involves creating objects, sending communications to compute
the tasks, and waiting for the results to retum through messages. The cost given by the
parallel compound statements is slightly better than the cost of parallel fimctions because they
compute similar tasks. However, it should be more advantageous to compute smaller tasks
with the paraJlel compound statements since these tasks are executed before those of parallel
functions. These results are good for Actel since it shows that intra-object concurrency with
paraJiel functions and parallel compound statements is cheaper than inter-ol:.Ject concurrency
using message passing.

ln the sarne set of experiments, accesses to the future variables associated with parallel
functions are assessed. The future variables have an index ranging from I to 300. Accesses
are made with the parloop and without the parloop statement using the order from 300 to I.
Results are shown in figure 7.

Clearly, the results show that the usage of parloop construct reduces the delay incurred when
accessing future variables since the blocking is performed in parallel. Specifically, the
reduction of the delay is apparent on a sr.1all network of processors (i.e. where contention
exists).

9000
•~ao

I ODO
BOO . 1000

" H OO ~

B ,000

: ,,00
~ ~000

t 50 0
l[

I ODO
!: no o . l O OO
.'l HOO ..

, 000

HOO
1000
~o o

o

· nauu •~ettuw• ~lth partoe1p ..:...;..u.·

::·:: :::.::::::::::::: .. :::·:~~:~~:~::~:~:F:::~~?-.:7:
··-···· .. ; ·········-~·-·········-~·-····-····: : ~
~, : --~ ······ --~--......... ; -~-- ... -;.

\ · .••. j . •.• ·····+····:···::;·::···:···:;··:·:·:·:::j· . ::· : .. :(:::

••••· \ .::.;_ •••. t•• i ··l ··•••••••• ~··· ·~···· .•• !: .. ·····•
........ :: j:::: .:>~~~~~~~~-~:~~~l'~:~:~:~:: j::~~:~:: : : :~::::·

20 21 J'
Nu~t~ber oC Proceuora

Figure 7: Future Variables Accesses

27 1

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

6. Summary aad Furtber Developmeat

This paper has prescnted the mechanisms of inter and intra-object concurrency in Actel. ln
particular, it introduces a new mode of message passing ' scmi-reference' to achieve an
efficient delegation (inter-object concurrency). lt uses parallel functions as a means to obtain
concurrency inside objects (medium grain). lt supports the concept of 'parallel compowtd'
statement to achieve a more efficient frner grain of concurrency inside parallel functions. lt
introduces the concept of ·multiple future variables' (simple and overloaded) combined with
parallel functions and paraUel compound statements to maximisc parallelism and achieve an
unplicit synchronisation; thus removing the burden of an explicit syncbronisation.

ln the design of the language, a considerable anention has been paid to include features which
will generate a good run time efficiency. ln particular, experiments have shown that message
passing by scmi-reference is uscful for hopping messages between severa! objects. Results
have also shown that small granularities of parallelism can be achieved more efficiently with
parallel compound statement than with parallel functions or object activation.

Further development will concentrate, in particular, to an evaluation of the concurrency
mechanisms using a variety of applications.

7. Ackaowledcemeats

We should like to thank members of the Parallel Processing Group at Leeds University for
their useful comments and discussions. Financial support of Fapema is gratefully
acknowledged.

8. Rderences

I. Agha, Actors: A mode/ of Concurrent Computation in Distributed Systems, MIT Press,
Cambridge Massachusetts USA 1987.

2. America., POOL-T: A Parai/e/ Object Oriented Longuage, ln A. Yonezawa and M.
Tolc.oro, editors, Object Oriented Concurrent Programming, pages 199-220, MIT Press
1987.

3. Black et ai, Object Structure in the Emerald System, ln OOPSLA'86, ACM Sigplan
Not1ces. vol 21 (li), pages 60-65.

4 Caromel, Concurrency. An Object Oriented Approach, ln TOOLS PACIFIC'90, Sydney,
November 1990.

5. Chandra et ai· COOL. A Languagefor Parai/e/ Programming, Chapter 8, ln Gerlenter et
ai. 1990

6. Elhot and J. Moss, Concurrency Featuresfor the treuil/is/Owl Language, ln J. bezivin et
ai, editors. ECOOP'87, Lecture Notes in Computer Science, Springer-Verlag, 1987.

272
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

7. Holliman. C. M. Wang and P. M. Dew, Mistral-]: Parai/e/ Solid Modeling, The Visual
Computer for a Spccia1 lssue on SuperComputing for Visualisation, 1992.

8. kafura and K. Lee: lnheritance in an Actor Based Concurrent Object Oriented
Programming Languages, ln Stephen Cook. editors, ECCOP' 89, pages 131-146,
Cambridge University Press.

9. Liebennan, Concurrent Obje.ct Oriented Programming in Actl, ln A. Yonezawa and M.
Tokoro, editors, Object Oriented Concurrent Prograrnrning, pages 9-36, MIT Press 1987.

10. Mallon and P. M. Dew, O>mmunicating through Shared Objects, ln Proc of IFlP
Conference on Prograrnming Environrnents for Paralle1 Computing, Edinburgh 1992.

11 . Theriau1t, Jssues in the Design and Jmp/ementation of Act2, Teclmica1 Report TR-728,
MlT AI Laboratory, 1983.

12. Yokote and M. Tokoro, Concurrent Programming in Concurrent Smallta/k, ln A.
Yonezawa and M. Tokoro, editors, Object Oriented Concurrent Prograrnrning, pages 129-
158, MlT Press 1987.

13. Yonezawa et ai. Object Oriented Concurrent Programming in ABCUJ, ln OOPSLA'86,
ACM Sigp1an Notices, vo121 (li), pages 258-268.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	Z0217
	Z0218
	Z0219
	Z0220
	Z0221
	Z0222
	Z0223
	Z0224
	Z0225
	Z0226
	Z0227
	Z0228
	Z0229
	Z0230
	Z0231
	Z0232
	Z0233
	Z0234
	Z0235
	Z0236
	Z0237
	Z0238
	Z0239
	Z0240
	Z0241
	Z0242
	Z0243
	Z0244
	Z0245
	Z0246
	Z0247
	Z0248
	Z0249
	Z0250
	Z0251
	Z0252
	Z0253
	Z0254
	Z0255
	Z0256
	Z0257
	Z0258
	Z0259
	Z0260
	Z0261
	Z0262
	Z0263
	Z0264
	Z0265
	Z0266
	Z0267
	Z0268
	Z0269
	Z0270
	Z0271
	Z0272
	Z0273
	Z0274
	Z0275
	Z0276
	Z0277
	Z0278
	Z0279
	Z0280
	Z0281
	Z0282
	Z0283
	Z0284
	Z0285
	Z0286
	Z0287
	Z0288
	Z0289
	Z0290
	Z0291
	Z0292
	Z0293
	Z0294
	Z0295
	Z0296
	Z0297
	Z0298
	Z0299
	Z0300
	Z0301
	Z0302
	Z0303
	Z0304
	Z0305
	Z0306
	Z0307
	Z0308
	Z0309
	Z0310
	Z0311
	Z0312
	Z0313
	Z0314
	Z0315
	Z0316
	Z0317
	Z0318
	Z0319
	Z0320
	Z0321
	Z0322
	Z0323
	Z0324
	Z0325
	Z0326
	Z0327
	Z0328
	Z0329
	Z0330
	Z0331
	Z0332
	Z0333
	Z0334
	Z0335
	Z0336
	Z0337
	Z0338
	Z0339
	Z0340
	Z0341
	Z0342
	Z0343
	Z0344
	Z0345
	Z0346
	Z0347
	Z0348
	Z0349
	Z0350
	Z0351
	Z0352
	Z0353
	Z0354
	Z0355
	Z0356
	Z0357
	Z0358
	Z0359
	Z0360
	Z0361
	Z0362
	Z0363
	Z0364
	Z0365
	Z0366
	Z0367
	Z0368
	Z0369
	Z0370
	Z0371
	Z0372
	Z0373
	Z0374
	Z0375
	Z0376
	Z0377
	Z0378
	Z0379
	Z0380
	Z0381
	Z0382
	Z0383
	Z0384
	Z0385
	Z0386
	Z0387
	Z0388
	Z0389
	Z0390
	Z0391
	Z0392
	Z0393
	Z0394
	Z0395
	Z0396
	Z0397
	Z0398
	Z0399
	Z0400
	Z0401
	Z0402
	Z0403
	Z0404
	Z0405
	Z0406
	Z0407
	Z0408
	Z0409
	Z0410
	Z0411
	Z0412
	Z0413
	Z0414
	Z0415
	Z0416
	Z0417
	Z0418
	Z0419
	Z0420
	Z0421
	Z0422
	Z0423
	Z0424
	Z0425
	Z0426
	Z0427
	Z0428
	Z0429
	Z0430
	Z0431
	Z0432
	Z0433
	Z0434
	Z0435
	Z0436
	Z0437
	Z0438
	Z0439
	Z0440
	Z0441
	Z0442
	Z0443
	Z0444
	Z0445
	Z0446
	Z0447
	Z0448
	Z0449
	Z0450
	Z0451
	Z0452
	Z0453
	Z0454
	Z0455
	Z0456
	Z0457
	Z0458
	Z0459
	Z0460
	Z0461
	Z0462
	Z0463
	Z0464
	Z0465
	Z0466
	Z0467
	Z0468
	Z0469
	Z0470
	Z0471
	Z0472
	Z0473
	Z0474
	Z0475
	Z0476
	Z0477
	Z0478
	Z0479
	Z0480
	Z0481
	Z0482
	Z0483
	Z0484

