150 Aguas de Sio Pedro - SP - 1990

An Experience in Building an Object-Oriented Prototype of an Advanced
Hypertext System

Silvie Meira
Eduardo Albuquerque
José Fernando Tepedino

Departamento de Informatica
Universidade Federal de Pernambuco
CP 7851, 50739 Recife - PE - Brasil

Abstract

We discuss the design and construction of a Hypertext System (H) in the framework of object-oriented
programming. The work also shows the pros and cons of the programming paradigm —from beginner
to specialist levels— as observed from the practical point of view of building (and modifying) a
complex system.

The hypertext system used as example has an interest of its own, because of its visions, versions
and mail capability among others, and is further detailed in the body of the paper.

Keywords:

Hypertext, Object-Oriented Programming, Rapid Prototyping.

1 Introduction

This paper deals with two subjects of recent interest in the software community, those of hy-
pertext and object-oriented design and programming. The authors have just gone through
a one-year effort in designing and prototyping a hypertext system using the object-oriented
paradigm.

Initially conceived as an academic exercise to assess the use of object-oriented programming
in prototyping complex systems, the project developed into the design and construction of a
hypertext system capable of dealing with visions, versions, users. mail and executable code.
That is no small achievement, specially when one considers the very little initial experience of
the group with both subjects.

A dialect of Smalltalk-80[13], Smalltalk-V[12], was used in the implementation, which was
carried out on IBM PC/AT compatibles for most of the project. Final versions of the system
run on machines spanning the entire PC range. When starting the project, the group had no
practical experience with object-oriented programming, and very little with the concepts and
ideas behind hyvpertext systems and their implementation.

Based on that, we are able to give a report on how a practical experience with Smalitalk
influenced our thinking about the capabilities of hypertext syvstems and vice-versa.

http://www.cvisiontech.com

IV Simpdsio Brasileiro de Engenharia de Software - SBC 151

It was also very interesting to go through the process of learning Smalltalk —having to
modify a very significant part of the programming environment while at that— and trying to
understand some of the basic difficulties normally associated with the matter.

As we shall see, most of the problems of learning Smalltalk can be put down to Smalltalk
(the language) and its implementations, having nothing to do with the paradigm.

In the sequel, we present the basic ideas behind H[1]. the hypertext system which is the
object of discourse (Section 2) and the concepts of object-oriented design, programming and
their implementation in Smalltalk (Section 3). Then we discuss the design (Section 4) and
implementation of H (Section 5). In Section 6 we consider the results obtained so far and pros
and cons of using Smalltalk in projects of the same nature.

2 Basic Ideas Behind H

A hypertezt is a non-linear document. The concepts of sequencing such as chapters, sections,
pages and paragraphs. that we are used to finding in traditional written documents also apply
to hyper documents. However, a hypertert is an electronic document with a non-linear structure
{a directed graph) and can be used in ways unconceivable for a paper document.

References to parts of the same document, or to other documents are possible through
connections or links, that relate nodes of information. These connections do not have to follow
the linear sequence of the text. They can be strictly syntactic[3] so that:

o from a button', or the point of origin of a reference, and by clicking a mouse we reach
—through the opening of a window with the hypertext page that was pointed by the
connection— the new node.

or semantic, when, for example

e a node with the specification of a system can be related to another one that contains its
implementation. Changes to one of them (detected by the system) cause modifications on
the other one, and these modifications can be managed by the system.

These are only two possible kinds of relationships that a hypertext system can handle. It is
possible to have an infinite number of possible relationships and kinds of information stored in
such systems.

A node can be directly reached through the activation of a link, by pointing to the corre-
sponding button. Another way to reach a node is by searching for strings within the web of
nodes in a fashion very similar to normal text editors —this is not efficient for it requires a se-
quential search through all nodes—, or by finding keywords that are defined during the creation
of the document. The system keeps a table with all occurrences of the keyword so that the find
command is very efficient.

Since hypertexts can have. and usually do, a very complex structure, specially if they are
related to other documents, it is fundamental to have a mechanism to navigate through the
structure, so allowing the direct activation of any visible node in the map of the hypertext.
This map is equivalent to “geographical maps” where the cities are nodes and the highways
links between them. The navigator or graphic browser can also be used to create, on-the-fly, a

superimposed track to the map, showing where the user is at the moment and the contez! that
led him there.

' A button is a region in the screen sensible to a pointing device such as a mouse.

http://www.cvisiontech.com

152 _Aguas de Sio Pedro - SP - 1990

The data base that supports the hypertext system is a text (or graphics, animations, images,
sounds...) graph. The windows on the screen have a one-to-one correspondence to nodes in the
data base. Windows can be moved, resized, collapsed (only an icon representing the window is
visible) or closed at any moment. The position, size, shape and color of the windows (or icons)
should remind the users about the nature of the contents of that window. When a window is
closed the system must inform the users if there are unsaved changes to its contents and ask
whether these changes should be saved or not. When a collapsed window is activated, it must
reopen instantly where and with the same shape and color that it had before being left.

The user can create new links to new nodes or to already existing nodes, establishing new
connections. In environments where several people cooperate for creating products, this capacity
is of fundamental importance for the development of the work. It is expected that this will be one
of the main uses of future hvpertext systems, substituting the old fashioned forms of electronic
mail and paper messages used nowadays.

2.1 Hypertext in Practice

Although practical implementations of hypertext systems are relatively recent. its original idea
dates from 1945, when Vannevar Bush described memez[19]. a supplement to the human memory
where texts and graphics (notes, photographs. drawings, etc.) would be stored with an index
scheme with the same functionality of what is today called hypertezt links.

In spite of not having a digital computer at the time. Bush implemented his memer using
microfilms and photocells.

Jefl Conklin classifies[19] hypertext systems in four informal categories:

+ Macro-literary systems: a large on-line library in which inter-document links are ma-
chine supported —all reading, writing, collaboration, and criticism takes place via the
hypergraph. The pioneer system memez belongs to this category;

» Tools for exploring problems: tools to support early unstructured thinking about a
problem, in which many disconnected ideas come to mind, such as early authoring and
outlining (“idea processor™), problem solving, programming and design;

+ Browsing systems: by and large these are read-only systems for teaching, reference, and
public information systems (where ease of use is crucial);

» General hypertext technology: general purpose systems to allow experimentation
with a range of hypertext applications —most commonly developed for reading, writing,
collaboration, etc.

3 Concepts of Object—Oriented Design

Although the literature on object-oriented programming is vast, there are few available works
on object-oriented design.

Object-oriented design is usually developed bottom-up. While in the top-down approach
the crucial design decisions must be taken in the beginning of the project —when very little
information is available— using the object-oriented design approach these decisions are spread
over the development cycle[14].

The major steps on the object-oriented approach, according to Booch [3] are:

http://www.cvisiontech.com

IV Simposio Brasileiro de Engenharia de Software - SBC 153

Identify the objects and their attributes. which involves the recognition of the major actors,
agents and servers in the problem space plus their role in our model of reality.

e [dentify the operations suffered by and required of each object, which serves to characterize
the behavior of each object or class of objects,

Establish the wisibility of each object in relation to every other object. This is the step
when the static dependencies among objects and classes of objects are established.

Establish the interface of each object. In this step we produce a module specification, using
some suitable notion thereof. This captures the static semantics of each object or class of
ob jects that were established in a previous step.

o Implement each object. This involves choosing a suitable representation for each object or
class of objects and implementing the interface defined in the previous step.

3.1 Finding Objects

Booch suggests using the nouns that are used in the description of the problem space to derive
the objects.

Agreeing to this, Meyer[14] states that “perhaps the most useful technique for finding classes,
is to look for meaningful external objects. Many classes just describe the behavior of objects
from the abstract or concrete reality being modelled —missiles and radars, books and authors,
firures and polygons, windows and mice, cars and drivers”,

Another way of finding objects, also suggested by Meyer is simply to look at what is available
in the object-oriented environment. As object-oriented design favors bottom-up design, it is
natural to look into the predefined classes searching for items that can be reused.

4 The Design of System H

System H is a prototype of a Hypertext System with some advanced features, that manipulates
text, code and graphics. H has been implemented in Smalltalk-V, and the project has also been
useful for studying object-oriented design and programming and for the analysis of the feasibility
of implementing a final version using an object-oriented language.

With the experience gathered in the development of H, we intend to have in the future a
more sophisticated system derived from a formal specification written in an extension of Z[11].

This new system, Hex[16] is being formally specified and is to be used as an integrator of the
several parts and tools of ADRIS[7] —A Rigorous Software Development Environment— which
also has a functional language (A[9]) for generating prototypes from formal, model oriented
specifications. The system is not language specific, and current work considers the rigourous
development of software using the pairs VDM[10], SML[4] and VDM and Smalltalk.

This environment will have the hypertext system as a basis for its integration and support to
software development. The hypertext system can be used either for integrating the documents
used during the development of a software system or for automating the development process
itself.

4.1 Finding K’s Classes

To choose the classes of H, we tried to follow Booch’s methodology. In describing a hypertext
svslem. some nouns come up naturally:

http://www.cvisiontech.com

154 Aguas de Sio Pedro - SP - 1990

node
. bink
. document

user

L I S R

. manager, an object that controls the interaction between the main components of the
system.

These were the first objects described for H. Some of them were divided into several subclasses.

The system also needed several features provided by the Smalltalk environment. Thus we
would use predefined components, and extend some of them. The system is made up of over 50
classes.

4.2 An Overview of §

The upper level of H (its manager) understands two sorts of objects: users (H-Users) and
documents (H-Documents).

o An H-User is a person allowed 10 have access to the system, being able to create, edit and
consult documents. All H-operations are related to an H-User. The system keeps a record
of the users responsible for the alterations on documents and maintains some information,
such as the address, phone number, interest areas and a picture of the users. Each user
also has a post office boz, and is abie to send hyper-mail to any user.

¢ An H-Document is the upper level of the information manipulated by H. Everything that
does not belong to a user must be part of a document. An H-Document is made up of
stacks of nodes (used to keep versions, see Section 4.3.3) which are, in turn, made up of
nodes that contain the actual information (i.e. tezt, graphics or code).

The general structure of K can be seen in Fig. 1.
We are now going to describe in some detail the main components of H.

4.3 Nodes

A hypertext is essentially a group of linked nodes. The linking must be computer supported,
While the links provide the essence of hypertexts, the nodes hold the information to be linked.
The way nodes and links can be organized and their possible attributes characterize a hy-
pertext system, making it more or less suitable for an application.
The kinds (and attributes) of links and nodes defined for H were heavily influenced by the
environment we were in (Smalltalk) and by the knowledge of hypertext and Smalltalk we had
at the moment.

4.3.1 Kinds of Nodes

H supports three kinds of nodes: text, graphics and Smalltalk source code. As we shall see, the
nodes are kept in a stack structure for version management (see Section 4.8).

o A Tert node contains normal text and opens on a window associated to a text editor (the
Smalltallk text editor), so it is possible to perform the usual text editing operations over
it. What makes a text node different from normal text is the possibility of creating and
following links to other nodes.

http://www.cvisiontech.com

IV Simpdsio Brasileiro de Engenharia de Software - SBC 155

Figure 1: General Structure of H

e A Graphics node contains a bitmapped image and references associated to it.

o A Smalltalk source code node is a text node containing Smalltalk source code. The dif-
ference between them is that when a code node is activated, depending on the mode the
user is browsing the document (editing or ezecuting), the system will open a window for
text editing (exactly in the same way as for a text node), or else it takes the contents of
the node, compiles and executes it. Code nodes provide great power and flexibility to the
system. A code node can have, for instance, the Smalltalk code to perform an animation.

4.3.2 Size of Nodes

A node should contain a complete idea. Usually, this means several paragraphs, but it is very
hard to decide a prieri what is going the be the adequate size for a node to contain a complete
idea.

Some systems, like ZOG[17], have nodes of fixed size —each node occupies exactly half of
the screen. That kind of system relies on the very fast activation of nodes in a way that the user
does not feel the need for more nodes on the screen at the same time, as he can activate a node
almost instantly. Other systems. like Guide[18]. show the nodes continuously on the screen, in a
way that it is invisible to the users the existence of “borders” between nodes. Still other systems
have no limitation for the size of nodes and each one is shown on an individual window.

In H we decided to adopt the last alternative. The nodes can have unlimited size, although it
is recommended that a node should not have more information than enough to fit in the default
window size. This avoids scrolling, which is a very inefficient way to navigate[6] a hypertext.

http://www.cvisiontech.com

156 Aguas de Sio Pedro - SP - 1990

4.3.3 The Stack of Nodes

What is a simple node in most hypertext systems is a stack of noedes in H. To be more specific,
a node in the H-hyper-graph is actually (the top of) a stack of nodes. This happens because the
system keeps all the versions for a node, and each of these versions (an K-Node) is an element of
the stack. Newer versions are created by the editing of older ones. All references in H are made
to a stack of nodes. The appropriate node (i.e. the correct version) will be activated depending
on the document’s version that is being browsed.

The use of the stack of nodes will become more obvious in sections 4.8 and 4.10 (was this a
hyper-paper all we had to do was to follow a link).

4.4 Links

Links are the soul of a hypertext document, with many attributes possibly associated to them.
We have tried to keep our links very simple, while still having them powerful enough to
represent the several types of connections we wanted to have.

4.4.1 The Origin of a Link

The wisible origin of a link is a button. In H. buttons are part of the text in a text window and
thev must be contained within a line. The system does not allow buttons spread over more than
one line. The button delimiters are always visible.

In the case of a graphics node, buttons are rectangular areas defined by the user. The button
delimiter can be hidden so that it will not interfere with the picture.

4.4.2 The Destination of a Link

Some systems allow the destination of a link to be a line, or even a point in the text, In K, as
we have a multi-window system, and supposing that each node encompasses a complete idea,
we decided to have nodes as destinations of links.

When following a link, the system opens the window on the appropriate version according to
the version of the document that is being browsed. When a link is followed, the system searches
for an open window already representing it. If one is not found, a window will be opened on the
correct version.

4.4.3 Kinds of Links
There are two main sorts of links in H. Those that maintain the basic linear structure of the
document, and those that break this structure down.

Links that Maintain the Linear Structure of a Document

H has two kinds of such links: Next Node Reference and Vision Reference.

o A Next Node Reference is used to keep a record of the linear structure of an H-Document.
When the menu option Next Node is activated. the system opens the node referenced by
the object Next Node Reference. To alter the nezt node of a node, the user must explicitly
choose this option in the menu.

o A Vision Reference is used to maintain the visions of an H-Document. An H-Vision (see
Section 4.9) affects the linear structure of an H-Document. in a way that when the option

http://www.cvisiontech.com

IV Simpdsio Brasileiro de Engenharia de Software - SBC 157

Next Node is activated within a node associated to a vision, the system will first check
whether that vision was pre-defined or not. If it has, the Vision Reference will work
exactly like a Nezt Node Reference and the existence of a vision will be transparent to the
users. In the case of not having a pre-defined vision, the system opens up a menu with
the alternatives to be chosen. The association of a vision 10 a node must also be explicitly
chosen from the pane menu.

Links that Break the Linear Structure of a Document

These are the links that give a document its hyper features. H has two kinds of such links: the
simple and compound references.

o a simple reference is a direct link to the destination node. When it is activated, the svstem
automatically opens (activates) the window on it.

* a compound reference is associated with a menu. When it is activated, the system pops-up
a menu with alternatives to the destination node. There is no limit to the number of
nested compound references. A node is only activated when one of the alternatives of a
compound reference is a simple reference.

4.4.4 Creating a Link

One of the key issues in the authoring process is the indication of links[§]. The process should
be simple and easy to manipulate. In order to create a link in H, the user must have both the
destination and the origin windows open. First, the identification of the destination node must
be obtained. This is accomplished by activating the destination window and choosing the option
Keep Identification from the menu. Next, the origin window must be activated. Now we
have two options: the window may contain tert or graphics:

e If this window contains text (either a text or code node). the user must select the text that
is going to be the button (it must be contained within a single line) and then the option
Associate Reference must be chosen. The system will insert the button’s delimiters and

will ask if it is a Simple or Compound reference. If it is a simple reference the association
is automatically done.

In the case of a compound association, the system will prompt the user to input the name
of the association and will ask again if it is a simple or a compound association. This loop
will be kept going until a simple association is found. The other options of a compound
reference are assembled (or changed) by selecting the button and choosing the Associate
Reference option.

o In the case of a graphics node, the process is similar, but the user must choose a rectangular
area within the picture. When the button is chosen, the delimiter is visible but can be
hidden (the region will still be sensitive to the mouse), by choosing the icon “R" on the
label of the window.

4.5 HB-Documents

The upper level of the information handled by H is an H-Document. In Fig. 2 we see its general
structure. The ovals represent stacks of nodes. and we see the several linking possibilities.

http://www.cvisiontech.com

158 Aguas de Sio Pedro - SP - 1990

Kinds of Links

= == Vision
....... Simple Reference

~—— Next Node Reference

e “; Compound Reference
o o
I_f.. ‘/.
- : () C) Stack of Nodes
2 £
’ N\

=

Figure 2: Example of an H-Document.

4.5.1 Structure of an H-Document

An B-Document has a basic linear structure maintained by Nezx! Node and Vision references.
The document is made up of Stacks of Nodes where each element represents one version of the
node. The origins of references are associated to nodes while the destinations are associated to
Stacks of Nodes. Each version of a node can have its own set of references, but the destination
of each one is made to a stack of nodes, and the appropriate version will be activated depending
on the version of the document that is being browsed.

There are two types of H-Documents:

¢ Visible documents All normal H-Documents are visible. This means that they are
available through the H-Document window.

o Invisible documents These are documents such as a hyper-letter, that have all the
features of a normal H-Document, but are available only to the addressee.

4.6 Users

Access to H is only allowed to authorized users. The modification of documents is associated
to user ids. The system keeps a number of information about users, such as address, phone
number, incoming mail, a scanned photo, etc.

4.7 HyperMail

H keeps an electronic mail where each letter is an invisible H-Document. The user has access to
the hyper post office through his user window. When a user logs in, he is informed about the
existence of incoming mail.

A hyper letter, as seen from the user’s mail box, is a button to an invisible document. This
document has all the capabilities of every other H-Document, thus creating very interesting
possibilities for communication between users.

http://www.cvisiontech.com

IV Simpasio Brasileiro de Engenharia de Software - SBC 159

Node % [y [2]3lals]6|7]s]o
1 e .
2 . © .
3 o
4 . .
5 | o . .
6 . . |
7 .| | .
R ol o @ |

Figure 3: The management of versions in K

4.8 Versions

By version we mean the alterations —performed through time— to an H-Document. This is
one of the most important features incorporated to H, and it is essential in applications such as
CAD. CAM. software development. etc.

4.8.1 The Management of Versions

Although H manages versions at the node level, they are attributes of documents. In Fig. 3 we
see how the system manages versions, Initially, the document was created with nodes (stack of
nodes actually) 1.2,3,4,6,7.8. This means that in version 1 the H-Document was composed of
those nodes. Version two was created by editing node 1. If the user browses the document in
version 2, the system is going to open version 2 of node 1, but all other nodes will have version
1 open because they were not changed. New nodes can be added (like node 5 on version 3) or
old nodes can be removed (like node 8 in version 6)

4.8.2 Creating a New Version

Usually, an H-Document has frozen versions and one open version. A frozen version is one that
the user explicitly determined should be frozen. Frozen versions are “read only”. The user must
inform why he froze the version and the system keeps his identification. The user who freezes a
version is regarded as its author. The open version is the version currently being edited. Each
stack of nodes can have at most one open version (the top of the stack). All changes can only
be made to the open version.

The system automatically creates an open version (the new version) when a node of a frozen
version is edited. The system prevents the user from trying to have more than one open version
—by editing two frozen versions for instance.

4.9 Visions

Visions provide a way of looking at documents from different points of view. or with more or
less details. Visions are attributes of documents and are associated to nodes. They afiect the
linear structure of the document. A node with an associated vision has several nezt nodes, each
one corresponding to an alternative vision.

http://www.cvisiontech.com

160 Aguas de Sio Pedro - SP - 1990

When browsing a document, the user can predefine a vision so that its existence becomes
transparent to him. When the vision is not predefined, the system pops up a menu when the
user chooses the option next node from the nodes that have that vision associated, and the
user makes the selection on the fiy.

4.10 Navigating through H-Documents

The user can navigate through an H-Document sequentially, following its basic linear structure,
or by following the references available in each node, or else he can jump to desired nodes by
using the commands Search and Find.

The results of viewing documents containing code nodes depend on the browsing mode: if
in editing mode. when a code node is activated, the system opens a tert editor window on it,
and it all works like a normal text node. The document can also be browsed in ezecution mode.
when the text of the code node is compiled, executed and no window is opened.

4.10.1 The Navigation Stack

H keeps a record of all nodes visited during a session. It is then possible to return to any
visited node, reducing the disorientation within the system. At the moment. however, there is
no graphic browser.

4.10.2 Searching

H allows searching for strings over documents. The search is performed sequentially through all
tert and code (in the appropriate version) nodes. Using this command it is possible to reach a
node without having to follow the whole path that leads there. That could be used when the
user knows what to find but does not know where to find it. This is not an efficient operation
and should be avoided.

4.10,3 Finding and Keywords

It is possible to define keywords for H-Documents. The keywords can be associated to any kind
of node (they do not have to be a string that occurs in the node). The system keeps a table with
all nodes that are associated with each keyword. so that finding a keyword is a very efficient
operation. When a keyword is associated with a code node, that node will be edited or executed
depending on the mode the document is being navigated.

5 The Implementation of H

System H was not developed in the traditional way. By traditional we mean first making a
global analysis of the features that should be incorporated, then developing a comprehensive
design, writing a formal or informal definition of the whole system and finally building the
implementation.

As we have said, in the beginning of the project we had very little experience with both
hypertext and object-oriented design and implementation. We did not actually know where we
should go and how we would make it there. Therefore, it was very difficult to decide which
features we wanted to incorporate to the system and which ones we would actually be able to
incorporate. considering the limitations of the language (we did not know exactly what they
were), people and hardware. Consequently, we never had a complete definition of the whole

http://www.cvisiontech.com

IV Simpasio Brasileiro de Engenharia de Software - SBC 161

system, and its development can be informally divided into four phases. The phases were
determined in reality by factors external to the project.

5.1 The Phases of the Development

The main characteristic of the phases were that in each one we had more experience with the
implementation language and we had a more sophisticated concept of what a hypertext system
should be. In each phase, several features incorporated to the svstem were defined while we
were implementing the previous version of H.

The existence of these phases also proves that crucial decisions of a project using the object-
oriented approach do not need to be taken at the beginning. Fundamental decisions can be
taken on the fly. without having a great impact on the overall system.

We are now going to describe the main characteristics of each phase.

Phase 1

The first phase can be seen as a first major exercise while we were beginning to learn Smalltalk.
QOur intention was more to learn Smalltalk than to work on the real project.

The program written had no more than 200 lines and we did not alter system classes.

This version 0 of H had these characteristics:

e Only text nodes.
¢ No version control.

* No visions.

o The identification for a link was its own text (the button itself). If the users accidentally
removed or changed the button, the system would lose the reference. With this limitation,
a node could not have more than one button with the same text, even if it had a different
destination. In the case of having two identical buttons with different destinations, the
system would recognize only the first one (both links would lead to the same destination

node).

o The users had to manually insert button delimiters. Of course, they were characters easily
generated on the keyboard, and so could occur in the text where the user did not want to

define a button.

o No cursor control. The users could remove button delimiters, thus losing references.

In spite of all the limitations this phase was very important in the project because of the
volume of information about Smalltalk we had to learn in a short period of time (1wo weeks).

Phase 2

This phase is characterized by the implementation of the first features of the final svstem.
The main novelties are:
o Version control.

o The button delimiters are characters that cannot be generated by the keyboard. However,
the system does not control the cursor yet.

http://www.cvisiontech.com

162 Aguas de Sio Pedro - SP - 1990

To pass from the first to the second phase we had to perform basic changes upon the data
model used. To control versions we had to make some significant changes to the windowing
model of Smalltalk. These changes were mainly to permit a model to have more than one open
window. This was necessary to allow a stack of nodes to have more than one of its versions open
at the same time.

Initially we thought not to reuse what had been written in the first phase. We then realized
how easy it was to reuse code in Smalltalk. In spite of the very deep changes in the structure of
what we had done in the first phase, most of what had been written was reused.

In this phase we also began to change some features of the Smalltalk text editor. The
HTextEditor button delimiters are characters not available in the kevboard. We also noticed
the flexibility provided by the system. allowing changes to be done even in its lower level. The
Smalltalk system is totally open for changes (even for the ones not intended, which is sometimes
dangerous).

Phase 3

What characterized this phase was the alterations on Smalltalk classes.
The main characteristics of the hypertezt in this phase were:

» The implementation of keywords, and the associated command Find.
» Implementation of the command Search, for strings.

o Implementation of the H-HyperMail subsystem, where a letter has the same features of an
H-Document.

« Implementation of code nodes.

This was the most gratifving phase of the development, because from then on we had a
fairly complex system already, but still very easy to use. We started then using H in the pro-
cess of documenting its own development and for communication among people involved in its
development.

Phase 4

The main features added to the system in the last phase were:

e Introduction of graphic nodes, allowing the generation of graphics inside or outside the
svstem (e.g. using a scanner).

e Internal representation of links. Up to this phase, the button itself was the key to the
reference within a node. If a button was edited, the system would not recognize the
reference anymore. In his phase we started identifying the references with a number
generated by the system. This number is kept in 12 bits and so each node can have up
to 2'? leaving links. The identification of the reference is kept just after the begin button
delimiter, and is not visible on the screen.

o Full cursor control. The system prevents the removal of button delimiters and characters
that represent the internal identification of references.

http://www.cvisiontech.com

IV Simpdsio Brasileiro de Engenharia de Software - SBC 163

s Migration of documents. The documents up to now should be kept strictly within the
Smalltalk image. This meant that every document created was lost when, for instance, we
had to recompile the Document class. The Smalltalk system only recompiles a class if it
has no instances, and so we had to throw away all the created documents.

We created methods to save (in a primitive way) documents to disk, and so we did not

have all documents at the same time in the Smalltalk image and classes used by documents
could be recompiled without losing them later.

5.2 The Classes of H

We can classify the classes created for H in two sorts. Those that are extensions to System
classes (most of them used to create a Hyper environment), and those that maintain the core
characteristics of K.

5.3 Alterations on Classes of the Original Smalltalk-V

During the development of H we tried to avoid direct changes to system classes. Whenever
possible, we created subclasses of system classes. As we needed to create a new environment for
H, we had to alter classes like Dispatchers, Panes and CharacterScanner.

The Smalltalk interface is based on the triad Model- View-Controller (Model-Pane-Dispatcher
in Smalltalk-V). As a hypertext system is essentially an interactive environment, we had to
create subclasses to dispatchers and panes: For example, one of the affected classes was

» Class HTextEditor
Hierarchy: Object — Dispatcher — ScrollDispatcher — TextEditor — HTextEditor
This class adds hypertert features to the standard Smalltalk text editor. Among the
functions that the HTextEditor handles are:

1. handling the mouse’s middie button —not used by the Smalltalk— to follow links in

H.

. navigate through a stack of nodes.

navigate linearly through an H-Document.

perform the Search command on the associated pane.

. keeping the identification of the node being viewed in the associated pane. This
identification is used as the identification of the destination node when linking.

6. handling backspace. This is necessary to prevent the users from removing button

delimiters. If users were allowed to remove these characters, the system would lose

references,

7. handling enter. H limits the textual button to be in one line thus it must prevent the
user from typing an enter within a button, which would split the button into two
lines.

8. single line button. HTextEditor does not allow the creation of a button that occu-
pies more than one line.

http://www.cvisiontech.com

164

Aguas de Sio Pedro - SP - 1990

5.3.1 H Classes

H-Classes are those which are not direct extensions of system classes (i.e. they are direct sub-
classes of Dbject). For space reasons, we describe only two of the most important ones, namely
H itself and Document.
e Class H
Hierarchy: Object — H
This is the class that maintains the global control over H. It has only one instance — the
global variable HH. Among the main functions handled by HH we have:

-~ Documents, responsible for opening the H-Documents window and performing the

functions available from there.

— Users. responsible for opening the H-Users window and handling its operations.

— Path. HH manages the navigation stack (see section 4.10.1).

s Class Documento (Document)

Hierarchy: Object — Documento

The document is the upper level of the data manipulated by H. Among the attributes of
an H-Document there are:

&

Node dictionary, an instance of OrderedCollection where each element is a stack
of nodes.

. Version number, the number of the last frozen document version. This number is

used to associate new stacks of nodes to document versions.

. Authors, the system keeps the identification of the author of a version of a document.

It also keeps the reason for the creation of a new version.

. Visions, a set with all the visions defined for the document.

5. Selected visions, the visions that were pre-defined by the users.

6. Visible, indicates whether a document is visible or inuisible, All normal documents

are visible (i.e. can be browsed from the window H-Documents), however, a letter is
invisible to all users except its receiver.

. Keywords, the keywords defined for the document and the nodes associated to them.

6 Results

Svstem H, as described, is fully implemented in Smalltalk-V. The system was implemented in
about nine months by two programmers, using a PC/AT with 2.6 Mbytes RAM memory. The
original version was implemented in Smalltalk-V /286 and was later ported down to Smalltalk-V
on PC-XT and is currently being distributed free to § test sites. The whole svstem is composed
of 7789 lines of code, of which about a third is of high complexity.

6.1 Main Characteristics of System H

Svstem H is a prototype of a Hypertext System with the following characteristics:

o It is a general hypertext system (according to Conklin's classification).

http://www.cvisiontech.com

IV Simpoésio Brasileiro de Engenharia de Software - SBC 165

o It has a simple interface. H's interface uses the features provided by the Smalltalk interface,
that have influenced most modern computer human interfaces.

e It is a multi-windowing system where each window corresponds to a node of the web.
This makes navigation easier because it allows the user to have, at the same time, many
windows opened on the information he wants. A window can be activated just by clicking
the mouse within it.

¢ Information handling is based on the use of the keyboard and the mouse in an efficient
and simple way.

o The system has mechanisms for content search within the data base. These mechanisms
make the process of finding information easier and are accomplished by the comands
Search and Find.

o It has context sensitive menus. This simplifies user interaction with the system because
the possible operations on each context are explicit.

o It has a hyper electronic mail capability, which helps the development of cooperative work,
where communication among involved people is essential.

® The management of versions. The system keeps a chronological control of changes over
documents, and allows a user to browse a document in any desired version. It is even
possible to have windows open on different versions of a node at the same time.

» The management of visions. A document can be structured in a way that different users
can navigate through according to their own interest.

s The windows have a uniform layout. User orientation is easier in an environment where
there are not many windows with different sizes at the same time.

o The nodes can hold information that can be tezt, graphics or Smalltalk source code, which
provide great flexibility for creating documents.

6.2 Considerations on The Use of Smalltalk

The use of Smalltalk was of great importance to the development of H. The project can be seen
as two parallel efforts: the first one being the development of a hypertext system, and the second
an assessment of the use of an object-oriented language, its advantages and problems.

6.2.1 Advantages of Using Smalltalk
The main advantages we found in using Smalltalk were:

* Code reuse. As we have said, we never had a complete design of the system we were
implementing. All the same, we were able to reuse most of the code in the several “phases”
of the project, even without any plan to do so. Also, as the whole system is “open”, we
were able to perform modifications in its lower level without major additional difficulties
than that we had in our classes.

¢ Smalltalk environment. The Smalltalk environment provides some tools for browsing
through the system and for debugging. It is also particularly adequate for developing
interactive applications due to the ease with which graphics and windows are used.

http://www.cvisiontech.com

166 Aguas de Sio Pedro - SP - 1990

¢ Interactive execution. Smalltalk allows the immediate and interactive execution of
chunks of code. This stimulates reusability because it allows the programmer to try out
different possibilities on the spot[15].

We believe that the use of Smalltalk was essential for the development of the system the way
it is, considering the manpower and equipment constraints we had. Furthermore, we believe
Smalltalk can be strongly recommended for prototype development.

6.2.2 Disadvantages of Using Smalltalk
In spite of all the advantages of using Smalltalk, there are some drawbacks:

o Learning curve. It is easy and fast to write an application in Smalltalk (or in any other
language) after you know it well. The problem with Smalitalk is that, because of its sheer
size and the way the code is fragmented, it takes much longer for a novice to write his first
Smalltalk program than it would if a conventional language was used.

We have found that the best way to learn Smalltalk is to have someone to help vou with
the doubts as theyv come up. Unfortunately, we had no Smalltalk programmer available
from the start, and it used to take us a long time to solve some very simple problems.

» Finding a software component. Because of the way code is fragmented within the
environment, it is sometimes difficult to locate the desired component. The inheritance
mechanism sometimes makes this process more difficult, as the user may have to follow a
whole hierarchical path to find methods.

¢ Performance. Smalltalk is interpreted —this makes real-life systems far less efficient
than they could be if we had a compiled implementation.

7 Future Work

The main features that we intend to add to a future version of System H are:

» Development of a graphic browser. One of the main problems in using hypertext systems
is getting lost. Some authors like Akscyn[6] say that a graphic view is only useful when
you have a very extensive and non-linear structure. Others, like Garrett|[21], state that a
graphic representation or map is useful in helping the user to understand the information
of the network. We believe that a graphic browser with global and local maps could only
improve the navigation through the hyper-graph.

» Development of search by structure. H supports only search by content, and it is often
desirable to search, for instance, “all nodes that have references to nodes that have the

word hypertezt”.

e Saving paths. A path is a sequence of nodes to be visited. For example. the system
could have a path that is the suggestion of a minimum class saved by a professor. The
student can follow that path, and make his own deviations where he thinks he needs more
information, or where he is more interested in.

o Introducting annotations. An annotation is a piece of text that is introduced in the
document but is not part of it. It works like the side notes we usually jot down in books.
An annotation can be hidden (or not) from other users and the user who placed them (or
who he allows) can have a commented version of a hyper-document.

http://www.cvisiontech.com

IV Simpdsio Brasileiro de Engenharia de Software - SBC 167

o Status for users. H does not classify users, any one can create, edit or remove any document,
node or link. In a future system the users should be classified so that some users can read
and edit their own documents, while others can only read and place annotations on them.
Some users can only have access to certain visions of documents, etc.

o Store management. System H relies on the management provided by the Smalltalk system,
which keeps all data in main memory. However, any practical hypertext system must have
an efficient way of saving and retrieving information from a data base kept in a permanent
medium and possibly distributed through different machines.

The development of a general store management system for hypertext is in progress since
the beginning of the vear, and we shall have a prototype working soon.

« Implementation of a garbage collector. The fiexibility provided by the system for changing
the structure of documents allows the creation of unreachable cycles that are not detected
by the Smalltalk garbage collector. The system should have its own garbage collector, and
should be able to inform the user about the existence of such cycles before their removal.

References

[1] E.S. Albuquerque: O Sistema de Hipertezto H. Dissertagao de Mestrado, UFPE, Dezembro
de 1989. (In Portuguese).

[2] A. M. L. Vasconcelos, A. C. V. Melo e S. R. L. Meira: Her — Hipertezio como Suporte a
Ambientes de Desenvoluimento de Software. Dep. de Informatica, UFPE, Janeiro 1989. (In
Portuguese).

(3] S. Meira, E. Albuquerque, J. Martins, A. Melo e A. Vasconcelos: Hipertezto: O Projeto
do Sistema H. Ill Simpésio Brasileiro de Engenharia de Software, Recife-PE 1989, (In
Portuguese).

[4] R. Harper, D. MacQueen and R. Milner: Standard ML. Edinburgh University, 1986.

[5] G. Booch: Object-oriented Development. IEEE Transactions on Software Engineering. Vol.
§B-1, N 12, Feb. 1986.

[6] R. M. Akscyn, D. L. McCraken and E. A. Yoder: KMS: A Distributed Hypermedia System
for Managing Knowledge in Organization. Comm ACM, July 1988.

:I [7] S. R.L. Meira: Ambiente para Desenvolvimento Rigoroso de Software. Notes Nr. 1, Agosto

1988. (In Portuguese).

[8] B. Shneiderman: Reflections on Authoring, Editing, and Managing Hypertezt. CAR-TR-
410, University of Maryland, 1988.

[9] S. R. L. Meira: Introdugdo @ Programagdo Funcional . Versao preliminar & VI Escola de
Computagao, 1988. (In Portuguese).

[10] C. B. Jones: Systematic Software Development Using the VDM Approach. Prentice-Hall
Int, 1986.

[11] B. Sufrin: Z Handbook. Oxford University Computing Laboratory - PRG, 1986.

http://www.cvisiontech.com

168 Aguas de Sio Pedro - SP - 1990

(12) Digitalk Inc. : Smalltalk-V 286. Tutorial and Programming Handbook., 1088,

13] A. Goldberg and D. Robson: Smalltalk-80 The language . Addison-Wesley Publishing Com-
1989 -
pany, :

(14] B. Meyer: Object-Oriented Software Construction. Prentice Hall International, 1988,

[15] J. Nielsen and J. T. Richards: The Ezperience of Learning and Using Smalitalk. IEEE
Software, May 1989.

[16] A. C. V. Melo: Especificagdo Formal de Links e Nos em Sistemas de Hipertezto. Dissertagao
de Mestrado, UFPE, Dezembro de 1989. (In Portuguese).

[17] A. Newell, D. L. McCracken. G. Robertson and R. M. Akseyn: ZOG and the USS Carl
Vinson. Carnegie-Mellon University, 1982,

[18] P. J. Brown: Turning ldeas into Products: the Guide System. Personal Communication.

[19] J. Conklin: A Survey of Hypertezt. MCC TR, Nr. STP-356-86. Rev 1. Austin. TX. Feb
1987.

[20] A. L. Cavalcanti, J. Kelner e A. Pardo: LindA: Uma Linguagem de Autoria Automdtica
para Hipertezto. 11l Simposio Brasileiro de Engenharia de Software 1989, (In Portuguese).

i21] L. J. Garrett, K. E. Smith and N. Meyrowitz: Intermedia: Issues. Strategies, and Tatics in
the Deswgn of a Hypermedia Document System. R1 02912, Brown University.

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294

