
The Evolution from Software Components to Domain Analysis

James M. Ne•ghbors
Syslem Analysis, Design. and Assessment

AbslTact

Mort thon lwtnry yeor$ ogo lhe /dto of produclng sofiWDrt
sysltms from reusoble software compontnls was propostd.
Slnet 1ho1 tlmt many chongts hovt toJ:en ploct ln Cornpwltr
Scltnct ond SofiWDTt Englnetrlnl. bu1 sofM'Ort sysltms are
stlll bulll as ont·of·o-klnd cra[tsmon tffom. A mtlhod for
software conslruclion us/ng componenll Is dtrlvtd uslng
txptrltn c t from software componenls , protram
trans[onnotlons, systtm orclúltelurt, Industrial lorgt systtms,
DUIOmDlic programming ond program Btntratlon. Exptrltnct
wlth tht n~lhod Is discussttL Tht llmlting foclors oflht n~thod
1ha1 prevtnl tht w/desprtod use of rtusable software
compontnls ort ldtntifitd

lntroduction

We will focus on llCbemes for lhe produclion o(Jarge, quabty
software sysiCm$!lW can be e~tended and mainlained over a
lifespan of many years. Thcre are two primary approaches 10
producing anylhing: lhe craftsman approach and the mass­
produclion approach. Thc c:raflsman approach reUes on a highly
skiUed aaftsman 10 build an objccl from raw materiais. Thc
raw matcnals are fashioned inlO cus10m pam and fiued 10ge!hcr
to fonn custom assemblies. The mass-production approach
relies on prebuilt Slandatd pam and standard assemblies of pam
10 be combincd 10 form lhe objccL Each o(lhe approoches lias
its good and bad points.

Wilh lhe aaftsman a~h. lhe custom pam and assembUes
are trulored 10 lhe spcctfic problem 11 hand. Thcse custom p:lrtS
represcnt a very efficient tmplemenuuion; probobly better lhan
could be built from standard parts. Given lhe bme, a craftsman
always builds a bettet objectthan one consltUC!ed from standard
pam. By "beuer" here we meao more responsive to lhe goals o(
construction. Thc craflsman approach has its druwbacks '" !hat
crartsmen are e~pensive to employ and hard 10 find. Any sySICm
buill by a craftsman is a custom systcm and wiU require custom
maintenance. This means lhat lhe maintenance must be done by
a craftsman who must sJ\ape new cUS!Om pariS 10 lit with lhe old
custom pam in an objccl.

The mass-produclioo approach oifers cheapcr coostructíon costs
since the object is built from prebuilt standard parts. An
assembly is a structure of standard pariS that cooperate to
perform a single function . The use of standard pariS 1nd
assernblies will supply socne lcnowledge aboutlhe failure modes
and limits of the pariS. This infonnalion Is unavailable with
custom pam. Use of standanl pam abo creales 1 language for
diseussioo of future objccts and atensioos 10 objccls cum:ntly
under construction. The mass-production approach has its
drawbacks ln that the design of useful standard parts and
assemblies is very upensive work and req_uires craftsman
aperience. Also. once 1 set oC standard pariS LS crea!ed it may
not suffice 10 construct ali lhe objccts desired.

1

Our wish to build software systems from reusable software
components represents a shifl from craftsman produclion to
mass-production. This shifl is forced upon us by thc ever
increasing slze oC software systems we build.

Software Components

Thc idea o(construetina software (rom genenl, weU-spcc:ified,
and weU· ICSied software components is an appealing one. Aiter
aU, we software engineers have seen lhe computer hardware
engineers sucoeed using lhis tecllnique time afler lime. McUroy
[Mcllroy68) is one of lhe earliest and IIKlSt eloquent advocales
oC software components. He envisiooed a comple!C industry
similar to lhe semiconductor industry with factories solely
dedic11ed to the mass-production of ali kinds or software
components. Thcse compooents are caUlloged and placed into
libraries for ready access.

" I would like 10 see components become a d•grufied
branch of software engineering. I would like to see
standard catalogues of roulincs, classified by precision.
robustness. time-space perfonnance, size limits, and
binding time of parameters. I would like to apply
routines in lhe catalogue to any one or a large class of
often quite different machines ... What I have ~ust asl<ed
for is simply industrialism, wilh programmmg tenns
substituted for some oC lhe more mechanically orienled
lCmiS appropriate 10 mass production. • [Mcllroy68)

Furlher. if lhe idea of software components works weU pcrhaps
we could bind lhem together using other analogies to the
hardware world like "busses* and "sockets*. I! lhese techniques
worked they would move software production out of the
crartsman era and into lhe mass productJon era. These are bmvc
and intuitive ideas tll3l have not come 10 pass. Wh'{l lt is lhe
goal of lhis paper 10 answer !lW queslion usina aperience.

ln 1973 I became a projcct software manager in a company thal
specializcd in sellíng custom real-time, high-speed data
acquisilioo and control systems. I had read Mcllroy's visioo oC
software components and became convinced lha! consltUCling
sySICms using software components was lhe way togo. I asked
lhe programmers on my projCCito atrnct components frorn lhe
sySICms lhey had buiiL Programmcrs lhroughout lhe company
bccarne interested and submined components. A prograrnmer
had to submit a component to get a copy of lhe eatalog and lhe
objcct module library. lt was not a restriction. lt was more a
maller o(pride.

The company made data acquisition hardware so lhe firsl wave
o(compooents were drivers for lhe hardware. Ali lhe work was
in assembly languagc so the components were assembled,
eataloged. and placed in an objcct module library. Thc second
wave of components were assembly lanauage routines that
carne from the computer manufacturer to perfonn useful
functions like emulate lhe ftoating point hardware, string
handling, formaued printin~. math funclions, etc. AI this point
we could snap togelher a SJmple and not very l'ast systern. The

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Software Componenrs

third wave o(componenl.'l carne from a cornpletcly unexpectcd
soorce- lhe senior systcms analysts. Syslems analysts specificd
wlw lhe sys1ems did. Progr.unmers Slmply made lhe hardware
do lh3L Project softwan: managcrs anel 1101 programmcrs Ullked
10 syslems analysts. 1"hen: were very few of them (3 per 25
programmcrs). Thcy had been in this business for many years
and only got invotvcd wilh an actunl systcm 10 fixa mess. Thc~
submiued lhe most wondrous cornponentsl They were "triclts
thal really made the systems fast. Some example cornponents
from the sys1ems nnalysts:

I. Methods for using lhe timers to intenupt before the
data interrupt to avoid lhe interrupt contcxt switch
time.

2. Optimal interleaving of sensor data requests and
reads 10 avoid data set~ing time.

3. Alcane algorilhms for converting synchro bit data to
anglcs withoot sine and cosine tables.

As programmers who had expcricnccd thesc problcms and did
1101 invent these answers we quickly made lhese techniques a
pan of our repertory and sys1ems.

The software component library was a success over tlle
traditional craftsman approach taken by the company. We
produced smaU systems (5000 asscmbly tines) that antcrfaced to
other systems mos~y as equipmeot (switches and sensors).
Ultimatcly, we reduced lhe time to build a new custom system
in this constrained domain to 20% of the craftsman
developmcnt time. However probtems begnn to appear wilh lhe
software componentlibrary. As lhe "inventor" of this Concept at
lhe company I became lhe agcnt for findang and modifying
components Crom the library. ln this rote as a librarinn certain
problcms wilh lhe library became apparcnt. ln some cases a
programmer was look:ing for a program part that could just be
"plugged in" wilhout cliangc. ln Olher cases Lhe programmer
was looking for a progmm part Lhnt could be changed before
use. As an example, a scnior analyst had submiued a cornponent
that calibratcd and accessed a nonlinear tcmperature sensor with
0.01 degree accumcy through a vcry complex interpolation. A
programmer with a new application only necded O.S dcgrce
accuracy at highcr speed. Ncalher of us lc.new how to change this
cornplex component. This is an important considemtion in the
design of a library ol reusable program partS. What a pan does
only allows its reuse without change. What a part does. how it
does it. and how changes may be made allows lhe reuse of a
component wilh changc.

One straightforward way of OIJ.Mizang a collecllon of software
pariS is to~~ each prut anto a hbrary o(source code indexed by
lhe "what descri(llaon ol each jl3!1. Pblential users o(lhe pan
would searc:h lhrough lhe "what dcscripllons of the partS ol lhe
library and select lhe appropriate pan. This is lhe scheme used
by most source program libranes. The problems encountered by
lhis scheme are:

I.

2.

classificallon probl~m; What is a proper language or
scheme for specifyi ng and searching ~what"
descriptions?

s~arch probl~m : The burdcn of searchinj lhe li~
is placed on lhe potenlial uscr of o par1. Quite ofien at
is easier for a potential user to build a part from

scratch mther than find a part an a library and
understand thc constraants on its use and the
ramificataons of ats design decisions.

A software component hbrary offerin' cornponents lhat can be
changcd before use must store ~how" mrormauon in addition to
"wh:u" anfonnalion for each pan. This "how" infonnation
describes how lhe part perfonns its function and how changes
are made. Organtzing a ubrary allowang change w~J encountcr
lhe following additional problcms:

I. structurol sptc/ficotlon probl~m: What is a proper
languagc or scheme for spcc ifying Mhow"
descriptions and cons1raints of usage between
sofrware pariS?

2. jlt.dbillry probltna: Which design and implcmentalion
decísions are flcxiblc and which are fixed in each of
lhe software pariS in lhe library.

Wilhin the context of the existing tools a1 lhe company (tcxt
edilors, linkers. and object module labraries) we pushcd lhe
software component libmry concept to its limil. I entered
graduate schoo1 hoping that Computcr Science could solve my
library problems.

ln gmdu:IIC Jehonl I 1eamed o(projccts [Corwin72, Campos78]
lhat 1101 only had t.ried software component hbraries but had
extended the hardware analogy to include "sockets" and
"busses" between the cornponents. This let thcm characterize
and type the data flowang between lhe modules. This work
suffcred from lhe same general library problems I had met in
building srnall component libraries. However. a more ominous
problem occurred to me as I read how their assembly
mechanasm assembled and checked the component
interconnections. lnhercnt in allthe software cornponent wor1< is
lhat (in Mcllroy's vision) lhe component business will "scale
up" to cover ali aspocts of software production on ali sizcs of
systems. The llbrory P.robltm limits thc straighúorwanl idea ol
software component hbmries from scaling up.

"lf the parts in the library are to be modified and reuscd.
lhcn they must be small to be general, flcxiblc, and
understandable. However, if lhe parts in lhe library are
small, lhen lhe number of parts in a usable library must
be very largc. These two objectives are always in
conRict. lf a hbrary contains many small pariS. then it
lcssens the structural specification and Oexibility
problems while increasang the classificalion and
searchang problems. lf a bbrary conlains a smaU number
of large pans. then it lesscns the classification and
searchin' problems while incrcasing the struc1ural
specaficauon and nexabihty problems .• [Neighbors80]

A successful software componcnt library would contain
millions of tiny components. The data passed along ~busses"
and ~sockets" between cornponents changes at component use
time ralher lhnn being fixed at component creation time. How
could such a libmry be organized? The "hbmry problem"
stopped lhe mass production of software cornponents.

Wortc.ing on lhe data acquisition and control systems gave me
respect for people like thc senior systems analysts who lmew
how your system workcd bcfore you explnined ilto lhem. Later

ll1e Evoluuon from Sollware Componenh tn D•>main An:lly~is
2

I

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

I would come to call them "Domain Analysts" bccause they
understanel how lhe entíre class or systcms that addresscs a
specilic problcm domain should won:. As woth the acquisition
anel control systcms domain, the domains are never founel in
books - pcrllaps lhey should bc but it is hard to classify m:ucrial
about some problem domnins. Most problcm domains are so
case specific thnt no overriding sllUCiure is yet discovercd on
which to base a book. Domain Analysts make lhe systcms or lhe
world worlc.

Lesson.s rrom Software Compoaeat Llbrary RCKan:b:

I.

2

3.

4.

5.

6.

Libraries have an immcdiatc impact anel are a success
but lhey do not solve lhe largcr problcm. The "Ubrary
problcm" prohibils s imple software component
library schemcs from scaling up to largcr problcms.

The reuse or program paris wilhout change is
extremely successful. The implcmentation of
compilcrs by Unkage lo run·timc support routines is
an obvious example or this tcchnique.

The reuse of pro~ p:ltiS changed by progrnmmers
is a major activlly of dctailed design and codins.
Encyclopedic works such as [Knuth68, Sedgewick84,
Prcss86] are successcs bccause they serve as suides
supplying informalion above the levei of
programming language code. This tells lhe
progmmmcr what lhe part does and how it does ii.
This "how" information allows lhe progrnmmcr lo
adólpt lhe part to lhe systcrn under consideration.
Sons, 1ist insertions, anel most opcrations on nwnbers
are 1101 lhe problem. They may bc used as research
examples but if thnt is lhe extenl of lhe worlc lhen the
rcader should bc wary of whelher thc work will
"scalc up" or not.

Hardware analogics such as "busscs" anel "sockets"
consuain software. Software componcnts poss more
complex structurcs than hardware componcnts. For
software componcnts lhe information passed through
1hcse interface points chan~es in formnt at componcnt
use time. For hardware ii os usunlly a fixed standard
dcclared at component crcation time.

"Domain Analysts" are a weallh of formal and
informal experience aboul how systems in the
domain acrually worlc. Any successful tcchnique for
building systems ln a problcm domain mus1 havc a
melhod for gathering and using this valuable
information.

Program Transformations

I bccame inlercsted in progmm tmnsformations as a way to
inlroduce nexibility into source codc software components. I
bclieved 1ha1 very general components, such as tbe high
accuracy tempcrature sensor component discussed carlier, mighl
be 1ransformed into different lower accuracy versions
dynamically without havina to storc thosc vcrsiOIIS cxplicit!}'. lf
this could be done it would aid the "libnuy problem by
reducing lhe number of components in lhe library.

Souree·IO-source progmm ttansformations treat a progmm as an
alaebraic object with rewrite rules of exchange. Each

Software Componenrs

transformation has a left·hand panem (LHS), a right-hand
pattern (RHS), anel enabling condilions (EC) on lhe panem
variables (Standish76). A simple uansformation would bc:

UIS: X• (IF P T!IEN A ELSE BJ o.>
RJIS; IIF P T!IEN X•A ELSE X•BJ
EC: X and P .,. o.<CUiion ord<r lndcp<ndcnl

The llavor of source-to·source transformations can be
exP.erienced by transforming a simple matrix muhiply
(Kiblet?7].

FOR I t • 1 BTEP 1 UNTIL N 00
FOR J 1 ai STEP I UI/TIL N DO

BOOIN
C(I,JI uO:
F'OR Kt•l STEP 1 UNTIL N DO

C(I. Jl uC]I ,J I•A(I. KI • B(K,J lo
INDo

Now assert that matrix A is lhe identity matrix using an equation
Cor lhe values of A as:

A(row,col)·> IIP row•col T!IEN I ELSE 0)

The original matrix multiply is rcwritten as:

FOR l1 • l STEP I UNTlL N DO
F'OR J t•l STEP 1 UN'TlL li 00

BBOIN
CI I,J) teOJ
FOR K:al STEP I UNTIL N DO

C]I,J):aC(!,JI•UP !d T!IEN I ELSE O! •B(K,JI;
INDo

General progmm ttansformation rulcs that apply to assignmcnts,
loops, and arithmetic can specialize this progmn. There are
about 30 low levei tranSformations applied. The major steps in
lhe ttansformation of lhe inner loop are shown below.

C(I,JII Oo
FOR K 1 •I STEP I UI/TIL N DO

Cll,Jl:aC(I,JI•IIP IaK T!IEN I ELSE O) • B(K,JI:

C(I.J) t•O:
FOR K t•l STEP 1 lln'IL N DO

CIP I•K T!IEN C]I,J)I•C(I,JI•I • B(K,JI
ELSB C(I,JII C(I,JI•O •B(K,JI);

CI!,J)1 O;
FOR Ko I STEP I UIITII. N lXI

IF I K T!IEN C(I,JI IaC(l,JI•BIK,JI:

C(l.J) r•O:
FOR Ko ai STEP I um' IL N DO

C(I, J)1aC(I ,J)•B(I, Jl:

C(I,JioaO;
C(I,J)IaC(I, JI•B(I,Jio

C]I,J)I B(I,J)o

The 6nal vc:rsion of thc matrix multiply wherc matrix A is lhe
identity matrix bccomcs a malrix copy as expccted.

FOR I 1 I STEP I UI/TIL N DO
FOR Jtal STEP 1 UNTIL N DO

C(l,J)IaB(I,Jio

The Evlllution from Software Component'l t<> D<>rrutin Analysi~
3

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Program Transformations

1b perform lhis sim pie 1Jansforma1ion 81 lhe levei of abstrnctioo
of an algorilhmic programming languagc lhe cransformation
sysiCm has lo use many bansformations from a largc space of
pcliSSibic transfonnations. This is a big seatdl problcm and lwd
work. A loc of AI planning can bc uscd on lllis problcm
(FICbs8.5].

Now consider chis s:unc malrix multiply cxample in a langua~c
W.:c APL thal cmbraccs thc concepc of macriccs and malttx
operations. This ncw 1an11uage is al a highcr levei of abstrnctioo
chan che usual nljlorilhmiC programming language. Givcn thac
1 ... is the ulenUly malrix in lhis new languagc Lhe identily
malrix multiply bccomes lhe simple cransformatioo.

Notice liW lllis is similar 10 lhe tranSforma1ion for multiplying
integers or reais by I in algorilllmic languages. From lhis simple
example we can sce thac a lot of lwd worlc can bc avoided by
aeating leveis of abscractioo above algorilllmic languages lhac
direa.ly define lhe concepcs of interest.

Thc cxample abovc doc5 not advocace doona away wilh lllc
low-level algorichmic cransformations. Thcy serve a useful
JlUlPOSC in lhe optimization of general ~ under arbicrary
conditioos. Consoder lhe complex opumizauon pcrformcd by
lhe cransformations under Lhe asscrtions lhlll A is an uppcr­
lriangular matrix and B os a lowcr-«iangular malrix.

A[IOW , cd) ·> IIF IOW<cd TIIDI A(- . cd) ELSE A(cd, IOW) I
B (..,., cd) ·> IIP ->cd T11EN B[..,., cd) ELSE B(coi , IOW))

ln some cases if a cransformation is nol performcd ac a high
enough levei or abscraccion lhen lhe errecc of lhe cransfonnation
may ncvcr bc achicvcd. Consider tbe case of an algorilllmic
language and an exponentiation opc:rator (• •). lf lhe phrase
X** 2 were cncountercd in a pro~ we could employ lhe
simplc sourcc-co-aourcc uansformaloon .

UIS: X• • 3 ao> RHS X•X
EC: X 11 aidc.~Jrea tree

10 convert it co multiplication: or we could macro expand a
general implcmencation of lhe cxponcntilllion operator and lhen
try lo simpliCy. The "binary shift mclhod" is a general
expansion of lhe exponentiacion opcratot when lhe power is a
positive intcgcr. The macro expansoon of x• *2 using lhe binary
shill mcthod is shown in figo.rc I.

BI!CrH
POWER :"l ; NUMIIR 11X 1 ANSWE:R sa l:
WKILI! POWER>O 00

BIICIN
I P' 000(POWER, TH.EN ANSWE:rt 1aANSWER •NU)(BER;
PC:lWEJt.aPOW'IR SHin": JUCJn" 1 :
NUKIER s•HtMB!R • NUKBER 1

END;
RE"ruRll ANSWER;

END;

The "Thylor exponsion mclllod" is a gcncral expansion of lhe
expônentiation operalor wherc lhe numbcr raiscd lo a powcr

mus1 bc posilovc. The macro cxpansion of x••2 using lhe
Thylor cxpansion method os shown on figure 2.

BI!CIN
SUH: e l; TOPz 2•t.N(X): 'T'ERHt.all
POR Ial TO 20 00

BIGIN
TERH u C 't'OPil) •TEH,M:
SUH I •S'UH+ TERM 1

EliDI
RETURN SUH1

END:

The "binary shift melllod" expansion may bc reduccd lo a
simplc mulliply by chaining togelher many low-lcvcl
algorilllmic language sourcc-co-sourcc transformations similar
10 lhe pnx:css of cransforming malrix multiply by lhe identity
matrix. The '"Thylor cxpansion method" expansion cannot be
reduced to a simple multiply by genera l low-lcvel
lransCormalions bccausc il is 3n approxlmatlon oC
exponentiacion. ll suffices as an implementation bccausc of its
oontcxl (in lhis case thal 20 tcrms or accuracy is acccpcable) but
it is not cquivalenL Othcr invcstigators in lhis arca ran iniO lbc
sarne problcm.

"Wc are able 10 makc full use of lhe algcbraic laws
approprialc 10 lhis higher lcvcl. EU example. oncc calls
to scl opcrations havc bcen rcplaccd by lheir lisl
pnx:cssin' bodics many possibLiiucs for n:an-angcmenl
and optimWII.ion wiU have bccn lost." fDarlingcon73]

Thesc examplcs show thal very simple mcchanisms (aourcc-co­
sourcc transformations) applicd 81 a higher lcvd of abstrnctioo
can cxcecd in powcr very complex mcchanisms (AI planning
and datallow analysis) applicd al lowcr leveis of abstraction.
Some optimizauons are no longcr possiblc u wc go lo lowcr
leveis of abstraction. Lc•el of absltaction knowlcdge aboul lhe
problcm domain is I1\0fe powcrful than general mcchanisms.

The reader mighl wcll ask "Who would write programs
containing such scalemcnts as X**2?" Systcms lhat combine
vcry general software componcnts creatc such stlllcmcnts ali lhe
time. Thcy reftccl gcneralily lhal is nol bcing uscd in this
particular case. The role of source-lo-sourcc transformatioos is
10 smoolll ouc lhis gcneralily using a simplc mcchanism on
concepcs 11 a high levei of absltaction. Any wlll1c lhat seriously
uses layers of knowledac abscraction will employ simplc
sourcc-co-sourcc uansformations r~ optimization.

I invcstigalcd a simple schemc of Marlcov processes thal
povides a proccduraJ capabillty wilh proof of lmllinaUon for
aourcc 10 sourcc uansformations [Neighbors80]. This schemc is
uscful for cransformations lllat musl propagatc or use global
inConnation.

Lessons from Program Tn1nsfonnation Research:

I. Therc are fcw, if any, equivalente prcscrving
cransformlllions. This is not a problem as excmplificd
by optimizina compilers. Corrcclncss prescrving
cransfcnnlllions in a givcn contcxl are lhe issuc.

2. Using concepcs 11 lhe "righl" levei of abstrnction is
an cxcrcmely powcrful optimization tcchniquc. This

111e Evolution from Software Components to Domain Anal)'sis
4

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

3.

represents a tradeofr between planning and
lmowledge.

The ruJes of exchange in a domain must be absolute
wilh respect to lhe semantics of the domain. This
means the rules apply ondependent of any
omplementations chosen for the ~omain. The
granulatity of the semanocs of a dornain only apploes
to statements in the domaon -1101 implemenuuions.

Systtm Architecturt

Software Enginecring system archiloc:Wte thcories gave me lhe
tools to copc wilh complexity. lf software components were
ever to be a success clearly something beyond including
millions of components into a 1181 catalog must be lhe goal. The
early Software Engineering discussions on leveis of absttaction
provided very strong ideas.

"We understand complex things by systematically
breakong them into successively simpler parts and
understanding how Ulese pariS 6t togelher locally. Thus.
we have different leveis of understanding, and each of
Ulesc leveis corresponds to an abstractlon o(lhe detail of
the levei it is composed from. Rir examplc, 81 one levei
of abstraction, we deal with an onteger without
considcring whelhcr it is represenlcd in binary nolat.ion
or two's complcment, etc .. whole at decpcr leveis lhis
representtllion may be imponant. AI more abstmct leveis
lhe precise value of lhe intcgcr is' 1101 imponant except as
it relates to other data.· [Knuth74)

The problcms wilh buildmg tarse soft9.1are systerns in the late
1960s prompted lhe study or how systems are produced. The
discussoon 11 lhe 1968 and 1969 NATO oonferenccs focuses on
process and abstmction. Suddenly. there was a lot of lhought
about how large systems are partotioned into parts and ~w
these parts are intcrfaced. Later research programmong
languages such as Clu and Alphard incorpor:ned lhe abstmction
idea and provoded the ability 10 crente component interfaces
stronger lhan "sockclS" and "busses". The result of p.mitioníng
a systcm into parts bccame known as the architecture of a
system. Tools that produce code usin' software componenlS
create system architectures eilher implicotly or explicitly.

System archotccture is how a system is struclured to pcrform_ i IS
function . Rir a spoci6c systcm Ulere os only one systcm functoon
but Ulerc are many archotcclures Ulal can provide Ulat function.
The architecture is separatc from function. The bBsic tenet of
good desij!n is tbat a system archotecture should follow lhe
decomposotion of lhe system function. Thos technique bteaks
down when we stop modeling lhe objccts and opcratoons of lhe
problem domain and start using known Computer Science
abstmctions to model lhe problem. The closcness of the top
leveis of architecture and function sometimes leads to thetr
confusion.

ln Software Enginecring lhcre are two basic approaches to
dcvclopong systcm architoc:turc: stepwlse re6nement [Winh71,
DtJkstra69) and laycrs of virtual machines (DiJksua68). Strict
stepwise refinement strcsses lhe decomposioon of a system.

Program Tra11s[onnations

"A guideline in lhe process of stepwise refinement
should bc the principie to decompose decisions as much
as possible, to untangle aspccls which are . ~nly
secmingly interdepcndent, and to dcfcr those dectSIOOS
which concem details of represcntation as long as
possible." [Winh71)

Strict stepwisc rc6ncmcnt rcsults in architoc:IUtCS Ulal. are trec­
like as functions are subdivtded into scparatc subfunctoons. The
module rcfcrencc strucrure of a systcm produced using stcpwisc
refinemenl might appear as shown in figure 3.

FlpnJ.SkpwiMJt-­

lnhercnl in lhe stcpwisc rc6ncment model is lhe assumplion of
llexibilit,Y at Lhe bouom of lhe architecture. The primary
constrainmg factors come from highcr leveis of absuactoon.

Creating architectures from layers of virtual machincs was
described by Oijkstrn.

"Phras ing the structure of our total task [build a
mulliprogramming opcrating systcm) as lhe design of an
orderod sequence or machincs provided us wilh • useful
framework in marldng lhe successive st.ages of design
and produciJon of lhe system. But a fnunework is 1101
very useful unless one has 81 lcast a guiding principie as
10 how to 6U it in. Given a hardware machine A(Oj and
lhe brood characteristies of the fin:ll m3Chine A[n) (lhe
value of 'n' as yet being dccided) lhe decisions wc bad
to t.ake reli into rwo different classes:

I. WC had lO dissect lhe lotai t.ask of lhe system
into a number or su~t.asks

2. wc had to decide how lhe software t.ak.ing care
or thosc various subtasks shoukl be laycrcd. lt
is only lhen lhat lhe intcrmcdiate machines
(and lhe ordinal number 'n' of the final
machine) are defined.

Roughly spcaking lhe decisions or lhe fim class (lhe
dissection) have been taken on accoun1 or an analysis of
lhe total t.ask of transforrning A(OJ into A[nj, while lhe
decislons of Lhe second class (lhe Ortlering) have been
much ITlOn: hardware bound."(Oijksua68l

Following lhe above prescription results in architcctures th31
have some functional decomposition but are primarily
organozed as laycrs or implementing function . The module
reference structure of a systcm produced using laycrs of virtual
machines mighl appear shown in figure 4.

l11e Ev•Jiution lrom Softwure Component~ t•J D\lnuin Analysi~
5

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

System Architecture

lnberent in the layers of virtual machines model is tbe
assumption of flexibility at the top of lhe architecture. Tbe
primary constrairting factors come from lower leveis of
absuaction.

Stepwise rcfincment focuses on crcating arcbitecturcs as lhe
functional decomposition of the system funclion. ll parti1ions
lhe call graph of sys1em modules vertically. The layers of
virtual macllincs approach focuscs on crcaling architectures lhat
provide strongly defincd layers of abslraction. ll partilions the
caJl graph of S)'Stem moduleS horizontally. Though these IWO
approaches 10 architec1we are OfliXl5Cd (onc su~~estin8 vertical
panilioning and onc suggesling horizontal partillOning) therc is
agreemenl Bolh approacbes stress the nccd for encapsulation
and simply suggest two rnclhods for dctermining lhe next uni1
or encapsulal.ion.

Real programs of coune use bodt rnclhods and rcsull in module
refercnce structures lhal might appear as shown in figure~-

Later work [Pamas72) introduced the principie of maximal
"ioformation hiding" as a criteria for determining which
approach to use in lhe successive s1eps of developing an
architecwre.

The readcr may ask "What does ali of lhis discussion aboul
architecwre bave lo do wilh gencrating software using sottware
componcnts?" The abilily of I program generation system lO
producc variations in architecture indicates an abilily to crcale
and use abstractions. Ultimately. ali gencrated Jl!'Ograms must
use abstractions imposcd on lhem from lhe outs1de world (e.g ..
file systems, grapbics sys1ems, database sys1ems). These

abstraclions are not only uscful for struclllring lhe system bul
lhey can also he used to e.xplain lhe developcd systern 10 pcople.
1 showed lhat chanaina the archilecture of a system can
complctely cbange lhe time and space characteristics of lhe
system funclion [Neighbors80). This is not a biJ secrel.
Prograrnmen bave been inslantiating proccdure bodies ioline
for years 10 gain e.xecution specd. Rlr lhesc rcasons we should
be suspicious or program gcncral.ion systems lhat only addrcss
system function and don 't address system architecwre. Whal do
lhey provide as an architecwre?

Les&ou from Syste• Arclllkdure Researcb:

1.

2.

3.

Systcm architecture exists and it is scparate from
function.

System architeclure has a bis impact on the
performance and maintainability of a system.

Encapsulation mechanisms such as packages and
objects are uscd to crcate systern architecture.

Large Systems

ln Software Engincering therc was a 101 of discussion of how
abstraction and typing mecbanisms would enablc us to build
largc (million sourcc code linc) syStems. Therc was vcry little
examination of largc systems 10 determine how lhe devclopers
ol these sysu:ms bad survived ali lhesc years wilhout lhe ncw
abstraction mecbanisms. Alter all.lar&e systems did eJÚSI. How
did thcy gel thcm to worlc?

I started a consulting practice specializina in Software
En•ineering lechniques applied to large systems. ln thc
begmning I didn 't know what I was doiog. The organizations
lhat hired me tolerated me becausc I actually ltnew how a
software project was managcd and I could translau: proven
Software Engincering findings into the organization.
Organizatlonal infrastructurc issues sucb as codin& standards.
üfccyclc modcls. management tools, doeument control, version
control, and configuration managerncnt ~ot me lhrough lhosc
early days. AI lhe sarne time I made 11 an issue to talk to
evcryone involvcd wilh lhe large system and 10 scan lhe actual
source code of the system.

11 is impossible to examine lhe source code ola largc system by
hand. A m1llioo line system may have as many as 8000
modules! Examining 40 modules per day (5000 lincs per day) it
would take a complete year to examine each module. Large
systems are usually old systems. 11 tal<es a long time for a
system to grow to a millton lincs. 'JYpically a million linc
systcm is belween IS to ~ years old. ~They are written in lhe
most widely used languages at the time FORTRAN and
COBOL. Rlr my e.xamination of lhe structiR of thcse systems I
use code auditing and source code scanners based upon
metacompilcrs [Schorre64). The sourcc code scanners scan lhe
enlirc source code. write rcpons. and proposc arcas for code
auditiog.

The developcrs of large systems aet thcrn to work by very
carcfully controllin& interconnections betwcen componcnts in
lhe system and lhe usage of global resources. Some global
rcsourccs are surprising. lf lhe sysu:m contains 8000 modules.
lhe space of modult namu is controlled and has a patlern. A
module narned MSRClO might bc a module lhat dcals wilh

The Ev(lluuon from Softw:lft C<>mponent; to Domain Anlly~is
6

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

rcceiving (RC) mcssagcs (MS) of type 10. The obvious solut.ion
to this problem is to allow larger names. lf you do this lhe
prosranuncn concatenate architectural structure names onto lhe
rout.ine names. This is fine while lhe architecture does not
change. When lhe arc:hitectwe does change no one wants to go
back and change ali lhe now mislcading names. lncrcasing lhe
size or names does not improve the name space Jroblc;m.

Consider lhe inten:onnection in figures 6 and 7 drawn from a
group of thrce systems (about 4 miltion source tines in 11 .000
modules) in FORTRAN and Pascal. The bars represent lhe
range and median valucs on the logarilhmic percentage scale.
The architeclures of these large systems are very vertical.
Figure 6 indicrues lha1 more lhan half or lhe modules in a ~e
system only exist in lhe context or lhe one module lha1 calls 11.
This providcs a SlrOnf clue to lhe problem or understandina
large systems. Estabhshing the context or each module and
conceptually collapsing modules lha! exist only in lhe contexl or
one modu.le will enable us 10 conceptually remove more lhan
half or lhe system modules!

Calls From Other Routines

·~ """"'--~~~''"''-.....,. 1 .
r • ~ -ol--byiO<IoN...._ I . .

r·.
r r t ~ r • r

r ~rr r
' .. rr·rr. r r~

rr t

The number or calls to other rout.ines continues lhe careful
panit.ioning of lhe large system. Figure 7 indicates lh:ll about
half of lhe routines only call three or fewer rout.ines. This
system contains lhousands or modules. Clearly lhe tradeorr
between using a part or lhe "name space" to create a ncw
routine and encapsulating infonnation in routines is lllkcn very
seriously in these large systems.

Large systems are rare. They are evolutionnry survivors. For
each 20 year old large system there were many competing
systems that could not grow to 1his sitc. These systems are
expensive to maintain and evolve. I have found that one
programmer is required for each 10,000 to 30.000 lines or
source code. At a burdened man-year cost of $90,000 10
$150.000, a miltion line system costs betwecn $3 million and
SIS million per year to mAIIltain. Thcse systems must earn lheir
kecp evcry year or die. They are kept alive by ca.reful
parut.ioning of lhe system funct.ions and maintcnance or lhe
pahilions.

Large Systems

Cal Is To Other Routines

,..,.., -oiC&IIIToO...__

Sometimes the development or a tarae system gets out or
eontrol. This manifests itself in a variety or ways:

lnability 10 add new fearures.

lnability to correct errors wilhout introducing errors
(criticai mass) .

lnability to get a consistcnt build or lhe entire system.

General all!eement that lhe system is a "spaghetti
codemess.

ll is surprislngly easy to bring such a systcm back under control.
First, no system gets to be this large while being a "spaghettl
code mess." The developers are really saying that lhey do not
understand how lhe system 6ts together anymore. The steps 10
bring lhe system unde.r control are:

I.

2.

3.

Make swe there is about one programmer per 20.000
tines of source code.

ldcntify ti~htly coupled modules in lhe sou.rce code.
The coupling should inelude definition, control. dala,
and message coupling.

Form these tighUy coypled modules into subsystems
and identify the s\Jbsystem 's interface and
responsibilitics 10 lhe rcst or lhe system.

4. Assígn 10,000 to 30,000 source codc Unes wonh or
subsystems 10 each programmer.

I have found lh:lt even lhough there is a constanl lines of code
per pogramme.r rat.io lhe programmers are not asslgned specific
secbons or codc approximat.ing lhis size. lnstead lhe systems are
loosely divided into 6ve to ten large chunks. A programmer is
expected 10 worlc in two or more chunks. This provides lhe
management with the security that the loss or a single
programme.r does not leave any codes uncovered. This costs lhe
managemcnt ín lhalthe programmers must fali back into a lcind
o(large system "maintenanee prog.rammíng." This fonn or
programmmg carefully brackets changes by IF-THEN clauses

The Evo>luuon from Softw:u-e Component~ h.l D<>main Analysi~

7

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Large Systems

to make sure that lhe change doesn't introduce crrors. The
programmers do not undcrslru1d lhe context in which cach code
IS called. Aftcr many ycars of this kind of cl1311gc, lhe systems
an: very hard to understand.

Asst,ntng a subsystem with an explicit interface to an
individu:tl programmer changes the programmers outlook on the
code. From Lhe interface detintlions and tnterconnection
analysis Lhe programmer lrnows lhe context in which each
routine is called. The code actually begins to shrink as spocial
cases buill into Lhe code over the years are •denlified as no
longer in use (dead code) and rernoved. A "pride in ownership"
sets '" as lhe programmer realizes that if he carefully cleans up
h is subsystcrns it will mnke h is job much easier. He. personally,
wiU benefit from lhis work. This is a powerful new incentive.

Massive change occurs in large systerns. A large percentage of
the modules are changed every year by Lhe supporting
programmers. ll is lhe uick of large system management to
hamess lhe massive change to improve lhe systern. I have found
asstgning subsystems to individual programmers to be
succ:cssful in ach•eving an improvcrnent m systcrn structure and
reliab~ity.

to endOIIng utllftlea
f\au"I. ModdotS.)'M• StNcan

What do lhese subsystems look lilce? Once again lhis is not very
surprising but lhey look like small systerns ernbedded in a latge
systern. The subsystem is p:utitioned by bolh decomposition for
its interface function and layers of abstraction for utility
support. Figure 8 shows lhe suucture of a typical subsystem.
The sUUCiure of a large system is very vertical excepl for global
routines Lhat manage lhe database. lt seems Lhat ali lar11e
systerns are database systerns because lhe data lhey manage IS
too large to 61 tnto mllin mernory. The database routines are
always the ~ called routines in a latgc system.

Oncc we have partiLioned our system into subsystems and
assigned them to individual programmcrs is our large system
under control? Well, no it is 001 yeL Extremely large systems
are lO million source code !ines and over 30 years old. Systems
of thís s11.e contain hundreds of subsystems. Each subsystem
maltes its interface public but we do not want just anyone
calting a subsystern. New module encapsullllion schemes such
as Ada packages and Object-Oriented Programming (OOP) do
not suffice to build large systems. Both are valuable

cncapsulation mochanisms and should be used to define global
system resources. However. they only provtde information
about lhe resources. Onee an object or package is declared any
other objeet or package may use h. Ali system resources
beeome global. 8oth of lhese encapsulation meehanisms have
dlfficully wtlh global issues. The Ada package UJerS have run
mto lhe problem of baving to form mulliple packages into
lugher levei groups to provtde an abstratlion.

"Packages are a nuessary mechanism in lhe
decomposition of Ada systems ... However, packa~es are
not a sufficlent mechanism for decompositton or
reusnbility. The reason for lhis is that lhere are some
abstractlons lhlll are simply too inu:Uoctuall~ latge to be
convcnienUy captured in a single package. [Booch87,
pg. SS6J

Similarly, OOP does not discuss how descendant object.s are
coostnuned. As an example ali grapluc ob.JOCLS must have a
melhod o(rendering but it cannot be inherited since lhere is no
~lobal method ~r rendering for ali graphics obj~LS. ~ny
mhentance here u an error. We must define a graplucs obJCCI
that rt9wru ali descendant graphics ob.JOCIS to define lbeir o~
rendenng. This is a global resource required of ali graph•cs
descendant objccts.

OOP and package-like encapsulations do not provide
information about the control and llow of resources in lhe total
system. Module lnterconnection Languages (MILs) were
designed to provide lhis importaot architectural function for
systems with many subsystcms [DeRemer?6, Cooprider?9.
TJChy79. Pneto-Diaz86]. MILs fonn lhe resources presented by
lhe subsystems into an architecture for the overall systern. MILs
an: bascd on lhe difference betwcen programming-in·lhe-large
(PI..) and programming-in-the·small (PS).

"Structuring a large collecllon of modules to form a
system [PLJ is an essentially different intellectual
activity from lhat of construcung lhe indivtdual modules
[PS]" [DeRemer?6).

Architect.s of a large systcrn are primarily concemcd wilh lhe
process of composing system modules rather than wilh lhe
process of programming each module.

PS is coneerned wilh buildmg modules using conventional
programming languages. h focuses on how a particular part
(module) of a system performs its function. PL is concerned
wilh buildmg systems. h focuxs oo how lhe system modules
cooperate (lhrough calls and data shanng) and whal funclions
each module provides. The MIL spocilication of a systern is a
formal wriuen description of lhe system architoctural design.
This descnption must be adhered to before a version of lhe
sysu:m may be construcled. A molnttnance programmer cannot
k11owlngly or unknowlngly vlolate tht systtm design w/thouJ
txpllcltly changlng the system dtslgn

The MIL spocification of a complete systcm must includc lhree
iterns:

I. A PS (programmmg languaJ!e) description of each of
lhe modules in lhe systcrn.

"l11e Evuluuon from Sottware C<>mponent~ to D<>main Analysis
8

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

2. A PL (MIL resource language) description smting the
resources providcd and requircd by each module in
lhesystem.

3. A PL (MIL intcrconncctiOII langual!e) description o(
the resource flow between the eonStJtuent modules of
lhe system.

ln a MIL description. resources are any enttly in a PS
programming language (e.g .. variables. COIISWliS. procedures,
type defimtJons, etc.) lhnt can be made available for reference
by other modules. Many modem PS languages bundle lhis PL
resource information with separatel y compilable units
(packages. modules). Thi~ may prohibit PL interconnectjon
cbeOOng without PS infonnation.

An example of a MIL dcscription of a module is shown below.
Decl311ltions such as module, func tion, and consist-o!
are pan of lhe MIL syntax. Note that lhe MIL description code
for XA and YBC eould be wriuen separate from lhe descripúon
ofABC.

_,.,.,le ABC
providea a , b ,c
requirea x ,y
cona h t-o! ! u.nctlon XA , eodu le YBC

function XA
auat•prov lde a
requi rea x
haa·aeceaa .. to -.odule 'Z
re.l x , i ntegar a

end XA
_,.,., l e YBC

IIUat · provida b, c
requtrea a ,y
r .. l v. lnt eoar • · b, c

and YBC

The subsystems derived from large systcms should be cast in
lhjs fonn to gWll'antee lhe validily of the system architecture
during m:linten311CC.

Pllople have found lhe eon<:cpl of subsystems to be importam in
large system development. As with modules and other
encapsulation mechanisms. this conccpl should be an important
aspect of archjlecture for a tool that bu~ds large systems out of
software eomponents. ln fact. as with tmnd-built systems, the
tool might find predefined subsystems a useful method of
reasoning about lhe systcm undcr consuuction.

Lessons rrom Larae Systtm Researeh:

I.

2.

3.

To leam about large systcms you must actually look
into large systems. Primarily large systems of a
~illion source lines or more are found only 1n
rndusuy. Expenence w1lh 10.000 source lines and
below does not lllliiSiate well 1010 the large system
arena.

System architecture is very imponant 10 large
systems. Programming-in-lhe-small structures (OOP,
packages, modules) are dtfferent from programmmg­
ln·lhe--large structures (MILs). MILs are requircd 10
eoniJOI lhe UJe of encapsulaled absunclJOOS.
Subsystem architecture erodes as the system is
maintained. F'lllding existing componcnts in a large

Large Sysrems

existmg systcm must delll w1lh lh1s 1ssue. Bringing
large sy~tcm dcvelopment under contrOI entails re­
estabhshinJ lhe architecture and assign1ng
respons1bilit1es with respecl to that archuecture.
Assigning subsystems with estabhshed and
defens1ble interfaces to mdividual programmcrs
JXOfllOICS pnde in ownership. The method hamesses
lhe force of change on lhe system.

4. A mechanism that COOSiruCIS SfSICms from reusable
componcnts must address lhe ISSue of architecture.
An:h1tecture can drastJcally ch:tnge lhe execution and
space requii'Cmcnts or systems.

Automatic Programming and Program
Generation

I became interested m automalic prograrnmmg and progmm
generation because these arcas look the idea of leveis of
abstractJon right up to the uscr's problem domain.

~A model of lhe problem domam must be bwll and it
must characterize lhe relevant relationsh1ps between
enlitiCS m the problem and lhe aclions in lhal domam."
[Bal:w731

Software Engincering explained lhe idea of abstmctions and
deeomposiúon much beucr lhan Anúicial lnteU1gence descnbed
lhe part11ioning o(knowledge nets. Software Engineering lhen
focused on lhe lower-level bottom-up abstractions such as
abstrnct dat:uypes. An1fictal lntelhgence focused on lligb-level
IOjHiown ab~tJons such as relalionships in lhe real world.
Software Engínccnng genernted layers o(abstraction (abstract
datatypes) and automatic programm1ng generated
decompos111011s (instanliated lnowledge nets).

l was verr much smpressed by lhe power of program
generators that actually produccd successful application
programs from high-level domain-~peciflc descriptions of thc
problcm. Progmm gcncrntors are very narrow in thctr scope of
applicalion- usually busmess data proccs.~mg in COBOL They
rcly on a brood rigid modcl of lhe problem dom:Un wilh a very
simple mechanism to a<-~mble the resulting code. Oflen simplc
cond1tional macro expans1on from an assembler is uscd! The
lcnowledge about lhe problem dornain IS held as texl strings m
macro bodies. Th1s is Similar to lhe "sysgcn" procedures of
early opemtina systems.

Thc power of program generotors was 1101 lost on lhe autom:ltic
programmmg commun11y.

"The pcople who work 1n this arca [automalic
programming] fully reahte thal for practical solulions,
lheir idcas will have to be combrned wilh Lhose of lhe
first lype (progmm gcncration), 1ncorpor:umg specilic
lmowledge of the domain bcmg trealed." [Feldman72)

From a fonnru thcory standpoint automalic progmmming had
been shown 10 be a solvable problcm (Green69) using lhcorcm
pro,·mg. However. lhe compuunional complexity of theorem
provmg makes the technique impruclical. ThiS early expcricnce

1,__....,_.,.. -.u ... a.-loo......,,.. (4Gu)

The Ev•>lution from Software Component-; t•J Domain 1\nul) si~

9

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Automatic Programming and Program Genuation

wilh formal theory complexity problems may have pushed
a~torruuic pr'0811111l11Úlg towards knowledgc-based appro~Ches.

To me lhis wu a q~. On onc hand prognun generation is
lhe most powerful leehnsque for generalinf software. h is a
knowledge-based leehnsque that uses an ngid model of lhe
problem domain. Program generators use very simple
mechanisms 10 consttuctlhe software anel accually consuuct real
software systems. On lhe Olhet hand aul0m3lic proaramming
leehniqucs use very Oexible knowledge repn:scntalions and very
complex planning mechanisms. Their mechanisms CXlraCI
details from lhe knowledge net 10 produce smalltoy prognuns.

Knowledge spccific to lhe problem domam is very_ powerful. h
is beucr 10 have spccilic knowledge aboul lhe problem domain
and a wcaker mechanism lhan a more powerful mechanism anel
general knowledge. We su1 lhe sarne effecl 1n program
trnnsfOI'IIWions. MOSI current automatic programmina research
still prefcrs to focus on slrongcr mechanisms and general
know lcdge schemes.

Lessons from Aulomatic Programmin11 Researcb:

I.

2.

3.

Problem domam spccific spccilicauon languages are
successful and very powerful. Program aenerators
and 4GLs prove lhis and are widely used.
Domain-spccsfic knowledge-based systems wilh
weak mechanssms havc bcen more effcctive than
strong mechanssms (lheoccrn proving, planning) with
wcak (general) knowledge bases.

The power of lhe refin~ng (component assembly)
mcchanism must be carefully balanced agasnst lhe
ability 10 plan rcfinement using lhe mcchanism.

Methodology

0ur goal is 10 construct software ussng components. We nced 10
roem lhe lessons from lhe techniques we have examined snto
requsrements for a too! Lhal will do this. The primary
requU"CmenlS anel lheir rationale are listed below.

RequiremenlS(reason):

I.

2.

3.

4.

The 1001 must accept a descriphon of lhe objects and
operations of a problem domain (domain analysts
from software components; decomposition from
sy&lem archstecture; knowledge-based power from
automatic programming).

Tbe descriplion of a problem domam must be
described 1n tcrms o(problem domains already
known to the too! (decomposstion and layers of
abstraction from systcrn archllcctun:).

Opumiulions are charactenzed and per(ormed 11
each layer of abstraclion (optimizing mfocmation loss
in rcfinemcnt Crom prognun transfocmations).

Tbe burden or search ror either smplementations
(n:finements) oc opumizations must not be placed on
lhe end user. They must naturally occur in lhe contexl
o(lhe problcm (library problem from soflware

component libnlrie$; picking lhe rigbt lnlliSfocmation
from program transfocmations).

S. The implemenWion and optimization mcchanisms
must be IS simple as possible so bigher-levtl plans
may understand and use their power (simple
mechanism capabilitr from proeram generation;
plammg from automaliC programmmg).

6. The implemenWion (re6nemenl) mechanism must
provide a wide varialion in system archileetures 10
produce a wide variation in ume-space lnldeo(fs in
lhe resulling systcms (performance and archileeture
from system architecture; imponance of system
structure from large systems).

7. To build large systems and partition system
construction. lhe 1001 must characterizc lnd generate
code lhal interfaces 10 existing ~-refined systems
(ledium of applying transformauons over and over
from transformations; lhe existence of subsystems
from large systems)

To address lhese requirernents we have proposed a differcnt
metbodology of building systcms. This has bcen called Lhe
"Draco Melhodology" after lhe first system lhat we buill that
used tbis approach [Neigbbors84a. Fn:eman87].

1------l ~~

Using lhis mctbod we capture a model of a class of systems
from lhe "Application Domain Analysts" who know how
applicalion systems of lhe type arc consttucled.. This is coupled
wilh modeling tcchniques drawn from Computer Science as
understood by a "Modelin$ Domain Analyst". This top-down
and bonom-up lnformallon is combined by a "Domain
DesiJner" to specify a problem domain to lhe 1001. An
snd1vidual srstem is SP-CCified by a "Systems Analyst" by stMing
lhe needs o lhe spccific system ln a problem domain known 10
lhe tool. U tbis cannot be done, lhen lhe mclhod fails.

ln lhis section we will brieOy describe lhe resuhs of domaín
analysis anel domain design lhat must be given 10 lhe Draco tool
10 ~ify a complete domain. Theae arc given in more deuil in
[Nesghbots89, Neighbors84a. Neifbbors84b, Neighbots80).
There are six pariS 10 a domain deacriplion:

l,1e E'•oluuon from Software Components to Domain Analysis
10

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

l'llrser
Thc parser detcription defines lhe intenace berween lhe
domam anel lbe mcchanism. Thcre are four pans 10 lhe
pmcr: exiCmal synlalt (BNF). scmantic cllec:ks, internal
fonn tree. anel database schema for lhe domain.

Prlnttr
The ~;~rinter description defines how 10 communicate
domam-spccific infonnation 10 lhe user. This is nccessary
for lhe mcchanism 10 be lble 10 in1crac1 with users in lhe
language of lhe domain and discuss lhe developing
system.

Oplímlzations
The optimizalions rcpresenl lhe rules or exchange
bctwecn the objects and operations or lhe domain.
Oplimi:zations only work within lhe domain. There are
lhrec paru 10 lhe optimization speci6calions: source-to­
source optimizing rules. source-to-source OJ!Iimizing
proccdures. and optimizalion apphcation scnpts. Thc
optimization application scripts are plans or optimizalions
dc6ncd for lhe domain. Oplimizations are guarantccd 10
be correc1 mdcpendcnt or any panicular imp.lcmcntation
(i.e .. component refinemcnl) chosen for any objec.' or
operation in lhe domain. This can be guarantccd sonce
oplimizations do llOI cross domain boundaries.

Compootnts
The sofiwate componcnts apccify lhe semanlics of lhe
domain. Thcre is one 101iware component for each object
anel operation in lhe domain. Thc sofiware components
malte implemenlation decisions. Each software
component consists or one or more re6nements lhat
represem lhe differenl implcrnentalions for lhe objecl or
operation. Each refinemenl is a restatement of lhe
semantics of lhe objecl or operation in one or more
domain bnguages known 10 Draco. Thus. component
refinements cross domain boundaries.

Gcncraton
Genera10111 ate domain-specific procedures lhat are used
in cin:umstances where lhe knowled~e 10 do domain­
spcc:ific codc genenuion is algorilhmic m nature. This is
somilnr 10 program gencra10111. The $encra1ed programs
are kepl in lhe internal form dcscnbed by lhe parser
dcscriplion.

Analyzcn;
Analyzers are domain-spccific proccdures lhal gather
information about an input instancc ot domain llOiation.
Thc infonnation is kepc in a database undcr lhe schema
defined in lhe parser dcscription. DalaJiow analyzers.
exccution moni10111. lhcorern provers. anel dcsign quality
mcasures are examples o(analyzcrs.

Thus. lhe basis of lhe Draco melhodology is lhe use of domain
IJIIIJ/ysis 10 produce domain langOUJgu. Oncc a stalemenl in a
domain language has been parud into internal form lhe
following aclions may be applied 10 lhe intemal form.

I. /'rim lhe internal fonn imo lhe extemal synlalt o(lhe
domain.

2. Optlnúu lhe internal fonn 1n10 a stalemenl in lhe
sarne domain language.

3.

4.

S.

Methodology

Input lhe inlemal fonn 10 a program g~n~rator lhat
restntes lhe problem in lhe sarne domairi.

Analyu the mlernal form for possible lcads for
optimizalion. generation. oc refinemenL

lmplemenl lhe internal form using softwart
compontnts each of which contains mulliple
rtfintmtnts lhal malte omplementalion dccisions by
restaJing lhe problem 1n Olher domnin bnguages.

For tv~ry problcm domain lhere is a different textual lan~uage.
!'copie deal wilh jargon and notalion ali lhe time. 11 •s lhe
experience of automatic programminjl lhat people have n.o
problem lenrning a new notation if 11 helps lo solve theor
problcm.

''There are mnny lnrgc groups of computer users who
would be willing 10 use an artificial languagc if ii rnet
lhe ir nccds." (Feldman72]

Domain-spccific artificml lnngua,es hke SQL and BNF are
casily undctstood once lheir llOiations are defincd. Thc Draco
methodology explooiS lhis uniqucly hum:111 bnguage capability.

'11 is a frcquenl misundctstanding lhat lhere is a separat.e
ca1egory of languages caUed. applicatton-ori~nttd. ln
reality. a//l:111guages are appiiC8110rHlnenled, but some
are for larger oc smaller application arcas than others."
[Sammel76]

Using spcciahzed languages is an altemative 10 usi~g program
librarics. Thc languages serve as a general dcsc~p11on lhal
hmits how lhe software components of lhe domam may be
combined. Consider FORTRAN not as a programming
language but as a surfacc dcscripcion schcme foc combining lhe
software p:u1S lhat malte up lhe FORTRAN run-timc library.
Would FORTRAN have bccn ncarly as successful if ii had bccn
prescnted as a "library of rntcresling and useful nwneric inpu~
calculalion, anel output roulines wilh descriptions"? A library
would not have bccn as successful becausc lhe burdcn ot using
lhe library and knowing lhe mtcrconnection limitalions is pbced
upon every potential user of lhe librasy. Having a domain­
spccific language thal tles lhe library 1oge1her removes lhis
burden at lhe ex pense of leaming lhe language.

11 is casiest 10 lhink ot lhe Draco refinemcnt mechanisrn as lhe
simple macro expansion of a program generator and the
opumization mechanism as simple source-lo-source
transformations applied lo domain-specific languages. To
provide variable system archilectures and consislent
tmplementation choices. some complexily must be added 10
these mechanisms [Neijlhbors80]: bul lhese simplc modcls of
lhe mcchanisrn serve 10 judge lhe powcr of lhe tecllnique.

Experience

Most or lhe practical experiencc wilh these techniques comes
from experiments with a protolype system called Draco
(Neighbors84a). Referring 10 figure 9 we have ~. fonunate !O
have a few people try lheor hands as "Apphcatoon Domam
Analysts." Some of lhe results have been published
(Gont.alez&l , Sundfor83a, Sundfor83b). Moslly application
domains have bccn crealed by people from industry mlereSied

111e Evolution from Software Component~ lo Domain Analysis

11

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Experience

m a particular applicalion problcm. Whilc lhcse cxpcriences
have only occasionally rcsulled an working 1oy applicalion
programs I can say thal lhe lechnique has been a success. 1lle
1echníque has been a success because in every case lhe analyst
has come away from lhe domain analysis process wilh an
improved understanding of lhe partS of a systcm lhal make up a
solulion sys1em in lhe problem domain. This improved
underslanding comes from considering lhe problem indcpcndcnt
of implementation or archileclure. More reecn1 work [Dunn91)
proves lhe power of applicaJion domain analysis 10 describe
clas:;es of systems.

We have been less successful an mtercSling pcoplc to try being a
"Modeling Domain AnalysL ~ ln my dissertalion [Neighbors80)
I tried oul lhe idea of modeling dornains U>ing Draeo. The idea
appeared to work and broughl OUI a lol of imeresting issucs
aboul mainlaining consislenl implemenlalions during
re6ncmem. Draco was used as a mechanism lo conven ilsclf
from onc compuler 10 ano1hcr [Arango86). This was a
translalion from one levei of abstrnction to lhe same levei of
abstrnclion. The idea or "modeling domains" was not sevcrely
1es1ed. The concept of modcling domains is strongly supjlOCied
by lhe work of Balory [Balory88). Thas work descrabes a
hierarchy of modeling domains lhat supports lhe conslrUCtion of
database syslems wilh widely different fea1ures. Considcring
thal a databasc syslcm has becn lhe core of every large system I
have exarnined lhis is clearly a complex and imporiam se1 of
modeling domains. As wilh appliclltion dornains I would lhink
our cxperience wilh modeling domains a success because in
every case lhe modeling domain analysl has come away from
lhe expericnce wilh a bettcr unden;tmding or lhe domain. For
modehng domains lhis improved unden;landin~ comes from
considcring archi1ec1ures and amplemenlallons wilhoul
expanding lhe function of lhe domaan.

As a rescarch group we have done a 101 or work on lhe models
and mechanisms for cons1ruc1ing syslems using
lransrormalional implemenlation methods. The Draco
melhodology [Neighbors80) is an inSIMCe of such a me1hod.
Prieto-Diaz [Prieto-Diaz85J studied organi7.ational schcmes for
libraries of software componenls. This tcchniquc has an
immediate payo!T for organizations and is a good pbce to stan.
Ultimately lhe library problems discussed earlier will limit lhis
approach. Arango [Arango88) developed a model for
classifying and discussing methods of this k.ind. Thcse models
make clear what kind of knowlcdge thcse t~ of mclhods use
and how it is uscd. Baxtcr [Bax1Cl90] studaed lhe problcm or
re-implemen1ing a panicular systcm developed under this
method if lhe sys1cm specification changcs. No method of this
type wall be a success without a solution to lhis problem
because the systcm specification will change. Finally, Srinivas
[Srinivas90] eonsidered methods for capturing tne description
of a domain as a formal algebraic theory. The rigor of a formal
method would certainly be weleome over lhe informal way we
combine domains now. However. il must avoid lhe noi30onal
problems and computational complexilies that prohibited
previous formal melhods from succceding.

The message of lhis work is lhat neilhcr sophísticated Anifici:al
lntclligence planning mechanisms nor formal theory proof
mechanisms are required lO improve the produclivaty of
programmers. Oflen wc have consciously avoidcd the use of
such mechanisms to reduce lhe burden on the too! uscr who jusl
wants a working program out. Program gencrators are lhe

extreme example of this. Wc cannot expecl lhe too! users to give
advice to complcx AI planning mechanísms lhey did 1101 crcatc
or provide sl3tements an a formal algebraic theory lhey did 001
produce. The Draco Methodology is an extremisl lcnowledge­
based approach. 11 consciously trades domain-specific
knowledge against powerful general mechanisms. Simple
mechanisms and encapsulalcd domains will allow lhe use or
highcr-level sophisticatcd planning tectmiques to refine speci6c
problems once a criticai mass of problem and modeling
domains is available.

Lessons from Using a Prototype System:

I. Pro11rams refincd this way are very efficienl.
Opumizing lransformalions are lhe key. These are
seldom discussed in lhe lilerJture.

2. Afler doing many examples consisting of the
application of thousands of optimizations and
component re6nements ii becomes clear thal the
ability 10 use subsystems consis1ing of pre-oplimized
and pre-refincd pans of existinll domain hierarchies is
imponant. For large modeltng domains such as
dalabase concepls it is imponant that a system­
specific implcmentalion can be re6ned by lhe system.
However. most of lhe time you would not want to
refine the defauh, general vcrsion of a database in
detail.

3. Acadcmics are generalists. As gcneralists lhey prefer
10 work on lhe general pan of the problem, lhe
mechanism. Thcy are not really motivated 10 produce
application problem domains that lest their
mechanisms.

4. lndustry causes people to specialize. As specialists
lhey prefcr to work on lhe domain specific pan of lhe
problem. lhe application dom:lins. They are not really
motivaled to change lhe mechanism. The mcchanisrn
must be undersUIIldable and produce real software.

S. No onc wanls to make modeling domains. For
industry. modeling domains do 001 ditecUy apply to
thc problem at hand. For academia, producing a
modeling domain does nol add any ~new"
knowledge. 1t simply slructures whal we already
know. My experience is that lhe structuring of whal
we aln:ady know has produced some of lhe very best
work in Compu ter 1Science. The process of
structuring lhe knowlcdge points out whal we do 1101
know.

Conclusions

The concept or "Domai o Analysis" has been embraced by many
for quite a few different reasons [Prielo-Diaz91). Domain
analysis results provide an organization with the following
capabilities.

Use lhe domain modelto check lhe specificalions and
requircments for a new required system in the
domain.

Educare pcople in lhe organization providing lhem
wilh lhe ~encral structurc and operation of systems in
lhe dornaan.

'l11e Evoluuon from Software C<>mponenl> to D<>main Analysis

12

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Derive woctting systems cluectly from lhe swement
of lhe system UI clomain spccific tenns.

I concentrare exclusively on lhe clenvauon of wor1<ing systems.
I have completely •gnorecl lhe Olher uses. I see lhe effccts. but I
~ not. focus on. lhem. Othcr rcsearch groups are beginning to
mvesugate lhe 1mponant eclucat•onal anel quality aspects of
clomain analysis ('Prieto-Diaz91). I am glacl lhal lhe lrnowleclge
of lhe "old hanel" Domam Analysts has 6cen aclrnowledgecl.

Currently lhere are large military anel industrial research efforts
spccifically aimecl at application domain analysis. Thesc will
have lO dcal with lhe lacte of modehng domains 01' tum into
simple program gencmtors. There are large academic research
efforts to develop new mechanisms for re6nement and
transformation. These w•ll have to dcal wilh planning using a
complex mechanism and computat•onal complellity.

We have testecl a simple method for software eonstruction using
componcnts that is derivecl from the literature anel industry
experience. lt worlcs. Using this method Mcltror's software
component factory problem tums 1nto a domam hierarchy
eonstruetion problem. This •s a much h3tder problem. Early
enthusiasm c ame from. simple operations (sons.
lr.lnSCendentals) on s•mple obJCClS (numbers). These are not lhe
big System problem. The big system problem is refining big
complex systems that deal w1lh b•g modehng domains like
d:wlbases. operoling systems. communications. anel graphics. lt
is impera~ve that work whiCh forms modeling clomams from
lhe ex•sung Computer Sc1ence hterature anel pra.ctice be
recognized as an 1mponant contribution. W1thout strong
modeling dornains lhe vJSion of software construction using
componcnts willgo no further.

References

[Arango86]
G. Arango, I. 8axter, P. Freeman. and C. Pidgeon,
"TMM: Software M3intenance by Tmnsformation." IEEE
SoftM"art, pp. 27-39. May 1986.

[Arango88)
G. Arango, Domoin Eng/nurinç for Softwort Rtust,
Ph.D. Disscrullion, ICS Dept .. Umversity of Califomia at
lrvine. 1988.

(Balur73)
R. 8al:ter. "A Global View of Automatic Programming",
3rd lnttrnatlonal lo/n/ Conftrtnct on l.rtifictol
lnttlligtnct. pp. 494-499, SRI lntemauonal. August
1973.

(Batory88)
D. 8atory. "GENESIS: An Extensible Database
Management Syslem", IEEE Tronsocllons on Softwort
Englnttrin&. vol. SE-14, no. 11. pp. 1711 -1730,
November 1988.

[Baxttr90(
I. Baxler. Tronsformotlonol Momttnonct by Rtust of
Dtsltn 11/storlts. Ph.D. Dissertation, ICS Dept ..
University ofCalifom•a atlrvinc. 1990.

[8ooch87(
G. 8ooch, Software Compontnts wlth Ado,
8cnj:lmuVCummings, 1987.

Conclusions

(Campos78)
I. Campos anel G. Estrin, "Concurrent Software SJSiem
Design Supponecl by SARA at lhe Age of One • Jrd
lnttrnotlonol Con/trtnct on Sof/K'ort Enginttrlnt. pp.
230-242. 1EEE. Mày 1978.

[Cooprider79)
L. Cooprider. Tht Rtprtstlllotlon of Fomtlits of So{I-..'Ort
Systtms, Ph.D. Disseruuion. Carnegie-Mellon University.
Computer Science Dept., CMU-CS-79-116, Aprill979.

[Corwin7l]
W. Corwin and W. Wulf, A Softwart Loborotory
l'rtliminorr Rteort, Rcpon CMU-CS-71-104. Carnegie­
Mcllon Umvers•ty. August 1971.

)Darlinglon73)
J. Darlington. "A System Which Automaticall)' Improves
Programs", Jrd lnttrnotlonol lo/n/ Conftrtnct on
Artificio/ lnttlllgtnct. pp. 479-485. SRI lntemational,
1973.

(lnRemer76)
F DeRemer and H. Kron, "Programming-in-the-Large
Versus Programming-in-the-Small." IEEE Tronsoctions
on SoftK·ort Entlnttrlng. vol. SE-2. pp. 80-86. June
1976.

(Dijlcstra68]
E. DiJkstra, "Complexily Controllecl by Hierarchical
Ordering of Function and Variability", in So/twort
Englnttrtn&. P. Naur anel 8 . Randell ecls .. NAI'O Science
Commulee Report. pp. 181-185. Germany, Oclober 1968.

(Dijlcstra69)
E. Dijkstra. "Structured Programming", in Softwort
Engmttrtnt Ttchmquts, J. 8uxton anel 8. RandeU eds ..
NATO Sc•ence Commillee Repon, pp. 84-88. ltaly.
October 1969 o

(Dunn91(
M. Dunn anel J. Knight, "Software Reuse in an lnelusuial
Scuing: A Case Study",IJth lnttrnotionoi Conftrtnct on
Softwort Englnttrlng. pp. 329-338. May 1991.

[Ftldman72)
J. Feldman, l.utomotic l'rogrommlng. Rcpon STAN­
CS-72-255. Stanford University, Fcbruary 1972.

(Fickas8SJ
S. F1clcas "Automating the Transformational
Dcvelopmcnt of Sohware," IEEE Tronsoctions on
Soft .. ·ort Englnurlng. vol. SE-li, no. 11. pp. 1268-1277,
November 1985.

[Fl'ffman871
P. Frecman, "A Conceptual Analysis of the Draco
Approach to Construcllng Software Systems." IEEE
Tronsocrlons on Scft.,•ort Enginunng, vol. SE-13, no.7,
pp.830-844. July 1~87.

(Gl'ffn69)
C. Green, "Applicalion of Thcorem Proving to Problem
Solving", lstlnttrnotlonal Joint Con/trtnct on Arllfidoi
lnttllittnrt. pp. 219-239. University Microfilrns 1969.

(Gonuln.81)
L. Gonzale7, A Domoln Lon&uogt for l'roctsslng
Stondardi:td Ttsts (MS Thesis). University of Califomia.
lrvine, ICS Dept •• 1981.

The EvolutiC'n trom SC\ftwarc Component-> t•> D~>main Analysi~
13

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Rqerences

(Kaulll681
O. Knuth, TM Art o{ Complllu Pro&rammin&. volumes
1-3. AddiJon-Wesley. 1968-1973.

(KDutll741 .
O. Knuth , "Structured Programming wnh GOTO
Statements", A.CM Complllin& SIVVeyS, vol. 6, no. 4, pp.
261 -3-1, Decembet 1974.

[Kibler771
O. Kibler, J. Neighbors, and T. Standish. "Program
Manipulation via an Effic ient Production System ",
SIGPUN Notlus, vol. 12, no. 8, pp. 163-173, 1977.

[Mciiroy68] • .
O. Mcllroy, "Miss Produced Software Components , '"
Software Englneerlng, P. Naur and 8. Randell eds.,
NATO Science Committee Report, pp. 138- ISS,
Oermany.October 1968.

(Neighbors801
J. Neighbots, Software Construcdon Us/ng Components,
Ph.O. Oissertation and Report UCI-ICS-TRI60,
University of Calitonda, ltvtne, ICS De[ll, 1980.

(NtiJbbors14a]
J. Neighbots. J. Leile.lnd O. Arallgo, Draco I J MlliiMQ/,
Report R11'003.3, University of Calüomia, ltvine, ICS
DepL, June 1984.

1NtiJhbors14b I .
1. Neighbors, '"I'he Dnlco Approach to Construcuna
Software from Reunble Components," IEEE
Tra/ISQctlons on Softr.we Enginurln&. vol. SE-IO, no. S,
pp. 564-574, Seplember 1984.

1Neiahbors891 . .
J. Neighbors, " Oraco: A Method for Engtneenng
Reusable SoftwtR Systems", in Software Reusability, T.
8ig~erstaff andA. Perlis eds., vol. I, pp. 295-319,
Addison-Wesley 1989.

[Parllas72) . .
O. Pamas, "On lhe Criteria To Be Used an Decomposang
Systems into Modules", CommJI.nlcat/ons of the A. CM,
vol. IS, no. 12, Dccembet 1971, pp. 1053-1058.

(PressUJ •
W. Press, 8. Flanncry, S. Thultolsky, and W. Veuerhng,
Numerlcal Reclpes: The A.rt o! Sclentific Comput/ng ,
Cambridge University Press, 19!6.

[Prleto-DiazS51
R. Prieto-Oiaz, A. Software Classificatlon Scheme, Ph.O.
Oissertation, ICS Oept., University of Califomia at
ltvine, 1915.

[Prleto-DiaJU)
R . Prieto-Oiaz and J. Neiahbors, " Module
lntercoonection Languages", Tht Journal o{ Systems tuJd
Software, vol. 6, pp. 307-334. November 1986.

[Prleto-Diul7]
R. Prieto-Diaz anel P. Freeman, "Ciassifying Software for
Reusability," IEEE Software, pp. 6-16, January 1987.

(Prleto-Diu91 I
R. Prieto-Dia~ and O. Arango, DoiMin A.nalysls and
Software Systems Modelln1. IEEE Press, 1991.

(Sammtt761
J Sarnmet. "Programminf Lanfuages", Encyclo(H!dia o{
éomputer Sclence , pp. 169- 174, ~troeelli/Çharter
1976.

(Scborre641 .
O. Schorre, "META 11: A Syntax-Oriented Comptler
Writing Language", Proceedings o{ the A.CM Nationa/
Cotifuenct, pp. 01.3-1 to 01.3-11, ACM 1964.

ISedaewkkS41
R. Sedgewiclc, A.lgorlthm.s , Addison-Wesley, August
1984.

(Srialvas90) .
Y. Srinivas. A.lgebraic Spec/ficatlon: Syrttax, StllltUJIICS,
StrMCtMre, Report 90-IS, JCS Dept., University of
Calífomia 11 Irvine, 1990.

(Studisll76) .
T. Standish, O. Harriman, O. J(jbler, and J. Neighbots,
The lrvlne Pro1ram Transformatlon CatalogMe,
University ot Calitomla, ltvine, ICS De(ll, 1976.

(SWMiforl3a)
S. Sundfor, Draco Domain A.nalysls for a Rea_l TI~
A.ppllcaJion: The A.nalysls, Report RTP O IS, UmversJty
ofCalifomia.Irvine, ICS Depl., 1983.

(Sundl'orl3b I
S. Sundfor, Draco Domaln A.nalysls for a Real T/~m
A.ppllcatlon: Dlscusslon of tlw Results, Report RTP 016,
University of Califomia, ltvine,ICS De[ll, 1983.

(Tkby791
W. Tichy. "Software Development Control Based on
Module lnterconnection", 4th lnternatlonal Col!/erenct
on Software Engineerlng, pp. 29-41 , September 1979.

(Wirtll7ll .
N. Wirth, "Program Oevelopment by Stepwtse
Re6nement", CoiMIJUllcaJ/ons o{ tht A.CM, vol. 14, no. 4,
April1971 , pp. 221-227. I

The Evolution frorn Softw:li'C' C<>mponenl~ to Domain Analysis
14

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259

