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Abstract

More than iwenty years ago the idea of producing software
m!rmnuaﬂc.w%ah iy was proposed
ﬂemmwm:hnmﬂmhc”wn
Science and Software Engineering, but systems are
still built as one-of-a-kind crafisman efforts. A method for
software construction using components is derived using
experience from software componenis, program
.\ Tystem n:.:m ry:cm.
automatic programming 7mu generation, ence
wammmudxmm imiting factors of the method
that prevent the widespread use of reusable software
componenis are identified.

Introduction

We will focus on schemes for the production of large, quality
software that can be extended and maintained over a

man mlhmsnlwm o
MMm g: the crafisman approach the mass-

relies on a ¥

Our wish 10 build software systems from reusable software
components represents a shift from craftsman production 1o
mass-production. This shift is forced upon us by the ever
increasing size of software systems we build.

Software Components

The idea of constructing sofiware from general, well-specified,
and well-tested software components is an appealing one. After
all, we software engi have seen the computer hardware

succeed this technique time after time. Mcllroy
L‘ is one of e;elbaudmm
components, He envisioned a complete industry
similar to the semiconductor with factories solely
dedicated to the mass-production alltin:dofnﬁwhu;
components, These components are cataloged placed
libraries for ready access. ’

“1 would like to see components bec a dignified
branch of software engineering. I would like to see
standard catalogues of routines, classified

robustness, time-space performance, size limits, and
binding ht:me of parameters. 1 would like to apply
routines

hardware

worked they would move software
craftsman era and into the mass

and intuitive ideas that have not come to pass. Why? It is the
goal of this paper 1o answer that question using expenience.

In 1973 | became a software manager in a company that
specialized in selling custom real-time, high-speed data
Ildcalnimlhdm_adﬂ: *s vision of
memﬂumm
zﬁmuﬁumﬁmmmﬁenynnl
mmmmy 10 extract components the
systems bailt.
became interesied and submitied

The company made data hardware so the first wave
of components were drivers for the hardware. All the work was
in assembly language so the components were assembled,
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Software Components

L. Methods for using the timers o interrupt before the
m.mwamduemmmtwiwh

& Oﬂtmnl interleaving of sensor data requests and

mm;ﬂmm;ﬁm
% for synchro bit data 1o
mgla sine and cosine
As programmers who had experienced and did
technigues a

traditional c hukcnbylheooplpmy\w
produced small assem that 0]
other systems mostly as equipment (switches and sensors).
Ultimately, we the time to build a new custom sysiem

m.}bnwnobhuhe 10 appear with the
ommhh-lz‘ the “inventor” of this concept at
the company | became lﬁnﬂu finding and modifying

components from the li this role as a
pmhl:m;whhlhelihﬂ'y L. In some cases a
was looking for a part that could just be
in” without ¢ . In other cases the programmer
g for a program could be changed before

L. classification problem: What is a proper lan
scheme for specifying and searching Il
descriptions?

2. search problem: The burden of scarc Iﬂr-z
nnhnulonl‘i:'pdmhlwdn hm&d.
is easier for a potential user to build a part from

scratch rather than find a part in a library and
understand the comstrainis on its use and the
ramifications of its design decisions.

A software component library offering components that can be
before use must store “how 'mnaﬂﬁmw
“what”™ information for each part. This “how™ information
ducriuhmr the part performs its function and how changes
quumgllibruyﬁlwmdm;eﬂlm
lhelniloma; problems:

L. structural specification problem: What is a proper
language or scheme for specifying “how™
descriptions and constraints of usage between
software parts?

2 bility problem: Which and implementation
mﬁ flexible and mm fixed in each of
the software parts in the library.

Within the context of the existing tools at the company (text
editors, linkers, le librarics) we pushed the

software wnlﬂﬁy concept to its limit. | entered
ﬂndmle

Computer, Science could solve my

In graduate school 1 leamed of projects [thﬂ.Cmpm?ﬁ]
that not only had tried software component libraries but
extended the hardware analogy to include "w:km“
“busses” between the This let cl.temc

aﬂudbnmihempualﬁhmpublualhdmﬂm

building small libraries. However, a more ominous
problem occu to me as I read how their assembly
mechanism assembled and checked the component
in all the software component work is
M(lnMc 's vision) the component business will “scale
up”™ 1o cover of software on all sizes of
mmm,mm straightforward idea of
up.

Inru"!n be modified and reused,

lhun lhey mm small to be general, flexible, and

However, if the parts in the library are

small, then the number of in a usable library must
num a

be very large. These twg.ujchm are alulzum
conflict. If a library contains many .Bru.
lessens the structural tpecmcmul flexibility
problems while mﬁ_muns the classification and
searching problems. If a library contains a small number
of large parts, then it lessens the classification and
searching problems while increasing the structural
specification and flexibility problems.” [Neighbors80]

A succeul’ul sofltware cou]a:‘nenl library would contain
millions of tin ponents. data pund along “busses™
and “sockets” getwu

changes al component use

time rather than being at ¢ cmmme.l-bw

could such a library be The “library problem™
lb:mpnﬁ:mdwﬂwnmpmu.

mwmdwmmemumdnmmm

The Evolution from Software Components 1o Domuin Anzlysis


http://www.cvisiontech.com

hmednu hm
lem™ wnlans sim E software ¢
my uh.mh ;wtg:m
2. The reuse of program parts without change is
curemcly b;ncpcga!nl The mplenemlm'n of
oon linkage to run-time support routines is
example of this hdlnlque

'ﬂwmueo(
is a major pcliv ﬂ

are m m as gmdu
supplying lnfornallon above the level of
pmgrnmnl:g“an;ulse code. This tells lhe

does and how it
Asicn altows t

w

They may
examples but if that is the extent of the work then the
reader should be wary of whether the work will
“scale up” or not.

through
interface points in format at component
use time. For hardware it 1s usually a fixed standard
declared at component creation time.
6. “Domain Analysts” are a wealth of formal and
informal experience aboul how systems in the
Mummywuk.hnylmﬂg for

mlhﬁ 1or ptlt':ri‘n; and using lhi??alnbl:
information.

Program Transformations

I became interested in program transformations as a way (0

introduce flexibility into source code software components. |

believed that very general mmmme high
iemperature sensor component , mi

be lrusfouml into different lower accuracy versions

having to store those versions %

m hedmottuouuudthe “library br
reducing the number of components in the library.

Source-to-source program transformations treat a as an
algebraic object with rewrite rules of exchange. Each

Software Components

mlmmm:hﬂhdmﬂlﬁ).adw
pattern (RHS), and enabling conditions (EC) on
MISﬁllﬂ?ﬁ] ammmh

LHS: X*(IF P THEN A ELSE B) <>
RHS: (IF P THEN X*A ELSE X*B)
EC: X and P are execution order independent

The flavor of source-lo-source transformations can be
mw by transforming a simple matrix multiply

FOR I:=1 STEP 1 UNTIL N DO
FOR Ji=1 STEP 1 UNTIL N DO
BEGIN
ClI,J)1=0;
FOR K:=1 STEP 1 UNTIL
C{I.JlnCII J1+AlT, KI'BIK I

Now assert that matrix A is the identity matrix an equation
for the values of A as: v

Alrow,col] > (IF mowseol THEN 1 ELSE 0)
The original matrix multiply is rewritien as:

FOR l:=1 SBTEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
BEGIN
ClI,d):=0;
FOR K:=1 STEP 1 UNTIL N DO
ClI,J]:=CII,J]+(IF 1=K THEN 1 ELSE 0)*B(K,J);
't

ClI,J] =0y
FOR K:=1l STEP 1 UNTIL N DO
C[1,J]:=C[1,3)+(IF IsK THEN 1 ELSE 0)"B(K,J];

ClI,J) =0}
FOR K:=1 STEP 1 UNTIL N DO
(IF I=K THEN C[I,J):=C[I,J]+1*B[K.J]
ELSE C[I,J]:=C[I,J]+0*BIX,J]);

ClI,d) 10y
FOR K:=1 STEP 1 UNTIL N DO
IF I=K THEN C{I.J]:=C{L,J]+B[K,J];

ClI,J)1=0;
FOR K:=1 STEP 1 UNTIL N DO
ClI,3]:=C(1,3]+B([1,3);

ClI,3)120;
Cl1,d]1=CIL,31+B[1,3);

Cl1,3]:=B(1,J);

The final version of the matrix multiply where matrix A is the
identity matrix becomes a matrix copy as expected.

FOR I:=1 STEP 1 UNTIL N DO
FOR Ji=l STEP 1 UNTIL N DO
cl1,0)=B(1,3);

The Evolution from Software Components to Domain Analysis
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Program Transformations

To perform this simple transformation at the level of abstraction
of an algorithmic programming lan, the transformation
system has to use many transformations a large space of

transformations. This is a big scarch problem and hard
work. A lot of Al planning can be used on this problem

Alrow,cal] -> (IF mow<col THEN Alrmow,col| ELSE Afcol,row])
8(row, col| > (IF row>col THEN Brow,col] ELSE Bjcol,row] )
In some cases if a transformation is not performed at a high

EC: X in side-effect free

BEGIN
POWER:=2; NUMBER:=X; ANSWER:=1;
WHILE POWER>0 DO
EEGIN
IF ODD(POWER) THEN ANSWER : = ANSWER*NUMBER ;
POWER : s POWER SHIFT_RIGHT 1;
HUMBER : = NUMBEN *NUMBER ;
END
RETURN ANSWER ;
END;

Figure |: Implementation of X**2 wing Binary Shift Method

The “Taylor expansion method” is a general expansion of the
upﬁm%ﬁmmmwh:hnmhwham

ust be . The macro expansion of X**2 using the
%m«&mamnlmz .

BEGIN
SUM:i=1; TOP:=2"LN(X); TERM:=1;
FOR I:=1 TO 20 DO
BEGIN
TERM: = {TOP/1) *TERM;
SUM : = 5UM+ TERM;
RETURN SUM;
END
Figure 2: lmplementation of X**2 using Taylor Expansion

The “binary shift method” expansion may be reduced to a
simple multiply by chaining together many low-level
transformations

the of matrix multipl the identity

10 the process of transforming

matrix. The “Taylor expansion method” . cannol be

reduced to a simple multiply by general low-level

transformations because it is an approximation of
vl i ot §

as an its
is acceptable) but
area ran into the

Other investigators in
“We are able 1o make full use of the ic laws
iate 1o this higher level. For once calls

by their list

1o set operations have been
processing bodies many i for
and optimization will have been lost.” 1

particular case. The role of

1o smooth out this generality using a simple mechanism on

nonunnla level of abstraction. that seriously

uses layers of ledge abstraction will employ simple

source-o-source figr

1 investigated a simple scheme of Markov that
ility with otmuiuimh

source (0 source . This scheme is

Lessons from Program Transformation Research:

1. There are few, if any, equivalence preserv
mmb{tut‘lq uuﬂﬁﬂ

m:’rjmmnum
2. concepts al the “right” level of abstraction is
ﬂmmmmm

The Evolution from Software Components to Domain Analysis
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represents a tradeoff between planning and
knowledge.

3. The rules of exchange in a domain must be absolute
" with 1o the semantics of the domain. This
means the rules apply inderndenl of any
implem_eu:_!i::l h for the domain. The

Software Engineering system architecture theories gave me the
tools to cope with . If software components were
ever 10 be a success clearly something be{:l:d including
millions of com; into a flat catalog must be the goal. The
carly Software discussions on levels of abstraction
provided very strong ideas.

“We understand complex things by systematically
breaking them into successive y simpler parts and
ot i mm?umwlomly.%
we levels of understanding, cac
levels 1o an abstraction of the detail of

ot v ths
or two's complement, elc., while al deeper this

value integer important excepl as
it 1o other data.” [Knuth74]

Program Transformations

“A guideline in the process of stepwise refinement
{ ﬁlbelhe e i

princ as much

as possible, 1o untangle aspects which are only

seemingly mndzxa&m. and to defer those decisions

which con{g;:h ?emls of representation as long as
* (Wirth71]

Figure ). Sicpwise Refimement Architecture
Inherent in the stepwise refinement model is the assumption of
flexibility at the bottom of the architeciure. The primary
m&,mmmmwmam

Creating architectures from layers of virtual machines was
described by Dijkstra.

“Phrasing the structure of our lluul '::t _lbm}d a
multiprogram operating sysiem|] as the design of an
uduumwdmﬁimmmwﬂbaﬁ
framework in marking the successive stages of design

i the But a framework is not

of ‘n’ as yet being decided) the decisions we
buurclmmmﬁgrmchm:
1. we had to dissect the total task of the system
into a number of sul

dissection) have been on account of an analysis of
the tolal task of transforming A[0] ino A[n], while the
decisions of the second class (the

much more hardware bound."[Di

Following the above prescription results in architectures that

have some functional decomposition but are primarily

gnlud as layuldof implunmming fmﬂw"'w
erence structure of a system using

machines might appear shown in figure 4.

The Evolution from Software Components to Domain Analysis
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System Architecture

h

Figure 4 Lavels of Abstraction Architecturs
Inherent in the hien of virtual machines model is the

assumption of fi ty at the top of the architecture. The
primary constraining factors come from lower levels of

Stepwise refinement focuses on creating architectures as the

tho call graph of eystom moduke vertcalty, The layers of
system y.

virtual nml focuses on creating archilectures that

stress the need for encapsulation
and simply suggest two methods for determining the next unit
ol‘uupd’lh.

Real programs of course use both methods and result in module
reference structures that might appear as shown in figure 5.

Figure §: Real Program Architecture
Later work [Pamas72) introduced the principle of maximal
“information hiding™ as a criteria for determining which
approach 1o use in the successive steps of developing an
architecture.

The reader may ask “What does all of this discussion about

architecture have to do with i using software
7" The abili a program sysiem 1o
variations i an ability to create

] source code scanners scan the
entire source code, write and propose arcas for code
The developers of large systems get them to work by very

ully between components in
the system and the of global resources. Some global
resources are surprising. If the system containg 8000 modules,

The Evolution from Software Components to Domain Anzlysis
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mmmc)wwldlmw The obvious solution
to this problem is to allow larger names. If you do this the
mmMmmmﬂw
routine names. This is fine while the architecture does not
change. When the architecture change no one wanis to
back and chan, allltnmmilbadmgmlnmm
size of names improve the name space problem.

Consider the interconnection in fi 6 and 7 drawn from a

Theuchimtmnfthuel.me $ are mml
Mmmvﬂhaw
mnhm &mdubmdﬂuml
o
hr;csyucm m the context of each module
unemodnlem!l

that exist only in the context of
half of the system modules!

Large Systems

Calls To Other Routines

| TH% of mutines call 7 or less rousnes I

]
=
-
e
B
v
-
=4

Ry

-F

o ot

% Foutines (log scale)
4

0% of rouines ot 3 or less routnes |

Ty

Calls To Omar Routines

us 10 conceptually remove more than
Calls From Other Routines
.‘\{Tx—-

"

r .| 0% of rautines caled by 6 or less rouBnes J
r,

‘ll e,
of fhp

caed by 1 orloas routnes |

r'r} r

[lrl I

Figure 7. Number of Calls Te Other Routines

Sometimes the development of a large system geis out of
control. This manifests itself in a variety of ways:

*  lnability to add new features.

. mmmtaﬂmﬂmmmm

*  Inability to get a consistent build of the entire system.

. Oeurﬂlgemtlhnlhelmhl“ww
mess.

"
Calis From Other Routines

Figure 6 Number of Calls From Other Routines

The gmbcrd_d “m other routines ;onlimu 'h.ﬁ.f“'"'

olﬂtgmﬁnumlyunthruufemmﬁm.mh
system contains thousands of modules. Clearly the tradeofl
between using a part of the “name space™ fo create a new
routine and encapsulating information

in routines is taken very
seriously in these large systems.

are rare, They are evolutionary survivors. For
ﬂﬂﬁ%ﬂlﬂusyﬂmﬂlﬂmmy competing
systems that could not grow to this size. These systems are
expensive lo maintain and evolve. I have found that one
programmer is required for each 10,000 to 30,000 lines of
source code, Al a burdened man-year cost of $90,000 o
$150,000, a million line costs between $3 million and
$15 million per year o These sysiems must eamn their
keep every year or die. Tluy |re.k:‘pl alive by careful

itioning of the system functions maintenance of the

sure there is about one programmer per 20,000
hudmuwde.

" ol o

er these tightl { maodules into subsystems

and identily the subsystem's interface and

responsibilities 1o the rest of the sysiem.

4, Assign 10,000 to 30,000 source code lines worth of
subsysiems to each programmer.

et rone o e g bt 2 ghd s
per programmers are not
mmgh Insiead the sysiems
loosely divided into five to ten large chunks, A programmer is
expecied 1o work in two or more chunks. This provides the
management with the security that the loss of a single
does not leave any codes uncovered. This costs the

nodnluinmemmﬁe.
definition, control, data,

The Evolution from Software Cemponents to Domain Analysis
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g
E
g
gs
iz
4
Es
H

called. After many years of this kind of change, the systems
are very hard to understand.

Assigning a subsystem with “;n explicit interface 1o “l:
individual changes the programmers outlook on
interface definitions and interconnection

code. From
analysis the pro er knows the context in which each
routine is called. code actually begins to shrink as special

change (0 improve the system. | have found

nsignil:lf subsystems to individual programmers to be

mty in achieving an improvement in sysiem structure and
ity.

too large to fit into main memory. The database routines are
always the most called routines in a large sysiem.

Once we have partitioned our system into subsysiems and
assigned them 1o individual programmers is our large system
under control? Well, no it is not yet. Extremely large systems
are 10 million source code lines and over 30 years old. Systems
of this size contain hundreds of subsystems. Each subsystem
makes its interface public but we do not want just anyone

ﬂlﬂl subsystem. module lation schemes such
as and mbﬂ-&h':ﬁwmm (OOP) do
not suffice to build large systems. Both are valuable

il
il
I g;%
3
il
]

L3
-
]
(x]
»w
5

ges are a mecessary mechanism in the

28
A
H
iz
i
S
:
g
]

8§

aégv
i
§

"W‘ a large collection of modules to form a
system [PL) is an essentially different intellectual
activity from that of constructing the individual modules

ST TocRamerte.

maintenance programmer cannol
or unknowingly violate the system design without
explicily changing the system design.

The MIL specification of a complete system must include three
items:

1. APS ing language) description of each of
e o e T

The Evolution from Sottware Components to Domain Analysis
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In a MIL demﬂpliou.(nmms are any entity in a PS
programming language (e.g., constants, L
type definitions, etc.) that can be made available for reference
by other modules. modern PS bundle this PL
resource il:::;a::i)ca “;rllh separately &o?m:hle units

kages, . This may prohibit nlerconnection
gk'ms without PS information.

An example of a MIL description of a module is shown below,

Declarations such as module, function, and consist -of

are part of the MIL syntax. Noie that the MIL iption code

?nuvumhmmmu ipti
ABC,

module ABC
provides a,b,c
requires x,y
consist-of function XA, module YBC
functlon XA
must-provide a
requires x
has-access-to module 2
real x, lnteger a
end XA .
module YBC
must -provide b, c
requires a.y
real y, Integer a,b,c
&nd YBC
end ABC

mmymdﬂmﬁmhpzmmshmldbcuﬂin
this form 10 the vali the architecture
] guaranlee alidity syslem

Pumlehnvefowdthowdnhynwmhehnponmlh

large system development. As with modules and other

mechanisms, this concept should be an important

mnhiumialwmm large systems out of

components. In fact, as with hand-built systems, the

tool might find predefined subsystems a useful method of
reasoning about the system under construction.

Lessons from Large System Research:

L To leam about z:uu must actually look
inblu;esymﬁ M{;)u large systems of a
uillinnﬁrcelmu‘;‘qhn;mmlmndrmly.&t
m. m mmmu
below does not translate well into the large system
arena.

2. System architecture is very important in large
systems. Structures (! 3

the -small
. modules) are different from programming-
structures (MILs). MILs are required 1o
control the use of encapsulated absiractions.
3. Subsystem architecture erodes as the system is
maintained. existing components in a large

Large Systems

existing system must deal with this issue. Bringing

large sysiem development under control entails re-

establishing the architecture and assigning

responsibilities with respect (o that architecture.

Assigning subsystems with established and
ensible interfaces to [

defy individual
mmmmmm
system.

4. A mechanism fhat constructs sysiems from reusable
components must address the issue of architecture,
Architecture can drastically change the execution and
space requirements of systems,

Automatic Programming and Program
Generation .

I became interested in automatic programming and
gemuiwhcmwmmmmeue%oﬂemd
abstraction right up to the user's problem domain.

“A model of the problem domain must be built and it
must characierize the relevant relationships between
mm??]mmmmmhumw

Soﬂwn&ghmhﬁglﬁmdmidudmmd
the partitioning of Software Engineering then
focused dl;ln.:hc h“"-s’: Ibom-np mm such as
abstract ypes. Anificial Intelligence mw
top-down abstractions such as ips in the world.
Software d la abstraction (abstract

generated .
datatypes) and sutomatic programming generated
decompositions (instantiated knowledge nets),

1 was \rerr much impressed by the power of program
generators' that mw uced successful application

s from high-| -specific descri of the

. Program generalors are very narrow in thei of
application ~ usually business data i mconom
rely on a broad rigid model of the problem in with a very
simple mechanism to assemble the resulting code. Ofien si
conditional macro expansion from an assembler is used!
knowledge about the problem domain is held as text strings in
macro bodies. This is similar to the “sysgen” procedures of
carly operating systems,

The power of program generators was not lost on the automatic
programming community.

“The people !';?; work 3-:'?: area [automatic
programming] realize ical solutions,
ideas will have (0 be combined with those of the

From a formal theory standpoint NWN
bemthwumhcagublemﬂem[ 1'n¢§m
m'm :bc'lec}mlqm lnmhl.‘mi:n{yeupum

L M—mmﬂuhl—-nuﬁﬂ—uhmum;l

The Evolution from Software Components to Domain Analysis
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Auwtomatic Programming and Program Generation

with fi I theory plexity probl may have pushed
wmm’ approaches.
To me this was a . On one hand program generation is
the most for generating software. It is a

technique

knowledge-based technique that uses an nigid model of the
problem domain. ng:m gencralors use very simple

1o construct and actually construct real
software systems, On the other hand automatic
techniques use very flexible and very
complex planning mechanisms, mechanisms extract
mimmwunmmmm.
Knowledge specific to the problem domain is very ul. It
is betier 10 have knowledge about the domain
and a weaker than a more powerful mechanism and
general knowledge. We saw the same effect in program

i ’ research

1 pecions £ foom ¢ and goveral
E ers 10 focus on stronger mec s
tnoug@udmu.

Lessons from Automatic Programming Research:

Pmlslmmn wﬂcwuwn
mlﬁummﬂnﬁ&ahm

% Domaimiic knowledge-based systems with
weak :mnl(hawhaenm_tun a:l_inl.hg
strong mechanisms (thcorem proving, planning) wi
weik (general) knowledge bases. .

3. The power of the refining (com t assembly)
mhgﬁnuulhcmfgnyhmwge

ability to plan refinement using the mechanism.
Methodology
Owur goal is 0 construct software using need 0
form the lessons from the examined inlo

we
requirements for a tool that will do this. The primary
requirements and their rationale are listed below.

Requirements(reason):

1. The tool must accept a description of the objects and
operations of a problem domain (domain analysts
from software components; decomposition from
system architecture; knowledge-based power from
automatic programming).

2.  The description of a problem domain must be
described in terms of problem domains already
knowntolhetwl(docoupomion and layers of
abstraction from system archilecture).

3. Optimizations are characterized and ormed at
each layer of abstraction (optimizing i loss
in refinement from program transformations).

4, The burden of search for cither implementations
(refinements) or oplimizations must not be placed
the end user, They must naturally occur in the context

of the problem (library problem from software

componeni libraries; picking the transformation
from program transformations). -

S. Thei and ization mechanisms
must be as simple as s0 higher-level plans
may undersiand and use their power (simple
mechanism from generation;
planning from

tradeofTs in
the resulting sysiems (performance and architecture
from sysiem architecture; importance of system
structure from large systems).

7. To build Iug: sysiems and partition system
construction, the tool must characterize and generale
code that interfaces 10 existing refined systems
(tedium of applying over and over
from transformations; the existence of subsystems
from large sysiems)

understood i A
and bottom-up information is combined b n
Degi'm‘mqutylpn;kesan&gw.A.
Wgﬂnn a “Systems Analyst" by stating
the needs of the z:in dcndnb,
the tool. If this cannot be

f
E
F

In this section we will briefly describe the results of domain

analysis and domain design that must be given 1o the Draco tool
Wlmﬁnhﬂhhﬂﬂmhmwh

ghbors89, Neighbors84a, Nei Neighbors80),
There are six parts 10 a domain

The Evolution from Software Components 1o Domain Analysis
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Parser

The description defines the interface between the
mﬁmm.m-afw 1o the
: external syntax (BNF), semantic internal

me.nammmum.

The description defines how

o communicate

information 1o the user. This i

for the mechanism 1o be able 1o interact with users in the
language of the domain and discuss the developing
system,

between the objects and of the

work the domain. There are
three parts 1o the i : source-to-
source oplimizing rules, source-to-source optimizing
oplim application scripts are plans of
mr«mmo?pmm 10

make implementation decisions. Each software
represent the iffrent implementations o e e o
represent erent ject or
operation. Each refinement is a restatement of the
semantics of the ob}eclwoml;minmu more
domain languages known to . Thus, component
refinements cross domain boundaries,

Generators are domain-specific procedures that are used
incircummwhmﬂuhowbdq;mdnmm
oodemnimhalaui“ﬂ:\ic nature, This is

' program gencrators, Mlgoms
the internal form described by
are kept in orm parser

Thus, the basis of the Draco is the use of domain
analysis 10 produce domain languages. a stalement in a
domain language has been parsed into internal form the
Mtgn-mhwnmmm
L Print the internal form into the external syntax of the
domain.
2. Optimize the internal form into a statement in the
same domain language.

Methodology

3. Input the intemal form to a
restates the problem in the same

4. Analyze the internal form for possible leads for
optimization, gencration, or refinement.

5. Implement the internal form using software
components each of which contains multiple
refinements that make decisions by
restating the problem in domain languages.

generator that

For every problem domain there is a different textual

People deal with jargon and notation all the time. It is
experience of automatic mrmminf that people have no
problem learning a new notation if it helps to solve their

met
Domain-specific artificial lan like and BNF
casly undersiond oace el notaions a5 depse. The frene
mmmmmww.

“It is a frequent misunderstanding that
of lan
ﬂlcgﬂrrm le:u
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mization mechanism as simple source-to-source
applied to domain-specific languages, To
provide variable system architectures and consistent

some ity must be added 10
these mechanisms i models of
the mechanism serve (o judge the power of the
Experience
Most of the experience with these i comes

from experiments with a pmlot;pe system called Draco
[Neighbors84a). ing o we have been fortunate 10
have a few people try their as “Application Domain
Analysts.” Some of the results have been published
[Gonzalez81, Sundfor83a, Sundfor83b). application

been created by people from industry interested
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Experience

in a particular application problem. While these experiences
have only occasionally resulied in working toy application
progrums 1 can say that the technique has been a success. The
technique has been a success because in every case the analyst
has come away from the domain analysis process with an
im| understanding of the paris of a sysiem that make up a
solution system in the problem domain. Thrs |mpruved
understanding comes from considering the i

of implementation or architecture. More recent wurk [Dunnﬂl]
proves the power of application domain analysis 10 describe
classes of sysiems,

%laveheenlesssmcemfulmmmngpwpkm a
“Modeling Domain Analyst.” In my dissertation [Neig! ]
1 tried out the idea of modeling domains Draco. The idea
ared o work and brought out a lot of interesting issues
out maintaining consistent im lementations during
refinement. Draco was used as a mec 1o convert itsell
from one compuler to another [Arango86]. This was a
translation from one level of abstraction 1o the same level of
abstraction. The idea of “modeling domains™ was not severcly

tested. The of modeling domains is strongly supported
by the work of ory [BatoryB8]. This work xm:nbes a
hierarchy of modeling domains that supports the construction of

dalaw with widely different features. Considerin
that a symhasbeenﬂwmdeverylx;uymm%
have examined this is clearly a complex and im t set of
modc]ing domains. As wu.h application domains I would think

e with domains a success because in
everycaselhcmod:hn;dunamau]yslhnscmawagfm
the experience with a better understanding of the domain. For
modeling domains this improved understanding comes from
considering architectures and implementations without
expanding the function of the domain.

As a research group we have done a lot of work on the models
and mechanisms for constructing sysiems using
transformalmnal implementation methods. The Draco
cthodology [Neighbors®0] is an instance of such a method.
Diaz85] studied urﬁ_animiuml schemes for
ltbnmcs of sofltware components. This technigue has an
immediate payof for organizations and is a good place to stant.
Ultimately the library discussed earlier will limit this
approach, J\rango Arango88] developed a model for
cimfyms discussing methods of this kind. These models
i ledge these types of methods use
and how uuMBmu[BaneﬂO]mldaedmmmof
re-implementing a particular system developed under this
method if the system specification changes. No method of this
type will be a success without a solution to this problem
because the system specification will change. Finally, Srinivas
[Srinivas90] considered methods for capluring the ion
of a domain as a formal algebraic theory. The rigor of a formal
method would certainly be welcome over the i ormalwaywe
combine domains now, However, il must avoid the
problems and computational complexities that prohibited
previous formal methods from succeeding,

The message of this work is that neither sophisticated Artificial
Imclhgcnce planmn; mechamams nor formal theory proof
----- ired 1o improve the productivity of
pm mers. Onen we have consciously avoided the use of

such mechanisms to reduce the burden on the 100l user who just
wants 8 working program oul. Program generators are the

extreme of this, We cannot expect the tool ngive
advummplexAI mechanisms they did not create
mwmmnromnhlsemum they did not

E:ime, Draco Methodology is hq%b
sed approach. It consciomly tmles domlm- cific

knowledge against powerful eral mr.chmums
s and encapsula will allow the nse o!

higher- Ievd slamhlg uwu 1o refine specific
pmblems onu a crilic; ass of and modeling

Lessons from Using a Prototype System:

1. Programs refined this way are very efficient.
Opumizing transformations are the key. These are
seldom discussed in the literature.

2. Afler doing many examples consisting of the
application of thousands of optimizations and
mponenl reﬂmmm it Imc:i:nm‘a:f clear that mt::

Ly 1o use su consisting of pre-optim|
and pre-refined parts of ¢ domain hierarchies is
important. For large modeling domains such as
database concepts it is important that a mwm-

ific implementation can be refined by the system.
, most of the time you would not want to
mﬂlzelﬂudchulhmmoflduahmh

3. Academics are genemlias. generalists they pmﬁet
to work on the general part of the problem, the
are not really motivated to
application problem domains that test their
mechanisms.

4. Indusu-ycm people to specialize. As specialists
pmfcrwmntonlludnmun mﬂdﬂt
m{almnth: cltmndunm
motivated 1o ¢!
muubeundemmdwhlﬂm:wdm

5. No one wants to make modeling domains. For
industry, modeling domains do not directly apply to
the roblemuhand.l‘-‘or ldemn.pmdnc:nga
modeling domain does not add any “new”
kmbe.d e It simply structures what we alteady
r expeﬂeme that the structuring of

some of the vu'r'bui
work in Cmnpuu:r \Science. The process of
structuring the know points out what we do not
know.
Conclusions

The ¢ of “Domain Analysis” hnlmnmhmedlx
for qu:le a few different reasons [Pricto-Diaz91] ain
{ua results provide an organization with the following

*  Use the domain model to check the and
requirements for a new required system in the

+ Ed people providing
th the mmmkmdm in
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*  Derive working systems directly from the statement
dumnm»ﬂcm

concentrate exclusively on the derivation of working sysiems.
1 have completely ignored the other uses. I see the but I
do not focus on them. Other research groups are beginning o
mvunplelheim educational and ly aspecis of
lﬂlyﬁfPrlﬂo—Duﬂllln the knowledge
of the “old hand™ Domain Analysts has acknowledged.

Currently there are large military and industrial research efforts
aimed at application domain analysis. These will

specifically

S rogan gecron. Tt e L caie et
program are

efforts to develop new mechanisms for refinement and

transformation. These will have to deal with planning using a
complex mechanism and computational complexity.

We have tested a simple method for software construction using
components that is derived from the literature and industry
experience. It works. Using this method Mcllroy's software

is imperative work orms modeling domains
the existing Computer Sciem literature and

r.lce be
recognized as an important contribution. Without strong
domains the vision of soltware construction using
componenis will go no further.
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