
SmallVDM: An Environment for Formal
Specification and Prototyping in Smalltalk

Silvio Lemos Meira
Cássio Souza dos Santos

Universidade Federal de Pernambuco
Departamento de Informática

P O Box 7851
50.739 Recife- PE BR

Abstract

We present an environment for spedfication and prototyping of objed-oriented
systems in Smalltalk along with a style of specificahon, which allows the definition of
some objeci-oriented characteristics in VDM. A set of auxiliary tools stimulates the
development of specifications on-line and fast prototyping. The presentation is mostly
informal and the mechanism is exemplified by giving an object-based specification of
a simple process scheduJer. We cliscuss the glÜns of using formal methods, coup1ed
with a good programming environment, in the implementation of obJeCt·oriented
software systems.

1 Introduction

The problems raised by the development and maintenance of large and complex software
systems in a competitive and dynamic env1ronment have been studied under various per
spectives. The term "software crtSts" stands for this problem and many efforts have been
made to overcome it, what has given rise to different paradigms and methodologies of
software developmenl. Among manv others, formal specification and object-orientation
address that problem.

Formal specifications allow the construction of more reliable and maintainable s~stems,
as they provide the basis for logical reasoning about design 10 ali stages of the software
life cycle. The correctness of the proposed solution may be attested by means of rigorous
or formal proofs. Verification and validation of the design are both assisted by formal
methods.

The use of formal methods in praclice, despite ali claims about their advantages, is far
behind potential dueto the the Jack of interesting tools to support formal development . ln
addition, most programmers have had only practical educatJon so far and are not qualified
to use formal methods.

Nevertheless, the scenery is changing, as foreseen in [Hoa84] Disciplines on formal
specification have started to be normal offerings in computing courses, as the interest in the
subject increases. The need to use formal mathematical methods in industnal applications
has driven the development of more and more interesting tools.

Certainly nota panacea, as many want to (make) believe, object orientation emerges as
an extremely inleresling approach to software development . The empha.sis on reusability,

221

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

&!ong with the unification of many phases of development, has to do with many problems
related to the software crui.s.

Tbe marriage of formal specification with object orientation is not a novelty, but it
is known to be unstable. Object-Z [Duk90], MooZ [Mei90b] and Abel [Dah87] are some
a.ttempts to formalize object-oriented software design. The approaches invariably define a
new nóta.tion, although some happen to be extensions of existing ones, in order to capture
ba.sic concepts sucb as class and inberitance.

We take a different a.pproach. Starting from VDM, a notation which has achieved a
good levei of maturity and acceptance, we propose a style of specification supported by
a development environment, supporting a development method. The method determines
some criteria for the design of object-oriented systems with a. fa.ir degree of forma.lism. The
environment, named Smal!VDM, has been developed in Smalltalk a.nd supports both the
specification a.nd prototyping pha.ses.

Sma.l!VDM is an extension of a previous system [Tep90), where prototypes of model
based specifications were derived in a Smalltalk environment. This work presents a more
ela.borate and suitable environment, which extends the original Smalltalk environment
and ma.kes the specification a.nd prototyping of object-oriented systems an easier task to
accomplish. Wha.t's more, the origina.! work dealt with model-based specifica.tions, whilst
the current one imposes a style which allows the definition of object-ba.sed specifications.
As a. result of this, the resulting prototype 1s more object-oriented and consequently easier
derived.

2 VDM

VDM was originally developed in the IBM Vienna. Research La.bora.tories , starting back
in 1973 and it has evolved to be one of the most well established methods for rigourous
software development. A complete a.ccount of the language is given in [Jon86).

VDM is based in first-order logic and set theory. The method suggests the development
of software through successive refinements. From a very abstract initial specifica.tion,
others are derived until, a.fter data. a.nd opera.tion refinemenls, the final implementation is
constructed. The consistency, that is to say, the semantic equivalence between the leveis
of refinement must be rigorously verified.

The type system is based on set theory. Types are sets of va.lues. In addition to
basic types, such as Integer a.nd Boolean, VDM offers some type constructs and related
operations. These types, which include sets, ma.ppings and sequences, are used for da.ta
structuring.

A mathema.tical model is constructed for the software, defining the state of the a.ppli
ca.tion and operations over it. Auxiliary functions may also be defined.

An operation is defined by apecifying its pre- and post-conditions. Furthermore, oper
ations must indicate which components o{ the state they rea.d a.nd/or write. Fuoctions do
oot a.ffect the ata.te.

There ia no data. enca.psulation. A model defines a. concrete object upon which the
operations actuate, not a. data. type nor a. cla.ss tha.t ha.s insta.oces. There a.re no modula.r
ization mechaoisms aod reusability is difficult. One ca.n only reuse functions a.nd pre- a.nd
post-conditions in a specification.

Further, we pre;ent a. pa.rtial specification of a process scheduler of a.n opera.ting system,
which is in accorda.nce with the style of specification supported by SmallVDM The speci-

222

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

fication incorporatea some object-oriented ch&racteristica and is said to be object-b&sed.

3 Smalltalk

Smalltalk is considered one of the languages most true to the object-oriented par&digm
[Pin88J. Ita philosophy and implementation are extensively discussed in [Goi83J.

ln Sm&lltalk, every object is an instance of a class, including the classes themselves.
An executing program consista of a set of objects that communicate sequentially through
message exchange. Some otber object-oriented languages introduce new concepts to tbe
paradigm, such as that of multiple-inheritance, but the basic concepts are ali supported
by Smalltalk.

Smalltalk is more than a programming language. It ia a programming environment,
composed of a sophisticated interface, a set of tools such as editors and browsers, and an
extensive library of pre-defined classes from which the programmer can derive his own.

Although not very efficient because interpreted, that is fundamental to provide the
exploratory style of programmang embodied 10 the Smalltalk philosophy, through fast en
vironment interact1on The language is also typeless and some errors may occur during
execution.

Smalltalk is also considered a prototyping language. Some oí the characteristics men
tioned above reinforce that character, altbough many applications developped for produc
tion seem to contradict it.

Some pieces of code generated for the prototype of tbe process scheduler mentioned in
the previous section will be listed in tbis work.

4 SmallVDM

SmaliVDM tries to conciliate VDM and Smalltalk in a sole framework, making good use
of the best they happen to offer

VDM makes poss1ble lhe formalization of the design &nd contributes with its simplic
ity and model-orientation . Sm&lllalk, in turn, apart from being purely object-oriented,
presents a sophisticated development environment passive to extension and most adequa te
to prototyping.

ln a few words, we can define SmallVDM as an interpretation of VDM in a Srhalltalk
environment that allows rapid construction of prototypes from specifications. This defi
nition suggests two views of the tool : specification animation and formal object-oriented
development .

Specification animation was the initial motivation which led us to build a VDM envi
ronment in Smalltalk, allowing direct transformation of VDM specifications into Smalltalk
code, in spite of the style (paradigm) adopted 10 the construction of lhe model and respec
tive operations.

Some specifications, such as lhe semantics of SQL presented in [Mei90aJ, and that of
an object-oriented database model presented in [Mot90J, were animated in this environ
menl, allowing the validation of specifications in a semi-automa.tic fashion, as discussed in
[Mot90J.

Changing the point of view leads to a second interpretation of SmallVDM, this time
as a tool for formal object-oriented programming. Now the goal is the construction of ao

223

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

object-oriented system, and lhe paradigm must be ta.ken into account during lhe process
of formal specifica.tion.

As discussed before, VDM was not designed for the specification of objecl-orienled
syslems. We believe, however, lhal it can be used to express many of lhe characterislics of
such systems if some cri teria are adopted for the construdion of the specification. These
cri teria constitute a. slyle of specifica.lion, which can be enforced by lhe environmenl where
the specification is developed. On-line development of specificalions is lhe key for assuring
the object-orientalion and providing reusability and extensionability.

SmallVDM nol only provides lhe animation of object-based specifica.tions bul it also
assists lhe specifica.lion process, ensuring lhat no violation of the object-orient.ed design
philosophy occurs.

5 Object-Oriented Design

Research into object-oriented design has increased as its acceptance grows wider. Many
atlempts have been made lo find new rules for good design and to build tools to support
them. Some of these are discussed in [Wir90J.

ln what follows, we assume lhe division of software development in three basic phases:
analysis, design and implemenlation. The objects of discussion during analysis are just
the sarne as during design and implementalion. That makes lhe lransition from one phase
to the next one more natural and straightforward, as lhe domain of discussion is uniform
from lhe client to lhe programmer. Further considera.tions can be found in [Kor90].

The integration of formal design and implementation in lhe sarne framework is more
directly achieved and lhal is lhe approach underlaken by Meyer in lhe Eiffel programming
language, which allows lhe incorporation of formal requ1remenls in the program code. The
contracts established between objects are explicitly expressed as parl of lhe implementalion
of classes. Eiffel and ils philosophy are described in [Mey88].

Objects identified during the analysis of lhe problem must be defined in more det.ail in
the design phase, which must be language-independent, but not paradigm-independent, so
as to provide the best utilizalion of its characteristics.

One can implement an object-orienled design io a lradiliooal procedural language, by
doing away wilh ioherilance. The implemenlation of a procedural design in an object
orieoted language, however, resulls in wasle.

ln lhe Ughl of lhose cons1deralions, we cooclude lhal lhe specificatioo of an object
orienled system musl come <!-Íler high-level design. By h1gh-level design we call lhe lask of
defining in detail lhe objects of lhe domain, their interfaces, the classes and dependence
relations among lhem. The formal specification of operalions and auxiliary functions will
be called low-level design.

SmallVDM does oot support the analysis phase. Thal preceeds the design and compre·
hends the identification of the objects in lhe domain of application, as well as the classes
from which these objects will be instances and the hierarchy struclure they compouod.
Details of fuoctionality aod interface are poslponed lo lhe next phase.

5.1 High-Leve l D esign

The bJgb-level design phase JS supported by SmallVDM in many ways. When working in
the environmenl, one is always in the contexl of one applicatioo. Each applicalion has its

224

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

own dictionary of classes and classes may be shared by differenL applications.
The type definitions m Lhe specification are recorded in the environmenL. Each type

gives origin to a class, which is created automatically. A new class is either origin of a new
hierarchy or the extens10n or specialization of an existing class. The definition of a type
may generate new type definitions. When defining a type, the designer is asked to insert
the type in the system's hierarchy structure defined up to that moment If no insertion 1s
possible he is asked to check the global hierarchy of classes, to see whether an insertion is
stili possible or not. A graphical representation of the hierarchy is available, from which
lhe designer may extract ali necessary information about the classes and the hierarchy
structure itself. The graph of the hierarchy is not necessarily connected, and types can be
extensions of types defined in other applications.

The system stimulaLes Lhe definition of abstract classes (classes having no instances),
used to gather characteristics that are common to its subclasses, in order to promote
reusability.

A non-empty sct of general concl'pls must be associated to each new type (class) being
defined, helping to identify abstract classes and to posiL10n a class in the sysLem's hierarchy.

ln formal descripLion of types and Lheir attnbutes must be given A type is associated to
each attribute of a type (field types in a composite type definition, domain and co-domain
types 10 a map definition, ele.). The environment associates to each class a lisL of ali its
clients, i.e. ali classes whose insLance components may be msLances of it. Such list is very
useful when maintainmg a class.

ln opposition to Smalltalk philosophy, the type definition of attributes is a VDM re
quirement that is essential for the control of the specification. During the execution of the
derived prototype, the environment performs parameter type checkmg in order to detect
possible parameter passing errors in the specification A final version of the implementa
tion, when errors are no longer expected to occur, may discard type checking, adopting
the Smalltalk philosophy again. By then, there should be no possibility of run Lime typing
errors to occur.

Each class resultmg of a type definition 1s a subclass of one of the following pre-defined
classes of lhe environment, which implement Lhe types available in VDM for the construc
tion of data structures

• Mapping • Set • Record • Sequence
• TypeUnion • GivenSet • Enumeration

Record implements composite types. The names and types of its attributes are informed
to the environmenL and access meLhods are automatically generaLed. ln Smalltalk, by
default, methods are public and components are private SmaliVDM consLrains the access
according to the specification (ext clauses, specifying which components of the state are
used for reading and writing in an operation). Any attempt to disobey the specification is
precluded by the environmenl.

TypeUn,onis used to specify polymorphic struclures. Whenever such structures happen
to be necessary, the seL of ali possible types in a polymorphic ocurrence is used to define
a union of types and simulate the (constrained) polymorphism

c,venSet is used for the representaLion of basic types, such as lnteger and Boolean.
The interpretation of these types as given sets makes specifications more natural and
bomogeneous in the environment, bul Lhe original SmaliLalk implemenLation is kepL (classes
lnteger and Boolean for the types mentioned above).

225

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

The class Set used by the environment is not that in the original Smalltalk image, but
a new one incorporating some of lhe old characteristics, as expected, but extending them
wilh quanlificalion, parameter type checking, etc.

Enumeration is used in the implementation of types with finite domains . These types
are defined by the enumeration of the elements in their domains.

The usual VDM operations are defined for eacb of these classes. The correspondente
between some VDM constructions and the environment created in Smalltalk for thei r
implementat ion is shown below.

LOGIC:

SET:

MAP:

VDM

VeEs·<ezp>
a ~ b
aVb

card 8

s ç t
a f/: t

rng s

s <l m
s .a m

COMPOSITE OBJECTS:
8(n)

SEQ:
Jl(n, s t)

len s
8~ [t]
tis

5.2 Low-level design

Smalltalk

s forAll: [:el<exp>]
a implie8: [b]
a or: (b]

s card
s i8Subset0f: t
(t includes: a) not

8 rng
8 domainRestriction: m
s domainDeletion: m

n s
n s:t

s len
s add:t
8tl

Although classes can be expressed as abslract data types, VDM doesn't provide mecha
nisms for defining such abslract types. A VDM model can be seen as an abstracl data
type, but there is no encapsulation, with models representing concrete objects and not
classes which can have instances.

ln spite of thal, an object-based slyle of specification can be adopled in arder to struc
ture the specification and to create a smooth path to an object-oriented implementation.

The specification is conslructed on-line in an interaclive environmenl. Facilities includ
ing a synl atic editor and procedures for type and operation definition direct the structure
of tbe specification.

As mentioned before, a type defined in the specificalion corresponds to a class in the
environment. The methods defining its functionality are specified in VDM notalion as
associated function8 of that type. This association is provided by the environment but it is
not {formally) reflected in texl of lhe specification. lnternally, however, the environmenl

226

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

maintains these associations, as well as the inheritance hierarchy structure and encapsu
lation requirements. The text of the specification, which is generated by the environment
in ~TEJX. formal, ref!ects informally, i.e. by means of comments, the characteristics which
could not be formally expressed.

Associated fv.nctlons are specified as functions whose first parameter and the value
returned have the sarne type and are viewed internally as operations. Au:nl1ary junct1ons,
which are not viewed as operations, must also be associated to a type, which in this case
is tbe type of thetr first parameter A third kind of function, which has no parameler,
is a!lsociated to the type of the value that it returns and is called a constructor funchon.
Examples of these functions will be presented !ater.

Tbe specification obtained is object-based. Tbe inberitance structure is not formally
specified but, as mentioned above, internally maintained by the environment. The specifi·
cation of a class as a subclass of another one is an extension of tbe superclass specification
and tbe characteristics of the subclasses are attached to their superclasses as if a new and
unique class was being defined. The environment provtdes the separation between lhe lwo
definitions, keeping reusabilily and imposing encapsulation pragmaltcally

When defining an operation, lhe designer must fill a form, where ali information nec·
essary for maintenance by lhe envtronment is given. That includes lhe definition of lhe
operation's and arguments' names and respective types,· e:z:t rd and e:z:t wr ela uses and the
pre· and post-conditions. The environment checks the consistency of lhe given data with
respect to lhe rest of lhe system.

The integration of tools such as a syntatic editor anda pretty-printer, which fortnats lhe
final text of lhe specification, is intended to stimulate the practice of formal specification
by releasing lhe designer of manual work .

6 Prototyping

The prototyping phase corresponds to that of implementation in lhe analysis-design
implementation schema. Some aspects concerned with implementation, such as efficiency
and the definition of sophisticated interfaces for the user of the system are not taken into
account when constructing a prototype.

The generation of Smalltalk code from specification is semi-automatic. The pre-defined
types of VDM are implemented as classes in Smai!VDM These classes are the basis for
tbe implementation. The environment generates most of lhe code, making short wprk of
lhe implementation.

Pre- and post-conditions are automatically translated and when operations are exe·
cuted,
pre-conditions are tested firsl. After the execution, post-conditions can also be tested,
tbus verifying tbe consistency of the specification with respect to the implementation.

Translation of post-conditions and assoc1ated funchons into methods may involve some
transformations which must be carried oul by the designer in order to reduce the levei
of abstration and to allow automatic coding. These transformations, however, are easily
carried out and may be avoided by adopting a style where more cone rele (direct) definitions
of functions and post-condictions are built from the very beginning

The verification of lhe semanlic equivalente between different leveis of abstraction is
not imposed by lhe environment. ll's up to the designer to verify lhe consislency of

227

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

transformations but the system may assure consistency by testing pre- and post· conditions,
as well as type invariants, during execution.

A generic interface is used to test the prototype and there is no need to write code
for input and output, whicb is automatically provided by the environment according to
parameter and result types. Tbe internal state of an application can be checked at any
time and many versions of the state may be stored to allow different kinds of test to be
carried oul simultaneously.

7 An Obje ct-Based Specification

We now present a partia) specification of a process scheduler, which is tbe portion of
an operating system that organizes the access of processes to processors. The sched uler
presented here is based on thal of the Minix operating system [Tan87).

Each process has a.n associated identifica.tion and a process table stores information
about them. A process can be in one of the following states Ready, Execuhng and
Blocked. The possible state transitions are those shown in Figure 1

Figure 1: Possible Stale Transitions

There is only one processar and access lo it is granted according to prionty leveis and,
for processes with lhe sarne priority, according to lhe arder in which they get ready for
execution. The scbeduler can be modelled in many different ways. Our model is based in
two elements, a table of processes anda queue of priorities, as shown below.

7.1 Data Type Specifica tion

Tbe first pbase of the specification consists in the definition of the type of the objecta
identified during analysis. Classes are generated automatically for each defined type.

PRIORITY and STA T.US are defined as enumerations. The type PRIORJTY is lhe set
of tbe natural numbers from 1 lo n. The constant n must be givcn a concrete value for the
environment cannot operate on undefined values whicb are, however, preserved in lhe text
of tbe specification.

PRIORJTY = {l, ... ,n}

Tbe type STATUS is lhe sel of the three possible states of a process , as specified below.

STATUS = {Ready, Ezecutmg, Blocked}

JDENTJFJER and OTHER are defined as given sets. They may be specified as unde
fined types but the environment demands their definition. As for constants, the indefinition
is preserved in the text of the specification .

IDENTIFIER = lnteger

228

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

OTHER = Stnng

OTHER represents tbe type of tbe otber components of a process whicb are not relevant
to lhe scheduler specification. lt could be discarded not only 10 the specsfication, but also
in tbe implementation.

The definition of a type to representa queue of process identifiers ss given below. Tbe
operations on objects of that type assure their bebaviour as a queue, where a FIFO (First
In F.irst Out) policy is assumed. Its invariant determines that no identifier may occur more
than once in a queue of tbat type.

IDQUEUE = seq of IDENTIFIER

where

mv-IDQUEUE() ó Vf E IDQUEUE · lenf = cardrng/

PROCESS is a composite type. Tbe pri component representa the priority levei of lhe
process, st is the status of the process and other represents otber data not relevant to the
specification.

PROCESS :: pn
st

other

PRIORJTY
STATUS
OTHER

Tbe definition of a type to representa table of processes suggests a generalization. Tbe
type TABLE is defined as.

TABLE(X, Y) = map OBJECT to OBJECT

OBJECT is a pre-defined type in tbe environment. lt is tbe type union of ali the types
defined in lhe environment and is used in generic definitions. Other type unions may be
defined for tbat purpose.

Tbe type TABLEOFPROCESSESis an instance of TABLE:

TABLEOFPROCESSES = TABLE(IDENTJPIER, PROCESS)

lt is important to notice thal TABLEOFPROCESSES could have been defined as a
mapping, without resorting to lhe definition of TABLE. This intermediate type, however,
is intended to define an abstract class where many general operations on tables could be
defined and reused later on. These operations include insertion and remotion of fntities,
table look-up, etc. With tbe exception of inclusion and updating, such operations will not
be shown here and lheir exislence is taken for granted.

We are aware tbat inberitance can not be simulated by type parameterization (Mey88],
but reusability is achieved and the environment is able to reflect the inheritance structure
in tbe implementation

There is a queue associated to eacb levei of priority, so tbere are n queues of process
identifiers, with lhe processes associated to identifiers in those queues ali in the Ready state.
The n queues are grouped in a table wbich associates pnoritses to tbem. The invariant of
TABLEOFQUEUES asserts that a process identifier cannot occur in distinct queues.

229

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

TABLEOFQUEUES = TABLE(PRIORITY,IDQUEUE)

where

mv-TABLEOFQUEUES() ~
Vp E IDENTIFIER · Vj,g E IDQUEUE p E rng/ 1\ p E rngg => f = g

The state is composed o{ a table of processes and a table of queues. lts invariant
determines that every identifier ocurring in a queue will have an entry in the table of
processes and that the associated process is Ready. It also asserts that there is at most
one process in ~xecution at any time.

SCHEDULER .. table TABLEOFPROCESSES
queues : TABLEOFQUEUES

where

inv-SCHEDULER(mk-SCHEDULER(table, queues)) ó

card {p E rng table I st(p) = Executmg} < 2 1\

Vp E PRIORITY ·
Vid E queues(p) ·

id E dom table 1\ st(tabela(•d)) = Ready 1\ pn(table(•d)) = p

As types are defined interactively, the environment processes the information being
given and is able to present lhem m lhe VDM format shown above, along wilh lhe informal
comments added to each lype and its componenls.

7.2 Specification of Opera tions

The limilations of VDM wilh respect lo modularization lead to monolithic specificalions.
SmallVDM provides modularization internally, by associating operalions, which are defined
as associated funcüon:r. when defining an operalion, lhe designer must firsl idenlify lhe
type to which it will be associated.

This is a partia! specification, so nol every operation of lhe scheduler will be shown,
but the operations depicted illustrate many of the concepts and 1deas discussed up to this
point.

7.2.1 TABLE

As mentioned, many reusable operat1ons can be defined over objects of type TABLE but
only those for insertion, update and creation will be shown.

lnsertlnTable (table: TABLE(OBJECT, OBJECT)
key: OBJECT
value: OBJECT) newTable: TABLE(OBJECT, OBJECT)

pre ftey fi. dom table
post table U { ftey ,_. value}

230

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

lnsertlnTable mserts an element in t.he table. The associated key cannot already have
an entry in the table. ln UpdateTable the key must be m the table so that the associated
object can be updated.

UpdateTable (table: TABLE(OBJECT, OBJECT)
key. OBJECT
value· OBJECT) newTable: TABLE(OBJECT, OBJECT)

pre key E dom table
po'st table t { key ,..... value}

lnsertlnTable and UpdateTable are associated functlons, i.e. functions that represent
operations over a type. The next function is an example of a constructor fu.nct•on, which
has no parameter and is associated to the type of the value it returns.

EmptyTable t : TABLE(OBJECT , OBJECT)
post t = {}

7.2.2 TABLEOFPROCESSES

The operation that inserts a process in the table of processes and seta its state to Ready is
specified by

JnsertProceiJIJ!nTable (table: TABLEOFPROCESSES
identifier: JDENTJFJER
process: PROCESS) newTable: TABLEOFPROCESSES

pre •denhfier r/; dom table
post let p = SetStatus(process,Ready) on

new Table = lnsertln Table(table, identlfier, p)

SetStatus is associated to type PROCESS and will be defined soon. The next operation
"executes" the process associated to the identifier passed as parameter.

EzecuteProceiJIJ (table: TABLEOFPROCESSES
•den.tifier: IDENTIFJ ER) newTable:· TABLEOFPROCESSES

pre ident1jier E dom table
post newTable = table t { idenhfier o-+ SetStatus(table(identifier), Ezecuting)}

7.2.3 PROCESS

SetStatus was used above and defines an operation that changes the IJt component of a
process to be that passed as parameter to the function .

SetStatus (proces/J: PROCESS
n.ewStatus: STATUS) n.ewProceiJIJ:'PROCESS

post Jl(proceu, st,..... newStatus)

231

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

7.2.4 TABLEOFQUEUES

Constructor functlons sometimes need information in order to initia.lize the object they
create. That is the case of EmptyTableOJQueues There is no point in associating it to the
type of its first parameter1 as if it was an auxiliary function. The designer must be aware
of lhe semantics behind the definitions so as lo make lhe proper associations.

EmptyTableOJQueues (n) table: TABLEOFQUEUES
post Vt E PRIORITY · table(i) - []/\ c~rd dom table = card PRIORITY

lnsertldlnQueue inserts a process identifier in the queue associated to the priority of
the process the identifier relates to.

lnsertldlnQueue (table: TABLEOFQUEUES
tdenhfier: IDENTIFJER
pnonty: PRIORITY) newTable: TABLEOFQUEUES

pre tdentlfier fi. rng table(pnonty)
post newTable = Update Table(table 1 pnonty 1 table(pnonty) ,.... [identlfier])

The next two funclions are auxtlaary1 being assoctated lo the type of lheir firat param·
eler. When many parameters are passed lo such functions 1 some considerations must be
made in order to determine which of them besl fits in the firat position.

PnontyOJNeztToExecute (table: TABLEOFQUEUES) p: PRIORITY

pre 3t E PRIORITY len table(i) >O

post p =mm({ 1 E PR IORITY l len table(i) > O})

The function ldentlfierOJNe:zJ.ToEzecute relurns lhe identifier associated lo the next
process lo be execuled 1 whilsl t he previous one relurned its priority. 8 oth funct ions use
anolher auxiliary function (mm) which is associated to lhe lype PRIORITY. lt returns
the smallesl inleger in lhe set passed as parameter. As types are sels of values1 there is no
problem in associaling lhis function lo lhe lype Pr't.onty

ldenttfierOJNeztToExecute (table. TABLEOFQUEUES) td. IDENTIFIER

pre 3i E PRIORITY · len table(t) > O

post hd table(min({' E PRIORIT)' l len table(1) > O}))

The function RemoveF'romQueue removes from lhe table of queues lhe idenlifier of lhe
next process lo be execuled.

RemoveFromQueue (table: TABLEOQUEUES) newTable: TA BLEOFQUEUES

post let p = PnontyOJNezToExecv.te(table) in
newTable = UpdateTable(table1 p1 ti table(p))

7.2.5 Scheduler Operations

The definition of operalions on the slate of lhe application makes use of the operations
defined as functions associated to lhe lypes of its componenls and sub-componenls.

The operation lmtlalState initializes the internal state of the scheduler

232

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

[mtlalState

ext wr table : TABLEOFPROCESSES
wr queue.s : TABLEOFQUEUES

post table = EmptyTable() 1\ queue.s = EmptyTableOJQueues

The entry of a new process to be scheduled comprehends its insertion in the table of
processes and of its idenlifier in lhe queue associated to its priorily in the table of queueso

o lnsertProceu (ident1jier: IDENTJFJERproces.s: PROCESS)

ext wr table TABLEOFPROCESSES
wr queues o TABLEOFQUEUES

post table = InsertProces.slnTable(t;;bi;, identifier, process) 1\

queue.s = In.sertldlnQueue('qUeüeã, identijier, pri(process))

A process is Er.ecutmg when it has access to the processar, passing from lhe Ready to
the Er.ecuting staleo

FromReadyToEr.ecutmg (1denhjier: IDENTIFJERprocess o PROCESS)

ext wr table : TABLEOFPROCESSES
wr queues : TABLEOFQUEUES

pre ~p E dom table o st(table(p)) :::: Er.ecutmg

post let id = Jdent•fierOJNer.tToEr.ecute(~) 1n

table = Er.ecuteProceu(t;;i;/e, id) 1\ queues = RemollefumQueue(~)

The other stale transitions are specified in lhe sarne way as FromReadyToEr.ecuting, by
making use of the functions previously definedo

8 Generating the Prototype

Once the system is completely specified, the designer can construct its prototype semi
automaticaUyo Type invariants, pre- and posl-conditiotons are automatically translated to
Smalltalk and checked during executiono As discussed before, some posl-conditions must
be transformed i o to more directly implementable definitions but these changes are easy to
performo I

The code generated for some operations specified in the previoua section for the process
scheduler is now presentedo

The operation lnsertProcesslnTable, which was specified as a function, is implemented
as a melhod of class TableOfProcesseso The code derived for lhe function definition is
presented belowo

233

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

InsertProcesslnTable:parameters
I identifier process p I
identifier :• parameters at:lo process :• parameters at:2o
(self dom includes:identifier) not

ifFalse:[self error: 'Pre-condltion not satisfied
for InsertProcesslnTable') o

p := process changeStatus:(Array with:'Ready') o
self InsertlnTable:(Array with:identif1er with:p)

Pre- and posl-condilion lesling is normally implemenled as separale melhods as lo
make them reusableo The inclusion of lhe lest of lhe pre-condition in lhe melhod above
was inlended to ease lhe presentaliono

The firsl parameter in lhe specificalion is removed in lhe implementalion and references
to it, wbose type determines the class where lhe method is lo be implemented , are lrans
formed in self references in Smalltalk (a refcrence lo Lhe receiver of the message ilself)o
Tbe assignment of lhe value reLurned by lhe function in the specificat10n lo Lhe object
passed as firsl parameter is substiLuled by a messagc sent Lo thaL objecL, as we can verify
in the implementation of lnsertProcess:

InsertProcess:parameters
I identifier process I
identifier :• parameters at:lo
process := parameters at:2o
table InsertProcessinTable:(Array with:identlfier with:process)o
queues InsertidinQueue:(Array with:identifier with:process pri)

The methods lnsertldlnQueue, from class TableOfQueues and UpdateTable, from Table,
are listed below o

InsertldlnQueue :parameters
I identifiers priority I
identifier :• parameters at:lo
priority :• parameters at:2 0
((table at:priority) rng includes:identifier) not

ifFalse:[self error : 'Pre-condition not satisfied
for InsertidlnQueue') o

self UpdateTable:(Arr~y with:priority
with:((self at:priority) add:identifier))

UpdateTable:parameters
I key value I
key :• parameters at:lo
value :• parameters at:20
(self dom includes:key)

ifFalse:[self error:'Pre-condition not satisfied
for UpdateTable') o

self at:key put:value
234

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

9 Conclusions

SmallVDM as an animation too! haa been succeaafully used for verification and validation
of specifications [Mot90]. Executable programa have been eaaily derived and tested with
the help of a aet of toola put together to support a development methodology.

No modification waa propoaed in the apecification language, contrary to many other
approaches on formalism in object-oriented deaign. This poasibility, however, ia not com
pletely discarded and some attempta to give modularization mechanisms to VDM are
described in (Mid90].

Our approach concentratea initially in the definition of a development methodology
based in a establiahed language: VDM offers the language and the development method
from specification to implementation through successive refinements .

Programming environmenta for aupporting the programming activity, auch as Smalltalk,
can be extended to assist formal design and carefully chosen tools can reduce the amount
of manual work. The paradigm can be enforced from the specification phase, with soft
ware reusability coming as consequence o{ specification reusability. Classes as modules
rJ\USt be properly managed to facilitate reuae and a good claaa manager, at specification
levei, must provide most reusability by assiating the definition o{ new claas hierarchies and
compartmentalising apecificationa.

The limitationa of VDM for expreasing object-oriented characteriatics led to the defi
nition o{ a atyle of apecification supported and impoaed by the SmallVDM environment.
The experience has proved to be worthwhile and has indicated some directiona towarda
the definition of a proper formaliam for object-oriented ayatema. The MooZ group, which
ia working in the definition o{ an object-oriented extenaion o{ Z, as described in (Mei90&],
haa based some o{ its deciaiona in the resulta obtained from SmallVDM. The final goal ia
the definition of an environment for supporting object-oríented development atarting from
MooZ apecificationa, and many featurea of SmallVDM are to be reuaed. Some o{ theae,
such as the ayntactic editor for the VDM notation, are under implementation. Moat of
the environment ia already operational and haa been used to aupport the method expoaed
herein.

References

(Dah87] O. J . Dahl: "Object-Oriented Specifications" . Research Directiona in Object
Oriented Programming · MIT Presa Series in Computer Systema, 1987.

(Duk90] D. Duke and R. Duke: "Towards a Semantics for Object-Z" . Proc. VDM'90,
Springer-Verlag, Kiel-FRG, April 1990.

(Gol83] A. Goldberg and D. Robson: "Smalltalk-80: The Language and ita lmplementa
tion". Addison-Wesley, 1983.

(Hoa84] C. A. R. Hoare: "Programming: Sorce~y or Science" . IEEE Software, Aprill984.

(Jon86] C. B. Jones: "Systematic Software Development Using VDM" . Prentice-HálJ Jn
ternational , 1986.

(Kor90] T. Korson and J . D. McGregor: "Understanding Object-Oriented: A Unifying
Paradigm". Communications of the ACM, September 1990.

235

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

[Mei90a] S. R. L. Meira., R. Motz a.nd J. F. Tepedino: "A Formal Sema.ntics for SQL".
Inlern. J . Computer Ma.lh.,Vol34, pp. 43-63, 1990.

(Mei90b) S. R. L Meira. a.nd A L. C. Ca.va.lcanli: "Modular Objecl-Oriented Z Specifica
tions" . Z Technology a.nd Users Meeting, Spnnger Verla.g Workshopes in Com
puling, May 1991.

[Mey88] 8. Meyer: "Object-Oriented Soflwa.re Construction" Prentice-Halllnterna.tional,
1988.

[Mid90] C. A. Middelburg: "Syntax and Semantics of VVSL". Ph O Thesis- University
of Amsterdam, September 1990.

[Mot90) R. Molz: "Formal Analysis of a.n Object-Orienled Data Model". Masler's Thesis
- Departamento de Informática· UFPE. (ln Portuguese)

[Pin88) L. J . Pinson and R. S. Wiener: "An lnlroduction to Object-Orienled Prog_ram
ming and Smalltalk". Addison-Wesley, 1988.

[Tan87] A. S. Tannenbaum: "Operating Syslems Des1gn and lmplementation". Prentice
Hall Interna.tional, 1987.

[Tep90J J . F. Tepedino, R. Motz a.nd S. R. L. Meira.: "From Modei-Based Specifications to
Object-Oriented Prototypes - A Method" . X Congresso da. SBC, Vitória, Bra.zil,
July 1990.

[Wir90) R. J. Wirfs-Brock and R. E. Johnson: "Surveying Current Research in Objecl
Oriented Design" . Cornmunications of the ACM, September 1990.

236

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259

