
VIl Simpósio Brasileiro de Engenharia de Software

Formal Development of Concurrent Systems
using Algebraic High-Level Nets and Transformations

Leila Ribeiro Hartmut Ehrig Julia Padberg

Techn.ical University Berlin

Absiract

ln this paper we present algebraic high-level nets: a combination of algebraic speci­
fications and Pctri nets. Algebraic specifications are used to specify the data.-structure
and Petri nets to specify the data.-O.ow. This combination is a very powerful description
technique. Moreover we introduce net transformations, net fusions and net unions as
structuring techniques. Fusions and unions can be considered as horizontal structuring
mechan.isms in the sense that we combine nets to obtain a. new net consisting of the
given components. Fusions capture the notion of sharing of subnets, while unions are
kinds of net composition. Net transforma.tions are based on conccpts from gra.ph gram­
mars because net refinements are defined via. productions. Transformations can be seen
as high-level vertical refinements. Moreover we show compa.tibility between these tech­
niques, i.e. in our framework vertical refinement a.nd horizontal structuring of ncts are
compatible.

Resumo

Neste artigo são apresentadas redes algébricas de alto nível: uma combinação de es­
pecificações algébricas e redes de Petri.Especificações algébricas são usadas para a de­
scrição da estrutura. dos dados e redes de Petri para a descrição do fluxo dos dados. Esta
combinação é uma. técnica de especificação muito poderosa. Transformações de, fusões e
uniões de redes também são introduzidas neste artigo como técnicas para. a estruturação
da especificação. Fusões e uniões são usadas como mecanismos de estruturação horizontal
no sentido em que redes sào combinadas para se obter redes maiores. Transformações
de redes são baseadas em conceitos de gramática de grafos, refinamentos de redes são
definidos em termos de produções, e podem ser vistos como refinamentos de redes de
alto nível. Em nosso formalismo existe compatibilidade entre refinamentos verticais e
estruturaç ao horizontal.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

2 VIl Simpósio Braslelto de Engenharia de Software

1 Introduction
Formal specificalion lec.hniques for concunenl systems can be divided in two main groups: the group
following lhe inlerleaving approacb and lhe group following lhe troe concurrency approacb. The
inlerleaving approacb is based on lhe idea thal although lhe processes may run concurrently, the
observation of lheir bchavior is a sequence of events. Following this line lhere are many specification
methods using differenl kinds of processes in process algebras (4), CCS (27] and CSP (18). ln the true
concurrency approach, as the name says, events that occur concurrently are not ordered, leading then
to a partia! order of events. The most famous example of method belonging to this group are Petri
nets (30, 31). Graph transformations (9) and Actor systems (2) are also models of true concurrency. All
thcse methods have a solid theoretical background and have been used in different kinds of praclical
applications (for Petri nets see (23)}.

All lhese specification techniques deal mostly with the behavioral aspect of lhe systems, very few
informations concerning data types (if at all) are included in these methods. That mea.ns that they
are suitable only for the description of the data-flow of the system, but not for specifying the data
itself. llesearch on fonnal specifications of data types has been done already for a long time and there
are many well-established methods lhat allow us to prove nice properties of the specifications, like
consistency and correctness. Among the many data type specification techniques, we have methods
based on denolational semantics, e.g. VDM [5) and Z [1), algebraic specifications (13), and methods
following other paradigma Like object-orientation and logic programming.

Until a certain slage in the process ofsoftware development one can specily data...type and data...flow
separately, but as these lwo belong together in the system that is being specified they should be put
together also in the specification. One of the main aims of using formal melhods to specify software
is to be able to prove properties, especially correctness, of systems. lf we use different formalisms to
describe dala-types and data...flow, and prove that lhese two specificalions are correct separately, we
cannot conclude by default thal putting them together will yield a correcl system (this would be the
case even using lhe same formalism without a suitable notion of composition). For this reason many
attempts have been made to present methods in which it is possible to specify data...type and data­
flow within the sarne framework. Exa.mples of these are LOTOS (24), process algebras (4), projection
specifications (15), the SMOLCS approacb [3) .

Now recall the usual tex:tbook definition (see (31)) of a place/transition netas a 3-tuple (P,T, F)
where P is a nonempty, finite set of places, T a. finite set of tra.nsitions and F is a mapping F :
(P x T) 1!1 (T x P) -+ N tha.t yields the casual dependency rela.tion of the tra.nsitions and the places.
F representa the pre- and post-conditions for the firing of the tr&nsitions. The algebraic wa.y to
describe a place/transition-net is to view the pre- and post-conditions not as a mapping from paira
to natural numbers (that represent the numbers of tokens involved in the switchings of tra.nsitions)
but as functions from transitions to the free commuta.tive monoid pe over the places of the net
(26)(pre,po . .t : T-+ p$). For example, pre(tl) = 3 x p1 e p2 means that for the switching of the
tra.nsition tl it is necessary that place p1 has at least 3 tokens and place p2 a.t least one token.

A place/transition net based on groups, short P/T-G-Net, (see (7, 10, 14)} N = (P,T,pre,post)
consista of sets P and T (places a.nd tra.nsitions, respectively) a.nd fnnctions pre a.nd post:T -+ p®
(úom T into the free abelia.n group p® over P with addition e a.nd subtraction e) . The G in the
name P /T-G-Net sta.nds for group. An element of J>®is called nwrking of a P /T-G-Net. The marking
m1 = 2 X PI e 3 X P2 mea.ns tha.t we ha.ve 2 tokens ÍD place Pt a.nd 3 tokens in place P2· ln fact, in
this model we can also ha.ve negative markings Like m:z = eP:l corresponding to a negative number of
tokens in P:l · This allows to formulate the successor marking m' of m after switch of tra.nsition t in
a purely algebraic way by m' = me pre(t) e post(t) P /T-nets based on groups are the appropriate
algebraic framework to study invariants of nets (7).

Colored Petri nets [22) a.nd predicate/tra.nsition nets (16) were tbe first models based on Petri nets

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 3

to describe data--type and datarflow in a unified íramework. The main idea of these kinds of nets is
to have colored tokens, i.e. different k.inds of tokens belonging to some token sorts. This idea was
further developed by combining Petri nets with algebraic specifications (see (32)) leading to ou r notion
of algebraic high-level nets (21, 7, 10, 14]. The key idea is not to use any k.ind of token sets more
or lesa ad hoc chosen, but to use an algebraic specifica.tion to describe these token sorts. This way
we can take advantage from the already existing concepts from the algebraic specification theory, e.g.
modula.rization concepts and semantical constructions.

The combination of algebraic specifications and Petri nets is very íruitful because it brings a. new
insight to Petri nets, solving some of the problems of this approach from the software cngineering point
o{ view (see section 2). ln section 3 we give the definition of algebraic high-level nets and int roduce
a file server's exa.rnplc. We give also structuring techniques for algcbraic high-level nets (section 4).
Vertical structuring can be achieved through net transformations, and the concepts of fusion a.nd union
can be considered as horizontal structuring. ln fact , these constructions can be used also for other
kinds of Petri nets whose corresponding categories satisfy suitable properties (see (29)).

We assume the reader to be familiar with some basic notions of algebraic specifications in the sense
of (13].

Ac.knowledgments: This paper has been developed within a forthcorning German-Dra.zilian Coop­
eration on software engineering techniques, partially supported by a CNPq-grant for Leila Ribeiro,
a DFG-grant for Julia Padberg a.nd by the ESPR.IT Basic ltesearch working groups COMPASS and
COMPUGRAPH.

2 What are the problems with Petri nets from software
engineering point of view?

ln this section we start with some common objections against classical Petri nets, like P /T nets, from
a software engineering point of view. ln a second step we a.nalyze each of these objections in more
detail, show how far tbe corresponding problema have been studied in the litera.ture already and sketch
also some ncw solutions which will bc studied in the subsequent sections in more detail.

Some main objections against P /T-nets as a model for concurrency andas a specification technique
for distributed systems from a software engineering point of view are given in the following four slogans:

• Petri nets lack abstroction
This means that the concept of Petri nets is a low leve! concept, comparable with machine leve!
progra.m.uUng languages, which does not allow higher levei abstraction, structuring principies
a.nd suitable compositionality which is essential for specification of distributed systems.

• Petri nets lack data-type handling
Usually the objects that are created/deleted/modified by a Petri net are treated as "black dots"
(tokens). One knows that there is an object in a place, but it is not possible tosay which object it
is, what are its properties, etc. Moreover, it is impossible to specify which kind of mod.ifications
a.n object suffers by the firing of a transition. For example, when a transition firf'S, it consumes
tokens from some places and put new tokens in some other places, but we do not know whether
this new tokens represent the sarne objecta as the deleted ones, completely difTerent objects or
some modification on thc deleted objecta. From the software engineering point of view this is a
weak point because the data.-types play a very important role in the specific:ation of a system.
It must be possible to represent exactly which are the tokens in each place, and how the tokens
that are created by tra.nsitions relate to the consumed tokens to specify completely a software
system.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

4 VIl Simpósio Brasileiro de Engenharia de Software

• Petri nets lac#.: refinement
Thls common objection mea.ns that usnally the net structure of a Petri net is considered to be
fixed and therefore Petri nets that these are no suitable techuiques for stepwise relinement of
net items and net strncture a.s usual in top-down or bottom-up development techniques.

• Petri nets lacl,; struduring
Very often when specifying practical systems, the size of the Petri net that is obtained a.s
specification is so big that it is quite difficnlt to understand what is going on there. ln other
specification methods, the use of suitable horizontal structuring techniques tadles with this
problem, whereas for Petri nets there is no well-established notion of structuring.

ln the following we will analyze how far these objections are really justified and what ha.s been
done concerning these problems in the la.st few years. The answer will be presenteei again in s1oga.ns
(see the headlines of 2.1,2.2 and 2.3), but in this case together with a more detailed rea.soning.

2.1 Algebraic high-level nets are abstractions of Petri nets

Now let us reconsider our first and second common objections whlch claims that Petri nets lad:
abstraction and data.-type handling. ln fact, severa! different notious of hlgb-level nets have been
introdnced in the last years already (see [23)). We will focus especially on algebraic hlgh-level nets, a
combination of Petri nets with algebraic specifications.

The first important step to achieve a hlgher levei of abstractíon for Petri nets is the concept of
colored Petri nets introduced by Jensen [22). This concept allows colored tokens, i.e., different kinds of
tokens in the places, and also colored transitious, i.e., different modes under whlch transitions can be
switched. H different k:inds of tokens are represented by data elements of an algebraic data type, ares
of the nets are labeled by tenns with variables of the corresponding algebraic specification and a mode
of a transition is given by an assignment for the variables of the terms on adjacent ares of the tra.usition
we obtain the notion of algebraic hlgb-level nets (see (21, 8, 10]). According to (23), most practical
applications of Petrí nets in recent years are ba.sed on some kind of hlgh-level nets. Complex systems
like compu ter chlps, communication protocols, flexible manufacturing systems, radar surveillance and
electronic funds transfer had been specified using these nets.

The essential idea of combining Petri nets with algebraic specifications wa.s given already by
Vautherin in (32}. ln section 3 of this paper we present a revised version of algebraic hlgh-level nets
anda flattening construction FLATfrom algebraic hlgh-level nets to P /T-G-Nets whlch is compatible
with mark:ings and switching behavior on botb leveis. That means that for each algebraic hlgh-level net
there exists an equivalent placeftransition net w .r.t. markings and switching of transitions. ln general,
the Oattened version of an algebraic hlgh-level net is an infinite place/transition net. The flattening
construction allows to extend all notions, like mark:ing graphs and invariants from place/transition
nets to algebraic hlgh-level nets. For a given AHL-Net AN we can compute the marking graph and
the invariants for the corresponding P/T-G-Net FLAT(AN). On the other hand it is a1so usefnl to
study these notions directly for hlgh-level nets. ln these papers it was also shown that invariants for
algebraic hlgh-level nets can be computed in a compositional way.

2.2 Net transformation systems are high-level refinements for Petri
nets

Now let us reconsider the objections aga.inst Petri nets claiming tbat the nel structure of Petri nets
is not dynamic and does not allow suitable refinements. ln fact, there are severa! attempts to define
refinements of places and transitious in nets, whlch might be considered as low levei relinements. We
want to consider also high-level refinements leading to the notion of net transformation systems.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 5

Net transformation systems have been introduced for placeftransition nets and algebraic high-level
nets in our paper [28). They are based on productions p : L -+ R, where the left hand side L and
the right hand side R are nets. Similar to Chomsky grammars and graph grammars a production
p : L --+ R is applied to a net N by finding a suitable occurrence of L in N and replacing L by
R leading to a new net N'. This kind of replacement can be considered as a high-level refinement
of nets. ln section 4 of this paper we study transformation systems for algebraic high-level nets.
ln fact, we are able to extend some main results concerning parallelism and concunency from the
theory of graph grammars to AHL-Net-transformation systems using the general theory of hlgh·level
replacement systems [11). This allows to analyze concurrency in nets not only on the token levei but
also on the levei of transformations of the net structure, what is very important for stepwisc refinement
of algebraic high-level nets as specifications for distributed systems.

2.3 Net fusions and unions are horizontal structuring for Petri
nets

Together with net transformations, we also present the notions offusion and union as net structuring
techniques. Fusion [20) can be interpreted as identification of shared subnets. To increase readability
and understanding of a Petri net, we allow the same su bnet may be represented twice (o r more times)
within a net by putting a "virtual link" among the occurrences of this subnets such that in the
semantical levei this subnet is represented only once and has alllinks from its occurrences. Union and
disjoint union are different ways of composing nets, with or without some intersection between the
component nets. Of cotUse, disjoint union is a special case of union. We show that net fusions and
unions and net transformations are compatible. This compatibility between vertical and horizontal
structuring is a very desired property in a software engineering framework.

3 Algebraic high-level nets
As discussed already in section 2.1, algebraic bigh-level nets, short AHL-Nets, are a combination of
place/transition nets and algebraic specifications. ln an AHL-Net tokens are specified by tbe algebraic
specification part. The pre- and post-condition functions define not only bow many tokens are involved
in each switching of a transition, but also which tokens are involved. AHL-Nets allow a higher levei
of abstraction as we will see in the file server's example presented as an AHL-Net in this section. ln
a. first step towa.rds AIIL-Nets we define a. corresponding notion of net signature.

3.1 Definition (AHL-SIG)

An algebroic high-level net signature, short AHL-Sig, N S =(SIC, P, T,pre ,post) consista of a signa­
ture SIC = (S, O P), sets P and T (places and tronsitions, respectively) and functions pre, post : T --+

(Top(X) x P)® assigning to each t E T an element of the abelian group over the cartesian product
of terms Top(X) with variables in a suitable set X and the set P of places. The pre (post) function
assigns to each tronsition a sum of terms togelher tuith their places that are consumed{created} by
stuitching this tronsition. o

Remark: For simplicity we assume that the set of variables X used in the term algebra Top(X) is
essentially the sarne for ali AHL-Sigs. ln fact , X is obtained by a fixcd set X fiz of variables whkh is
indexed by the set of sorts S of tbe signature SIC= (S,OP), i.e. X= X fiz x S.

Using this net signa.ture we add equations and a. corresponding algebra to get the notion of an
algebraic high-level net.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

6 Vil Simpósio Brasileiro de Engenharia de Software

3.2 Definition (AHL-NET)
An algebraic high-lefJel net, short AHL-Net, AN = (N S,E, A,cond) consista of an AHL-Sig N S =
(SIG, P, T,pre,post), a set of equations E over the signature, a (SIG, E)-algebra A and a function
cond : T -+ 'PJin(EQN S(SIG)) assigning to each t E T a finite set cond(t) of equations. This set
representa lhe conditions that mtJSI be satisfied for each transition to switch (see 9 . ./). O

R.ema.rk: This notion of AHL-Nets ba.sed on AHL-Sigs is a. revised version of corresponding notions
in (32], (21], (7], [8] a.nd [10]. Previously the notions of a.lgebra.ic high-leveJ net schemes corresponding
to our signa.tures included equa.tions a.lrea.dy a.nd schemes as well as neta were sorted. The la.tter mea.ns
tha.t for ea.ch pla.ce p E P we ha.ve a. unique sort .s E S such tha.t only terms a.nd da.ta. elements of sort .s
a.re allowed for pla.ce p. Our revised version is mixed-sorted beca.use it a.llows terms a.nd da.ta. elements
of different sorts for each pla.ce. This is more flexible for a.pplica.tions a.nd ea.sier in the ma.thema.tica.l
nota.tion. An extended notion of AHL-Nets including ca.pa.cities a.nd initia.l ma.rkings is given in [10].

3.3 Example: File server
A very simple file sen·er ca.n be represented as a. net shown in figure 3.1. There a.re two pla.ces: the
file server (FS) a.nd tbe stora.ge of files (STO), two tra.nsitions corresponding to tbe mode in which a.
request for a. file is made: rea.d only (READ), rea.d/write (WRITE) a.nd one tra.nsition corresponding
to the end of a. write a.ccess, relea.sing files tREL). The basic idea. is to prevent tha.t two processes
write simulta.neously on the sa.me file. Using the cla.ssica.l P /T-nets one would ha.ve to ha.ve a. control
scheme for ea.ch file, since it is not possible to distinguish a.mong the tokens representing the files.
Using AHL-Net-nets we ca.n modeJ this file server with a. very simple net. We assume to ha.ve a.lrea.dy
the specifica.tions of ~. filena.me, ~ a.nd proc, together with their corresponding signa.tures, a.nd
assume tha.t the sorts corresponding to these iiãiiies a.re defined there. The AHL-Sig for this file server
NS = (SIG,P,T,pre , po.st) is given as follows:

SIG: = ~-booJ + sig-filena.me + sig-file + sig-proc

sorts: R.eq,Sta.tus,Fs-request,Fs-a.nswer,Stora.ge,Sto-elem
opns: read, write, rei :-+ R.eq

ID1., not-a.v :-+ Sta.tns
fs-req: Proc X Filena.me X R.eq -+ Fs-request
fs-ans : Proc x FiJena.me x File -+ Fs-a.nswer
Jto : Filena.me x File x Sta.tus -+ Sto-elem
empt~rsto : -+ Stora.ge
ins-sto : Stora.ge x Sto-elem -+ Stora.ge
is-in-sto : Stora.ge x Filena.me -+ Bool
file-in-sto : Stora.ge x File -+ Bool
exista : Stora.ge x Sto-elem -+ BooJ
get-file : Stora.ge x Filena.me -+ File
chg-sto: Stora.ge x Filena.me x Sta.tus -+ Stora.ge
is-av : Stora.ge x Filena.me -+ Bool

P = {FS,STO}
T = {READ, WRITE,REL}
pre = {READ (!s-ret:ip, /nl, r.w/), FS) ED (.s, STO),

W RIT E (!s-ret:J..p, /nl, write), FS) ED (s, STO),
REL (fs-rci_p, fnl,!d),FS) ED (s, STO)}

post = {READ (fs-ans(p, fnl, get-file(,, fnl)), FS) ED (-', STO),
W RIT E (fs-ans(p, fnl, get-jile(J, /nl)), FS) ED (chg-sto(s, fnl, not-a v) , STO),
REL (chg-sto(J,/nl,w,STO)}

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 7

~h req~est of a file can be done by the operation fs-req having as argumenta the process that
JS requestmg a file, the narne of this file and which kind of request is being rnade (write, read or
~elease the file) . The answer of the file server is the operation fs-ans, that sends to the process
Jts requested file. The st~rage consists of a table with filenames, files and the current status of
tb~ ~es, that. can be ava..tlable or not available for writing (in case another process is already
wntmg ~n this ~e). The remaining operations are meant to answer if a filename occurs in the
storage, 1Í a file JS already in the storage, if a storage element (filename, file and status) is in
the stor~ge, to ~et a ~le from the. s_torage, to change the status of a file in the storage and to
answe~ 1f a file. JS avrulable for wntmg. ln this step we give only the signature, the equations
for this operatJOns are added when we define the corresponding AHL-Net. As th d t di e pre- an
pos -con t10ns ass1gn for each. transJtJOns a sum of terms with variables over the signature,
we have to. define the set of vanables to be used. We use as variables the subset X' of the set
X defined m 3.1: X' = { (p, Proc), (fnl, Filename), (Jn2, Filename), (filei, File), (fí/e2, File),
(req, Req), (stl, Status), (st2, Status), (s, Storage) }. As we do not use the sarne variable name
for variables of different sorts, in the rest of the paper we just write the variable name without
causing any confusion.

The pre-function assigns for each transition which tokens must be in wruch places for this
transition to switch. For example, the switching of the transition READ requires that a token
corresponding to the term fs-req(p,/nl, read) is in the FS-place (request from some process
p to read a file fnl) and ("and" is denoted by the plus operator of abelian groups $) that a
token corresponding tos is in the STO-place (the storage).

Note tha.t we do not assign sorts to places, tha.t means tha.t elements belonging to different
sorts ma.y be a.t the sarne place. ln this exa.mple, the place F S ma.y ba.ve tokens from sort
Fs-request and Fs-answer(in fa.ct, it ma.y ha.ve even other kinds of tokens, but these a.re explicitly

used by the transitions tha.t a.re connected to this place).
ln order to get an AHL-Net AN = (NS, E, A, cond) for this AHL-Sig N S we a.dd a. set of

equa.tions E to the signa.ture S IG, written ~ = (sig-fs, E), give a (SIG, E)-algebra. Ag_, a.nd a

function cond:
equa.tions of bool,filena.me, file, proc a.nd equa.tions specifying the stora.ge as a. list of files,

E = such tha.t one file does not ha.ve differ~nt na.mes, one fil_ena.me does not c~rrespond to
different files a.nd one file ca.n not be a.va.ila.ble a.nd not a.va.ila.ble a.t the sarne t1me, a.nd the

A~:

opera.tions on the stora.ge as usua.llist opera.tions.

Asoo1 = {T,F} AFilen11me = {fnl, fn2, fn3}

AFile= {filel,file2,file3}
(ea.ch of the elements of AFile representa a. file. Here we
a.bstra.cted from more concrete representa.tions of files)

AProe = N AReq = {read, write, rel}
Asl .. lul = { av' not-a v} AF.-requul = AProe X AFileM me X AReq

AF~11n1wer = AProe X AFilenome X AFile As1.,-elem = AFilen11me X AFile X Asl .. tu•
ea.ch of the elements of As1or 11ge is a. list of Ast.,-elem sa.tisfying the equa.tions of

Aslor<~ge = the s pecifica.tion.
cond = {READ,.... is-in-sto(s, fnl) , W RIT E,.... is-av(s, fnl), REL ~ is-av(s, fnl)}

This net AN ca.n be gra.phically represented as it is shown in figure 3.1. ln each transition
we add to its name the set of equa.tions tha.t must hold for this tra.nsition to switch. The
la.bels of the ares represent the elements of tbe places wbich are involved in the switching of the
transitions. Each la.bel should be written as an element of (Top(X) x P)®but we a.void tbis in the

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

8 VIl Simpósio Brasieiro de Engenharia de Software

graphica.l representatioo by writing, for example, y E9 z iostead of (y, PLACE) E9 (z, PLACE).
The tokens that may be in the places are specified by the algebraic specification fu. They
belong to the carriers of the algebra A L!. For example, if there are tokens (34, fn3, ;-rite) in

FS and ((fnl, filei, av), (fn2, file2, not-"av) , {fn3, file3,av)) inSTO (from carriers AF.-r_.t

and A s torage resp.), the transitioo W RIT E may switch (its cooditioo is true for these tokens).
T he coosequence tbeo is that these tokens are removed from their places and new tokens are
generated (according to the post fuoction). ln this example, the token (34, fn3, file3) would be
put io the place FS and a new storage in which the entry for the file fn3 is not-av is put into
the STO place.

fs-ans(p,fn1,get-file(s,fn1))

Flgura3.1

READ

is-io-sto(s,fn 1)

REL
- is-av(s,fn 1)

s

s

s

s

3.4 Definition (ÜPERATIONAL BEHAVIOR. OF AHL-NETS)

Given an AHL-Net AN = (S/G,P,T,pre,post,E, A,cond) as presented in 3.1 and 3.1! we
defin e:

1. The set of consistent transition assignments, is CT = {(t , assA)It E T , assA: Var(t) -+
A s.t. A satisfies lhe equations cond(t) with variables Var(t) under the assignment assA} .
Var(t) is the set of variables that occur in the condition equations cond(t) and in the pre
and post conditions pre(t) and post(t) for each transition tE T .

1!. The set of place vectors PV, also called marking group of AN, is the fru abelian group
PV = (A x P)® Within this context A is considered to be A = l!J A., where A. is the

•ES
domain of A of sort s .

An element of PV is called a marking of the AHL-Net AN.

9. The A-induced funct ions preA, postA : CT -+ PV of the AHL-Net AN are defined for ali
(t, assA) E CT by

preA(t, ass.A) = AS SA(pre(t)) and postA(t,assA) = ASS ... (post(t))

where ASSA = (To p(Var(t)) x P)® -+ (A x P)® = PV is defined on generators by
ASS..t(term, p) = (ass..t(term),p) for each p E P , and term E Top(Var(t)).

,.f. Given a marking m E PV and a consistent transition assignment (t , assA) E CT the
successor marking m' E PV of m is defined by m' = m e preA(t, assA) E9 postA(t, assA)

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 9

o
R.emark: The operational behavior of AHL-Nets can easily be extended to define marking

graphs with nodes colored by markings and edges by consistent transition assignments.

3 .5 Fact (FLATTENING)

For each AHL-Net AN there is a P/T-G-Net FLAT(AN), called ftattening of AN, which is
behavioral equivalent to AN in the sense that both have the sarne marking groups and successor
markings.

Construction: For each AHL-Net AN = (NS,E,A,cond) with NS = (SI G,P,T,pre,post)
toe have FLAT(AN) = (Pp,Tp,prep,postp) with PF =(A x P), TF = CT, preF = preA and
postp = postA. O

R.emark: Although the construction of F LAT(AN) may suggest tbat AN and F LAT(AN)
are almost equal, they are essentially different concerning tbe sets of places and transitions and
the corresponding net structure.

4 AHL-net structuring

ln this section we present notions for vertical refinement as well as for horizontal structuring of
AHL-Nets. For vertical refinement we use AHL-Net transformations, wbat yields a bigh-level
refinement concept for Petri nets. For horizontal structuring we present tbe notions of net
fusion and union. Fusions allow us to identify different occurrences of the sarne subnet witbin
a net and the two different kinds of union can be used to compose nets. ln our framework
vertical refinement and horizontal structuring are compatible with each other, i.e. AHL-Net
transformations are compatible with fusions and unions.

4.1 AHL-Net transformation systems

Net transformation systems are closely related with to graph grammars (see [9)). Eacb produc­
tion p of a transformation system consists of a left-hand side net L, a right-hand side net R,
an interface net K that consists of items that are preserved by the rule (are in L and R), and
net morphisms l : K ~ L and r : K ~ R relating the items that are preserved from L to R.

Net morphisms are homomorphic mappings between the corresponding net components.
ln order to apply a production p to a net N we must find a matcb of L in N given by a

net morphism m : L ~ N, and a so-called gluing-condition must be satisfied. This condition
assures that after the deletion of the items that are not preserved by the rule {not in K), the
remaining net is still a well-defined net.

A direct transformation of a net N to M via production

p = (L +- K ~ R) at matcb m : L ~ N, denoted by 1 I I
N ~ M is shown in the following diagram, where C (1) (2)
is the context net (N after the deletion of items by the M

rule and before the addition of the new items from R).
ln a categorical framework, the nets and the net morphisms in tbis diagram belong to the

category AHLNET. The net morphisms in this production belong to a distinguished class
MAHLNET of injective morphisms and the squares (1) and {2) are pushouts in this category
{see [14)). ~From a categorical point of view a net transformation p : N ===> M is a pair of

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

10 VIl Simpósio Brasileiro de Engenharia de Software

pushouts ((1), (2)). This allows to show compatibility of transformations witb different kinds
of categorical constructions whicb preserve colimits (see [14]). Some of tbese results are stated
in section 4.5.

A transformation sequence N ~ M (short: transformation or derivation) &om N to M
means N ~ M or a sequence of n ~ 1 direct transformations N = N0 ~ N 1 ~ •.. ~ Nn =
M

Two direct transformations N ~ MI and N A M2 are called parallel independent if the
overlap of the left-hand sides of the productions p1 and p2 in N consists at most of common

gluing items of p1 and p2. Dually, a transformation sequence N ~ X1 ~ M is called
sequential independent if the overlap of the right-hand side of the first production with tbe
left-hand side of the second production consists at most of common gluing points. ln this case

the direct transformations N ~ X1 and X1 ~ M are also called sequential independent.
Ao AHL-Net transformation system ATS = (AN0 ,P,=>,T) consists of a start net AN0 ,

a set P of productions, the direct derivation {transformation) relation => and a class T of
terrninallabeled AHL-Nets.

If we consider the start net ANo as the most abstract net, and the productions as refinements,
we can see applications of the productions as stepwise refinement.

4.2 Example (FILE SERVER'S TRANSFORMATIONS)

Let us reconsider the file server's example from section 3.3. Now assume that we decided to
specify in more detail how the write procedure should be done. To do this we write a rule that
says bow the W RIT E transition really works. This rule works like a procedure in programming
languages: tbe code corresponding to the procedure {ri~t-hand side of the rule) replaces the
procedure call (left-hand side). The formal parameters are represented by the gluing net (K).
ln the example, the refinement of the W RIT E transition is a net with a new write transition
and a place that keeps a table with names of the files that are not available. This way it is easier
to verify whether a file is available or not. The production p corresponding to this refinement
is shown in figure 4.1 (for reasons of space, wc show only the left and hand-side nets, the gluini
net consists only of the nodes F S and STO - therefore they are marked with a double line in
the figure) .. The production in figure 4.1 deletes the old write procedure and adds a new one.
The application of the production p to the net of figure 3.1 is shown also in figure 4.1.

4 .3 Union

Unions are used to com pose nets. We distinguish two kinds of union: union of t.wo nets Nl and
N2 with respect to an interface I and disjoint union of N1 and N2. ln tbe first case, we say
explicitly wlUcb subnet I of N1 and N2 may be shared in the composed net. ln the disjoint
union, two nets are put together without any shari~. This is a special case of union wit.h
empty interface/. Categorically, the disjoint union is given by a coproduct construction and
the union with interface by a pushout construction. 8oth cases are quite useful in the software
development process.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 11

r··················--·····---·--:
! clariO(o,ftol~!

i•·~ l
:2:.~----- - -- ------ ---- ---------- -- -- ----------- ----------------- -~

+ ! ... ·····~·~!

~11-.. (a,Jhl)

r.--(p,ftll ... -lllo(o,llll)) REAl>

i ~ &-req(p,Jhi,I'Cidl.

[~-- - - ---~

ia-in-tto(a,Jhl) &-req(p,lhl,rood)_ 11-lr>-IIO(I,Ihl)

l ··~ : :.2::'.~---------- -------------------------------------·--·--------···: ,....
Software systems are usually developed by teams, where each person is responsible for a part

of the system. For example, imagine that two different persons are in charge of the construction
of a file server. The first one was responsible for tbe part shown io sectioo 3.3 aod lhe olher
should provide a subnet for tbe creation of new files in the storage. Tbis subnet if sbown io
tbe net 2 of figure 4.2. Clearly there are pla.ces, na.mely FS and STO thal should be sbared
by both parts when putting them togetber. The union of tbese two nets witb the places FS
and STO as interface is shown in figure 4.2 {the result of the union is net 3 in tbis figure).

On the other hand, sometimes it is the case tbat we do not really want to glue ali lhe shared
parts, but just put the nets together and leave thls identification of common parts lo a step
further. If we have, for example, a file server place that is used by many different processes
within thls net, if we would connect each of these processes to tbe file server this could cause a
difficulty in the graphlcal representation and consequently in the understanding of the syslem.
The disjoint union of tbe nets corresponding to these processes and lhe file system is shown
in figure 4.3. The nodes FS are drawn witb thicker !ines because tbey are fusion nodes (see
following section).

4.4 Fusions

The notion of fusion was informa.lly introduced in [20] for colored Petri nets as a technique to
set virtual Links between places resp. transitions, meaning that tbese places resp. transitions
represent tbe sarne. Tbese are in a sense places or transitions that are shared. We have defined
fusion formally for AHL-Nets in [29]. We define fusion of subnets, therefore fusion of single
places or transitions are special cases.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

12 VIl Simpósio Brasileiro de Engenharia de Software

~ .. IAS(p.fai,Jd· file(sJal))
11-to-llo(s,fal)

!!
L. ~ ! f.t .. IQS& :

L ~~ .. ~i Figura 4.1

lf we consider a system with onJy one file scrver, Lhen most of lhe processes from Lh is
system have to access t his file server. Tf we allow sharing of subnets, each of tbe processes
can be specified separately yielding more underslandable subnels, as shown in figure 4.3 (Lhe
fusion nodes are represented by circles wilh lhicker lines). The differenl represenlaLion is also
important if the subnets are drawn in different sheets of paper to warn the specifier lhat some
parts are shared by other subnets, or in other words, these shared parts are the interface between
his subnet and the rest of lhe system . Formally we obLain a neL where ali fusion subnets are
"glued" from nets wiLh fusion nodes by the applicaLion of Lhe fusion conslruction defined 111

[29] <~
1

~,;~!"~;~7";~/ ~~

!! .. IIIZ
AI A-

Io-av ai

io-ia-ao(&.(al)

- 11-av(a.fal)

FlcuraO

There is a genera l relationship betweeo fusion and union. ln [29] we proved lhal we gel
equivalent nets when we do the union of nels Nl and N2 with interface I and when we first
do the disjoint union of Nl and N2 and lhen lhe fusion of lhe occunences of 1 in the resulting
net.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasíleiro de Engenharia de Software 13

4.5 Theoretical results

Using category theory to describe AHL-Nets and its refinements we were able to obtain some
important results concerning parallelism and commutativity of productions in this framework.
These results will only be stated informally in this paper, for a formal version see (12, 29]. These
results reason about the application of productions, i.e., how to get from the more abstract net
representation of the system to the version where all nodes and transitions (and subnets) that
had some refinement were already substituted by the correspon<ling subnets. The resulting
net corresponda to a program where ali procedure calls were substituted by the corresponding
procedures' codes. ln AHL-Nets, however, we allow a much more powerful replacement than
the procedure cal! replacement. We allow the substitution of subnets, that would correspond to
the substitution of a part of a program by another program. If the left-hand-sides of the rules
are overlapping in non-gluing items (that means, different rules are deleting the sarne items)
we may not arrive in the sarne resulting net applying the rules in different orders. For the non­
overlapping case (overlapping in gluing items is allowed) the following theorems guarantee that
we get always the sarne resulting net. For a formal proof of these results we refer to (11, 29).

• The Local Church-Rosser Theorem I states the fact that two parallel independent
transformations (see section 4.1) can be sequentialized in any order.

The Local Church-Rosser Theorem ll means that two sequential independent trans­
formations (see section 4.1} can be computed in any order. Given the sequential indepen-

dent transformation sequence N ~ M ~ X, then we have a sequential independent
P'. I' transformation sequence N ==;> M' ~ X as well.

• Parallel productions are constructed by the componentwise disjoint union of two pro­
ductions p and p' and is denoted by p + p'. The Parallelism Tbeorem asserts that
there are two operations ANALYSIS and SYNTHESIS, that are inverse to each other.
With ANALYSIS we can divide a parallel transformation into two sequential independent
transformation sequences; and with SYNTHESIS we can combine two sequential inde­
pendent transformations into one parallel transformation. The use of both operations
yields the sarne net.

• The Compatibility between transformations and unions theorem states that a
transformation and a union that are parallel independent can be sequentialized in any
order.

• The Compatibility b etween transformations and fusions theorem states that a
transformation and a fusion that are parallel independent (i.e. the overlap of the left-hand
side of the rule and the fusion subnet consist at most of gluing items) can be sequentialized
in any order.

5 Conclusions and future work

ln this paper we have discussed some problems of dassical place/transition nets from the soft­
ware engineering point of view, addressed how these problems have been handled until now,
and proposed a frarnework based on algebra.ic specifications, Petri nets and high-level replace­
ment systems in which these problems are solved in an elegant and general way. Integration
of these three concepts within a common framework in a well-defined way was possible due
to the use of category theory to describe and analyze AHL-Nets and AHL-Net transformation

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

14 VIl Simpósio Brasileiro de Engenharia de Software

systems. Algebraic high-level nets provide a more abstract and easier way do describe systems
than the usual pla.ce/transition nets. Another importa.nt feature of our framework is the use
of net transformations as stepwise refinement for Petri nets, in particular for AHL-Nets. Net
transformations are a very powerful and well-defined vertical refinement technique. Moreover,
for the horizontal structuring of the nets we provide two kinds of union constructions and a fu­
sion construction, and show that these constructions are compa.tible with net transformations,
that means, we show the compatibility of vertical refinement a.nd horizontal structuring in our
framework.

There is already a computer too) to aid in the construction of AHL-Nets. The DJR-system
(17] was developed in the Technical University of Berlin a.nd using it it is possible to describe
and simulate AHL-Nets. Together with the development of the theory, we intend to bring the
new features to the DJR-system. We intend also to integrate the existing system AGG (an
algebraic graph grammar system) (25] with the DJR-system to ha.ve in the sarne environment
also a computer aided stepwise refinement for AHL-Neta.

An interesting application for the techniques devàoped within this pa.per is the HDMS
project (Heterogenwu.s distributed management system) performed by the German Hea.rtcenter
Berlin (DHZB) and the Technical University of Berlin (TUB) and a.n abstract version of it, called
HDMS-A (see [6]), studied within the BMIT-project KOBSO on correct software development.
The aim of HDMS is to develop a.n informa.tion system to supporl all kinds of services for the
staff and pa.tients within a. hospital. The specifica.tiom of this system within HDMS-A a.re
meant to be written in a.n a.lgebraic specifica.tion l~e. As the system is very la.rge, the
first model of the system was made using Petri nets, in fact, a. semi-formal combination of
conditíon/event nets, short C/E neta, aJ~ebraic specifica.tion pieces and informal requirements
in naturallanguage. As the resultin~ C/E net is quitelv~ some modula.riza.tion concepts were
used in an informal wa.y to brea.k it into sma.ller pa.rta. But the use of C/E nets, where tokens
a.re "black boxes", lea.d to the fact tha.t ma.ny a.ctions tha.t could ha.ve been done in parallel had
to be sequentia.lized. lnspired by these concepts, we deve!oped the formal structuring concepts
described in this paper. Moreover, a. descríption of the HDMS-A-system using AHL-Nets is in
preparation, allowing a much more precise speci:fica.tíon a.nd also a. higher degree of parallelism
in the system. We intend to continue wor~ on structurin~ concepts because they pla.y a.
central role in description of real systems. One of the ideas in this direction is to use the
concept of net tra.nsformations not only as refinements but also as a module concept for Petri
nets.

Another important a.rea a.re inva.riants for AHL-Nets, which were a.lrea.dy defined in (8] .
Rea.cha.bility graph analysis is a. powerful ana.lysis too) to find out properties of Petri nets. The
main drawback of thís method is the very big size of the result~ graph. ln [19] it was demon­
stra.ted that reachabílity graphs of high-level nets a.re much smaller than of the corresponding
P /T nets. The definition of reachability graphs for AHL-Nets is of great importance for the
analysís of this kind of neta.

Topics like guarded a.rcs (a.llowing a. va.ria.ble number of tokens in each switching of a tran­
sition) and dynarnic nets (called invocation tra.nsitions in (20]: nets that change their structure
according to firing of some transitions) a.re also very interesting and will be analyzed within
the framework of AHL-Nets.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 15

References

[1) J . R. Abria!. Programming as a. mathematical exercise. ln C. A. R. HOARE, editor,
Mathematicallogic and programming languages. Prentice-Hall International, 1985.

[2) G.A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The
MIT Press Cambridge, Massachusetts, London, England, 1988.

[3) E. Astesiano and G. Reggio. An outline of the SMolCS approach. ln M. Venturini Zilli,
editor, Mathematical models for the semantics of parallelism, volume 280 of Lecture Notes
in Computer Science. Springer Verlag Berlin, 1987.

[4) J. A. Bergstra and J. W. Klop. Algebra of communicating processes. ln CWI Monographs
I , 1986. Proc. CWIU Symp. Math. and Comp. Sei.

[5) D. Bj!llmer and C. B. Jones, editors. The Vienna Development Method: lhe meta-language,
volume 61 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1978.

[6) F. Cornelius, Marcus Klar, and Michael Lõwe. Ein Fallbeispiel für KOR.SO: Ist-Analyse
HDMS-A. Tecluúcal report, Technical University of Berlin, 1993. To appea.r.

[7) C. Dimitrovici and A. Heise. Transformation und Komposition voo P /T-Netzen unter
Erhaltung wesentlicher Eigenschaften. Technical Report 342/6/91, Technical University
of Munich, jul. 1991.

[8) C. Dimitrovici, U. Hummert, and L. Petrucci. Composition and net properties of alge­
braic high-level nets. In Advances of Petri-Nets, Lecture Notes in Computer Science 489.
Springer, 1991.

[9) H. Ehrig. lntroduction to the algebraic theory of graph grammars. ln 1st lnt. Workshop on
Graph Grammars and their Application to Computer Science and Biology, Lecture Notes
in Computer Science 79, pages 1-69. Springer, 1979.

[10) H. Ehrig, M. Gro8e-Rhode, and A. Heise. Specification techruques for concurrent and
d.istributed systems. Technical Report 92/5, Technical Uruversity of Berlih, jan. 1992. In­
vited paper for 2nd Maghr. Conference on Software Engineering and Artificial lntelligence,
Tunis,1992.

[11) H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concurrency
in High Levei Replacement Systems. Mathematical Structures in Comp. Sei., I :361-404,
1992.

[12) H. Ehrig, H.-J. Kreowski, and G. Taentzer. Canonical Derivations in High-Level Replace­
ment Systems. Technica.J Report 6/92, University of Bremen, 1992.

[13) H. Ehrig and B. Mahr. Fundamentais of algebraic specifications, volume 6 of EACTS­
Monographs in Theoretical Computer Science. Springer, Berlin, 1985.

[14) H. Ehrig, J. Padberg, and L. Ribeiro. Algebraic high-level nets: Petri nets revisited.
Technical Report 93-06, Technical University of Berlin, 1993. To appear in the Proc. of
the ADT-COMPASS Workshop'92, Caldes de Malavella, Spain.

[15) H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici, and M. Groíle-Rhode.
Algebraic data type and process specifications based on projection spaces. Theoretical
Computer Science, 332:23-43, 1987.

[16) H.J . Genrich a.nd K. Lautenba.ch . System modelling with high-level Petri nets. Theoretical
Computer Science, 13:109-136, 1981.

[17) D. Giesel, J. Krüger, a.nd R. Jeschke. Grundkonzepte und lmplementierung eines Netzw-­
erkzeugs für Algebra.ische High-Level Netze. Technical Report 90/34, Technical University
of Berlin, 1990.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

16 VIl Simpósio Brasileiro de Engenharia de Software

[18] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall lnternational, London,
1985.

[19] P. Huber, A. M. Jensen, L. O. Jepsen, a.nd K. Jensen. Rea.chability trees for high-level
Petri nets. High-level Petri nets: theory and application, pages 319-350, 1992.

[20] P. Huber, K. Jensen, a.nd R. M. Shapiro. Hierarquies in coloured Petri nets. High-level
Petri nets: theory and application, pages 215-243, 1992.

[21] U. Hummert. Algebraische High-Level Netze. PhD thesis, Technica.l University o! Berlin,
Department of Computer Science, 1989.

[22] K. Jensen. Coloured petri nets a.nd the invariant metbod. Theoretical Computer Science,
14:317- 336, 1981.

[23] K. Jensen a.nd G. Rozenberg, editors. High-level Petri nets: theory and application.
Springer-Verlag, Berlin, 1992.

[24] LOTOS - A formal description tecb.nique based on temporal ordering of observational
behaviour. Information Processing Systems - Open Systerns lnterconnection ISO DIS
8807, jul. 1987. (ISO/TC 97/SC 21 N).

[25] M. Lõwe and M. Beyer. AGG - An Implementation of Algebraic Graph Rewriting.
Accepted at the Fifth lnt. Conf. on Rewrlting Techniques and Applications, 1993.

[26] J. Meseguer and U. Monta.nari. Petri nets are monoids. ln Proc. Logic in computer science,
Edinburgh, 1988.

(27] R. Milner, editor. A calculus for communicationg systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[28] J . Padberg. Theory of High-Level Replacement Systems with Application to Petri Nets.
Diplomarbeit, Tecb.nica.l University of Berlin, 1992.

[29] J. Padberg, H. Ehrig, a.nd L. Ribeiro. Algebraic High-Level Net- Tra.nsformation Systems.
Technical Report 93-12, Tecb.nica.l University of Berlin, 1993. To appear in Mathematica.l
Structures in Computer Science.

[30] C.A. Petri . Kommunikation mit Automaten. PhD tbesis, Schriften des lnstitutes für
lnstrumentelle Mathematik, Bonn, 1962.

[31] W. Reisig. Petri nets. Springer Verlag, 1985.
(32] J . Vautberin. Parallel specification with coloured Petri nets and algebraic data types. ln

Proc. of the 7th European Workshop on Application and Theory of Petri nets, pages 5-23,
Oxford, England, jul. 1986.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396

