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Abstract 

We study formal development of functional programa from algebraic specifications in Lhe Extend
ed M L framework. We present a case sLudy on the modular specification and refinement of (finite) 
set operations in the ExLended ML wide>-spectrum specification/programming language. Our main 
objective is to present the module faciliLies and development methodology of E:xtended ML, Lheir 
application to a practical problem, and tbeir suitability for the formal development of (modular) 
Standard M L programa. 

Sumário 

Estudamos o desenvolvimento formal de programas funcionais, usando especificações algébricas, 
em Extended ML. Apresentamos um estudo de caso em especificação modular e refinamento de 
operações de conjuntos (finitos) usando a linguagem de especificação/programação Extended ML. 
Nosso principal objetivo é apresentar a linguagem de módulos e a metodologia de desenvolvimento 
Extended M L, suas aplicações em problemas práticos e sua adequação para o desenvolvimento formal 
de programas (modulares) em Standard ML. 

1 Introduction 

As noted in [14], "Lhe ultimaLe goal of work on program specification is Lo establish a pradical framework for Lhe 
systematic production of correct programa from requirement specifications via a sequence of verified developmeot 
steps•. We present a modular development of basic operations on seta from a requirement specification of their 
bebaviour io the Extended ML framework [16, 11]. Our goal is Lo preseot an extensive use of the modular 
facilities of tbe Extended ML laoguage and show bow these facilities simplify the program specification and 
formal development. 

Extended ML (EML) is a wide-spectrum specification/programming language for tbe formal development 
of Standard ML (SML) [4, 5] programs by means of matbematically verified development steps. Both EML 
and SML languages have formal semantics describing every aspect of the languages. Tberefore, in tbe EML 
framework a complete degree of formalisation in the development process is acbieved, which can be expre&l!ed 
as follows: Lhe resulting program is considered Lo be correct with respect Lo ita initiaJ requirement specification 
if and only if each development sLep is proved to be correct in a formal calculus consistent witb tbe formal 
eemantics of EML and SML. 

Tbe EM L language is based on Lhe module system of SM L, and tberefore strongly supports modular sped
Jiaa&ions and the devclopment of m odular programs. Both aspecta are essentiaJ for tbe formal development of 
la.rge soflware systems. Modular specifications simplify tbe complexity of the development steps, by localising 
design decisions and verification proofs to small, self-contained program uoita. On tbe other hand, it is widely 
accepted that a meihodological use of modularity io programmiog makes large systems easier to maintain and 
improves the reusability of parta of developed systems. Toge~ber, modular speeifications of modular prograrns 
allow specilicatJons, and consequenUy iheir verilication proofs, to be more easily maintained and reused. 
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Although the design of modular systems have been widely covered in the literature, the problem of mod
ularising formal specifications has received litUe attention until recently. ln lhe EML framework, modular 
specifications are natural , and provide powerful abstractions, as already noted in [8]. Furthermore, the use of 
observational equivalence [13] as a correctness criterion in the devclopment process introduces a high degree of 
flexibility and generality in this framework. 

The EML language and development methodology has been extensively studied in the literature. ln Lhis 
paper, EML is brieOy introduced by means of examples. The reader unfamiliar with EML, or wishing lo 
understand its mathematical underpinings, is referred to the litcrature cited in Section 2.2. Our goal in this 
paper is to show a particular case study and investigate its problems in the context of Extended M L, rather 
tban providing a detailed introduction to Lhe language. 

ln Section 2, we review the main features of EM L and SM L. We then present the EM L development 
methodology in Section 3. Sections 2 and 3 are based on previous work [14]. The reader familiar with EML 
language and methodology might want to skip Sections 2 and 3. ln Section 4, we show a complete dcvclopment 
of basic set operations using tbe EM L methodology. Finally, Section 5 draws some conclusions and present 
suggestions for further work. 

2 The Extended ML Specification Language 

Extended ML (EML) is a wide spectrum specification/programming language for formal development of pro
grama in the functionallanguage Standard ML [4 , 5] . EML is called wide spectrum because it can express ali 
stages of a development process in a single framework: the high-level specification, the executable Standard M L 
program, and abstract code whicb cootains both non~xecutable specifications and Standard M L programs. 

EML is a proper extension of the programming language Standard ML (SML). Before introducing this 
extension we present the main aspects of SM L that are necessary for underslanding I ater examples. This 
presentation is necessarily short, and is given maioly to make this work self contained. The reader is referred 
to [4, 9] for didactical accounts of SML, and to [5] for the language's formal definition. 

2.1 An Overview of Standard ML 

SML has two distincts sub-languages: the Core and the Module languages. The SML Core language provides 
features for programming "in the small". The Core is an eager functional programming language, with poly
morphic types, a strong type syslem which allows slatic type inference, user defined concrele and abstract data 
types, a mechanism to raise and handle run time exceptions, and imperative features like referentes and assign
ment. Programs in the SML Core language resembles other functional programming languages, e.g., IIOPE [I]. 
The following example illustrates a smallsubset of the SML Core featu res, including the pre-defined data type 
of polymorphic lists. 

Let us represent finite sets of integer numbers as lists of integers, and implemenl SML funclions for con
structing sets and to tesl for set membership. 

type intset = int list 
val eapty : intset = nil 
tun add(a, a)= a :: a 
tun member(a, empty) = talse 

I member(a, b::s) • (a= b) orelse member(~. a) 

Tbe constanl eapty represents the empty set and is implemented by the (pre-defined) constant nil (the empty 
list). The function add simply builds sels using the list function :: (read cons). The function meaber is defined 
by case analysis on the structure of sets. The first clause states that the empty set has no elements, and the 
second clause says that ~ is a member of a set b : :a if a is equal b or else a is a member of a . Many SM L 
features are not reviewed here, including record types, high-order functions, imperative features , exceptions, 
concrete and abstract data types (the module language provides a more Oexible way of encapsulating data). 

The SM L Module language providcs features for progra.mming "in lhe large". Using these features large 
SM L programs can be structured in smallself-contained programs (called structures) with an interface (called 
a signature). Interfaces may be explicitly giveo by the programmer or inferred by the type inference system. 
Functors are para.meterised structures with an explicit input signature and an output signature. Applying a 
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funcl.or Lo a sLructure matcbin~ ita input si~ature yields a structure matcbin~ i ta output si~nature. Hereafter, 
we use Lhe Lerm module l.o refer l.o both functor and structure, whenever it does noL cause ambi~ities. 

ln Lhe following example, we will define seta of objecta of an arbitrary type, provided Lhis type admita 
equality on i ta objecta' . Tbis is accomplisbed by Lhe definiLion of a funcl.or l.ogether with ita input and output 
signatu res. 

aignature ELEJI = sig eqtype elea end 

ai~ature SET = 
aig 
atructure Elea : ELEJI 
type aet 
val aeaber 
val add 

Elea. elea • aet -> bool 
Elea.elea • aet - > aet 

end 

funct or Set( X ELEX) 

a truc t 
atructure Blea = X 

aig include SET 
aharing Elea • X 

end 

type aet = Elea. elea liat 
val empty = nil 
fun add(a, s ) = a : : a 
fun aeaber(a, nil) = falae 

I aeaber(a, b :: a)= (a= b) orelae aeaber(a, a) 
end 

atructure IntElea : ELEJI = atruct type elea " int end 

atructure IntSet = Set( IntBlea) 

This defines a functor Set with input aignature ELEX and output ai~ature SET. Wben applied l.o a struc:Lure 
matching ELEM, e.g. IntELea, Set yields a. structure ma.tcbing SET. The Module language also has a atroo~ 
Lype system LhaL a.llowa signaLure inference. For the defioiLion of Set l.o be correctly typed, ita body muat 
define a.L leasL Lhe objecta that a.re specilied in the output si~oature: a sub-atructure called IUea matcbing Lhe 
si~na.ture ELEX; a constant eapty; and functions add and aeaber, with Lheir Lypes as apecified in SET. The 
sharing constra.int forces Lhe (actual) parameter structure X and Lhe resultin~ aub-atructure IUeal.o be Lhe sarne 
object. 

T be function IntSet . add constructa seta of integer numbers using Lhe constant eapty and tbe iote~er 
constanta. T he functioo IntSet .aeaber can be used l.o test membership on seta constructed by IntSet . add. 

Signatures play a dual rôle in Lhe Module lao~uage. On tbe one hand , they act as an interface, restrictin~ 
tbe externa! view of internal module componenta. T herefore, only what is expliciUy specilied in Lhe si~ ature is 
visible from outside of a. module2 • On Lhe oLher band , signa.tures impose constra inta on whicb compooenta must 
be delined in Lhe body of Lhe modules, l.ogether with their types, i.e., they define Lhe minimal set of compooenta 
tha.t musL be defined in Lhe module's body. 

For instance, in Lhe above exa.mple Lhe signaLure SET requires Lhe existence in Set of a. aub-struc:ture Elea, 
a consLanL empty, and Lwo funct iona add and aeaber. Furthermore, Lhe users of IntSet cannot make uae of 
Lhe internal representation of seta as lista. This is to sa.y tha.L IntSet implementa an a.bstract data Lype and 
Lhe only visible operations on this type are those defined in Lhe si~ature. T he encapsula.tioo provided by Lhe 
Module language is essential l.o Lhe development of lar~e systems st.ructured in small modules, and this is Lhe 
basis of the EML modular pro~ra.m developmeot meLhodology, whicb is reviewed io Sect.ioo 3. 

The above overview of Lhe SML modules is necessarily short. ln (9), tbe interested reader willlind a more 
deLailed introduction to tbe Module language. 

I An SML type admite equality if it ia not ao ah.t ract data type or it io not a funclion type. 
2Thia ,. not true, in r;enual, for S ML, but it holdo for EML module ~An«uar;e . 
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2.2 An Overview of Extended ML 

ln this section, we give a brief overview of the Extended ML specificationfp rogramming language. We only 
summarise lhe EML features that a re necessary to the understanding of )ater examples. The reader unfamiliar 
with EM L language is referred to the literature cited below. 

As noted in Section 2.1, in the SM L Module language signatures act as interfaces to modules, defining which 
objects can be externally accessed, together witb their types. This information is sufficicnt to use SM L as a 
programming language. llowever, a signature does not, in general, provide enough information to be considered 
as a specification of a programming task. ln order to specify a function completely and non-ambiguously we 
need its type and a formal description of its input/output behaviour. 

ln EM L, axioms are allowed in signatures to enbance their information content concerning the input/output 
bebaviour of tbe functions. That is, ax.ioms provide a formal definition of lhe components of the modules. 
Axioms are written in a notation of first-order equationallogics in which equality is admitted on ali types. For 
instance, we may extend the signature SET with the specification of the functions add and member as follows: 

signature SET = 
aig 
atructure Elem ELEM 
type aet 
val. eapty : aet 
val. add : Elea.elea • aet -> aet 
val. aeaber : Elea. elea • aet -> bool 
axioa torall a => aeaber(a, eapty) = talae 
axiom torall a, b, x => aeaber(a, add(b, a)) = (a • b) orelse meaber(a, a) 

end 

For a structure to match, or satisfy, the above signature, it must supply a sub-structure Elea matching ELEM, a 
constant eapty and the functions add and aeaber, with their types as in SET, and furthermore the structure's 
body must satisfy lhe ax.ioms in lhe signature. Satisfaction in EM L is taken to be up to observational equivalence, 
i.e., the body of the structure does not h ave to satisfy tbe axioms in lhe signature exactly, but only witb respect 
to its observable bebaviour. The use of observational satisfaction instead of ordinary logic satisfaction is a point 
of major importante in tbe EML framework, wbich allows a higb degree of Oexibility in the implementation. 
However, a more detailed discussion on observational equivalence is outside the scope of this paper. The 
interested reader might want to see [13] for a detailed account of observational equivalente i o tbe context of 
EML, and [11] for a more general approacb to tbis issue. 

Signatures extended with axioms constitute a specification of a program task, that is, we must construct a 
functor or structure satisfying this signature. The development of such a functor or structure include stages in 
which some functions are not yet defined and the body of other structures and functors may contain ax.ioms. 
ln order to allow these stages to be expressed in EML, structure bodies are allowed to include a mixture of 
axioms, íncomplete expressions and SML code. A possible stage in lhe deveJopment of the functor Set may b .. 
as follows: 

tunctor Set(atructure X : ELEK) : aig include SET 
ahari.ng X • Elea 

atruct 
atructure Elea = X 
type aet = Elem . elea liat 
val eapty : aet = nil 

end 

val add : Elea. elea • aet -> aet = ? 

val aeaeber : Elea .elea • aet -> bool = ? 
axioa toral.l a => aeaber(a, eapty) = talae 
axioa torall a, b, x => aeaber(a, add(b , a)) • (a = b) orelae aeaber(a, a) 

end 

The place-holder expression 1 is used above to declare functions which are not yet in an executable form. ln 
SML, the ~ype of an expression, and in particular a function, can be inferred from context information. ln EML, 
the type of non-execu~able functions declared using ? must be explicitly given, as in the above declarations of 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


66 VIl Simpósio Brasileiro de Engenharia de Software 

add and member. The expression ? can also be used to declare a type wh06C representation is not yet defined, 
and in place of functors or structures bodies. The latter use of the place-holder expression is useful to specify 
the initial programming task. For instance: 

tunctor Set(X : ELEK) : sig include SET 
sharing X = Elea 

end = ? 

The above functor specification is an EML specification of a programming lask. Program development airns to 
suply an executable body to replace the structure expression ? . 

The EML language is the extension to SML as described above: axioms are allowed in signatures to specify 
the bebaviour of module components; the place-holder expression ? is allowed in place of a type expression, 
a value expression or a structure expression; and a.xioms are allowed in the body of structures and functor to 
specify the bebaviour of variables and functions declared using ? . He.reafter, we will assume tbat ali axioms are 
implicitly universally quantified, whenever this does not cause ambiguities. 

lt is important to emphasise that the choice of tbe logics and the notation to write axioms is, at some extent, 
arbitrary. The EML semantics is parametric on such a choice. The particular choice of first--order equational 
logics is convenient since an SM L variable or function declaration is a particula.r form of equation that happens 
to be executable. Therefore, axioms and declarations are written and inte.rpreted in an uniform framework. 

An extensive literature exists covering many aspects of tbe EM L language and metbodology: [11, 1 O] give 
detailed introductions to EML in a tutoria! form; the original semantics of EML, based on the tbeory of 
institutions [3], appears in [15, 16]; [12] defines the syntax and some aspects of Lhe semantics of EML; the 
fu ll semantics, including signature matching extended to deal witb observational satisfaction of a.xioms is given 
in [6]; [7] provides a gentle introduction to this formal semantics. 

3 The Extended ML Development Methodology 

ln this section, we review tbe EML development methodology. The starting point of a {formal) development 
process in EM L is a functor of the form : 

tunctor F(X : SIGin) : SIGout = ? 

where SIGin and SIGout are EM L signatures, possibly conLaining axioms. From tbis initial specification we 
should work towards a functor in which an (executable) SM L structure expression replaces ? . The development 
is carried out in various formally verified developmenl steps, which ensures Lhat the final executable functor is 
correct with respect to its initial specification. 

ln general, any ExLended ML functor specification having a body consisting of? ora non-Lrivial body with 
non-executable components is regarded as a programming task. ln the former case, this task is to replace 1 by 
a non-trivial {and potentially non-executable) body that satisfies tbe functor 's signature. ln tbe latter case, the 
task is to replaces axioms in Lhe funcLor's body by SML function or value declarations. 

The EML development methodology describes three ways to proceed from aspecification or abstract program 
towards a (more concrete) program : 

Decomposition step: decompose a functor in otber functors , which will then be regarded as new programming 
tasks. 

Coding s t ep: provide a non-trivial funcLor body to replace ?, which may contain axioma and components 
declared using ? . 

Refinement s t ep: replace a non-trivial functor body by another {more concrete) body in wbich some axioms 
and declarations using? are replaces by concreta SML declarations. 

Decomposition steps are used to structure tbe development into smaller tasks, and can be considered as pro
gramming,pr development, "in the large". Coding and refinement can the.refore be considered as programming, 
or development, "in the small" . The use of each development step is illustrate in a case study in Section 4. 

Each development stcp gives rise to one or more correctness conditions, or proof obligations. These conditions 
or obligations can be derived automatically from a development step. A development is considered to be correct 
if each proof obligation generated during the development is formally verified, or discbarged. ln general, a proof 
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obligation is a relation between the state of the development bcfore and after a development step. The generic 
form of a proof obligation is an observationa/ satisfaction relation: 

SPt U ... uSPn Foss SP 

where SP1,l ~ i ~ n, are signatures or structure expressions after the development step has taken place, SP 
is the specillcation before the development step, and OBS is a set of the (observable) types of SP (actually 
a subset of the types of SP). Verifying or discharging a proof obligation involves showing that the axioms i o 
SP logically follows from the axioms and declarations in tbe union of tbe left hand side of the relation, up to 
observational equivalence with respect to OBS. 

Proofs of observational equivalence are notoriously difficult (see [17) for a detailed discussion on this problem). 
Since ordinary logical satisfaction is stronger than observational equivalence, it is sufficient to prove tbat SP1 U 
... USPn F SP, if it holds. For the examples of next section, ordinary logical satisfaction will be used, since it 
holds for each proof obligation during the developrnent process. 

Let us now detail each development step and show the proof obligations they give rise: 

Decomposition step: given a functor speciflcation 

functor F(X : SIGinO) : SIGoutO c ? 

We can decçmpose F into two3 functors G and H, as follows: 

functor G(I : SIGinl) : SIGoutl = ? 
functor B(I : SIGin2) : SIGout2 = ? 

where the new deflnition of F is as follows: 

functor F(X : SIGinO) : SIGoutO = G(B(X)) 

The new deflnition of F must be a well-formed EML functor definition, regarding syntax and type checking. 
Furthermore, this decomposition generates tbree proof obligations: 

SIGinO FOBS SIGin2 SIGout2 FOBS SIGinl SIGoutl FOBS SIGoutO 

Coding step: given a functor specification: 

functor F(I : SIGin ) : SIGout = ? 

a coding step provides a non-trivial body to replace ? : 

functor F(X : SIGin) : SIGout a strerp 

where atrerp must be a well formed EML structure expression. This coding step generates one proof obligation: 

SIGin U strexp FOBS SIGout 

Refinement step: given a functor specification: 

functor F(X : SIGin) : SIGout = atrerp 

a reflnement step replaces atrexp by aoother (more coocrete) structure expression: 

functor F(X : SIGin) : SIGout = atrerp' 

where atrexp' must be a well forrned EML structure expression. This refinement step generates one proof 
obligation: 

SIGin U strexp• FOBS atrexp 

According to the methodology described above, every step in a developmeot h as the following structure: 

• Design Decision: a choice of which developmeot step to use and how to execute the chosen step. 
• The step proper: the new state of the development that arises after the developrnent step. 
• Verilication: the proofs tbat discharge the obligations generated by the development step. 

The following case study illustrates the use of the EM L development methodology. 
3ln general, we can decompOAe F in " > O funct.oraj this generaliaat.ion i• trivial a.nd can be found in lhe EML litera.t.u.re dted 

a.bove. 
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4 A Case Study: Finite Sets 

ln ~his section we present ~he steps of the developmen~ of an SML program from the initial requirements 
specification to t hc final executable program. Our objective is to illustrate the EML development methodology 
and sbow bow it can assist in structuring tbe development of large software systems. Tbe program consista of 
several functions tbat work on an abstrac:~ data ~ype of finite sets, called aet . We will provide a constant value 
eapty to represent tbe empty set and the following functions: 

• eingleton: convert an element of type elea into a set of type set with only this element in it. 
• add: adds an element to a set, if it is not already there. 
• delate: deletee an element from a set. 
• union: tbe union of two seta. 
• interaection: intersection of two sets. 
• dit:terence: the set difference between two sets. 
• meaber: ver i fi es if an element belongs to s set. 
• aeabera: returns an elea liat that contains ali tbe elements of a set. 
• cardinality: returns tbe number of elements tbat are in a set. 

Two other functions, inliat and tvice, are also part of tbis program. The function inliet verifies if an 
element belongs to a list, the function tvice verifles if an element occurs twice in a list. These functions are 
used to simpli fy the specification of cardinality, as wilJ be sbown below. 

4.1 Developing the SML Program 

T be development steps that construct one implementation of the program {informally) described above are 
given. Tbe development has a form of a {finitely branc.bing) tree, the development tree, wb011e nodes represent 
design decisions. The development tree for tbia caee study is sbown in Figure I . 

Step O Specificolton. Tbe initial formal specification of tbe program described above is given by an Extended 
ML funclor speciflcation that bas an input signature ELBJI and an output signature SET as follows: 

signature ELEII • 
aig 

eqtype e1 .. 
Yal leq : el .. • elea -> bool 
ado• leq(a,b) 
axioa leq(a,b) andalao leq(b,a) i apliea (a•b) 
axioa leq(a,b) andalao leq(b ,e) iapliea leq(a,c) 

e:nd ; 

aignature SET • 
aig 

type dea 
type ••t 
Yal .. pty : aet 
Yal aingleton : •1•• -> aet 
Yal union : aet • aet -> aet 
val add : aet • ele• -> aet 
val interaeetion : aet • aet -> aet 
Yal •••b• r : el .. • aet -> bool 
Yal aeabera : aet -> el .. liat 
Yal eardinality : aet -> int 
val differenee : aet • aet -> aet 
Yal dela te : aet • el .. -> aet 
Yal inliat : •1•• • el .. liat -> bool 
Yal tw!ee : elea • elea liat -> bool 
uioa inliat (a,nil) • falae 
axioa inliat(a,b::l) • (a•b) orelae inliat(a,l) 
axioa twice(a,nil) • falae 
axioa twice(a,b: :l) • (a•b) andalao inliat(a,l) orelae twiee(a,l) 
axioa aeaber (a , .. pty) • falsa 
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axioa aeaber(b,aingl eton a) • (a•b) 
axioa aeaber(a,union (a,t)) • aeaber(a,a) orelae aeaber(a,t)) 
axioa aeaber(a,a) • inliat(a,aaabera a) 
axioa t•ice(a,aeabera a) • falae 
axioa cardinality a • length(aeaber a a) 
axioa add(a,a) • union(a,aingleton a) 
axioa aeaber(a,interaection(a,t)) • aeaber(a,a) andalao aeaber(a,t) 
axioa aeaber(a,difference(a,t)) • aeaber(a,a) andalao not(aeaber(a,t)) 
axioa delete(a,a) • difference(a, aingleton a) 

end; 

functor Set(I : ELEM) : SET • ? 

69 

The specification of cardinality uses the built in function length, whose behaviour we can assume to be 
correct. The use of t vice !Uarantees lhat lhere are no duplicates in a list gentrated using aeabers, nnd 
therefore simplifies the implemenlalion of cardinality. lt is important lo notice that other specifications of 
cardinality, e.g., lhe usual sel theoretical deflnit.ion, rnay noi require Lhe use of t vice. 

The parameter to the program is a structure ihai defines a type alem that musi adrnit. !'quality, and a 
function leq thai defines a partia! order on the elernent.s of this type. The implementation of the program 
admit.s any choice for elea and leq tbat saltsfles tbe axioms m ELEM. Thts abstraction makes lhe developmcnt 
more general because ihe choice of representation for elem and an actual implementalion of leq are only 
necessary by the time the functor Set is used. 

Step 1 Dutgn dtcmon: Dtcomposalton lmplement the funcLions add and delete in terms of the functions 
u.nion and difference. This step reduces lhe number of functions thaL musi be eiTectively implement«>d, 
because the implementations of add and delate will follow lrtvially from the a:xioms in SET. Wc need two new 
functors and a new signature: 

aignature SET • • 
aig 

atructure Elea : ELEM 
open Elea 
(• the reat of thia aignature ia aa SET vithout the daclarationa of the type 
elea, the apecificationa of add and delate, and the axioaa that 
aention add and delate • ) 

end ; 

tunctor AddDelete(S : SET') : SET • ? 
functor Set'(l : ELEM) : aig include SET' 

aharing Ele• • X 
end • ? 

We can then implement Set in terms of AddDelete and Set' as follows: 

fu.nctor Set(X : ELEM) : SET = AddDelete(Set'(X)) 

Verification We musl show that AddDelete(Set' (X)) is a wrll formed EM L structure expresston and lhat 
tbe interfaces match, as defined in Section 3, for the decomposition slep . The structure expression is trivia lly 
well formed. This property can always be automatically checked by a lype checker The proof obhgalions that 
arise from lhe signature malchings are trivially discharged since ali signatures match exact)y. llereafter, we will 
only juslify non-irtvial proof obligations. ln parttcular, we wtll assume that each structure expression ts wcll 
formed. 

We now havc a choice of which functor to code. This means to follow either lhe rtght or lhe l!'ft branclt al 
lhe root of thP developmenl tree of Figure I 

Step 2 Destgn deciSton: Codtng. lmplemenl the functor AddDelete by rcplacing ? by a non trtvial slruclure 
expression. 

functor AddDelete(S : SET' ) : SET • 
atruct 

open S 
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type e1ea 
fun add(a : aet , • : e1ea ) • ? : aet 
fun de1ete(a : aet , • : e1ea) •? : aet 
axioa add(a,a) • union(a,aing1eton a) 
axioa de1ete(a,a) • ditference(a, aing1e t on a) 

end; 

VIl Simpósio Brasileiro de Engenharia de Software 

Verification Typechecks correctly. We have to show that: SET' U body I= SET. 
Proof Ali Lhe axioma in SET appear in the body of tbe functor or in the signature SET'. 

Jt is important to remember..that SM lrfunctian declarations are a particular form of a.xiom in which the left 
band side is a linear paHern. Therefore, tbe a:xioms in the body of AddDelete can be trivially converted into 
SML function decla.ratioll5, which is done in the next development slep 

Step 3 De6ign deciaaon: Refinement. Convert tbe axioma for add and delete into SML code. Note tbat 
the SM L code for tbese functiona is very similar lo Lhe axioms. T bis makes the verification phase trivial, and 
even p06Sible to be performed automatically. 

functor AddDe1ete(S : SET ') : SET • 
atruct 

open S 
type ele• • Ele• .el ea 
fun add(a,a) • union (a ,aing1eton a) 
f un de1ete(a,a) • difference (a, aing1eton a) 

end; 

Verification Typechecks correctly. We have to show t hat: SET' U current body I= prnioua body. 
Proof Ali the axioms in the previous version of the body follows directly from tbe definition of tbe fuoctions 
in lhe curreot body. 

At lhis stage, the body of AddDelete contai os ooly executable SM L code. We can oow start tbe developmeot 
of tbe funclor Set •. 

Step 4 Desagn deci6ion: Decompo&~lion. At tbis stage we need to choose a represeotation for the type set. 
Some p06Sibilities are: bioary trees, balanced binary trees, unordered lista, and ordered lista. We decided to 
implemeot aet io terms of ordered lisLs (using leq) of objecLs of type e1- without duplicates4 • We delay l he 
actual definition of lhe functions in Set' i o terma of lhe functiooa oo lisLs to a !ater slage in the developmeol. 
At this point, we proceed by another decompositioo and we need two new functors and a new signature: 

aignature ORDDUP • 
aig 

atructure Elea : EI.EII 
open Elea 
val inliat : e1ea • •1•• 1iat -> boo1 
val t vice : e1ea • •1 .. 1iat -> boo1 
va1 appendliat : e1ea 1iat • e1ea 1ia t -> e1ea 1iat 
va1 inter : • 1•• 1iat • e1ea 1iat -> e1ea 1iat 
va1 dif : • 1•• 1iat • e1ea 1iat -> e1ea liat 
axioa appendliat(ni1, t ) • t 
axioa appendliat(a, ni1 ) • a 
axioa (a • b) iap1iea appendliat(a::a,b::t) • a: : appendliat (a, t) 
Biioa 1eq(a,b) andalao not (a•b) iap1iea appendliat(a::a ,b::t) • a::appendliat(a,b::t) 
axioa 1eq(b,a) andalao not (a•b) iap1iea appendliat(a: : a,b::t) • b ::appendliat(a::a,t) 
axioa dif(ni1, t) • ni1 
axioa dif (a, ni1) • a 
axioa inliat(a,t) iap1iea dit (a::a, t ) • di f(a,t) 
axioa not(inliat(a,h)) iap1iea dif (a::a,h) • a::dif(a,h) 
ax1oa (a • nil) ore1ae (t • ni1) i ap1iea int er (a, t ) • ni1 
axioa (a • b) iap1iea i nter (a::a,b::t) • a: : inter(a,t) 
aiioa leq(a, b) andalao not(a•b) iapliea inter(a: :a ,b: : t ) • i nter (a ,b: :t) 
axioa 1eq(b,a) andalao not (a•b) iap1iea inter(a ::a,b:: t ) • inter(a::a,t) 

"The deve.lopmenl of thil data atructure in EML wu a.lready par\ of a libra.ry o( aimple cue aludi~, and we l"euaed previoua 
developmenland oome or iu proor •. 
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axioa inliat(a,ni1) • fala• 
axioa inliat(a,b::1) • (a-b) orelae inliat(a,1) 
axioa taice(a,nil) • falae 
axioa taice(a,b::1) • (a-b) andalao inliat(a,1) ore1ae t•lce(a,1) 

end; 

functor Set' '(I ORDOUP) aig inc1ude SET' 
aharfns I .El .. • E1 .. 

functor OrdDup(T ELEJO •is inc1ude OIUlOUP 
aharfns Eles • T 

•nd-? 

Tbe fact.s below are hivia.J COlll!e<IUeDce of ~he axioms in ORDOUP, and are used withou~ proof. 

71 

Fact 1: The axioms for appeodliat ensure ~ha~ list.s buil~ usin« nil and appendliat c.ont.ains no duplicates 
and their element.s are ordered by leq. 

Fact 2: The axioms for di1 and inter ensure ~ha~ ~he list.s built usin« these fuodiODll are ordered and wi~hou~ 
duplicates, provided ~ha~ ~heir parameLers have ~hese properties. 

We then implemen~ Set • in terms of Set • • and OrdDup as foUowa: 

funetor Set' (I : El-) : SET' = Set" (OrdDup(I)) 

Verifieation Typeehedc.s c.orrectly. Ali interfac.es match exac~ly. 

We have now ano~her brancb in ~be development Lree, and must chcx.e be~ween irnplementin« OrdDup or 
Sat • •. Experience in Lhe developmen~ of this case study has ahown ~hal. atartin« wi~h lhe inner most funcLor 
in a decornposition branch maltes i~ aimpler Lo baclt~raclt whenever a problem ÍB found later in the development. 
IJowever, a more det.ailed Áudy ÍB DOCCflllar}' Lo see whether thia ÍB a «eneral desi«" rule. 

Step 5 Desagn decasaon: Codang. lmplement the funcLor OrdDup. 

functor OrdDup(l : ELEJI) : aig inc1ude ORDOUP 

•truct 
atructure E1ea : ELEJI 
open Elea 

aharing Elea • I 
end • 

fun inliat(a, 1 : elea 1iat) • 1 : boo1 
fun taice(a, 1 : e1ea 1iat) • ? : boo1 
fun appendliat(a : e1ea 1iat,t : e1ea 1iat) •? : elea liat 
fun inter(a : e1ea 1iat,t : elea liat) • ? : elea 1iat 
fun dif(a : elea 1iat,t : el .. 1iat) •? : e1ea 1iat 
(• inc1nde here a11 the axiou that appear in ORDOUP •> 

end; 

Verification Typeehedc.s c.orrecLiy. We have Lo show that: BLEJI U body I= ORDDUP. 
Proof Ali ~he axioms io ORDDUP appear in ~he body of ~he funcLor. 

Step 6 Design decisaon: &jinement. We proceed refinin« OrdDnp by c.oovertin« lhe axioma for inlist and 
tvice inLo SM L c.ode, which can be LriviaJJy derived from their axaoms. Tbe curren~ vennon of the body of Lhe 
funcLor OrdDup is obtained from Lhe body of OrdDup i o Step 5 by substitulin« tbe declarataoDll aod axioms for 
inliat aod tvice by the followin« fuoction declaratioDB: 

fun inliat(a,nil) • falae 
I inliat(a,b::t) • (a•b) ore1ae inliat(a,t) 

fun taice(a,nil) • falae 
I taice(a ,b::t) • (a•b) andalao inliat(a,t) ore1ae t•ice(a,t) 

Verification Typechedc.s correctly. We have Lo show that: BLEJI U current bodJ I= predoua bodJ 
Proof The axiorns for inliat and tvice in Lhe previous version of lhe body follow directly from the definition 
of the functions in tbe current version of ~he body. The o~her a.xioms in Lhe previous versioo of ~he body appear 
in ~he curren~ version of the body. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


n VIl Simpósio Brasileiro de Engenharia de Software 

Step 7 De,.gn decuton: Refinemenl. We still proceed refining OrdDup by conver~ing ~he axioms for 
appendliat, inter, and dif into SML code, wbich can be trivially derived from their axioms and by making 
the case analysis explicit using conditional expressions. The current version of lhe body of the functor OrdDup 
is obt.a.ined from lhe body of OrdDup in Step 6 by substituting the declarations and a.xioms for append1iat, 
inter and di:f by lhe following fuoctioo declaratioos: 

tun appendliat(nil,t) • t 
I appendliat(a,nil) • a 
I appendliat(a::a,b::t) • if (a•b) then a::appendliat(a,t) 

elae it (leq(a, b)) tben a: :appendliat(a,b::t) 
elae b::appendliat(a::a,t) 

tun dif(nil,t) • nil 
I dif(a,nil) • a 
I dif(a::a,t) • if inliat(a,t) then dif(a,t) elaa a::dif(a,t) 

tun inter(nil,t) • nil 
I inter(a,nil) • nil 
I inter(a::a,b: :t) • (it (a•b) then a::inter(a,t) 

elae if (leq(a, b)) then inter(a,b::t) 
elae inter(a::a,t)) 

Verificatioo Typechccks correctly. We have to show that: ELEII U eurrent body I= previous body. 
Proof Tbe axioms for appendliat , inter, and dif in the previous version of the body follow directly from 
lhe defioitloD of the functions in the curreot version of the body. 

OrdDup is alrcady ao executable SML fuoctor and we can start codiog the fuoctor Set • •. Another p068ibility 
would be to optimise the fuoctioos io OrdDup. For this particular program, optimisatioo is not an interesting 
task, but might be relevant for larger programa. 

Step 8 Destgn deet&ton: Codtng. lmplemeot the functor Set • •. 

tunetor Set''(l : ORDDUP) : aig include SET' 

atruct 

aharing Elu • S.&le• 
end • 

atructure Ele• ELEM • S.Elea 
open S 
type elea • Elea.elea 
type aet • elea liat 
Yal upty • nil 
fun aingleton(a) • a::nil 
fun union(a: aet,t : aet) • ? : aet 
fun interaection(a : aet,t : aet) • 1 aet 
fun aeaber(a, a : aet) • ? : bool 
fun aeabera(a : aet) • ? : ele• liat 
fun cardinality(a : aet) • ? : int 
tun differenee(a : aet,t : aet) • ? aet 
(• include hera all the axioaa that are in SET' • ) -· Verificatioo Typechecks correctly. We h ave to show that: ORDDUP U body I= SET •. 

Proof The axioms for iulist and tviee io SET appear in the signature ORDDUP. The coocrete representation.s 
of eapty aod singleton trivially satisfy the constramts that lists used to represent seta are ordered aod contai o 
no duplicates. Ali the other axioms in SET appear in the body of the functor. 

ln the following development steps, we will refine Set • • until ao executable functor is obtaioed. We proceed 
in smallsteps, coding ooly one function at each of lhe steps 10, 11 and 12, to isolate the proof obligations aod 
consequeotly their proofs. 
Step 9 Destgn decision: Refinemenl. lmplement the functions aeabera, aeaber and eardinality. The 
current version ofthe body offunctor Set'' is obtained from the body in Step 8 by substituting tbe declarations 
and axioms for aaabera, meaber and eardinality for Lhe following function declarations: 

fun •••bera • • a 
fun cardinality a • length a 
fun aeaber(a ,a) • inliat(a,a) 
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Verification Typechecks correctly. We have to show that: ORDOUP U current body I= previoua body. 
We bave to prove that the following axioms are implied by the axioms and functions in ORDOUP U current body. 

I. uioa aeaber(a,eapty) = taln 
2. axioa aeaber(b,aingleton &) = (&=b) 
3. axioa cardinality a = length(aeabera a) 
4. axioa aeaber(a,s) = inlist(a,aeabera a) 
5. axioa tvice(a,aeabera a) • falae 

Proofs 

I. From tbe definitioos ofaeaber and eapty, we condude that: aeaber(a, empty) = inlist(a,nil) . 
From tbe axioms for inliat , we conclude tbat inliat(a,nil) = falae. 

2. From the definitions of singleton and member, we eonclude that 
aeaber(b,aingleton a)= inliat(b, a::nil). 
From the ax.ioms for inliat in ORDDUP, we condude that inliat(b, a: :nil) = (a=b). 

3. Follows directly from tbe defioilions of aeabera and cardinality. 
4. Follows directly from lhe definitions for aeabera and aeaber. 
5. Using the definition of aeabera , we rewrite axiom 5 as tvlce(a,a) = falae. lt is tmportanl to nolice 

lhat a is a set, and could only h ave been constructed ustng the sel operations add, delate, i .nteraection, 
ditterence, and union. This allows Fact 1 and Fact 2 to be used in lhe proof below. 

Proof This proof is by slructural induction on • : 

• Base case: a = nil 

From the defioition of t vice , we conclude lhat t vice(a,nil) = falae. Therefore axiom 5 follows. 

• lndu ctive Step: • = b: :1 

lnductive Hypothesis: tvice(a,l) = false. From the definilion oftvice, we conclude thal 

tvice(a,b: :1) = (a=b) andalao inliat(a,l) orelu t viee(a,l) . Then , from the induclive 

hypothesis, we conclude thal tvice(a , b: :1) = (a=b) andalao inliat(a,l) oreln falae. 

Case Analysis: 

• a=b: since lhe lists are constructed using nil, appendliat, dif and inter, Lhen Fact 1 and Fact 2 
apply, i.e. lists have no duplicales. T berefore, inliat(a,l) = false and Lhe a.xiom is satisfied. 

• not(a=b) then lhe axiom follows directly. 

Step 10 Destgn decasaon: Rejinemenl. lmplemeot the function difter ence, in terms of lhe previously 
defined fuoctioo dit. The current version oflhe body ofthe functor Set'' is oblaioed from lhe body ofSet'' 
io Step 9 by substituliog the declaralion and a.xiom for ditterence by the following function declaralion: 

fun difference(s,t) • dif(a,t) 

Verificatioo Typechecks correctly. We have lo show Lhat: ORDOUP U current body I= previoua body. 
We have lo prove lhal lhe following axiom is implied by the axioms and functions in ORDOUP U current body: 

axioa forall a, a, t => aeaber(a,difference(a,t)) = member(a,s) and&lao not(member(a , t)) 

Uaing the definilioos of difterence and aeaber, we rewrite lhe axiom as 

axioa forall a, a, t => inliat(a,dif(a,t)) = 1nliat(a,a) andalso not(inliat(a,t)) 

Proof This proof is by slrudural induction on s: 

• BMe case: a = ni~ 
ln this case we have inliet(a,dif(nil,t)) = inliat(a,nil) andalso not(inliat(a,t)) . 

Using the a.xioms for dit in ORDDUP , we rewrite the above equalion as 

inliat(a,nil) = inliat(a,nil) andalso not(in~iat(a,t)) . 

Theo, from the axioma for inlut in ORDOUP, we conclude that 

tal se = tal se andalao not ( inliat (a, t)) . Therefore , for • = nl.l the axíom follows. 
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• Inductive S tep: a :: b: :1 

lnductive Hypothesis: forall t => inliat(a,dif(1,t)) = inliat(a,1) andalao not(inliat(a,t)) 

ln this case we have in1ist(a,dif(b: :1,t )) = inliat(a,b: :1 ) andalao not(inliat(a,t)) . 

- case 1: inliat (b,t) = true 
Using the axioms for dif in OROOUP, we rewrite 
inlist(a,dif(b::1,t)) = in1iat(a,b: :1) andalso not(in1iat(a,t)) 
as inliat(a,dif(1,t)) = in1iat (a,b: :1 ) andalao not(inlist(a,t)). 

Then, from the axioms for inliat in ORODUP, we conclude that 
inlist(a,dif(1,t)) = ((a=b) ore1ae inliat(a,1 )) andalao not ( in1iat(a,t) ). 

Therefore this case follows from the inductive hypothesis. 

- case 2: inlist(b,t) =falsa 
Using the axioms for dif in OROOUP, we rewrite 
inliat(a,dif(b: :1,t)) = in1iat(a,b: :1) andalao not(inliat(a,t)) as 

inliat(a,b: :dif(1,t)) = inliat(a,b: :1) andalao not(in1iat(a,t)). 
Then, from the axioms for inliat in ORODUP, we conclude that 
((a=b) ore1ae inliat(a,dif(1,t))) = ((a=b) ore1ae in1iat(a,1)) 

andalso not(in1iat(a,t) ). 

Case Analysis: 

* a=b: from t he bypothesis we have that i .nliat(a, t ) = falae, and the axiom follows trivially. 

* not(a=b): the axiom follows from the inductive bypothesis. 

Step 11 Design decision: Refinement. Implement the function interaection in terms of inter. The 
current version of the body of the functor Set • • is obtained from the body of Set' ' in Step 10, by substituting 
the declaration and axiom for interaection for the following function declaration: 

fun intersection(s, t) • inter(a, t) 

Veri:fication Typechecks correctly. We have to show that: OROOUP U current body I= previoua body. 
We h ave to prove that the following axiom is implied by the axioms and functions in ORODUP U current body: 

axioa aeaber(a,interaection(a,t)) = meaber(a,a) andalao aeaber(a,t) 

Proof (Sketch) The proof follows by mutualstructural induction on a and t , and by case analysis on the list 
elements. The complete proof is omited here and can be found elsewhere (2] . 

Step 12 Dtsign decision: Rtfintmtnt. lmplement the function union in terms of appendliat. The current 
version of the body of the functor Set • • is obtained from the body of Set • • in Step 11 by substituting the 
declaration and axiom for union for the following function declaration: 

fun union(a,t) • appendliat(a,t) 

Veri:fication Typechecks correctly. We h ave to show tbat: OROOUP U current body I= previoua body. 
We h ave to prove that the following axiom is implied by the axioms and functions in OROOUP U current body: 

axioa aeaber(a,union(a,t)) = aeaber(a,a) ore1ae meaber(a,t) 

Proof (Sketch) This proof follows similarly as the proof in Step 11 and can also be found in (2] 

Now, ali the functor and structure bodies are expressed in SML code, therefore we have finished the development 
of this program. The Development Tree showing t he dependency between the development steps is give in 
Figure I. The final SML code for the program appears elsewhere [2]. 
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STEP O: lnitial 
apecification of Set 

I 
STEP 1 : Decoapoae Set 

into AddDelete and Set' 
I \ 

STEP 2: Abatract 
code for AddDelete 

I 

STEP 4 : Decoapose Set' 
into Set'' and Orddup 
I \ 

STEP 8: Abstract STEP 5: Abstrac t STEP 3: Refine 
AddDeleta code for Set • • code tor Orddup 

I I 
STEP 9: Retine Set" STEP 6: Refine Drddup 

I I 
STEP 10 : Retine Set ' • STEP 7: Refine Drddup 

I 
STEP ll: Retine Set • • 

I 
STEP 12: Retine Set'' 

Figure I : The Development Ttee: the dependency between the development steps. 

5 Concluding Remarks 

75 

We presented a modular development of basic set operations on a data strucLure of generic finite sets, using 
tbe Extended M L specification/pro,;rammin,; langua,;e and development methodology. The final result of the 
development process is an SM L modular pro,;ram consisting of various signatures, strucLures and functors , 
appears elsewhere (2). 

This development illustrated that modular specificaLions are important to simplify, or even make possible, 
Lhe development of large systems. Proofs of correctness may be localised in specific stages of tbe development 
making it easier to understand Lhe various design decisions. For instance, tbe proofs of steps 10, li and 12 
in Section 4.1 are dearer to undersLand when tbey are dane in separate development steps. This also help in 
cbanging Lhe history of Lhe development, e .g., when a "mistake" is found in the original requirement specilication 
or in some later stage. 

Another aspect in whicb modular specifications are important is in isolating Lhe cboice of represenLation for 
sets and consequently also isolating the proof obligations that arise from such a choice. Therefore, a change 
in data represenLation , e.g., to use binary t rees, would only require to change tbe step 4 (including some 
verifications) of tbe development, provide we kept the signature ORDDUP unchanged . Ali oLher parts of the 
program would remain uncbanged , indudin,; the verification proofs. 

We believe that the development of large software systems require a modular specification/programming 
language, a powerful development methodology well founded in solid matbematical basis, and a set of software 
tools to free tbe programmer from clerical task and also to prevent the possibilities of human errors that would 
invalidate tbe entire development process. Tbe EM L framework already provi de such a language and devel
opment metbodology. A set of supporting tools are under design and implementation at the Qepartment of 
Computer Science, University of Edinburgh, Scotland, under the supervision of D. Sannella, and at "Depar
tamento de Informática", UFPE, Brazil , under the supervision of Fabio Q. B da Silva These tools include 
a parser and type-checker for EM L specificaLions and a proof obligation generator, and will form the bas1s 
of a complete software development environment for Lhe EM L language in the near future. The design and 
implementation of such an environment is clearly a challenging problem for future research. 
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