62 VIl Simpésio Brasileiro de Engenharia de Software

Finite Sets: A Case Study on Formal Program Development in the
Extended ML Framework

Claudia J. A. da Silva

Grupo de Computagio, Fundagio Instituto Tecnolégico de Pernambuco (ITEP)
Av. Prof. Luiz Freire, 700, CEP 50.730

Recife, Pernambuco, Brasil. e-mail: clandia@gctc.itep.br.

Fabio Q. B. da Silva

Departamento de Informatica, Universidade Federal de Pernambuco,
Av. Prof. Luiz Freire, s/n, CP 7851, CEP 50732-970,

Recife, Pernambuco, Brasil. e-mail: fabio®@di.ufpe.br.

Abstract

We study formal development of functional programs from algebraic specifications in the Extend-
ed ML framework. We present a case study on the modular specification and refinement of (finite)
set operations in the Extended ML wide-spectrum specification/programming language. Our main
objective is to present the module facilities and development methodology of Extended ML, their
application to a practical problem, and their suitability for the formal development of (modular)
Standard ML programs.

Sumdrio

Estudamos o desenvolvimento formal de programas funcionais, usando especificagoes algébricas,
em Extended ML. Apresentamos um estudo de caso em especificagio modular e refinamento de
operagoes de conjuntos (finitos) usando a linguagem de especificagao/programagio Extended ML.
Nosso principal objetivo é apresentar a linguagem de médulos e a metodologia de desenvolvimento
Extended ML, suas aplicagoes em problemas praticos e sua adequagio para o desenvolvimento formal
de programas (modulares) em Standard ML.

1 Introduction

As noted in [14], “the ultimate goal of work on program specification is to establish a practical framework for the
systematic production of correct programs from requirement specifications via a sequence of verified development
steps”. We present a modular development of basic operations on sets from a requirement specification of their
behaviour in the Extended ML framework [16, 11]. Our goal is to present an extensive use of the modular
facilities of the Extended ML language and show how these facilities simplify the program specification and
formal development.

Extended ML (EML) is a wide-spectrum apectﬁmmhmgrammm; language for the formal development
of Standard ML (SML) [4, 5] programs by means of mathematically verified development steps. Both EML
and SML languages have formal semantics describing every aspect of the languages. Therefore, in the EML
framework a complete degree of formalisation in the development process is achieved, which can be expressed
as follows: the resulting program is considered to be correct with respect to its initial requirement specification
if and only if each development step is proved to be correct in a formal calculus consistent with the formal
semantics of EML and SML.

The EML language is based on the module system of SML, and therefore strongly supports modular speci-
fications and the development of modular programs. Both aspects are essential for the formal development of
large software systems. Modular specifications simplify the complexity of the development steps, by localising
design decisions and verification proofs to small, self-contained program units. On the other hand, it is widely
accepted that a methodological use of modularity in programming makes large systems easier to maintain and
improves the reusability of parts of developed systems. Together, modular specifications of modular programs
allow specifications, and consequently their verification proofs, to be more easily maintained and reused.
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Although the design of modular systems have been widely covered in the literature, the problem of mod-
ularising formal specifications has received little attention until tly. In the EML framework, modular
specifications are natural, and provide powerful abstractions, as already noted in [8]. Furthermore, the use of
observational equivalence [13] as a correctness criterion in the development process introduces a high degree of
flexibility and generality in this framework.

The EML language and development methodology has been extensively studied in the literature. In this
paper, EML is briefly introduced by means of examples. The reader unfamiliar with EML, or wishing to
understand its mathematical underpinings, is referred to the literature cited in Section 2.2. Our goal in this
paper is to show a particular case study and investigate its problems in the context of Extended ML, rather
than providing a detailed introduction to the language.

In Section 2, we review the main features of EML and SML. We then present the EML development
methodology in Section 3. Sections 2 and 3 are based on previous work [14]. The reader familiar with EML
language and methodology might want to skip Sections 2 and 3. In Section 4, we show a complete development
of basic set operations using the EML methodology. Finally, Section 5 draws some conclusions and present
suggestions for further work.

2 The Extended ML Specification Language

Extended ML (EML) is a wide spectrum specification/programming language for formal development of pro-
grams in the functional language Standard ML [4, 5]. EML is called wide spectrum because it can express all
stages of a development process in a single framework: the high-level specification, the executable Standard ML
program, and abstract code which contains both non-executable specifications and Standard ML programs.

EML is a proper extension of the programming language Standard ML (SML). Before introducing this
extension we present the main aspects of SML that are necessary for understanding later examples. This
presentation is necessarily short, and is given mainly to make this work self contained. The reader is referred
to [4, 9] for didactical accounts of SML, and to [5] for the language’s formal definition.

2.1 An Overview of Standard ML

SML has two distincts sub-languages: the Core and the Module languages. The SML Core language provides
features for programming “in the small”. The Core is an eager functional programming language, with poly-
morphic types, a strong type system which allows static type inference, user defined concrete and abstract data
types, a mechanism to raise and handle run time exceptions, and imperative features like references and assign-
ment. Programs in the SML Core language resembles other functional programming languages, e.g., HOPE [1].
The following example illustrates a small subset of the SML Core features, including the pre-defined data type
of polymorphie lists.

Let us represent finite sets of integer numbers as lists of integers, and implement SML functions for con-
structing sets and to test for set membership.

type intset = int list
val empty : intset = nil
fun add(a, 8) = a :: 8
fun member(a, empty) = false
| member(a, b::s) = (a = b) orelse member(a, s)

The constant empty represents the empty set and is implemented by the (pre-defined) constant nil (the empty
list). The function add simply builds sets using the list function : : (read cons). The function member is defined
by case analysis on the structure of sets. The first clause states that the empty set has no elements, and the
second clause says that a is a member of a set b::s if a is equal b or else a is a member of 8. Many SML
features are not reviewed here, including record types, high-order functions, imperative features, exceptions,
concrete and abstract data types (the module language provides a more flexible way of encapsulating data).

The SML Module language provides features for programming “in the large”. Using these features large
SML programs can be structured in small self-contained programs (called structures) with an interface (called
a signature). Interfaces may be explicitly given by the programmer or inferred by the type inference system.
Functors are parameterised structures with an explicit input signature and an output signature. Applying a
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functor to a structure matching its input signature yields a structure matching its output signature. Hereafter,
we use the term module to refer to both functor and structure, whenever it does not cause ambiguities.

In the following example, we will define sets of objects of an arbitrary type, provided this type admits
equality on its objects'. This is accomplished by the definition of a functor together with its input and output
signatures,

signature ELEM = sig eqtype elem end

signature SET =

sig

structure Elem : ELEN

type set

val member : Elem.elem # set -> bool
val add : Elem.elem * set -> sat
end

functor Set(X : ELEM) : sig include SET
sharing Elem = X
end =

struct

structure Elem = X

type set = Elem.elem list

val empty = nil

fun add(a, 8) = a :: 8

fun member(a, nil) = false

| member(a, b :: 8) = (a = b) orelse member(a, s)

end

structure IntElem : ELEN = struct type elem = int end

structure IntSet = Set(IntElem)

This defines a functor Set with input signature ELEM and output signature SET. When applied to a structure
matching ELEM, e.g. IntELem, Set yields a structure matching SET. The Module language also has a strong
type system that allows signature inference. For the definition of Set to be correctly typed, its body must
define at least the objects that are specified in the output signature: a sub-structure called Elem matching the
signature ELEM; a constant empty; and functions add and member, with their types as specified in SET. The
sharing constraint forces the (actual) parameter structure X and the resulting sub-structure Elem to be the same
object.

The function IntSet.add constructs sets of integer numbers using the constant empty and the integer
constants. The function IntSet.member can be used to test membership on sets constructed by IntSet.add.

Signatures play a dual role in the Module language. On the one hand, they act as an interface, restricting
the external view of internal module components. Therefore, only what is explicitly specified in the signature is
visible from outside of a module?. On the other hand, signatures impose constraints on which components must
be defined in the body of the modules, together with their types, i.e., they define the minimal set of components
that must be defined in the module’s body.

For instance, in the above example the signature SET requires the existence in Set of a sub-structure Elem,
a constant empty, and two functions add and member. Furthermore, the users of IntSet cannot make use of
the internal representation of sets as lists. This is to say that IntSet implements an abstract data type and
the only visible operations on this type are those defined in the signature. The encapsulation provided by the
Module language is essential to the development of large systems structured in small modules, and this is the
basis of the EML modular program development methodology, which is reviewed in Section 3.

The above overview of the SML modules is necessarily short. In [9], the interested reader will find a more
detailed introduction to the Module language.

! An SML type admits equality if it is not an abstract data type or it is not a function type.
?This is not true, in general, for SML, but it holds for EML module language.
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2.2 An Overview of Extended ML

In this section, we give a brief overview of the Extended ML specification/programming language. We only
summarise the EML features that are necessary to the understanding of later examples. The reader unfamiliar
with EML language is referred to the literature cited below.

As noted in Section 2.1, in the SML Module language signatures act as interfaces to modules, defining which
objects can be externally accessed, together with their types. This information is sufficient to use SML as a
programming language. However, a signature does not, in general, provide enough information to be considered
as a specification of a programming task. In order to specify a function completely and non-ambiguously we
need its type and a formal description of its input/output behaviour.

In EML, axioms are allowed in signatures to enhance their information content concerning the input/output
behaviour of the functions. That is, axioms provide a formal definition of the components of the modules.
Axioms are written in a notation of first-order equational logics in which equality is admitted on all types. For
instance, we may extend the signature SET with the specification of the functions add and member as follows:

signature SET =

sig

structure Elem : ELEM

type set

val empty : set

val add : Elem.elem * set -> set

val member : Elem.elem *# set -> bool

axiom forall a => member(a, empty) = false

axiom forall a, b, x => member(a, add(b, s)) = (a = b) orelse member(a, s)
end

For a structure to match, or satisfy, the above signature, it must supply a sub-structure Elem matching ELEN, a
constant empty and the functions add and member, with their types as in SET, and furthermore the structure's
body must satisfy the axioms in the signature. Satisfaction in EML is taken to be up to observational equivalence,
i.e., the body of the structure does not have to satisfy the axioms in the signature exactly, but only with respect
to its observable behaviour. The use of observational satisfaction instead of ordinary logic satisfaction is a point
of major importance in the EML framework, which allows a high degree of flexibility in the implementation.
However, a more detailed discussion on observational equivalence is outside the scope of this paper. The
interested reader might want to see [13] for a detailed account of observational equivalence in the context of
EML, and [17] for a more general approach to this issue.

Signatures extended with axioms constitute a specification of a program task, that is, we must construct a
functor or structure satisfying this signature. The development of such a functor or structure include stages in
which some functions are not yet defined and the body of other structures and functors may contain axioms.
In order to allow these stages to be expressed in EML, structure bodies are allowed to include a mixture of
axioms, incomplete expressions and SML code. A possible stage in the development of the functor Set may be
as follows:

functor Set(structure X : ELEM) : sig include SET
sharing X = Elem
end =

struct

structure Elem = X

type set = Elem.elem list

val empty : set = nil

val add : Elem.elem # set -> set = 7

val memeber : Elem.elem * set -> bool = 7

axiom forall a => member(a, empty) = false

axiom forall a, b, x => member(a, add(b, s)) = (a = b) orelse member(a, s)
end

The place-holder expression 7 is used above to declare functions which are not yet in an executable form. In
SML, the type of an expression, and in particular a function, can be inferred from context information, In EML,
the type of non-executable functions declared using ? must be explicitly given, as in the above declarations of
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add and member. The expression 7 can also be used to declare a type whose representation is not yet defined,
and in place of functors or structures bodies. The latter use of the place-holder expression is useful to specify
the initial programming task. For instance:

functor Set(X : ELEM) : sig include SET
sharing X = Elem
end = 7

The above functor specification is an EML specification of a programming task. Program development aims to
suply an executable body to replace the structure expression 7.

The EML language is the extension to SML as described above: axioms are allowed in signatures to specify
the behaviour of module components; the place-holder expression ? is allowed in place of a type expression,
a value expression or a structure expression; and axioms are allowed in the body of structures and functor to
specify the behaviour of variables and functions declared using 7. Hereafter, we will assume that all axioms are
implicitly universally quantified, whenever this does not cause ambiguities.

It is important to emphasise that the choice of the logics and the notation to write axioms is, at some extent,
arbitrary, The EML semantics is parametric on such a choice. The particular choice of first-order equational
logies is convenient since an SML variable or function declaration is a particular form of equation that happens
to be executable. Therefore, axioms and declarations are written and interpreted in an uniform framework.

An extensive literature exists covering many aspects of the EML language and methodology: [11, 10] give
detailed introductions to EML in a tutorial form; the original semantics of EML, based on the theory of
institutions [3], appears in [15, 16]; [12] defines the syntax and some aspects of the tics of EML; the
full semantics, including signature matching extended to deal with observational satisfaction of axioms is given
in [6]; [7] provides a gentle introduction to this formal semantics.

3 The Extended ML Development Methodology

In this section, we review the EML development methodology. The starting point of a (formal) development
process in EML is a functor of the form:

functor F(X : SIGin) : SIGout = 7

where SIGin and SIGout are EML signatures, possibly containing axioms. From this initial specification we
should work towards a functor in which an (executable) SML structure expression replaces 7. The development
is carried out in various formally verified development steps, which ensures that the final executable functor is
correct with respect to its initial specification.

In general, any Extended ML functor specification having a body consisting of 7 or a non-trivial body with
non-executable components is regarded as a programming task. In the former case, this task is to replace 7 by
a non-trivial (and potentially non-executable) body that satisfies the functor’s signature. In the latter case, the
task is to replaces axioms in the functor’s body by SML function or value declarations.

The EML development methodology describes three ways to proceed from a specification or abstract program
towards a (more concrete) program:

Decomposition step: decompose a functor in other functors, which will then be regarded as new programming
tasks.

Coding step: provide a non-trivial functor body to replace ?, which may contain axioms and components
declared using 7.

Refinement step: replace a non-trivial functor body by another (more concrete) body in which some axioms
and declarations using ? are replaces by concrete SML declarations.

Decomposition steps are used to structure the development into smaller tasks, and can be considered as pro-
gramming, pr development, “in the large”. Coding and refinement can therefore be considered as programming,
or development, “in the small”, The use of each development step is illustrate in a case study in Section 4.
Each development step gives rise to one or more correctness conditions, or proof obligations. These conditions
or obligations can be derived automatically from a development step. A development is considered to be correct
if each proof obligation generated during the development is formally verified, or discharged. In general, a proof


http://www.cvisiontech.com

VIl Simpésio Brasileiro de Engenharia de Software 67

obligation is a relation between the state of the development before and after a development step, The generic
form of a proof obligation is an observational satisfaction relation:

SPi V... USP, '=058 Sp

where SP;,1 < i < n, are signatures or structure expressions after the development step has taken place, SP
is the specification before the development step, and OBS is a set of the (observable) types of SP (actually
a subset of the types of SP). Verifying or discharging a proof obligation involves showing that the axioms in
SP logically follows from the axioms and declarations in the union of the left hand side of the relation, up to
observational equivalence with respect to OBS.

Proofs of observational equivalence are notoriously difficult (see [17] for a detailed discussion on this problem).
Since ordinary logical satisfaction is stronger than observational equivalence, it is sufficient to prove that SP; U
...USPy, [= SP, if it holds. For the examples of next section, ordinary logical satisfaction will be used, since it
holds for each proof obligation during the development process.

Let us now detail each development step and show the proofl obligations they give rise:

Decomposition step: given a functor specification
functor F(X : SIGin0) : SIGout0 = ?
We can decompose F into two® functors G and H, as follows:

functor G(X : SIGini) : SIGoutl = 7
functor H(X : SIGin2) : SIGout2 = 7

where the new definition of F is as follows:
functor F(X : SIGin0) : SIGout0 = G(H(X))

The new definition of F must be a well-formed EML functor definition, regarding syntax and type checking.
Furthermore, this decomposition generates three proof obligations:

SIGinO =ops SIGin2 SIGout2 [=ops SIGin1 SIGout1 [=ops SIGouto
Coding step: given a functor specification:
functor F(X : SIGin) : SIGout = 7
a coding step provides a non-trivial body to replace 7:
functor F(X : SIGin) : SIGout = strexp
where strexp must be a well formed EML structure expression. This coding step generates one proof obligation:
SIGin U strexp =ops SIGout
Refinement step: given a functor specification:
functor F(X : SIGin) : SIGout = strexp
a refinement step replaces strexp by another (more concrete) structure expression:
functor F(X : SIGin) : SIGout = strexp’
w:;re strexp’ must be a well formed EML structure expression. This refinement step generates one proof
obligation:

SIGin U strexp’' |=ops strexp

According to the methodology described above, every step in a development has the following structure:

o Design Decision: a choice of which development step to use and how to execute the chosen step.
o The step proper: the new state of the development that arises after the development step.
o Verification: the proofs that discharge the obligations generated by the development step.
The following case study illustrates the use of the EML development methodology.
Finn > 0 funct this lisation is trivial and can be found in the EML literature cited

Jh- 1, we can d ¥
above.
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4 A Case Study: Finite Sets

In this section we present the steps of the development of an SML program from the initial requirements
specification to the final executable program. Our objective is to illustrate the EML development methodology
and show how it can assist in structuring the development of large software systems. The program consists of
several functions that work on an abstract data type of finite sets, called set. We will provide a constant value
empty to represent the empty set and the following functions:

+ singleton: convert an element of type elem into a set of type set with only this element in it.
« add: adds an element to a set, if it is not already there.

o delete: deletes an element from a set.

o union: the union of two sets.

e intersection: intersection of two sets.

e difference: the set difference between two sets.

e member: verifies if an element belongs to a set.

e members: returns an elem list that contains all the elements of a set.

s cardinality: returns the number of elements that are in a set.

Two other functions, inlist and twice, are also part of this program. The function inlist verifies if an
element belongs to a list, the function twice verifies if an element occurs twice in a list. These functions are
used to simplify the specification of cardinality, as will be shown below.

4.1 Developing the SML Program

The development steps that construct one implementation of the program (informally) described above are
given. The development has a form of a (finitely branching) tree, the development tree, whose nodes represent,
design decisions. The development tree for this case study is shown in Figure 1.

Step 0  Specification. The initial formal specification of the program described above is given by an Extended
ML functor specification that has an input signature ELEN and an output signature SET as follows:

signature ELEM =
sig
eqtype elem
val leq : elem * elem -> bool
axiom leq(a,b)
axiom leq(a,b) andalso leq(b,a) implies (a=b)
axiom leq(a,b) andalso leq(b,c) implies leq(a,c)
end;

signature SET =

sig
type elem
type set
val empty : set
val singleton : elem -> set
val union : set » set -> set
val add : set * elem -> set
val intersection : set * set -> smet
val member : elem * set -> bool
val members : set -> elem list
val cardinality : set -> int
val difference : set * set -> set
val delete : set * elem -> set
val inlist : elem * elem list -> bool
val twice : elem » elem list -> bool
axiom inlist(a,nil) = false
axiom inlist(a,b::1) = (a=b) orelse inlist(a,l)
axiom twice(a,nil) = false
axiom twice(a,b::1) = (a=b) andalso inlist(a,l) orelse twice(a,l)
axiom member(a,empty) = false
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axiom member(b,singleton a) = (a=b)
axiom member(a,union(s,t)) = member(a,s) orelse member(a,t))
axiom member(a,s) = inlist(a,members s)
axiom tvice(a,members &) = false
axiom cardinality s = length(members =)
axiom add(s,a) = union(s,singleton a)
axiom member(a,intersection(s,t)) = member(a,s) andalso member(a,t)
axiom member(a,difference(s,t)) = member(a,s) andalso not(member(a,t))
axiom delete(s,a) = difference(s, singleton a)
end;

functor Set(X : ELEM) : SET = 7

The specification of cardinality uses the built in function length, whose behaviour we can assume to be
correct. The use of twice guarantees that there are no duplicates in a list generated using members, and
therefore simplifies the implementation of cardinality. It is important to notice that other specifications of
cardinality, e.g., the usual set theoretical definition, may not require the use of twice.

The parameter to the program is a structure that defines a type elem that must admit equality, and a
function leq that defines a partial order on the elements of this type. The implementation of the program
admits any choice for elem and 1eq that satisfies the axioms in ELEM. This abstraction makes the development
more general because the choice of representation for elem and an actual implementation of leq are only
necessary by the time the functor Set is used.

Step 1 Design decision: D position. Impl t the functions add and delete in terms of the functions

union and difference. This step reduces the number of functions that must be effectively implemented,
because the implementations of add and delete will follow trivially from the axioms in SET. We need two new
functors and a new signature:

signature SET’ =
sig
structure Elem : ELEM
open Elem
(* the rest of this signature is as SET without the declarations of the type
elem, the specifications of add and delete, and the axioms that
mention add and delete »)
end;

functor AddDelete(S : SET') : SET = 7
functor Set'(X : ELEM) : sig include SET’
sharing Elem = X
end = 7

We can then implement Set in terms of AddDelete and Set’ as follows:
functor Set(X : ELEM) : SET = AddDelete(Set’(X))

Verification We must show that AddDelete(Set’ (X)) is a well formed EML structure expression and that
the interfaces match, as defined in Section 3, for the decomposition step . The structure expression is trivially
well formed. This property can always be automatically checked by a type checker. The proof obligations that
arise from the signature matchings are trivially discharged since all signatures match exactly. Hereafter, we will
only justify non-trivial proof obligations. In particular, we will assume that each structure expression is well
formed.

We now have a choice of which functor to code. This means to follow either the right or the left branch at
the root of the development tree of Figure 1.

Step 2 Design decision: Coding. Implement the functor AddDelete by replacing ? by a non trivial structure
expression.

functor AddDelete(S : SET') : SET =
struct

open 3


http://www.cvisiontech.com

70 VI Simpésio Brasileiro de Engenharia de Software

type elem

fun add(s : set, e : elem) = 7 : set

fun delete(s : set, @ : elem) = 7 : set

axiom add(s,a) = union(s,singleton a)

axiom delete(s,a) = difference(s, singleton a)
end;

Verification Typechecks correctly. We have to show that: SET’ U body |- SET.
Proof All the axioms in SET appear in the body of the functor or in the signature SET’.

It is important to remember that SML-function declarations are a particular form of axiom in which the left
hand side is a linear pattern. Therefore, the axioms in the body of AddDelete can be trivially converted into
SML function declarations, which is done in the next development step

Step 3 Design decision: Refinement. Convert the axioms for add and delete into SML code. Note that
the SML code for these functions is very similar to the axioms. This makes the verification phase trivial, and
even possible to be performed automatically.

functor AddDelete(S : SET') : SET =
struct

open S

type elem = Elem.elem

fun add(s,a) = union(s,singleton a)

fun delete(s,a) = difference(s, singleton a)
end;

Verification Typechecks correctly. We have to show that: SET’ U current body |= previous body.
Proof All the axioms in the previous version of the body follows directly from the definition of the functions
in the current body.

At this stage, the body of AddDelete contains only executable SML code. We can now start the development
of the functor Set’.

Step 4 Destgn decision: Decomposition. At this stage we need to choose a representation for the type set.
Some possibilities are: binary trees, balanced binary trees, unordered lists, and ordered lists. We decided to
implement set in terms of ordered lists (using leq) of objects of type elem without duplicates’. We delay the
actual definition of the functions in Set’ in terms of the functions on lists to a later stage in the development.
At this point, we proceed by another decomposition and we need two new functors and a new signature:

signature ORDDUP =
sig
structure Elem : ELEM
open Elem
val inlist : elem » elem list -> bool
val twice : elem # elem list -> bool
val appendlist : elem list * elem list -> elem list
val inter : elem list ¢ elem list ~> elem list
val dif : elem list # elem list -> elem list
axiom appendlist(nil, t) = t
axiom appendlist(s, nil) = s
axiom (a = b) implies appendlist(a::s,b::t) = a::appendlist(s,t)
axiom leq(a,b) andalso not(a=b) implies appendlist(a::s,b::t) = a::appendlist(s,b::t)
axiom leq(b,a) andalso not(a=b) implies appendlist(a::s,b::t) = b::appendlist(a::s,t)
axiom dif(nil, t) = nil
axiom dif(s, nil) = s
axiom inlist(a,t) implies dif(a::s,t) = dif(s,t)
axiom nmot(inlist(a,h)) implies dif(a::s,h) = a::dif(s,h)
axiom (s = nil) orelse (t = nil) implies inter(s,t) = nil
axiom (a = b) implies inter(a::s,b::t) = a::inter(s,t)
axiom leq(a,b) andalso not(a=b) implies inter(a::s,b::t) = inter(s,b::t)
axiom leq(b,a) andalso not(a=b) implies inter(a::s,b::t) = inter(a::s,t)

“The development of this data structure in EML was already part of a library of simple case lies, and we d previ
development and some of its proofs.
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axiom inlist(a,nil) = false

axiom inlist(a,b::1) = (a=b) orelse inlist(a,l)

axiom twice(a,nil) = false

axiom twice(a,b::1) = (a=b) andalso inlist(a,l) orelse twice(a,l)
end;

functor Set’’(X : ORDDUP) : sig include SET’
sharing X.Elem = Elem
end = 7
functor OrdDup(Y : ELEM) : sig include ORDDUP
sharing Elem = Y
end = 7

The facts below are trivial consequence of the axioms in ORDDUP, and are used without proof.

Fact 1: The axioms for appendlist ensure that lists built using nil and appendlist contains no duplicates
and their elements are ordered by leq.

Fact 2: The axioms for dif and inter ensure that the lists built using these functions are ordered and without
duplicates, provided that their parameters have these properties.

We then impl t Set’ in t of Set’’ and OrdDup as follows:

functor Set'(X : Elem) : SET' = Set’’(OrdDup(X))

Verification Typechecks correctly. All interfaces match exactly.

We have now another branch in the development tree, and must choose between implementing OrdDup or
Set’’. Experience in the development of this case study has shown that starting with the inner most functor
in a decomposition branch makes it simpler to backirack whenever a problem is found later in the development.
However, a more detailed study is necessary to see whether this is a general design rule.

Step 5 Design decision: Coding. Implement the functor OrdDup.

functor OrdDup(X : ELEM) : sig include ORDDUP
sharing Elem = I
end =
struct
structure Elem : ELEM
open Elem
fun inlist(a, 1 : elem list) = 7 : bool
fun twice(a, 1 : elem list) = 7 : bool
fun appendlist(s : elem list,t : elem list) = 7 : elem list
fun inter(s : elem list,t : elem list) = 7 : elem list
fun dif(s : elem list,t : elem list) = 7 : elem list
(* include here all the axioms that appear in ORDDUP )
end;

Verification Typechecks correctly. We have to show that: ELEM U body |= ORDDUP.
Proof All the axioms in ORDDUP appear in the body of the functor.

Step 6 Design decision: Refi t. Wep d refining OrdDup by converting the axioms for inlist and
twice into SML code, whchmbehmﬂlydmﬂfmmlhwmmmmd&ebodyoﬂhe

fnnct-nr(kdbttpuoh‘tunedMthwdmm&thnmmm“dmfm
inlist and twice by the following function declarations:

fun inlist(a,nil) = false
| inlist(a,b::t) = (a=b) orelse inlist(a,t)
fun twice(a,nil) = false
| twice(a,b::t) = (a=b) andalso inlist(a,t) orelse twice(a,t)

Verification Typechecks correctly. We have to show that: ELEN U current body |= previous body
Proof The axioms for inlist and twice in the previous version of the body follow directly from the definition
of the functions in the current version of the body. The other axioms in the previous version of the body appear
in the current version of the body.



http://www.cvisiontech.com

72 VII Simpésio Brasileiro de Engenharia de Software

Step 7 Design decision: Refinement. We still proceed refining OrdDup by converting the axioms for
appendlist, inter, and dif into SML code, which ean be trivially derived from their axioms and by making
the case analysis explicit using conditional expressions. The current version of the body of the functor OrdDup
is obtained from the body of OrdDup in Step 6 by substituting the declarations and axioms for appendlist,
inter and dif by the following function declarations:

fun appendlist(nil,t) = t
| appendlist(s,nil) = s
| appendlist(a::s,b::t) = if (a=b) then a::appendlist(s,t)
else if (leq(a, b)) then a::appendlist(s,b::t)
else b::appendlist(a::s,t)
fun dif(nil,t) = nil
| dif(s,nil) = =
| dif(a::s,t) = if inlist(a,t) then dif(s,t) elme a::dif(s,t)
fun inter(nil,t) = nil
| inter(s,nil) = nil
| inter(a::s,b::t) = (if (a=b) then a::inter(s,t)
else if (leq(a, b)) then inter(s,b::t)
else inter(a::s,t))

Verification Typechecks correctly. We have to show that: ELEN U current body |= previous body.
Proof The axioms for appendlist, inter, and dif in the previous version of the body follow directly from
the definition of the functions in the current version of the body.

OrdDup is already an executable SML functor and we can start coding the functor Set’'. Another possibility
would be to optimise the functions in OrdDup. For this particular program, optimisation is not an interesting
task, but might be relevant for larger programs.

Step 8 Design decision: Coding. Implement the functor Set'’.

functor Set'’'(X : ORDDUP) : asig include SET'
sharing Elem = §5,Elem

end =
struct
structure Elem : ELEN = 5.Elem
open S

type elem = Elem.olem

type set = elem list

val empty = nil

fun singleton(a) = a::nil

fun union(s: set,t : set) = 7 : set

fun intersection(s : set,t : set) = 7 : set

fun member(a, s : set) = 7 : bool

fun members(s : set) = 7 : elem list

fun cardinality(s : set) = 7 ; int

fun difference(s : set,t : set) = 7 : get

(* include here all the axioms that are in SET’ #)
end; '

Verification Typechecks correctly. We have to show that: ORDDUP U body |= SET’.

Proof The axioms for inlist and twice in SET appear in the signature ORDDUP. The concrete representations
of empty and singleton trivially satisfy the constraints that lists used to represent sets are ordered and contain
no duplicates. All the other axioms in SET appear in the body of the functor.

In the following development steps, we will refine Set '’ until an executable functor is obtained. We proceed
in small steps, coding only one function at each of the steps 10, 11 and 12, to isolate the proof obligations and
consequently their proofs.

Step 9 Design decision: Refin t. Impl t the functions members, member and cardinality. The
current version of the body of!'unctor Set’’ is obtained from the body in Step 8 by substituting the declarations
and axioms for members, member and cardinality for the following function declarations:

fun members s = s
fun cardinality s = length s
fun member(a,s) = inlist(a,s)
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Verification Typechecks correctly. We have to show that: ORDDUP U current body |= previous body.
We have to prove that the following axioms are implied by the axioms and functions in ORDDUP U current body.

1. axiom member(a,empty) = false

2. axiom member(b,singleton a) = (a=b)

3. axiom cardinality s = length(members s)
4. axiom member(a,s) = inlist(a,members s)
5. axiom twice(a,members s) = false

Proofs

1. From the definitions of member and empty, we conclude that: member(a,empty) = inlist(a,nil).
From the axioms for inlist, we conclude that inlist(a,nil) = false.

2. From the definitions of singleton and member, we conclude that
member(b,singleton a) = inlist(b, a::nil).
From the axioms for inlist in ORDDUP, we conclude that inlist(b, a::nil) = (a=b).

3. Follows directly from the definitions of members and cardinality.

4. Follows directly from the definitions for members and member.

5. Using the definition of members, we rewrite axiom 5 as twice(a,s) = false. It is important to notice
that s is a set, and could only have been constructed using the set operations add, delete, intersection,
difference, and union. This allows Fact 1 and Fact 2 to be used in the proof below,

Proof This proof is by structural induction on s:
e Base case: 8 = nil
From the definition of twice, we conclude that twice(a,nil) = false. Therefore axiom 5 follows.
¢ Inductive Step: s = b::1
Inductive Hypothesis: twice(a,1) = false. From the definition of twice, we conclude that
twice(a,b::1) = (a=b) andalso inlist(a,l) orelse twice(a,l). Then, from the inductive
hypothesis, we conclude that twice(a,b::1) = (a=b) andalso inlist(a,l) orelse false.
Case Analysis:
« a=b: since the lists are constructed using nil, appendlist, dif and inter, then Fact 1 and Fact 2
apply, i.e. lists have no duplicates. Therefore, inlist(a,1l) = false and the axiom is satisfied.
* not(a=b) then the axiom follows directly.
Step 10 Design deciston: Refinement. Implement the function difference, in terms of the previously

defined function dif. The current version of the body of the functor Set’’ is obtained from the body of Set**
in Step 9 by substituting the declaration and axiom for difference by the following function declaration:

fun difference(s,t) = dif(s,t)

Verification Typechecks correctly. We have to show that: ORDDUP U current body |= previous body.
‘We have to prove that the following axiom is implied by the axioms and functions in ORDDUP U current body:

axiom forall a, s, t => member(a,difference(s,t)) = member(a,s) andalso not(member(a,t))
Using the definitions of difference and member, we rewrite the axiom as
axiom forall a, s, t => inlist(a,dif(s,t)) = inlist(a,s) andalso not(inlist(a,t))
Proof This proof is by structural induction on s:
o Base case: s = nil
In this case we have inlist(a,dif(nil,t)) = inlist(a,nil) andalso not(inlist(a,t)).
Using the axioms for dif in ORDDUP, we rewrite the above equation as
inlist(a,nil) = inlist(a,nil) andalso not(inlist(a,t)).
Then, from the axioms for inlist in ORDDUP, we conclude that
false = false andalso not(inlist(a,t)). Therefore, for s = nil the axiom follows.
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¢ Inductive Step: s = b::1
Inductive Hypothesis: forall t => inlist(a,dif(1,t)) = inlist(a,l) andalso not(inlist(a,t))
In this case we have inlist(a,dif(b::1,t)) = inlist(a,b::1) andalso not(inlist(a,t)).

~ case 1: inlist(b,t) = true
Using the axioms for dif in ORDDUP, we rewrite
inlist(a,dif(b::1,t)) = inlist(a,b::1) andalso not(inlist(a,t))
as inlist(a,dif(1,t)) = inlist(a,b::1) andalso not(inlist(a,t)).
Then, from the axioms for inlist in ORDDUP, we conclude that
inlist(a,dif(1,t)) = ((a=b) orelse inlist(a,l)) andalsc not(inlist(a,t)).
Therefore this case follows from the inductive hypothesis.
— case 2: inlist(b,t) = false
Using the axioms for dif in ORDDUP, we rewrite
inlist(a,dif(b::1,t)) = inlist(a,b::1) andalso not(inlist(a,t)) as
inlist(a,b::dif(1,t)) = inlist(a,b::1) andalso not(inlist(a,t)).
Then, from the axioms for inlist in ORDDUP, we conclude that
((a=b) orelse inlist(a,dif(1,t))) = ((a=b) orelse inlist(a,l))
andalso not(inlist(a,t)).
Case Analysis:
+ a=b: from the hypothesis we have that inlist(a,t) = false, and the axiom follows trivially.
# not(a=b): the axiom follows from the inductive hypothesis.

Step 11 Design decision: Refinement. Implement the function intersection in terms of inter. The
current version of the body of the functor Set’’ is obtained from the body of Set’’ in Step 10, by substituting
the declaration and axiom for intersection for the following function declaration:

fun intersection(s,t) = inter(s,t)

Verification Typechecks correctly. We have to show that: ORDDUP U current body |= previous body.
We have to prove that the following axiom is implied by the axioms and functions in ORDDUP U current body:

axiom member(a,intersection(s,t)) = member(a,s) andalso member(a,t)

Proof (Sketch) The proof follows by mutual structural induction on s and t, and by case analysis on the list
elements. The complete proof is omited here and can be found elsewhere [2].

Step 12 Design decision: Refinement. Implement the function union in terms of appendlist. The current
version of the body of the functor Set’’ is obtained from the body of Set’’ in Step 11 by substituting the
declaration and axiom for union for the following function declaration:

fun union(s,t) = appendlist(s,t)

Verification Typechecks correctly. We have to show that: ORDDUP U current body = previous body.
We have to prove that the following axiom is implied by the axioms and functions in ORDDUP U current body:

axiom member(a,union(s,t)) = member(a,s) orelse member(a,t)
Proof (Sketch) This proof follows similarly as the proof in Step 11 and can also be found in [2]
Now, all the functor and structure bodies are expressed in SML code, therefore we have finished the development

of this program. The Development Tree showing the dependency between the development steps is give in
Figure 1. The final SML code for the program appears elsewhere [2].
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STEP 0: Initial
specification of Set
I

STEP 1: Decompose Set

into AddDelete and Set’

/ \
STEP 2: Abstract STEP 4: Decompose Set’
code for AddDelete into Set'' and Orddup

|
STEP 3: Refine
AddDelete

/
STEP 8: Abstract
code for Set''
|
STEP 9: Refine Set''
|
STEP 10: Refine Set'’

\
STEP 5: Abstract
code for Orddup

|

STEP 6: Refine Orddup
I

STEP 7: Refine Orddup

I
STEP 11: Refine Set'’

|
STEP 12: Refine Set'’

. Figure 1: The Development Tree: the dependency between the development steps.

5 Concluding Remarks

We presented a modular development of basic set operations on a data structure of generic finite sets, using
the Extended ML specification/programming language and development methodology. The final result of the
development process is an SML modular program consisting of various signatures, structures and functors,
appears elsewhere [2].

This development illustrated that modular specifications are important to simplify, or even make possible,
the development of large systems. Proofs of correctness may be localised in specific stages of the development
making it easier to understand the various design decisions. For instance, the proofs of steps 10, 11 and 12
in Section 4.1 are clearer to understand when they are done in separate development steps. This also help in
changing the history of the development, e.g., when a “mistake” is found in the original requirement specification
or in some later stage.

Another aspect in which modular specifications are important is in isolating the choice of representation for
sets and consequently also isolating the proof obligations that arise from such a choice. Therefore, a change
in data representation, e.g., to use binary trees, would only require to change the step 4 (including some
verifications) of the development, provide we kept the signature ORDDUP unchanged. All other parts of the
program would remain unchanged, including the verification proofs.

We believe that the development of large software systems require a modular specification/programming
language, a powerful development methodology well founded in solid mathematical basis, and a set of software
tools to free the programmer from clerical task and also to prevent the possibilities of h errors that would
invalidate the entire development process. The EML framework already provide such a language and devel-
opment methodology. A set of supporting tools are under design and implementation at the Department of
Computer Science, University of Edinburgh, Scotland, under the supervision of D. Sannella, and at “Depar-
tamento de Informdtica”, UFPE, Brazil, under the supervision of Fabio Q. B. da Silva. These tools include
a parser and type-checker for EML specifications and a proof obligation generator, and will form the basis
of a complete software development environment for the EML language in the near future. The design and
implementation of such an environment is clearly a challenging problem for future research.
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