
62 VIl Simpósio Braslelro de Engenharia de Software

Finite Sets: A Case Study on Formal Program Oevelopment in the
Extended ML Framework

Cláudia J. A. da Silva
Grupo de Computação, Fundação Instituto Tecnológico de Pernambuco (JTEP)
Av. Prof. Luiz Freire, 700, CEP 50.730
~ife, Pernambuco, Brasil. e-mail: claudiaegctc. itap. br.

Fabio Q. B. da Silva
Departamento de Informática, Unive111idade Federal de Pernambuco,
Av. Prof. Luiz Freire, s/n, CP 7851, CEP 50732-970,
Recife, Pernambuco, Brasil. e-mail: :tabioedi. ufpe . br.

Abstract

We study formal development of functional programa from algebraic specifications in Lhe Extend
ed M L framework. We present a case sLudy on the modular specification and refinement of (finite)
set operations in the ExLended ML wide>-spectrum specification/programming language. Our main
objective is to present the module faciliLies and development methodology of E:xtended ML, Lheir
application to a practical problem, and tbeir suitability for the formal development of (modular)
Standard M L programa.

Sumário

Estudamos o desenvolvimento formal de programas funcionais, usando especificações algébricas,
em Extended ML. Apresentamos um estudo de caso em especificação modular e refinamento de
operações de conjuntos (finitos) usando a linguagem de especificação/programação Extended ML.
Nosso principal objetivo é apresentar a linguagem de módulos e a metodologia de desenvolvimento
Extended M L, suas aplicações em problemas práticos e sua adequação para o desenvolvimento formal
de programas (modulares) em Standard ML.

1 Introduction

As noted in [14], "Lhe ultimaLe goal of work on program specification is Lo establish a pradical framework for Lhe
systematic production of correct programa from requirement specifications via a sequence of verified developmeot
steps•. We present a modular development of basic operations on seta from a requirement specification of their
bebaviour io the Extended ML framework [16, 11]. Our goal is Lo preseot an extensive use of the modular
facilities of tbe Extended ML laoguage and show bow these facilities simplify the program specification and
formal development.

Extended ML (EML) is a wide-spectrum specification/programming language for tbe formal development
of Standard ML (SML) [4, 5] programs by means of matbematically verified development steps. Both EML
and SML languages have formal semantics describing every aspect of the languages. Tberefore, in tbe EML
framework a complete degree of formalisation in the development process is acbieved, which can be expre&l!ed
as follows: Lhe resulting program is considered Lo be correct with respect Lo ita initiaJ requirement specification
if and only if each development sLep is proved to be correct in a formal calculus consistent witb tbe formal
eemantics of EML and SML.

Tbe EM L language is based on Lhe module system of SM L, and tberefore strongly supports modular sped
Jiaa&ions and the devclopment of m odular programs. Both aspecta are essentiaJ for tbe formal development of
la.rge soflware systems. Modular specifications simplify tbe complexity of the development steps, by localising
design decisions and verification proofs to small, self-contained program uoita. On tbe other hand, it is widely
accepted that a meihodological use of modularity io programmiog makes large systems easier to maintain and
improves the reusability of parta of developed systems. Toge~ber, modular speeifications of modular prograrns
allow specilicatJons, and consequenUy iheir verilication proofs, to be more easily maintained and reused.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 63

Although the design of modular systems have been widely covered in the literature, the problem of mod
ularising formal specifications has received litUe attention until recently. ln lhe EML framework, modular
specifications are natural , and provide powerful abstractions, as already noted in [8]. Furthermore, the use of
observational equivalence [13] as a correctness criterion in the devclopment process introduces a high degree of
flexibility and generality in this framework.

The EML language and development methodology has been extensively studied in the literature. ln Lhis
paper, EML is brieOy introduced by means of examples. The reader unfamiliar with EML, or wishing lo
understand its mathematical underpinings, is referred to the litcrature cited in Section 2.2. Our goal in this
paper is to show a particular case study and investigate its problems in the context of Extended M L, rather
tban providing a detailed introduction to Lhe language.

ln Section 2, we review the main features of EM L and SM L. We then present the EM L development
methodology in Section 3. Sections 2 and 3 are based on previous work [14]. The reader familiar with EML
language and methodology might want to skip Sections 2 and 3. ln Section 4, we show a complete dcvclopment
of basic set operations using tbe EM L methodology. Finally, Section 5 draws some conclusions and present
suggestions for further work.

2 The Extended ML Specification Language

Extended ML (EML) is a wide spectrum specification/programming language for formal development of pro
grama in the functionallanguage Standard ML [4 , 5] . EML is called wide spectrum because it can express ali
stages of a development process in a single framework: the high-level specification, the executable Standard M L
program, and abstract code whicb cootains both non~xecutable specifications and Standard M L programs.

EML is a proper extension of the programming language Standard ML (SML). Before introducing this
extension we present the main aspects of SM L that are necessary for underslanding I ater examples. This
presentation is necessarily short, and is given maioly to make this work self contained. The reader is referred
to [4, 9] for didactical accounts of SML, and to [5] for the language's formal definition.

2.1 An Overview of Standard ML

SML has two distincts sub-languages: the Core and the Module languages. The SML Core language provides
features for programming "in the small". The Core is an eager functional programming language, with poly
morphic types, a strong type syslem which allows slatic type inference, user defined concrele and abstract data
types, a mechanism to raise and handle run time exceptions, and imperative features like referentes and assign
ment. Programs in the SML Core language resembles other functional programming languages, e.g., IIOPE [I].
The following example illustrates a smallsubset of the SML Core featu res, including the pre-defined data type
of polymorphic lists.

Let us represent finite sets of integer numbers as lists of integers, and implemenl SML funclions for con
structing sets and to tesl for set membership.

type intset = int list
val eapty : intset = nil
tun add(a, a)= a :: a
tun member(a, empty) = talse

I member(a, b::s) • (a= b) orelse member(~. a)

Tbe constanl eapty represents the empty set and is implemented by the (pre-defined) constant nil (the empty
list). The function add simply builds sels using the list function :: (read cons). The function meaber is defined
by case analysis on the structure of sets. The first clause states that the empty set has no elements, and the
second clause says that ~ is a member of a set b : :a if a is equal b or else a is a member of a . Many SM L
features are not reviewed here, including record types, high-order functions, imperative features , exceptions,
concrete and abstract data types (the module language provides a more Oexible way of encapsulating data).

The SM L Module language providcs features for progra.mming "in lhe large". Using these features large
SM L programs can be structured in smallself-contained programs (called structures) with an interface (called
a signature). Interfaces may be explicitly giveo by the programmer or inferred by the type inference system.
Functors are para.meterised structures with an explicit input signature and an output signature. Applying a

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

64 VIl Simpósio Btasleiro de Engenharia de Software

funcl.or Lo a sLructure matcbin~ ita input si~ature yields a structure matcbin~ i ta output si~nature. Hereafter,
we use Lhe Lerm module l.o refer l.o both functor and structure, whenever it does noL cause ambi~ities.

ln Lhe following example, we will define seta of objecta of an arbitrary type, provided Lhis type admita
equality on i ta objecta' . Tbis is accomplisbed by Lhe definiLion of a funcl.or l.ogether with ita input and output
signatu res.

aignature ELEJI = sig eqtype elea end

ai~ature SET =
aig
atructure Elea : ELEJI
type aet
val aeaber
val add

Elea. elea • aet -> bool
Elea.elea • aet - > aet

end

funct or Set(X ELEX)

a truc t
atructure Blea = X

aig include SET
aharing Elea • X

end

type aet = Elea. elea liat
val empty = nil
fun add(a, s) = a : : a
fun aeaber(a, nil) = falae

I aeaber(a, b :: a)= (a= b) orelae aeaber(a, a)
end

atructure IntElea : ELEJI = atruct type elea " int end

atructure IntSet = Set(IntBlea)

This defines a functor Set with input aignature ELEX and output ai~ature SET. Wben applied l.o a struc:Lure
matching ELEM, e.g. IntELea, Set yields a. structure ma.tcbing SET. The Module language also has a atroo~
Lype system LhaL a.llowa signaLure inference. For the defioiLion of Set l.o be correctly typed, ita body muat
define a.L leasL Lhe objecta that a.re specilied in the output si~oature: a sub-atructure called IUea matcbing Lhe
si~na.ture ELEX; a constant eapty; and functions add and aeaber, with Lheir Lypes as apecified in SET. The
sharing constra.int forces Lhe (actual) parameter structure X and Lhe resultin~ aub-atructure IUeal.o be Lhe sarne
object.

T be function IntSet . add constructa seta of integer numbers using Lhe constant eapty and tbe iote~er
constanta. T he functioo IntSet .aeaber can be used l.o test membership on seta constructed by IntSet . add.

Signatures play a dual rôle in Lhe Module lao~uage. On tbe one hand , they act as an interface, restrictin~
tbe externa! view of internal module componenta. T herefore, only what is expliciUy specilied in Lhe si~ ature is
visible from outside of a. module2 • On Lhe oLher band , signa.tures impose constra inta on whicb compooenta must
be delined in Lhe body of Lhe modules, l.ogether with their types, i.e., they define Lhe minimal set of compooenta
tha.t musL be defined in Lhe module's body.

For instance, in Lhe above exa.mple Lhe signaLure SET requires Lhe existence in Set of a. aub-struc:ture Elea,
a consLanL empty, and Lwo funct iona add and aeaber. Furthermore, Lhe users of IntSet cannot make uae of
Lhe internal representation of seta as lista. This is to sa.y tha.L IntSet implementa an a.bstract data Lype and
Lhe only visible operations on this type are those defined in Lhe si~ature. T he encapsula.tioo provided by Lhe
Module language is essential l.o Lhe development of lar~e systems st.ructured in small modules, and this is Lhe
basis of the EML modular pro~ra.m developmeot meLhodology, whicb is reviewed io Sect.ioo 3.

The above overview of Lhe SML modules is necessarily short. ln (9), tbe interested reader willlind a more
deLailed introduction to tbe Module language.

I An SML type admite equality if it ia not ao ah.t ract data type or it io not a funclion type.
2Thia ,. not true, in r;enual, for S ML, but it holdo for EML module ~An«uar;e .

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 65

2.2 An Overview of Extended ML

ln this section, we give a brief overview of the Extended ML specificationfp rogramming language. We only
summarise lhe EML features that a re necessary to the understanding of)ater examples. The reader unfamiliar
with EM L language is referred to the literature cited below.

As noted in Section 2.1, in the SM L Module language signatures act as interfaces to modules, defining which
objects can be externally accessed, together witb their types. This information is sufficicnt to use SM L as a
programming language. llowever, a signature does not, in general, provide enough information to be considered
as a specification of a programming task. ln order to specify a function completely and non-ambiguously we
need its type and a formal description of its input/output behaviour.

ln EM L, axioms are allowed in signatures to enbance their information content concerning the input/output
bebaviour of tbe functions. That is, ax.ioms provide a formal definition of lhe components of the modules.
Axioms are written in a notation of first-order equationallogics in which equality is admitted on ali types. For
instance, we may extend the signature SET with the specification of the functions add and member as follows:

signature SET =
aig
atructure Elem ELEM
type aet
val. eapty : aet
val. add : Elea.elea • aet -> aet
val. aeaber : Elea. elea • aet -> bool
axioa torall a => aeaber(a, eapty) = talae
axiom torall a, b, x => aeaber(a, add(b, a)) = (a • b) orelse meaber(a, a)

end

For a structure to match, or satisfy, the above signature, it must supply a sub-structure Elea matching ELEM, a
constant eapty and the functions add and aeaber, with their types as in SET, and furthermore the structure's
body must satisfy lhe ax.ioms in lhe signature. Satisfaction in EM L is taken to be up to observational equivalence,
i.e., the body of the structure does not h ave to satisfy tbe axioms in lhe signature exactly, but only witb respect
to its observable bebaviour. The use of observational satisfaction instead of ordinary logic satisfaction is a point
of major importante in tbe EML framework, wbich allows a higb degree of Oexibility in the implementation.
However, a more detailed discussion on observational equivalence is outside the scope of this paper. The
interested reader might want to see [13] for a detailed account of observational equivalente i o tbe context of
EML, and [11] for a more general approacb to tbis issue.

Signatures extended with axioms constitute a specification of a program task, that is, we must construct a
functor or structure satisfying this signature. The development of such a functor or structure include stages in
which some functions are not yet defined and the body of other structures and functors may contain ax.ioms.
ln order to allow these stages to be expressed in EML, structure bodies are allowed to include a mixture of
axioms, íncomplete expressions and SML code. A possible stage in lhe deveJopment of the functor Set may b ..
as follows:

tunctor Set(atructure X : ELEK) : aig include SET
ahari.ng X • Elea

atruct
atructure Elea = X
type aet = Elem . elea liat
val eapty : aet = nil

end

val add : Elea. elea • aet -> aet = ?

val aeaeber : Elea .elea • aet -> bool = ?
axioa toral.l a => aeaber(a, eapty) = talae
axioa torall a, b, x => aeaber(a, add(b , a)) • (a = b) orelae aeaber(a, a)

end

The place-holder expression 1 is used above to declare functions which are not yet in an executable form. ln
SML, the ~ype of an expression, and in particular a function, can be inferred from context information. ln EML,
the type of non-execu~able functions declared using ? must be explicitly given, as in the above declarations of

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

66 VIl Simpósio Brasileiro de Engenharia de Software

add and member. The expression ? can also be used to declare a type wh06C representation is not yet defined,
and in place of functors or structures bodies. The latter use of the place-holder expression is useful to specify
the initial programming task. For instance:

tunctor Set(X : ELEK) : sig include SET
sharing X = Elea

end = ?

The above functor specification is an EML specification of a programming lask. Program development airns to
suply an executable body to replace the structure expression ? .

The EML language is the extension to SML as described above: axioms are allowed in signatures to specify
the bebaviour of module components; the place-holder expression ? is allowed in place of a type expression,
a value expression or a structure expression; and a.xioms are allowed in the body of structures and functor to
specify the bebaviour of variables and functions declared using ? . He.reafter, we will assume tbat ali axioms are
implicitly universally quantified, whenever this does not cause ambiguities.

lt is important to emphasise that the choice of tbe logics and the notation to write axioms is, at some extent,
arbitrary. The EML semantics is parametric on such a choice. The particular choice of first--order equational
logics is convenient since an SM L variable or function declaration is a particula.r form of equation that happens
to be executable. Therefore, axioms and declarations are written and inte.rpreted in an uniform framework.

An extensive literature exists covering many aspects of tbe EM L language and metbodology: [11, 1 O] give
detailed introductions to EML in a tutoria! form; the original semantics of EML, based on the tbeory of
institutions [3], appears in [15, 16]; [12] defines the syntax and some aspects of Lhe semantics of EML; the
fu ll semantics, including signature matching extended to deal witb observational satisfaction of a.xioms is given
in [6]; [7] provides a gentle introduction to this formal semantics.

3 The Extended ML Development Methodology

ln this section, we review tbe EML development methodology. The starting point of a {formal) development
process in EM L is a functor of the form :

tunctor F(X : SIGin) : SIGout = ?

where SIGin and SIGout are EM L signatures, possibly conLaining axioms. From tbis initial specification we
should work towards a functor in which an (executable) SM L structure expression replaces ? . The development
is carried out in various formally verified developmenl steps, which ensures Lhat the final executable functor is
correct with respect to its initial specification.

ln general, any ExLended ML functor specification having a body consisting of? ora non-Lrivial body with
non-executable components is regarded as a programming task. ln the former case, this task is to replace 1 by
a non-trivial {and potentially non-executable) body that satisfies tbe functor 's signature. ln tbe latter case, the
task is to replaces axioms in Lhe funcLor's body by SML function or value declarations.

The EML development methodology describes three ways to proceed from aspecification or abstract program
towards a (more concrete) program :

Decomposition step: decompose a functor in otber functors , which will then be regarded as new programming
tasks.

Coding s t ep: provide a non-trivial funcLor body to replace ?, which may contain axioma and components
declared using ? .

Refinement s t ep: replace a non-trivial functor body by another {more concrete) body in wbich some axioms
and declarations using? are replaces by concreta SML declarations.

Decomposition steps are used to structure tbe development into smaller tasks, and can be considered as pro
gramming,pr development, "in the large". Coding and refinement can the.refore be considered as programming,
or development, "in the small" . The use of each development step is illustrate in a case study in Section 4.

Each development stcp gives rise to one or more correctness conditions, or proof obligations. These conditions
or obligations can be derived automatically from a development step. A development is considered to be correct
if each proof obligation generated during the development is formally verified, or discbarged. ln general, a proof

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 67

obligation is a relation between the state of the development bcfore and after a development step. The generic
form of a proof obligation is an observationa/ satisfaction relation:

SPt U ... uSPn Foss SP

where SP1,l ~ i ~ n, are signatures or structure expressions after the development step has taken place, SP
is the specillcation before the development step, and OBS is a set of the (observable) types of SP (actually
a subset of the types of SP). Verifying or discharging a proof obligation involves showing that the axioms i o
SP logically follows from the axioms and declarations in tbe union of tbe left hand side of the relation, up to
observational equivalence with respect to OBS.

Proofs of observational equivalence are notoriously difficult (see [17) for a detailed discussion on this problem).
Since ordinary logical satisfaction is stronger than observational equivalence, it is sufficient to prove tbat SP1 U
... USPn F SP, if it holds. For the examples of next section, ordinary logical satisfaction will be used, since it
holds for each proof obligation during the developrnent process.

Let us now detail each development step and show the proof obligations they give rise:

Decomposition step: given a functor speciflcation

functor F(X : SIGinO) : SIGoutO c ?

We can decçmpose F into two3 functors G and H, as follows:

functor G(I : SIGinl) : SIGoutl = ?
functor B(I : SIGin2) : SIGout2 = ?

where the new deflnition of F is as follows:

functor F(X : SIGinO) : SIGoutO = G(B(X))

The new deflnition of F must be a well-formed EML functor definition, regarding syntax and type checking.
Furthermore, this decomposition generates tbree proof obligations:

SIGinO FOBS SIGin2 SIGout2 FOBS SIGinl SIGoutl FOBS SIGoutO

Coding step: given a functor specification:

functor F(I : SIGin) : SIGout = ?

a coding step provides a non-trivial body to replace ? :

functor F(X : SIGin) : SIGout a strerp

where atrerp must be a well formed EML structure expression. This coding step generates one proof obligation:

SIGin U strexp FOBS SIGout

Refinement step: given a functor specification:

functor F(X : SIGin) : SIGout = atrerp

a reflnement step replaces atrexp by aoother (more coocrete) structure expression:

functor F(X : SIGin) : SIGout = atrerp'

where atrexp' must be a well forrned EML structure expression. This refinement step generates one proof
obligation:

SIGin U strexp• FOBS atrexp

According to the methodology described above, every step in a developmeot h as the following structure:

• Design Decision: a choice of which developmeot step to use and how to execute the chosen step.
• The step proper: the new state of the development that arises after the developrnent step.
• Verilication: the proofs tbat discharge the obligations generated by the development step.

The following case study illustrates the use of the EM L development methodology.
3ln general, we can decompOAe F in " > O funct.oraj this generaliaat.ion i• trivial a.nd can be found in lhe EML litera.t.u.re dted

a.bove.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

68 Vll Simpósio Brasileiro de Engenharia de Software

4 A Case Study: Finite Sets

ln ~his section we present ~he steps of the developmen~ of an SML program from the initial requirements
specification to t hc final executable program. Our objective is to illustrate the EML development methodology
and sbow bow it can assist in structuring tbe development of large software systems. Tbe program consista of
several functions tbat work on an abstrac:~ data ~ype of finite sets, called aet . We will provide a constant value
eapty to represent tbe empty set and the following functions:

• eingleton: convert an element of type elea into a set of type set with only this element in it.
• add: adds an element to a set, if it is not already there.
• delate: deletee an element from a set.
• union: tbe union of two seta.
• interaection: intersection of two sets.
• dit:terence: the set difference between two sets.
• meaber: ver i fi es if an element belongs to s set.
• aeabera: returns an elea liat that contains ali tbe elements of a set.
• cardinality: returns tbe number of elements tbat are in a set.

Two other functions, inliat and tvice, are also part of tbis program. The function inliet verifies if an
element belongs to a list, the function tvice verifles if an element occurs twice in a list. These functions are
used to simpli fy the specification of cardinality, as wilJ be sbown below.

4.1 Developing the SML Program

T be development steps that construct one implementation of the program {informally) described above are
given. Tbe development has a form of a {finitely branc.bing) tree, the development tree, wb011e nodes represent
design decisions. The development tree for tbia caee study is sbown in Figure I .

Step O Specificolton. Tbe initial formal specification of tbe program described above is given by an Extended
ML funclor speciflcation that bas an input signature ELBJI and an output signature SET as follows:

signature ELEII •
aig

eqtype e1 ..
Yal leq : el .. • elea -> bool
ado• leq(a,b)
axioa leq(a,b) andalao leq(b,a) i apliea (a•b)
axioa leq(a,b) andalao leq(b ,e) iapliea leq(a,c)

e:nd ;

aignature SET •
aig

type dea
type ••t
Yal .. pty : aet
Yal aingleton : •1•• -> aet
Yal union : aet • aet -> aet
val add : aet • ele• -> aet
val interaeetion : aet • aet -> aet
Yal •••b• r : el .. • aet -> bool
Yal aeabera : aet -> el .. liat
Yal eardinality : aet -> int
val differenee : aet • aet -> aet
Yal dela te : aet • el .. -> aet
Yal inliat : •1•• • el .. liat -> bool
Yal tw!ee : elea • elea liat -> bool
uioa inliat (a,nil) • falae
axioa inliat(a,b::l) • (a•b) orelae inliat(a,l)
axioa twice(a,nil) • falae
axioa twice(a,b: :l) • (a•b) andalao inliat(a,l) orelae twiee(a,l)
axioa aeaber (a , .. pty) • falsa

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software

axioa aeaber(b,aingl eton a) • (a•b)
axioa aeaber(a,union (a,t)) • aeaber(a,a) orelae aeaber(a,t))
axioa aeaber(a,a) • inliat(a,aaabera a)
axioa t•ice(a,aeabera a) • falae
axioa cardinality a • length(aeaber a a)
axioa add(a,a) • union(a,aingleton a)
axioa aeaber(a,interaection(a,t)) • aeaber(a,a) andalao aeaber(a,t)
axioa aeaber(a,difference(a,t)) • aeaber(a,a) andalao not(aeaber(a,t))
axioa delete(a,a) • difference(a, aingleton a)

end;

functor Set(I : ELEM) : SET • ?

69

The specification of cardinality uses the built in function length, whose behaviour we can assume to be
correct. The use of t vice !Uarantees lhat lhere are no duplicates in a list gentrated using aeabers, nnd
therefore simplifies the implemenlalion of cardinality. lt is important lo notice that other specifications of
cardinality, e.g., lhe usual sel theoretical deflnit.ion, rnay noi require Lhe use of t vice.

The parameter to the program is a structure ihai defines a type alem that musi adrnit. !'quality, and a
function leq thai defines a partia! order on the elernent.s of this type. The implementation of the program
admit.s any choice for elea and leq tbat saltsfles tbe axioms m ELEM. Thts abstraction makes lhe developmcnt
more general because ihe choice of representation for elem and an actual implementalion of leq are only
necessary by the time the functor Set is used.

Step 1 Dutgn dtcmon: Dtcomposalton lmplement the funcLions add and delete in terms of the functions
u.nion and difference. This step reduces lhe number of functions thaL musi be eiTectively implement«>d,
because the implementations of add and delate will follow lrtvially from the a:xioms in SET. Wc need two new
functors and a new signature:

aignature SET • •
aig

atructure Elea : ELEM
open Elea
(• the reat of thia aignature ia aa SET vithout the daclarationa of the type
elea, the apecificationa of add and delate, and the axioaa that
aention add and delate •)

end ;

tunctor AddDelete(S : SET') : SET • ?
functor Set'(l : ELEM) : aig include SET'

aharing Ele• • X
end • ?

We can then implement Set in terms of AddDelete and Set' as follows:

fu.nctor Set(X : ELEM) : SET = AddDelete(Set'(X))

Verification We musl show that AddDelete(Set' (X)) is a wrll formed EM L structure expresston and lhat
tbe interfaces match, as defined in Section 3, for the decomposition slep . The structure expression is trivia lly
well formed. This property can always be automatically checked by a lype checker The proof obhgalions that
arise from lhe signature malchings are trivially discharged since ali signatures match exact)y. llereafter, we will
only juslify non-irtvial proof obligations. ln parttcular, we wtll assume that each structure expression ts wcll
formed.

We now havc a choice of which functor to code. This means to follow either lhe rtght or lhe l!'ft branclt al
lhe root of thP developmenl tree of Figure I

Step 2 Destgn deciSton: Codtng. lmplemenl the functor AddDelete by rcplacing ? by a non trtvial slruclure
expression.

functor AddDelete(S : SET') : SET •
atruct

open S

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

70

type e1ea
fun add(a : aet , • : e1ea) • ? : aet
fun de1ete(a : aet , • : e1ea) •? : aet
axioa add(a,a) • union(a,aing1eton a)
axioa de1ete(a,a) • ditference(a, aing1e t on a)

end;

VIl Simpósio Brasileiro de Engenharia de Software

Verification Typechecks correctly. We have to show that: SET' U body I= SET.
Proof Ali Lhe axioma in SET appear in the body of tbe functor or in the signature SET'.

Jt is important to remember..that SM lrfunctian declarations are a particular form of a.xiom in which the left
band side is a linear paHern. Therefore, tbe a:xioms in the body of AddDelete can be trivially converted into
SML function decla.ratioll5, which is done in the next development slep

Step 3 De6ign deciaaon: Refinement. Convert tbe axioma for add and delete into SML code. Note tbat
the SM L code for tbese functiona is very similar lo Lhe axioms. T bis makes the verification phase trivial, and
even p06Sible to be performed automatically.

functor AddDe1ete(S : SET ') : SET •
atruct

open S
type ele• • Ele• .el ea
fun add(a,a) • union (a ,aing1eton a)
f un de1ete(a,a) • difference (a, aing1eton a)

end;

Verification Typechecks correctly. We have to show t hat: SET' U current body I= prnioua body.
Proof Ali the axioms in the previous version of the body follows directly from tbe definition of tbe fuoctions
in lhe curreot body.

At lhis stage, the body of AddDelete contai os ooly executable SM L code. We can oow start tbe developmeot
of tbe funclor Set •.

Step 4 Desagn deci6ion: Decompo&~lion. At tbis stage we need to choose a represeotation for the type set.
Some p06Sibilities are: bioary trees, balanced binary trees, unordered lista, and ordered lista. We decided to
implemeot aet io terms of ordered lisLs (using leq) of objecLs of type e1- without duplicates4 • We delay l he
actual definition of lhe functions in Set' i o terma of lhe functiooa oo lisLs to a !ater slage in the developmeol.
At this point, we proceed by another decompositioo and we need two new functors and a new signature:

aignature ORDDUP •
aig

atructure Elea : EI.EII
open Elea
val inliat : e1ea • •1•• 1iat -> boo1
val t vice : e1ea • •1 .. 1iat -> boo1
va1 appendliat : e1ea 1iat • e1ea 1ia t -> e1ea 1iat
va1 inter : • 1•• 1iat • e1ea 1iat -> e1ea 1iat
va1 dif : • 1•• 1iat • e1ea 1iat -> e1ea liat
axioa appendliat(ni1, t) • t
axioa appendliat(a, ni1) • a
axioa (a • b) iap1iea appendliat(a::a,b::t) • a: : appendliat (a, t)
Biioa 1eq(a,b) andalao not (a•b) iap1iea appendliat(a::a ,b::t) • a::appendliat(a,b::t)
axioa 1eq(b,a) andalao not (a•b) iap1iea appendliat(a: : a,b::t) • b ::appendliat(a::a,t)
axioa dif(ni1, t) • ni1
axioa dif (a, ni1) • a
axioa inliat(a,t) iap1iea dit (a::a, t) • di f(a,t)
axioa not(inliat(a,h)) iap1iea dif (a::a,h) • a::dif(a,h)
ax1oa (a • nil) ore1ae (t • ni1) i ap1iea int er (a, t) • ni1
axioa (a • b) iap1iea i nter (a::a,b::t) • a: : inter(a,t)
aiioa leq(a, b) andalao not(a•b) iapliea inter(a: :a ,b: : t) • i nter (a ,b: :t)
axioa 1eq(b,a) andalao not (a•b) iap1iea inter(a ::a,b:: t) • inter(a::a,t)

"The deve.lopmenl of thil data atructure in EML wu a.lready par\ of a libra.ry o(aimple cue aludi~, and we l"euaed previoua
developmenland oome or iu proor •.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de EngeMaria de Software

axioa inliat(a,ni1) • fala•
axioa inliat(a,b::1) • (a-b) orelae inliat(a,1)
axioa taice(a,nil) • falae
axioa taice(a,b::1) • (a-b) andalao inliat(a,1) ore1ae t•lce(a,1)

end;

functor Set' '(I ORDOUP) aig inc1ude SET'
aharfns I .El .. • E1 ..

functor OrdDup(T ELEJO •is inc1ude OIUlOUP
aharfns Eles • T

•nd-?

Tbe fact.s below are hivia.J COlll!e<IUeDce of ~he axioms in ORDOUP, and are used withou~ proof.

71

Fact 1: The axioms for appeodliat ensure ~ha~ list.s buil~ usin« nil and appendliat c.ont.ains no duplicates
and their element.s are ordered by leq.

Fact 2: The axioms for di1 and inter ensure ~ha~ ~he list.s built usin« these fuodiODll are ordered and wi~hou~
duplicates, provided ~ha~ ~heir parameLers have ~hese properties.

We then implemen~ Set • in terms of Set • • and OrdDup as foUowa:

funetor Set' (I : El-) : SET' = Set" (OrdDup(I))

Verifieation Typeehedc.s c.orrectly. Ali interfac.es match exac~ly.

We have now ano~her brancb in ~be development Lree, and must chcx.e be~ween irnplementin« OrdDup or
Sat • •. Experience in Lhe developmen~ of this case study has ahown ~hal. atartin« wi~h lhe inner most funcLor
in a decornposition branch maltes i~ aimpler Lo baclt~raclt whenever a problem ÍB found later in the development.
IJowever, a more det.ailed Áudy ÍB DOCCflllar}' Lo see whether thia ÍB a «eneral desi«" rule.

Step 5 Desagn decasaon: Codang. lmplement the funcLor OrdDup.

functor OrdDup(l : ELEJI) : aig inc1ude ORDOUP

•truct
atructure E1ea : ELEJI
open Elea

aharing Elea • I
end •

fun inliat(a, 1 : elea 1iat) • 1 : boo1
fun taice(a, 1 : e1ea 1iat) • ? : boo1
fun appendliat(a : e1ea 1iat,t : e1ea 1iat) •? : elea liat
fun inter(a : e1ea 1iat,t : elea liat) • ? : elea 1iat
fun dif(a : elea 1iat,t : el .. 1iat) •? : e1ea 1iat
(• inc1nde here a11 the axiou that appear in ORDOUP •>

end;

Verification Typeehedc.s c.orrecLiy. We have Lo show that: BLEJI U body I= ORDDUP.
Proof Ali ~he axioms io ORDDUP appear in ~he body of ~he funcLor.

Step 6 Design decisaon: &jinement. We proceed refinin« OrdDnp by c.oovertin« lhe axioma for inlist and
tvice inLo SM L c.ode, which can be LriviaJJy derived from their axaoms. Tbe curren~ vennon of the body of Lhe
funcLor OrdDup is obtained from Lhe body of OrdDup i o Step 5 by substitulin« tbe declarataoDll aod axioms for
inliat aod tvice by the followin« fuoction declaratioDB:

fun inliat(a,nil) • falae
I inliat(a,b::t) • (a•b) ore1ae inliat(a,t)

fun taice(a,nil) • falae
I taice(a ,b::t) • (a•b) andalao inliat(a,t) ore1ae t•ice(a,t)

Verification Typechedc.s correctly. We have Lo show that: BLEJI U current bodJ I= predoua bodJ
Proof The axiorns for inliat and tvice in Lhe previous version of lhe body follow directly from the definition
of the functions in tbe current version of ~he body. The o~her a.xioms in Lhe previous versioo of ~he body appear
in ~he curren~ version of the body.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

n VIl Simpósio Brasileiro de Engenharia de Software

Step 7 De,.gn decuton: Refinemenl. We still proceed refining OrdDup by conver~ing ~he axioms for
appendliat, inter, and dif into SML code, wbich can be trivially derived from their axioms and by making
the case analysis explicit using conditional expressions. The current version of lhe body of the functor OrdDup
is obt.a.ined from lhe body of OrdDup in Step 6 by substituting the declarations and a.xioms for append1iat,
inter and di:f by lhe following fuoctioo declaratioos:

tun appendliat(nil,t) • t
I appendliat(a,nil) • a
I appendliat(a::a,b::t) • if (a•b) then a::appendliat(a,t)

elae it (leq(a, b)) tben a: :appendliat(a,b::t)
elae b::appendliat(a::a,t)

tun dif(nil,t) • nil
I dif(a,nil) • a
I dif(a::a,t) • if inliat(a,t) then dif(a,t) elaa a::dif(a,t)

tun inter(nil,t) • nil
I inter(a,nil) • nil
I inter(a::a,b: :t) • (it (a•b) then a::inter(a,t)

elae if (leq(a, b)) then inter(a,b::t)
elae inter(a::a,t))

Verificatioo Typechccks correctly. We have to show that: ELEII U eurrent body I= previous body.
Proof Tbe axioms for appendliat , inter, and dif in the previous version of the body follow directly from
lhe defioitloD of the functions in the curreot version of the body.

OrdDup is alrcady ao executable SML fuoctor and we can start codiog the fuoctor Set • •. Another p068ibility
would be to optimise the fuoctioos io OrdDup. For this particular program, optimisatioo is not an interesting
task, but might be relevant for larger programa.

Step 8 Destgn deet&ton: Codtng. lmplemeot the functor Set • •.

tunetor Set''(l : ORDDUP) : aig include SET'

atruct

aharing Elu • S.&le•
end •

atructure Ele• ELEM • S.Elea
open S
type elea • Elea.elea
type aet • elea liat
Yal upty • nil
fun aingleton(a) • a::nil
fun union(a: aet,t : aet) • ? : aet
fun interaection(a : aet,t : aet) • 1 aet
fun aeaber(a, a : aet) • ? : bool
fun aeabera(a : aet) • ? : ele• liat
fun cardinality(a : aet) • ? : int
tun differenee(a : aet,t : aet) • ? aet
(• include hera all the axioaa that are in SET' •) -· Verificatioo Typechecks correctly. We h ave to show that: ORDDUP U body I= SET •.

Proof The axioms for iulist and tviee io SET appear in the signature ORDDUP. The coocrete representation.s
of eapty aod singleton trivially satisfy the constramts that lists used to represent seta are ordered aod contai o
no duplicates. Ali the other axioms in SET appear in the body of the functor.

ln the following development steps, we will refine Set • • until ao executable functor is obtaioed. We proceed
in smallsteps, coding ooly one function at each of lhe steps 10, 11 and 12, to isolate the proof obligations aod
consequeotly their proofs.
Step 9 Destgn decision: Refinemenl. lmplement the functions aeabera, aeaber and eardinality. The
current version ofthe body offunctor Set'' is obtained from the body in Step 8 by substituting tbe declarations
and axioms for aaabera, meaber and eardinality for Lhe following function declarations:

fun •••bera • • a
fun cardinality a • length a
fun aeaber(a ,a) • inliat(a,a)

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 73

Verification Typechecks correctly. We have to show that: ORDOUP U current body I= previoua body.
We bave to prove that the following axioms are implied by the axioms and functions in ORDOUP U current body.

I. uioa aeaber(a,eapty) = taln
2. axioa aeaber(b,aingleton &) = (&=b)
3. axioa cardinality a = length(aeabera a)
4. axioa aeaber(a,s) = inlist(a,aeabera a)
5. axioa tvice(a,aeabera a) • falae

Proofs

I. From tbe definitioos ofaeaber and eapty, we condude that: aeaber(a, empty) = inlist(a,nil) .
From tbe axioms for inliat , we conclude tbat inliat(a,nil) = falae.

2. From the definitions of singleton and member, we eonclude that
aeaber(b,aingleton a)= inliat(b, a::nil).
From the ax.ioms for inliat in ORDDUP, we condude that inliat(b, a: :nil) = (a=b).

3. Follows directly from tbe defioilions of aeabera and cardinality.
4. Follows directly from lhe definitions for aeabera and aeaber.
5. Using the definition of aeabera , we rewrite axiom 5 as tvlce(a,a) = falae. lt is tmportanl to nolice

lhat a is a set, and could only h ave been constructed ustng the sel operations add, delate, i .nteraection,
ditterence, and union. This allows Fact 1 and Fact 2 to be used in lhe proof below.

Proof This proof is by slructural induction on • :

• Base case: a = nil

From the defioition of t vice , we conclude lhat t vice(a,nil) = falae. Therefore axiom 5 follows.

• lndu ctive Step: • = b: :1

lnductive Hypothesis: tvice(a,l) = false. From the definilion oftvice, we conclude thal

tvice(a,b: :1) = (a=b) andalao inliat(a,l) orelu t viee(a,l) . Then , from the induclive

hypothesis, we conclude thal tvice(a , b: :1) = (a=b) andalao inliat(a,l) oreln falae.

Case Analysis:

• a=b: since lhe lists are constructed using nil, appendliat, dif and inter, Lhen Fact 1 and Fact 2
apply, i.e. lists have no duplicales. T berefore, inliat(a,l) = false and Lhe a.xiom is satisfied.

• not(a=b) then lhe axiom follows directly.

Step 10 Destgn decasaon: Rejinemenl. lmplemeot the function difter ence, in terms of lhe previously
defined fuoctioo dit. The current version oflhe body ofthe functor Set'' is oblaioed from lhe body ofSet''
io Step 9 by substituliog the declaralion and a.xiom for ditterence by the following function declaralion:

fun difference(s,t) • dif(a,t)

Verificatioo Typechecks correctly. We have lo show Lhat: ORDOUP U current body I= previoua body.
We have lo prove lhal lhe following axiom is implied by the axioms and functions in ORDOUP U current body:

axioa forall a, a, t => aeaber(a,difference(a,t)) = member(a,s) and&lao not(member(a , t))

Uaing the definilioos of difterence and aeaber, we rewrite lhe axiom as

axioa forall a, a, t => inliat(a,dif(a,t)) = 1nliat(a,a) andalso not(inliat(a,t))

Proof This proof is by slrudural induction on s:

• BMe case: a = ni~
ln this case we have inliet(a,dif(nil,t)) = inliat(a,nil) andalso not(inliat(a,t)) .

Using the a.xioms for dit in ORDDUP , we rewrite the above equalion as

inliat(a,nil) = inliat(a,nil) andalso not(in~iat(a,t)) .

Theo, from the axioma for inlut in ORDOUP, we conclude that

tal se = tal se andalao not (inliat (a, t)) . Therefore , for • = nl.l the axíom follows.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

74 VIl Simpósio Brasileiro de Engenharia de Software

• Inductive S tep: a :: b: :1

lnductive Hypothesis: forall t => inliat(a,dif(1,t)) = inliat(a,1) andalao not(inliat(a,t))

ln this case we have in1ist(a,dif(b: :1,t)) = inliat(a,b: :1) andalao not(inliat(a,t)) .

- case 1: inliat (b,t) = true
Using the axioms for dif in OROOUP, we rewrite
inlist(a,dif(b::1,t)) = in1iat(a,b: :1) andalso not(in1iat(a,t))
as inliat(a,dif(1,t)) = in1iat (a,b: :1) andalao not(inlist(a,t)).

Then, from the axioms for inliat in ORODUP, we conclude that
inlist(a,dif(1,t)) = ((a=b) ore1ae inliat(a,1)) andalao not (in1iat(a,t)).

Therefore this case follows from the inductive hypothesis.

- case 2: inlist(b,t) =falsa
Using the axioms for dif in OROOUP, we rewrite
inliat(a,dif(b: :1,t)) = in1iat(a,b: :1) andalao not(inliat(a,t)) as

inliat(a,b: :dif(1,t)) = inliat(a,b: :1) andalao not(in1iat(a,t)).
Then, from the axioms for inliat in ORODUP, we conclude that
((a=b) ore1ae inliat(a,dif(1,t))) = ((a=b) ore1ae in1iat(a,1))

andalso not(in1iat(a,t)).

Case Analysis:

* a=b: from t he bypothesis we have that i .nliat(a, t) = falae, and the axiom follows trivially.

* not(a=b): the axiom follows from the inductive bypothesis.

Step 11 Design decision: Refinement. Implement the function interaection in terms of inter. The
current version of the body of the functor Set • • is obtained from the body of Set' ' in Step 10, by substituting
the declaration and axiom for interaection for the following function declaration:

fun intersection(s, t) • inter(a, t)

Veri:fication Typechecks correctly. We have to show that: OROOUP U current body I= previoua body.
We h ave to prove that the following axiom is implied by the axioms and functions in ORODUP U current body:

axioa aeaber(a,interaection(a,t)) = meaber(a,a) andalao aeaber(a,t)

Proof (Sketch) The proof follows by mutualstructural induction on a and t , and by case analysis on the list
elements. The complete proof is omited here and can be found elsewhere (2] .

Step 12 Dtsign decision: Rtfintmtnt. lmplement the function union in terms of appendliat. The current
version of the body of the functor Set • • is obtained from the body of Set • • in Step 11 by substituting the
declaration and axiom for union for the following function declaration:

fun union(a,t) • appendliat(a,t)

Veri:fication Typechecks correctly. We h ave to show tbat: OROOUP U current body I= previoua body.
We h ave to prove that the following axiom is implied by the axioms and functions in OROOUP U current body:

axioa aeaber(a,union(a,t)) = aeaber(a,a) ore1ae meaber(a,t)

Proof (Sketch) This proof follows similarly as the proof in Step 11 and can also be found in (2]

Now, ali the functor and structure bodies are expressed in SML code, therefore we have finished the development
of this program. The Development Tree showing t he dependency between the development steps is give in
Figure I. The final SML code for the program appears elsewhere [2].

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Vil Simpósio Brasileiro de Engenharia de Software

STEP O: lnitial
apecification of Set

I
STEP 1 : Decoapoae Set

into AddDelete and Set'
I \

STEP 2: Abatract
code for AddDelete

I

STEP 4 : Decoapose Set'
into Set'' and Orddup
I \

STEP 8: Abstract STEP 5: Abstrac t STEP 3: Refine
AddDeleta code for Set • • code tor Orddup

I I
STEP 9: Retine Set" STEP 6: Refine Drddup

I I
STEP 10 : Retine Set ' • STEP 7: Refine Drddup

I
STEP ll: Retine Set • •

I
STEP 12: Retine Set''

Figure I : The Development Ttee: the dependency between the development steps.

5 Concluding Remarks

75

We presented a modular development of basic set operations on a data strucLure of generic finite sets, using
tbe Extended M L specification/pro,;rammin,; langua,;e and development methodology. The final result of the
development process is an SM L modular pro,;ram consisting of various signatures, strucLures and functors ,
appears elsewhere (2).

This development illustrated that modular specificaLions are important to simplify, or even make possible,
Lhe development of large systems. Proofs of correctness may be localised in specific stages of tbe development
making it easier to understand Lhe various design decisions. For instance, tbe proofs of steps 10, li and 12
in Section 4.1 are dearer to undersLand when tbey are dane in separate development steps. This also help in
cbanging Lhe history of Lhe development, e .g., when a "mistake" is found in the original requirement specilication
or in some later stage.

Another aspect in whicb modular specifications are important is in isolating Lhe cboice of represenLation for
sets and consequently also isolating the proof obligations that arise from such a choice. Therefore, a change
in data represenLation , e.g., to use binary t rees, would only require to change tbe step 4 (including some
verifications) of tbe development, provide we kept the signature ORDDUP unchanged . Ali oLher parts of the
program would remain uncbanged , indudin,; the verification proofs.

We believe that the development of large software systems require a modular specification/programming
language, a powerful development methodology well founded in solid matbematical basis, and a set of software
tools to free tbe programmer from clerical task and also to prevent the possibilities of human errors that would
invalidate tbe entire development process. Tbe EM L framework already provi de such a language and devel
opment metbodology. A set of supporting tools are under design and implementation at the Qepartment of
Computer Science, University of Edinburgh, Scotland, under the supervision of D. Sannella, and at "Depar
tamento de Informática", UFPE, Brazil , under the supervision of Fabio Q. B da Silva These tools include
a parser and type-checker for EM L specificaLions and a proof obligation generator, and will form the bas1s
of a complete software development environment for Lhe EM L language in the near future. The design and
implementation of such an environment is clearly a challenging problem for future research.

Acknowledgements

The authors would like to thank Don Sannella, from University of Edinburgh, Scoiland, for many helpful
suggestions on previous versions of the case study on Finite Sets. Cláudia J . A. da Silva is supported by a
Brazilian government stbolarship, CNPq process number 300015/93-3. Fabio Q. B. da Silva is supported by a
Brazilian government scholarship, CNPq process number 301557/92-6.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

76 VIl Simpósio Brasileiro de Engenharia de Software

References

(1] R. M. Burstall, O. 8 . MacQueen , and O. T. Sannella. Hope: an experimental applicative language.
Technical Report CSR-62-80, Department of Computer Science, University of Edinburgh, Edinburgh, EB9
3JZ, Scotland, 1980.

(2] Cláudia J . A. da Silva and Fabio Q. 8 . da Silva. Col\iuntos finitos: Um estudo de caso em desenvolvimento
formal de programas em extended mi. Revista Bra1ileira de Compvtaçio, 1993. To appear.

(3] J . A. Goguen and R. M. Burstall. lntroducing inltitutions. ln Proceeding1 Logiu of Programming Worbhop,
Carnegie-Mellon Univer1it,, pages 221- 256. Springer-Verlag, 1984. Lecture Notes in Computer Science,
164.

[4] Robert Harper. lntroduction to Standard ML. Technical Report ECS-LFGS-86-14, LFCS, Department of
Computer Science, University of Edinburgb, Edinburgh, EH9 3JZ, Scotland, 1986.

[5] Robert Harper, Robin Milner, and Mads Tofte. The defini1ion of Standard ML. MIT Press, 1990.

[6] S. Kahrs, O. Sannella, andA. Tarlecii. The definition of Extended ML. Oraft report, Univ. of Edinburgh,
1993.

[7] S. Kahrs, O. Sannella, andA. Tarleclci. The semantics of Extended ML: agentle introduction. Draft report,
Univ. of Edinburgh, 1993.

[8] Edmund Ka.zmierczak. Modularizing the specification of a small data base system in Extended ML. Tech
nical Report ECS-LFCS-91-177, LFCS, Department of Computer Science, University of Edinburgh, Edin
burgh, EH9 3JZ, Scotland, 1991.

(9] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1992.

(10) O. Sannella. Formalspeeifieation of ML programa. ln Jornadu RanJ: XeroJ: Sobre Jnteligcncia Arlific•al
Ra.rionomento A11tomatuado, Blanes, Spain, pages 7~98, 1987.

[1 1] O. Sannella. Formal program development in Extended ML for the working programmer . ln 3rd Worbhop
on Refinemen1, Hursley Park , January 1990. BCS/FACS. To appear.

(12] O. Sannella, Fabio Q. B. da Silva, andA. Tarlecki. Syntax, typechecking and dynamicsemantics for extend
ed ML (version 2). Technical report, LFCS, Oepartment of Computer Science, University of Edinburgh,
1990. Version 1 appeared as Report ECS-LFCS-8!)-101, Univ. of Edinburgh (1989).

[13] O. Sannella and A. Tarleck. On obeervational equivalence and algebraic specification. Jo11rno/ of Comp11ter
tmd Sys1em Sctences, 34:15D-178, 1987.

[14] O. Sannella and A. Tarleck. Extended ML: present, past and future. Technical Report ECS-LFCS-91-
138, LFCS, Oepartment of Computer Science, University of Edinburgh, Edinburgh, ER9 3JZ, Scotland,
1991. Also in Proc. 7th Workshop on Specification of Abstract Data Types, Wusterhausen, GDR (Springer
Lecture Notes in Comput.er Science). ·

(15] O. Sannella and A. Tarlecki. Extended ML: an inltitution-independent framework for formal program
development . ln Worbhop on Category Theory ond Comp11ter Programmmg, pages 364- 389, Guildford,
September 1986. Springer Lecture Notes in Computer Science. Vol. 240 (1986).

(16] O. Sannella and A. Tarlecki. Toward formal development of ML programa: foundations and methodology.
Technical Report ECS-LFCS-8!)-71, LFCS, Department of Computer Science, University of Edinburgh,
February 1989. Extended abstraet in Proc. lntl. Colloq. on Current lssues in Programming Languages,
Barcelona, Springer Lecture Notes in Comput.er Science. Vol. 352, 1989.

[17) Oliver Schoett. Behavioural correctness of data representation . Sctence of Computer Programming, 14:43-
57, 1990.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396

