VIl Simpésio Brasileiro de Engenharia de Software 121

The Astra User Interface Library
Carlos A. Furuti

furuti@dcc.unicamp.br

Projeto A_ HAND
DCC—IMECC
Unicamp
Cidade Universitaria Zeferino Vaz
Caixa Postal 6065
13081—Campinas SP

Abstract

Complex programs require matching user interfaces. Using basic windowing systems for im-
plementing interfaces is a difficult task. Interface libraries, or toolkits, can be used to reduce
programming effort while concentrating on actual application duties.

The dual text/graphics toolkit STK was proposed, emphasizing portability and simplicity.
An application program should meet similar interfaces in both modules, reducing the need for
separate versions designed to run in graphic and text devices. The graphical module Astra was
first implemented for UNIX workstations, Some features of Astra programming and interface
elements are presented. Finally, integrating libraries into a single toolkit is discussed.

Astra can be extended from the basic library. An interface editor and builder is also planned -
for STK programs.

Sumario

Embora aplicagoes complexas exijam interfaces eficientes com o usuario, sistemas graficos basicos
nio sio adequados a sua implementagio sistemdtica. O uso de bibliotecas (toolkits) reduz o
esforgo de construgao oferecendo elementos de interface (widgets) padronizados e pré-definidos.

STK é uma proposta de toolkit simples e portavel suportando workstations grificas e termi-
nais convencionais. Uma aplicagao usando STK teria um tinico codigo-fonte, podendo ser usada
com interfaces similares em ambas as plataformas. O médulo grafico Astra, ji implementado e
em avaliagio em sistemas UNIX, é apresentado neste texto.

Astra é flexivel e pode ser estendida. Futuramente uma ferramenta podera editar grafica-
mente interfaces STK criando automaticamente cédigo de interface para dispositivos graficos e
textuais,

http://www.cvisiontech.com

12 VI Simpdsio Brasileiro de Engenharia de Software

1 Introduction

1.1 Writing User Interfaces

Programmers developing complex applications spend large amounts of time designing and
coding user interfaces. Current graphic workstations and windowing systems allow elab-
orate visual metaphors closely matching actual concepts, like buttons or sliding controls.

This flexibility comes at a price—general graphic services are usually rather basic
primitives so even managing a simple interface may be a long task demanding good
programming skill. This effort is best shared among different applications. A toolkit is a
collection of data and procedures implementing higher-level interface elements informally
called widgets [9].

Some of the main benefits of using toolkits are:

e faster design as many low-level aspects are decoupled (even hidden) from the appli-
cations programmer

o simpler lay-out rearrangement (it is even possible using interface building tools like
DevGuide [14] or XVT [17] for automatic code generation)

e easier learning for users due to consistent interface looks across applications; toolkits
often derive from a standard interface definition (as Motif [10] or XView [7] from
OPEN LOOK [13])

* resource sharing among applications, as some graphic data like colors and character
fonts can be used by many programs simultaneously

And some disadvantages should be kept in mind:
® applications may become dependent on toolkit supplier for support

¢ graphic output other than interface rendering still requires knowledge of graphical
primitives :

e not all application requirements may be fulfilled by a toolkit as is; some extension
mechanism is necessary

¢ on the other hand, too much generality may bring inefficiency and restrictions

e toolkits are implemented from raw graphic systems and their range of supported
platforms is limited

The latter may turn to an advantage. If large programs rely entirely on a toolkit for
building and handling the user interface, an otherwise difficult task of port to another
computer can be made simpler by porting the (smaller) toolkit only. Given a set of

http://www.cvisiontech.com

VII Simpésio Brasileiro de Ehgaﬂmh de Software 123

lay-out specifications and an assortment of toolkit versions, an user interface generator
may automatically create interface modules for the same application running in different
platforms. .
Although sharp cost cuts and increasing processing power have contributed to popular-
ize graphic workstations, even lower costs and installed number keep low-end, text-based
terminals important. Some customers can not afford graphic systems. And some appli-
cations, no matter how complex, can not be restricted to graphical environments'. So a
project designed to run in different devices may be forced to split and manage versions.

1.2 Twin Toolkits

Projeto A_HAND at Computer Science Department of Unicamp is a workgroup developing
an UNIX-based integrated environment for complex software development [4]. Its interests
comprise distributed computing, groupware, hypertext and object-based systems, among
others. As more and more projects required complex user interfaces, it was decided
defining a common interface library (provisionally dubbed STK) for both graphic and
text devices,

Ideally, the toolkit’s text/graphic incarnations should have:

o user interfaces similar in look and function, except in essentially graphic elements

o identical application interfaces so the same program can work on different devices,
This is possible using distinct libraries selected at compile time or a single universal
library, set at runtime. Both approaches have strong and weak points.

STK’s first version will have two separate libraries. The graphic module, called Astra,
was the first to be implemented. Since some applications have been using it, Asira
will direct and suggest its text equivalent’s definition and refinement. This and other
compatibility issues are addressed later.

2 The Astra Library

Astra programs are event-driven, as required of programs whose user interfaces offer dif-
ferent elements handled independently [8]. Since the user may interact in an unpredictable
order, the application can not assume any usage pattern. Instead, most of time it will
be prepared to answer properly to any event. Events are user actions, like pressing a key
or moving the pointer device. Events are also asynchronous messages from the window
system/manager, from other programs or from the application to itself.

'It is remarkable that windowing environments for both UNIX and PC systems—which contributed
so much for the recent trend of new applications—are an afterthought. In contrast, other systems achieve
much greater graphic integration. In Macintoshes, for instance, in all but gravest system errors an icon
pops up with a dialog box prompting for user response, instead of a plain message

http://www.cvisiontech.com

124

VIl Simposio Brasileiro de Engenharia de Software

As-color is a very simple Astra tool for customizing widget colors at run time
in programs built using Astra. The user selects each of six basic colors used by
the toolkit (by convention called from Black to White), then sets the vertical
sliders changing Hue, Saturation and Value color attributes. Equivalent Red,
Green and Blue percents are shown in captions to the right for display only.
The color scale is a glyph. Though the selection buttons are text-labeled, they
could be colored themselves, dispensing with the glyph. The tool’s output 1s
a configuration character string affecting forthcoming applications. As-color's
own colors change when sliders move, providing immediate feedback. Notice a
3-D visual effect looking at the page first upright, then upside-down.

2.1 Program Structure

Environments supporting event-driven programming allow an application to create re-
sources (like screen windows), assign which events it is interested on, then process incom-
ing events. This last step repeatedly awaits for an event arrival and chooses an appropriate
action, decided on event type, receiver object and application context.

An Astra program must perform these steps in the following manner:

1. defining callback or dispatcher functions to be executed after an event

2. requesting a connection to one or more workstations where application users may
interact.

3. creating widgets and determining their looks and screen properties. Each widget
category accepts a set of specific dispatchers. A programmer might set a different

http://www.cvisiontech.com

wammmmem 125

callback for each possible pair mdgct event, but often much fewer are needed since
calling mechanisms encourage re-using functions.

A widget filters events unrelated to the application. For instance, a simulated
button calls application code only when the user either presses or releases it using
the pointer device. The application ignores actual screen drawing and other events.
Usually the less specialized the widget, the more dispatchers are possible: in contrast
to the button’s single function, a canvas uses four or more, since the client progran
may be interested in a wider range of events.

4. call a standard event processor. A function like sdEventLoop () accepts events, finds
the receiving widget's category, and

e requests widget code to perform trivial tasks like redrawing
e calls application dispatchers in response to specific events

5. wait for the event loop termination. That will happen when a callback eventually
invokes a special toolkit function.

2.2 Programming Levels

Astra programming is organized in levels or layers. Upper layers are easier to handle
while lower ones provide stricter control over the library behavior.

¢ Level 0, changing the Astra library itself. Not usual, since extending Astra is possible
using higher levels.

o Level 1, writing applications using widget types (all screen samples shown here are

taken from programs written in C and Level 1 Astra). Widgets are data structures
which the programmer partially initializes before calling a set-up routine.
Data abstraction suffers somewhat since some access to structure members is re-
quired. However, programming is very simple and most of widgets’ components
need not be known. Also, Level 1 programs are well suited for automatic generation
by interface editors.

o Level 2, writing applications with abstract widgets. These are now opaque struc-
tures represented and accessed by handles. Only library functions with polymorphic
arguments set and query widget components, so Level 2 programs are more secure
against library changes. It may be easily implemented as a layer upon Level 1.

e Level 3, using an interface editor. This application is an interactive tool designed to
graphically assist in interface lay-out. Afterwards, a source program is automatically

http://www.cvisiontech.com

126 Vil Simpdsio Brasieiro de Engenharia de Software

Current buffer mode set-up

a Auto Iuem:':';'nlns

arch
[J Exact case only
[J Magic (regexp)
Others:

View (ru&l-cnly)
Overwrite
Encryption

&4 Auto file saving

Ok Cancel

Two snapshots of same dialog box for setting user preferences. Astra automat-
ically adapts to color or monochrome devices; also, program and user can both
set color preferences. checkboxes select “on/off” choices. Nested dialogs, like
the three labeled boxes, are useful for clustering related controls.

produced with widget descriptions and callback templates, ready for integration to
an application’s main routines.

Interface editors make development easier since interfaces are frequently redesigned
during program lifetime. Besides, actual coding may be postponed until an inter-
face’s efficiency and suitability are evaluated.

2.3 Available Widgets
Basic Astra widgets can be roughly organized in five groups:

dials Receiving no user input, their sole purpose is information display. Their contents
are modified by the application only.
e caption: a text line
e glyph: a bitmap (two or more colors) with an arbitrary drawing

o gauge: graphically display a numerical quantity, using a linear (color strip) or
circular (an arc with pointing hand) scale

http://www.cvisiontech.com

VI Simpésio Brasileiro de Engenharia de Software 127

- que 0 sis'
do conduz a novos prol
er atencdo constante
ngramador responsavel.

A cascade of menus hanging from a button over a fragment of ttye widget. Boxed
menu items are (user-modified) defaults. Disabled entries are dimmed, and items
marked with an ellipsis open dialogs. This is the first step towards a programmable
editor widget. Support to accented characters is standard in text widgets.

controls
are

complex

Users handle these elements in order to change application data. While these
very simple, all accept at least one callback.

button: labeled by a text string, a bitmap image or a plain colored rectangle, a
button triggers its single dispatcher when the pointer device is pressed, released
or both.

checkbox: having an optional caption, checkboxes use a small “tick” mark to
display an on/off state.

slider: can control a numerical value. sliders look like a small, fixed size button
which can be pushed along a linear slot. The single callback is invoked while
the button is moved and/or released.

scrollbar: albeit similar to a slider, a scrollbar has an additional range value.
This is useful as the scrollbar frequently goes with objects with partial views
like vlists and canvases. scrollbars are compound widgets since they always carry
a pair of scrolling buttons. Like sliders, an application handles scrollbars using
its own unit system, not raw pixels.

textf: a line for text entry. They have scrolling and cut/paste abilities .

controls These are more complicated widgets carrying structured data.

http://www.cvisiontech.com

128 VII Simpésio Brasileiro de Engenharia de Software

Astra makes simple cre-
ating compound wid-
gets like this example,
a framed dialog use-
ful in many applica-
tions (it is shared by
actual graphic and text
editors). Comprehend-
ing textfs, buttons and
a vlist with attached
scrollbar, it navigates
through the file sys-
tem. Since titles are
easily rewritten, this di-
alog can be applied for
both “load” (find) and
“save” operations. The
small icon on the left of
each list name tells di-
rectories from files.

o ttye: multiple lines of text. Apart some “terminal” features, like addressable
cursor and emphasized text, generic text editing is left to add-ons.

e vlist: a scrollable vertical list. Each item holds arbitrary data labeled by a text
string, an icon or both

e canvas: the least specialized yet most flexible widget. A canvas can hold and
display any image and accepts most events from keyboard, pointer or both.

support frames Although nothing prevents an Astra control or dial from floating alone
on the desktop screen, it is more usual for an application clustering widgets in groups
with optional title and frame

o dialog: this widget knits together an arbitrary number of other widgets, in-
cluding other dialogs. Moving a dialog moves its components; closing (hiding)
or showing it hides or reveals the whole group.

Usually a program puts its most important interface elements in a main win-
dow, visible most of time; secondary controls are set in transient windows
which occasionally pop up, do their job, then hide themselves. Astra dialogs

http://www.cvisiontech.com

VIl Simpésio Brasileiro de Engenharia de Software 129

play both roles. An optional icon widget can be set for display while a main
window itself is closed.

menus These are vertical lists designed for a quick choice. Each list item may trigger a
different action (or open a child menu). A menu is able to shrink and grow. Like
buttons, items can be disabled revealing an inappropriate choice for the moment. A
menu can be attached under a button or pop up anywhere inside widgets like a ttye
or a dialog. The same menu may be assigned to different widgets or parent menus.

Most widget categories have common attributes, like geometry and an optional help
code. No on-line help is built-in; however, an Astra program may set a help callback to
be invoked whenever the “Help” key is pressed or the pointer enters a widget and a flag is
set. By assigning different help codes at widget creation, an application can easily provide
context-sensitive help.

2.4 Special Event Handling

The five-step simple model for an Astra application, though common, is not mandatory.
Instead of simply creating all necessary widgets (even if some may be invisible), calling
the event loop and terminating shortly after it returns, some programs deviate in different
ways.

o First of all, widgets may be created any time after a successful workstation connec-
tion. They remain intact after the event loop, which may be reentered more than
once.

e An applic~tion is not limited to a single workstation. It can connect and disconnect
itself to ¢n arbitrary number of networked workstations any given time. Although a
widget canno. be shared or moved across different connections, this technique does
allow simultaneous application users with ease.

o While most interactive applications act only after request, some (like real-time sim-
ulations, action games, or a simulated clock) must carry on processing even in the
absence of user action. So Astra permits a program to register background routines
to be executed while waiting for events.

o On the other hand, the application can also explicitly call an Astra function to detect
and process incoming events. This is important in lengthy callbacks, otherwise
events might stay unattended till return to the event loop.

Multi-connection and background tasks are handled by the event processor in a trans-
parent way. Low-level event management is hidden from the application programmer.

http://www.cvisiontech.com

130 VI Simpdsio Brasileiro de Engenharia de Software

3 Level 1 Programming Example

This is a very simple UNIX talk-like program for on-line text exchange written in C
and Astra Level 1. Most of code cares about declaring and setting widget variables.
Actual, complex applications would dedicate a much larger share of code for callbacks
and—specially—routines invoked by these functions.

Astra: an X Window toolkit - Astra Level 1 sample program
As-talk2: a simple, two-partner only on-line tert exchange
Usage: as-talk? remote-machine

#include <stk/stk.h>

ttdispatcher (ttye, text, keysym) /v callback to ezecute when key is +/
Ttye sttye; /* pressed on a “to” Tiye /
unsigned char stext;
KeySym keysym; {
if (text)
TtyePutChar ((Ttye #) ttye — ti_info, *text); /* remote echo +/

/* declare & partially initialize widgets (a lot is lefi default) «/
Dialog dialogl = {{0, 0, 310, 180}, {**}, DIALOG.FRAMED]},
dialog2 = {{0, 0, 310, 180}, {*"}, DIALOG_FRAMED};
extern Ttye ttyelfr, ttye2(r;
Ttye ttyelto = {{10, 5}, {4, 40}, TTYE_FRAMED |
TTYE.AUTOECHO | TTYE.SSHCURSOR, {ttdispatcher},
0, NULL, &ttye2fr},
ttyelfr = {{10, 75}, {4, 40}, TTYE_.FRAMED},
ttye2to = {{10, 5}, {4, 40}, TTYE_FRAMED |
TTYE.AUTOECHO | TTYE.SHCURSOR, {ttdispatcher},
0, NULL, &ttyelfr},
ttye2fr = {{10, 75}, {4, 40}, TTYE_LFRAMED};
Button bt1={{0, 140}, * Hang up “, BUTTON_TEXT | BUTTON.CENTERX,
sdButtonQuitDispatcher}, .
bt2={{0, 140}, * Hang up *, BUTTON_.TEXT | BUTTON_.CENTERX,
sdButtonQuitDispatcher};

main (arge, argv) int arge; char ssargv;

char buffer [50];
SD #local, *remote; /+ screen descriptors «/
if (arge < 2 || ! (local = sdImit (**)) || ! (remote = sdInit (argv (1])))
exit (-1);
sdDialogSetup (local, sdRootWindow (local), &dialogl);
sdAddTtyeDialog (&dialogl, &tiyelto, 0); /* actually set-up +/

sdAddTtyeDialog (&dialogl, &ttyelfr, 0);

http://www.cvisiontech.com

Vi Simpdsio Brasileiro de Engenharia de Software 131

sdAddButtonDialog (&dialogl, &btl, 0);
sprintf (buffer, "Talking to %s", argv [1]);
sdDialogChangeTitle (&dialogl, buffer);

sdDialogSetup (remote, sdRootWindow (remote), &dialog2);
sdAddTtyeDialog (&dialog2, &ttye2to, 0);
sdAddTtyeDialog (&dialog2, &ttye2fr, 0);
sdAddButtonDialog (&dialog2, &bt2, 0);

sprintf (buffer, “Talk from %s", local — sd_.name);
sdDialogChangeTitle (&dialog2, buffer);

sdEventSimpleLoop ();
exit (0);

One of two dialogs cre-
ated by as-talk invo-
cation; the other one
differs only for title’s
string. The upper
ttye gets keyboard in-
put echoing it to the
remote partner’s lower
widget. Clicking on ei-
ther “Hang up” but-
ton quits the applica-
tion calling the prede-
fined callback sdBut-
tonQuitDispatcher

';___'- S "-._._ A’i.ﬂ::::ﬁ&
e

Called with a workstation name as argument, as-talk2 attempts to connect to both
local and remote workstations. A dialog is created for each connection, containing two
ttyes. Keys typed on the “to” ttye are echoed locally and (due to dispatcher action) sent
to the remote partner. The “from” ttye's keyboard input is ignored.

Level 1 programs rely on widget structures, as noted in variable definitions. A Level
2 version might avoid remembering internal details, while a Level 3 editing tool would,
among other benefits, make widget positioning simpler, as no screen coordinates are
directly stated and aligning/spacing can be automatic.

. An as-talk extension for connecting N > 2 partners was accomplished using a total of
about 100 lines of code. Changes involve:

e Not two, but N(N — 1) dialogs are used. They are created dynamically, instead of
using static variables (this is a difficult task when interface editors are used).

http://www.cvisiontech.com

132 VII Simpésio Brasileiro de Engenharia de Software

e ——— .

This is a warning dialog reporting a missing feature in applications un-
der development. It comprises captions, a glyph and a butten. To prevent
unwanted interaction, a program may request Astra to ignore almost all
user input. A dispatcher called for a widget set as non-maskable—like the
depicted button—resets evenl processing to normality.

o Button callback closes connection, then kills its associated dialog at each remaining
workstation. When just a single partner remains the callback actually terminates
the program.

4 Towards a Toolkit

The STK is intended to be a general and effective programming tool. Apart from event-
driven style, few restrictions are posed to applications using the toolkit; also the libraries
shall be no obstacle to application portability.

In short, STK is a proposal for:

e defining a simple but extensible user interface resource kit
¢ accelerating application development by achieving dialogue independence [6]

» enabling most client applications to run either in workstations with graphical re-
sources or in ordinary terminals, yet presenting a similar user interface. This is its
most distinctive feature and that which prompted its definition. Purely graphical
toolkits, like XView, cannot be used by programs running on text-only equipment.
Some user interface management/development systems, like XVT and MEWEL,
are able to generate interface code for different devices (including text terminals)
from a common interface definition. STK is a long-term cheaper alternative, while
providing invaluable experience with interface design and development.

http://www.cvisiontech.com

VIl Simpésio Brasileiro de Engenharia de Software 133

4.1 Work in Progress

Astra was at first the user interface module for the graphic editor Stardust [5]. After
detachment from the editor, the library was much enhanced and received new widgets.
Since it was implemented in C using Xlib [15] (basic library for the X Window System
[12]), Astra is portable across a wide range of workstations (Stardust itself ran on Sun,
IBM RS/6000, Intergraph, SCO and Interactive systems).

In the beginning of 93, Level 1 implementation was almost complete. This prompted
for writing some demonstration programs, deriving widgets like a terminal emulator, and
converting an Emacs-like text editor for using a graphic interface. Once ported, this will
be the base for a powerful, programmable text editor widget.

Level 2 definition should start parallel to this effort.

Work now proceeds defining and implementing the text module for STK. This has
different problems, since a plain terminal ordinarily lacks a pointing device and “events”
must be generated from conventional input. The basic text kernel must implement services
for creating hierarchical windows using a terminal-independent package like UNIX curses
[1]. Next comes a binding system for mapping keyboard strings into abstract, application-
specific commands while filtering window handling operations. Finally, the actual widgets
code whose interface must mimic their graphic counterparts (except for essentially graphic
objects like a canvas). The basic screen kernel may also be ported to systems other than
UNIX.

User interface modules for A_LHAND tools coping with hypertext [11] and groupware
[3] must be reimplemented for using the toolkit.

A difficult problem to solve is setting widgets’ position and dimension in a reasonable
way, since plain terminals are limited to character coordinates instead of pixels. The
planned interface editor should provide a solution as it is able to explore graphics flexibility
while checking for text-based limitations. Exploring stretching constraints [2] might prove
useful. On the other hand, the editor should yield an interface description which could
also be interpreted, so that STK interfaces can be customized or reconfigured without
recompiling the application.

References

[1] AT&T, UNIX System V Release 3.2 Programmer’s Guide. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[2] Cardelli, L. Building User Interfaces by Direct Manipulation, Digital Systems Re-
search Center, 1987,

[3] Castro, L. S. de, SISTRAC: Sistema de Suporte a Trabalho Cooperativo. Dissertagio
de Mestrado, DCC-IMECC Unicamp, 1991.

http://www.cvisiontech.com

134

(5]

(6]

7]
8]

(12]

[13]

[14]

[15]
[17]

VIl Simpésio Brasileiro de Engenharig

Drummond, R. & Liesenberg, H. K. E., Requisitos para um Ambiente de Desen;
mento de PROGRAMAS. I Encontro IBM de Ciéncia e Tecnologia da Info e

Rio de Janeiro, nov. 1987.

Furuti, C. A. Stardust— Uma Ezperiéncia em X Window. Relatorio Interno, Pro
A _HAND, DCC-IMECC Unicamp, 1991. e

Hartson, R. User-Interface Management Control and Communication, IEEE §
ware 6(1), January 1989. -

Heller, D. X View Programming Manual, O’Reilly & Associates, Inc. 1990. -

Hartson, H. R., Hix, D. Human-Computer Interface Development:
Systems, ACM Computing Surveys 21(1), March 1989. L

Hix, D., Hartson, H. R., Developing User Interfaces, John Wiley & Sons, Ine., 1

Open Software Foundation, OSF/Motif Style Guide Revision 1.1, Open §
Foundation, Cambridge, MA, 1991.

Polanczyk, C. A. Uma Ferramenta Baseada em Hipertezto para Desenvolvim
de Software. Dissertagao de Mestrado, DCC-IMECC Unicamp, dezembro de I

Quercia, V., O'Reilly, T. X Window System User’s Guide. O’Reilly & Associ
Inc. May 1990. !

Sun Microsystems, OPEN LOOK Graphical User Interface Funcional Specy
Sun Microsystems, Inc., 1989. a

Sun Microsystems, Open Windows Developer’s Guide User’s Manual, Sun Micre
(

tems, Inc., 1990.
XLib Programming Manual, O’Reilly & Associates, Inc. 1990.

XVT Software X VT-Design Manual XVT Software, Inc. 1992.

	ca31ed01119262129069e0273bdff5a770b739f25dd4f7a53c9cc8a58e7b4777.pdf
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146

	970208806b3d9f1fab4611da7253a61aa7fdd28c93d197402a5084929aa4a8f6.pdf

