
VIl Simpósio Brasileiro de Engenharia de Software 

The Astra User Interface Library 
Carlos A. Furuti 

furuti~dcc. unicamp. br 

Projeto A..HAND 
DCC- IMECC 

Unicamp 
Cidade Universitária Zeferino Vaz 

Caixa Postal 6065 
13081- Campinas SP 

Abstract 

121 

Complex progra.ms require ma.tching user interfaces. Using ba.sic windowing systems for im­
plementing interfaces is a. difficult ta.sk. Interface libra.ries, or toolkits, ca.n be used to reduce 
progra.mming effort while concentra.ting on actual a.pplica.tion duties. 

The dual text/gra.phics toolkit STK wa.s proposed, empha.sizing porta.bility and simplicity. 
An a.pplica.tion program should meet similar interfaces in both modules, reducing the necd for 
sepa.ra.te versions designed to run in gra.phic and text devices. The gra.phical module Astra. wa.s 
first implemented for UNIX worksta.tions. Some features of Astra. programming a.nd interface 
elements a.re presented. Finally, integra.ting libra.ries into a. single toolkit is discussed. 

Astra. ca.n be extended from the ba.sic libra.ry. An_ interface editor a.nd builder is also pla.nncd • 
for STK programs. 

Sumár io 

Embora. a.plica.ções complexas exijam interfaces eficientes com o usuário, sistemas gráficos básicos 
não são adequados à. sua. implementação sistemática.. O uso de bibliotecas ( toolkits) tcduz o 
esforço de construção oferecendo elementos de interface ( w1dgets) padronizados e pt é-definiduo. 

STK é uma. proposta. de toolkit simples e portável suportando workstations gráficas e termi­
nais convencionais. Uma. aplicação usando STK teria. um único código-fonte, podendo ser usada. 
com interfaces similares em a.mba.s as plataformas. O módulo gráfico Astra., já implementado e 
em avaliação em sistemas UNIX, é apresentado neste texto. 

Astra. é flexível e pode ser estendida.. Futuramente uma. ferramenta. poderá editar grafica­
mente interfaces STK criando automaticamente código de interface para dispositivos gráficos e 
textuais. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


122 VIl S~ Brasileio de Engauharia de Software 

1 Introduction 

1.1 Writing User Interfaces 

Programmers developing complex applications spend large arnounts of time designing and 
coding user interfaces. Current graphic workstations and windowing systems alJow elab­
orate visual metaphors closely matching actual concepts, Jike buttons or sliding controls. 

This flexibility comes at a price-general graphic services are usually rather basic 
primitives so even managing a simple interface may be a long task demanding good 
programming skill. This effort is best shared arnong different applications. A toolkit is a 
collection of data and procedures implementing higher-level interface elements informally 
called widgets 19] . 

Some of the main benefits of using toolkits are: 

• faster designas many low-level aspects are decoupled (even hidden) from the appli­
cations programmer 

• simpler lay-out rearrangement (it is even possible using interface building tools like 
DevGuide 114] or XVT 117] for automatic code generation) 

• easier learning for users dueto consistent interface looks across applications; toolkits 
often derive from a standard interface definition (as Motif 110] or XView 17] from 
OPEN LOOK IJ3]) 

• resource sharing among applications, as some graphic data like colors and character 
fonts can be used by many programs simultaneously 

And some disadvantages should be kept in mind: 

• appHcations may become dependent on toolkit supplier for support 

• graphic output other than interface rendering still requires knowledge of graphical 
primjtives 

• not ali application requirements may be fulfilled by a toolkit as is; some extension 
mechanism is necessary 

• on the otber hand, too much generality may bring inefficiency and restrictions 

• toolkits are implemented from raw graphic systems and their range of supported 
platforms is limited 

The latter may Lurn to an advantage. lf large prograrns rely entirely on a toolkit for 
building and handling the user interface, an otherwise difficult task of port to another 
computer can be made simpler by porting the (smaller) toolkit only. Given a set of 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


VIl Simpósio Brasileiro de Engenharia de Software 123 

la.y-out specifications and a.n assortment of toolkit versions, an user interface generatoa 
ma.y automatica.lly create interface modules for the sarne applica.tion running in different 
platforms. 

Although sharp cost cuts and increasing processing power have contributed to popular· 
ize graphic workstations, even lower costs and installed number keep low-end, text-ba.sed 
terminais important. Some customers can not a.fford graphic systems. And some appli­
ca.tions, no matter how complex, can not be restricted to graphical environments1

• So a 
project designed to ruo in different devices may be forced to split and manage versions. 

1.2 Twin Toolkits 

Projeto A..HAND at Compu ter Science Oepartment of Unica.mp is a workgroup developing 
an UNIX-based integrated environment for complex software development (4]. lts interests 
comprise <listributed q>mputing, groupware, hypertext a.nd object-based systems, a.mong 
others. As more and more projects required complex user interfaces, it was decided 
defining a commoo interface libra.ry (provisionally dubbed STK) for both graphic aud 
text devices. 

Idea.lly, the toolkit's text/graphic incarnations should have: 

• user interfaces similar in look and function, except in essentially graphic clemeuts 

• identical application interfaces so the sa.me progra.m can work on different devices. 
Thjs is possible using distinct libra.ries selected at compile time ora single universal 
library, set at runtime. Both approaches have strong and weak points. 

STK's first version will have two separate libra.ries. The graphic module, called Astra, 
was the first to be implemented. Si nce some applications h ave been using it, As ta a 
will direct a.nd suggest its text equivalent's definition a.nd refinement. This and otlaer 
compatjbility issues are addressed !ater. 

2 The Astra Library 

Astra. programs a.re event-driven, as required of progra.ms whose user interfaces offer dif­
ferent elements handled independently (8]. Since the user may interact in an unpredictable 
order, the application ca.n not assume any usage pattern. lnstea.d, most of time it will 
be prepa.red to answer properly to any event. Events are user actions, like pressing a key 
or moving the pointer device. Events are a.lso asynchronous messages from the window 
system/ma.nager, from other programs or from the application to itself. 

11t is remarkable that windowing environments for both UNIX and PC systems-whach contrabuted 
so much for the recent trend ofnew apphcations- are an afterthought. ln contrast , other syslem& achaevt: 
much greater graphac integration ln Macintoshes, for mstance, in ali but gravest system errors an 1con 
pops up w1th a dialog box promptmg for user response, mstead of a piam message 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


124 VIl Sil116Si0 Brasileio de Engenharia de Software 

As-coloris a very simple Astra t.ool for customizing widget colora aL ruo Lime 
in programa buiiL using Astra. The user selecLs eacb of six basic colors used by 
the t.oolkiL (by convention called from Black Lo White), Lhen sets the vertical 
sliders cbaoging Hue, SaLuraLion and Value color altributes. Equivalent Red , 
Green and Blue percents are shown in captions to Lhe righL for display only 
The color scale is a ,;lyph. Though Lhe selection buttons are text-labeled, tl!ey 
could be colored Lhemselves, dispensing wiLh the ,;lyph. The too I 's output IS 

a configuration cbaracter string affecLing forLhcoming applicaLions. As-color's 
own colors change when sliders move, providing immediate feedback . Notice a 
3-0 visual effecL looking aL Lhe page firsL upright, then upside-down. 

2.1 Program Structure 

Environments supporting event-driven programming allow an application to create re­
sources (like screen windows), assign which events it is interested on, then process incom­
ing events. This last step repeatedly awaits for an event arrival and chooses an appropriate 
action, decided on event type, receiver object and application context. 

Ao Astra program must perform these steps in the following manner: 

1. defining callback or dispatcher functions to be executed after an event 

2. requesting a connection to one or more worksta.tions where a.pplication users may 
interact. 

3. crea.ting widgets and determining their looks and screen properties. Each widget 
category accepts a set of specific dispatchers. A programmer might set a different 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


VIl Sinpósio Brasffelro de Engenharia de Software 125 

calJback for each possible pair widget-event, but often much fewer are needed since 
calling mechanisms encourage re-using functions. 

A widget filters events unrelated to the application. For instance, a simulated 
button calls application code only when the user either presses or releases it usiug 
the pointer device. The application ignores actual screen drawing and other events. 
Usually the less specialized the widget, the more dispatchers are possible: in conlrast 
to the button's single function, a canvas uses four or more, since the client program 
may be interested in a wider range of events. · 

4. cal! a standard event processar. A function like sdEventLoop () accepts events, finds 
the receiving widget's category, and 

• requests widget code to perform trivial tasks like redrawing 

• calls application dispatchers in response to specific events 

5. wait for the event loop termination. That will happen when a callback eventually 
invokes a special toolkit function . 

2.2 Programming Leveis 

Astra programming is organized in leveis or layers. Upper layers are easier to handlc> 
while lower ones provide stricter control over lhe library behavior. 

• Levei O, changing the Astra library itself. Not usual , since extending Astrais possibiP 
using higher leveis. 

• Levell, writing applications using widget types (ali screen samples shown here are 
taken from programs written in C and Levei 1 Astra). Widgets are data slructu1e::. 
which the programmer partially initializes before calling a set-up routine. 

Data abstraction suffers somewhat since some access to structure members is re­
quired. However, programming is very simple and most of widgets' components 
need not be known. Also, Levei 1 programs are well suited for automatic generatiou 
by interface editors. 

• Levei 2, writing applications with abstract widgets. These are now opaque struc­
tures represented and accessed by handles. Only library functions with polymorphic 
arguments set and query widget components, so Levei 2 programs are more secure 
against library changes. It may be easily implemented as a layer upon Levei 1. 

• Levei 3, using an interface editor. This application is an interactive too! designed to 
graphically assist in interface lay-out. Afterwards, a source program is automatically 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


126 

--search-­
Exact case only 
Maglc (regexp) 

[

---- - others -
r.J View (read-only) 
O Overwrlte 
fJ Encryptlon 
~Auto file savlng 

VIl S~ Brasieio de Engenharia de Software 

c urrent buffer mode set- up 

.-----others·----. 
O View (read-only) 
O Overwrlte 
O Encryption 
ijJ Auto file savlng 

Ok 11 cancel 

T wo snapsbol.s of sarne dialog box for setting user preferences. Astra automat­
ieally adapt.s Lo color or monochrome devices; also, program and user ean boLh 
set color preferences. checkboxes selecL "onfotr' choices. Nested dialogs, like 
Lhe Lhree labeled boxes, are useful fo r clusLering related controls 

produced with widget descriptions a.nd ca.llba.ck templa.tes, rea.dy for integra.tion to 
a.n a.pplica.tion 's ma.in routines. 

Interface editors ma.ke development ea.sier since interfaces are frequently redesigned 
during progra.m lifetime. Besides, actua.! coding ma.y be postponed unti l an inter­
fa.ce's efficiency a.nd suita.bility a.re eva.lua.ted. 

2 .3 A va ilable Widget s 

Ba.sic Astra. widgets cau be roughly organized in five groups: 

dia ls Receiving no user input, their sole purpose is information display. Their contents 
are modi fied by the applica.tion only. 

• caption: a text line 

• glyph: a bitmap (two or more colors) with an arbitrary drawing 

• gauge: graphically displa.y a numerical quant ity, using a linear (colo r strip) o r 
circular (a.n are wi th point ing hand) scale 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


VIl Simpósio Brasileiro de Engenharia de Software 

A c.ascade of menus hanging from a button over a fragment of ttye w1dget. Boxed 
menu items are (user-modified) defaults. Disabled entriea are dimmed, and items 
marked with an ellipsis open dialogs T his is Lhe lirst step lowards a programmable 
editor widget. Support lo accented characlers IS standard in Lext w1dgels 

127 

controls Users bandle these elements in order lo change application data. While lh<•s<' 
are very simple, ali accept at least one callback. 

• button : labeled by a text string, a bitmap image or a plain colored rectangle, a 
button triggers its single dispatcher when tbe pointer device is pressed, relealicd 
or both. 

• checkbox: having an optional caption, checkboxes use a small "tick" mark to 
display an on/off state. 

• slider: can control a numerical value. sliders look like a small, fixed size buttou 
which can be pushed along a linear slot. The single callback is mvoked whilc 
the button is moved and/or released. 

• scrollbar: albeit similar to a slider, a scrollbar has an additional range value. 
This is useful as tbe scrollbar frequently goes with objects with partia! views 
like vlists and canvases. scrollbars are compound widgets since they always cany 
a pair of scrolling buttons. Like sliders, an application handles scrollbars using 
its own unit system, not raw pixels. 

• textf: a line for text entry. They have scrolling and cutfpaste .abilities 

complex controls T hese are more complicated widgets carrying structured dat .... 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


128 VIl SifT1>ósio Brasileiro de Engenharia de Software 

Aslra makes simple cre­
aling compound wid­
gets like this example, 
a framed dialog use­
fui in many applica­
tions (il is shared by 
actual graphic and texl 
editors). Comprehend­
ing textfs, buttons and 
a vlist with attached 
scrollbar, il navigates 
through the file sys­
tem. Since titles are 
easily rewritten, this di­
alog can be applied for 
both "load" (find) and 
"save" operations. The 
sma.ll icon on the left of 
each list name lells di­
rectories from files. 

• ttye: multiple !ines of text. Apart some "terminal" features, like addressable 
cursor and emphasized text, generic text editing is left to add-ons. 

• vlist: a scrolla.ble verticallist. Each item holds arbitrary data. labeled by a text 
string, an icon or both 

• canvas: the least specialized yet most flexible widget. A canvas can hold and 
displa.y any image and accepts most events from keyboard, pointer or both. 

support frames Although nothing prevents an Astra control or dia! from floating alone 
on the desktop screen, it is more usual for an a.pplication clustering widgets in groups 
with optional title and frame 

• dialog: this widget knits together an arbitrary number of other widgets, in­
cluding other dialogs. Moving a dialog moves its components; closing (hiding) 
or showing it hides or reveals the whole group. 

Usually a program puts its most important interface elements in a maio win­
dow , visible most of time; secondary controls are set in transient windows 
which occasionally pop up, do their job, then hide themselves. Astra dialogs 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


VIl Simpósio Brasileiro de Engenharia de Software 129 

play both roles. An optional icon widget can be set for display while a main 
window itself is closed. 

menus These are vertical lists designed for a quick choice. Each list item may triggcr a 
different action (or open a chi ld menu). A menu is able to shrink and grow. Like 
buttons, items can be disabled revealing an inappropriate choice for the moment. A 
menu can be attached under a button or pop up anywhere inside widgets like a ttye 
or a dialog. The sarne menu may be assigned to different widgets or parent menus. 

Most widget categories have common attributes, like geometry and an optional help 
code,. No on-line help is built-in; however, an Astra program may set a help callback Lo 
be invoked whenever the "Help" key is pressed or the pointer enters a widget and a flag Íb 

set. By assigning different help codes at widget creation, an application can easi ly provide 
context-sensitive help. 

2.4 Special Event Handling 

The five-step simple model for an Astra application, though common, is nol mandalory. 
lnstead of simply creating ali necessary widgets (even if some may be invisible), calling 
the event loop and terminating shortly after it returns, some programs deviate in differenl 
ways. 

• Firsl of ali, widgets may be created a.ny time after a successful workstation conuec­
tion. They remain intact after the event loop, which may be reentcred more tlian 
once. 

• An applir~tion is not limited to a single workstation. It can connecl and discoun<·r t 
itself to< o arbitra.ry number of networked workstations any given time. Although " 
widget canno. be shared or moved across different connections, this technique doe~ 
allow simultaneous application users with ease. 

• While most interactive applications act only after request, some (like real-time sim­
ulations, action games, or a simulated clock) must carry on processing even in thc 
absence of user action . So Astra permits a program to register background routiues 
to be executed while waiting for events. 

• On tbe otber hand, tbe application can also explicitly call an Astra function to detect 
and process incoming events. This is important in lengthy callbacks, otherwise 
evenls might stay unattended till return to the event loop. 

Multi-connection and background tasks are handled by the event processor in a trans­
parent way. Low-level event maoagement is hidden from lhe applicatioo programmer. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


130 VIl Sill>ósio Brasileiro de Engenharia de Software 

3 Levei 1 Programming Example 

Tbis is a very simple UNIX talk-like program for on-line text exchange written in C 
and Astra Levei l. Most of code cares about declaring and setting widget variables. 
Actual, complex applications would dedicate a much larger sbare of code for callbacks 
and- specially- routines invoked by tbese functions. 

~--------------------------
Astro: an X Wmdow too/J:.t - Astro Leve/ 1 sample progrom 

A s-ta/1:2: a nmple, two-partner on/y on-/me te:rt erchange 

Usage: as-talk! remote-machme 
------- - - --------- ----1 
h.nclu.de < stll:/stlt.h> 

Udispatcber (Ltye, t.exL, keysym) 
Ttye •LLye; 

I • cal/back to erecute when key u • I 
I• pressed on a "to" Ttye •I 

unsigned char •LexL, 
KeySym keysym, { 

if (t.ext) 
TlyePulChar ((Tlye •) Uye .- LUnfo, •Lext), 

I• declare & partJally m1tia/ue w1dgets (a lot IS left default) •I 
Dialog dialog1 = { {0, O, 310, 180} , {""} , DIALOG_FRAMED}, 

dialog2 = {{0, O, 310, 180}, {""} , D1ALQG_FRAMED}; 
extern Tlye LLyelfr , Uye2fr; 
Tlye ttyeHo = {{10, 5} , {4, 40}, TTYE_FRAMED I 

I• remote echo •I 

TTYE-AUTOECHO I TTYE.SHCURSOR, {Lldispatcher}. 
O, NULL, &ttye2fr}, 

LLyelfr = {{10, 75}, {4, 40}, TTYE_FRAMED}, 
ttye2to = {{10, 5}, {4, 40}, TTYE_FRAMED I 

TTYE-.AUTOECHO I TTYE.SHCURSOR, {ttdispatcber}, 
O, NULL, &ttye lfr} , 

ttye2fr = {{10, 75}. {4, 40}. TTYE_FRAMED}; 
Button bLI={{O, 140}," Bang up " , BUTTON_TEXT I BUTTON_CENTERX, 

sd ButtonQuiLDispatcher}, 
bl2={{0, 140}." Rang up " , BUTTON_TEXT I BUTTON_C ENTERX, 

sdButlonQu•tDispatcber} , 

main (argc, argv) int argc; char .. argv ; 
{ 

cl1ar buffer (50) ; 
SD •local, •remote; I• screen descnptors •I 
if (argc < 2 11 ! (local = sdlnil ("")) 11 ! (remote = sdlnit (argv (1)))) 

exit (-1) ; 
sdDialogSelup (local, sdR.ootWindow (local) , &dialogl) ; 
sdAddTtyeDialog (&dialogl, &ttyelto, O); 
sdAddTtyeDialog (&dialogl , &Uyelfr, O); 

I• actual/y set-up •I 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


VIl Sinpósio Brasileiro de Engenharia de Software 131 

} 

adAddButtonDialog (&dialogl , &btl, O); 
sprintf (buffer, "Talking to %a" , argv [I]); 
adDialogCbangeTitle (&dialogl, buffer); 

sdDialogSetup (remote, sdRootWindow (remote), &dialog2); 
adAddTtyeDialog (&dialog2, &ttye2to, 0), 
adAddTtyeOialog (&dialog2, &ttye2fr, O); 
sdAddButtonDialog (&dialog2, &bt2 , O); 
sprintf (buffer, "Ta1k troa Y.a", local- sd..name); 
adDialogChangeTitle (&dialog2, buffer) ; 

adEveotSimpleLoop () ; 
exit (O); 

IT"to enviado da estação 's2e' 

Hang up I 

One of two dialogs cre­
ated by as-ta/A: invo­
cation; tbe otber one 
differs only for title's 
string. The upper 
ttye gets keyboard in­
put echoing it to the 
remote partner's lower 
widgeL Clicktng on eJ­
ther " fl ang up" but· 
ton qu1ls the appiJca­
tJOn calhng the prede­
fined callback sdBut­
tonQu•tD•spatcher 

Called with a workstation. name as argument, as-talkH attempts to connect to bott. 
local and remote workstations. A dialog is created for each connection, containing two 
ttyes. Keys typed on the "to" ttye are echoed locally and (dueto dispatcher action ) sent 
to the remote partner. The "írom" ttye's keyboard input is ignored. 

Levei 1 programs rely on widget structures, as noted in variable definitions. A Levei 
2 version might avoid remembering internal details, while a Levei 3 editing tool would, 
among other benefits, make widget positioning simpler, as no screen coordinates are 
directly stated and aligning/spacing can be automatic. 

Ao as-talk extension for connecting N > 2 partners was accomplished using a total of 
about 100 tines of code. Changes involve: 

• Not two, but N(N- 1) dialogs are used. They are created dynamically, instead of 
using static variables (this is a difficult task when interface editors are used) . 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


132 VIl Simpósio Brasileiro de Engenharia de Software 

This is a warntog dialog reporLing a m1SS1ng feaLure in applicaL1ons un­
der developmenL . H comprises captions, a r;lyph and a button To prevenL 
unwanLed inl.eracLJon , a program may requesL AsLra Lo 1gnore almas L ali 
user mpuL. A dispaLcher called for a w1dgeL seL as non-moskab/e--hke Lhe 
depicled buLton- reseLs evenL proceasmg to normaliLy. 

• Button callback doses connection, then kills its associated dialog at each remaining 
workstation. When just a single partner remains the callback actually terminates 
the program. 

4 Towards a Toolkit 

The STK is intended to be a general and effective programming too!. Apart from event­
driven style, few restrictions are posed to applications using the toolkit; also the libraries 
shall be no obstacle to application portability. 

ln short, STK is a proposaJ for: 

• defining a simple but extensible user interface resource kit 

• accelerating application development by achieving dialogue independence [6] 

• enabling most client applications to run either in workstations with graphical re­
sources or in ordinary terminals, yet presenting a similar user interface. This is its 
most distinctive feature and that which prompted its definition . Purely graphicaJ 
toolkits, like XView, cannot be used by programs running on text-only equipment. 
Some user interface management/development systems, like XVT and MEWEL, 
are able to generate interface code for different devices (including text terminais) 
from a. common interface definition. STK is a long-term cheaper alternative, while 
providing invaluable experience with interface design and development. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


VIl Sinpósio Brasileiro de Engenharia de Software 133 

4.1 Work in Progress 

Astra wa.s at first tbe user interface module for lhe graphic editor Stardust (5]. After 
deta.chment from lhe editor, the libra.ry wa.s much enhanced and received new widgets. 
Since it wa.s implemented in C using Xlib (15] (ba.sic library for tbe X Window System 
(12]), Astrais portable across a wide range of workstations (Stardust itself ran on Sun , 
IBM RS/6000, lntergraph, SCO and Interactive systems) . 

ln tbe beginning of 93, Levei 1 implementation was almost complete. This promptecl 
for writing some demonstration programs, deriving widgets like a terminal emulator, and 
converting an Emacs-like text editor for using a graphic interface. Once ported, this will 
be tbe base for a powerful, programmable text editor widget. 

Levei 2 definition should sta.rl parallel lo this effort. 
Work now proceeds defining and implementing the text module for STK. This has 

different problems, since a plain terminal ordinarily la.cks a pointing clevice and "events" 
must be generated from conventional input. The ba.sic texl kernel must implement services 
for crea.ting hierarcbical windows using a terminal-independent package like UNIX curses 
[1]. Next comes a binding system for mapping keyboa.rd strings into abstract, applicaliou­
specific commands wbile filtering window handling operations. Finally, the actual widgets 
code whose interface must mimic their graphic counterparls (excepl for essentially graphic 
objects like a canvas). The ba.sic screen kernel may also be ported to systems other than 
UNIX . 

User interface modules for A_HAND tools coping with hypertext [11) and groupware 
[3) must be reimplemented for using the toolkit. 

A difficu lt problem to solve is sett ing widgets' position and dimension in a reasonable 
way, since plain terminais are limited to cbaracter coordinates instea.d of pixels. Tlw 
planned interface editor should provide a solution a.s it is able to explore graphics Hexibilil y 
while checking for text-based limitations. Exploring stretching constraints [2] might prove 
useful. On the other hand, Lhe editor should yield an interface description which could 
a.lso be interpreted, so that STK interfaces ca.n be customized or reconfigured witbout 
recompiling lhe application. 

R eferences 

(1] AT&T, UNIX System V Release 9.~ Programmer 's Cuide. Prentice- Hall , Englewoocl 
Cliffs, NJ, 1989. 

[2] Ca.rdelli, L. Building User Interfaces by Direct Mampulahon, Digital Systems Rc­
searcb Center, 1987. 

[3] Castro, L. S. de, SISTRAC: Sistema de Suporte a Trabalho Cooperativo. Dissertação 
de Mestrado, DCC-IMECC Unicamp, 1991. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com



	ca31ed01119262129069e0273bdff5a770b739f25dd4f7a53c9cc8a58e7b4777.pdf
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146

	970208806b3d9f1fab4611da7253a61aa7fdd28c93d197402a5084929aa4a8f6.pdf

