
VIl Simpósio Brasileiro de Engenharia de Software

A RATIONALE FOR BOTH NESTING AND
INHERITANCE lN OBJECT-ORIENTED DESIGN

L.M.F. Carneiro D.D. Cowan C.J .P. Lucena •

Reawno

Tem aido obaervado que o desip de objetoa complexoa, por exemplo aoftware, requer
decompoaição por forma (objetoa atõmicoa) e decomposição por função (agrupamento)
para promover a redução do design para um conjunto de componentes que possa ser
gerenciado. No entanto, o paradigma de de1ign orientado por objetos suporta apenas de
composição por forma. Este artigo motiva, atrav& de um exemplo simples, a necessidade
de agrupamento (decompo1ição por função) e ilustra como a técnica de agrupamento
pode ser incorporada na linguagem utilisada a uivei de design. Nós também demon·
1tramo1 como a introdução de agrupamento na especificação e de1ign de software aumenta
a reuaabilidade de componentes de forma 1ignificativa. ADVcharts, uma nova forma de
form'alismo vi1ual, e VDM são utililado• para representar a semintica de agrupamento.

Ab•tract

It has been ob1erved that design of complex objecta 1uch as software requires both
decomposition by forro (atomic objecta) and decomposition by function (nesting) in order
to reduce the deslgn to a set of manageable components. However, the object-oriented de·
sign paradigm mostly supporta decompo•ition by form. This paper uses a sim pie example
to motivate the need for ne1ting (decompo1ition by function) and illuatrate1 how nesting
might be incorporated into a de1ign language. We then demonstrate how the introduction
of nesting into 1oftware specification and de1ign significantly increases reusability. AD·
Vcharta, a new visual formalism, and VDM are used to provide a semantics for nesting.

1 Introduction

223

Authou 1uch u Ma.her [21J have observed that designeu in various engineering disciplines
uae both decompoaition by function &nd decompo1ition by form to reduce their projects to
m&nageable componenta. Similarly, software designeu should use both design strategies since
they also build complex objecta. Decompo1ition by form follow1 the object-oriented paradigm
&nd object-oriented programming language• [14, 3, 25, 12J &nd design methodologies [4, 23J
tupport decomposition by form through such technique1 as creating subclasses (inheritance)
&nd encap1ulation. Decomposition by function require1 that &n object be divided into smaller
componenta to which a small set of actiona c&n be applied. The relationship among the larger
component and ih constituents is expresaed through nesting, a concept that some authors cla.im

•L.M.F. Carneiro and D.D.Cowan are with the Compu ter Sc:ience Department and Compu ter Systems Group,
Univeraity of Waterloo, Waterloo-Ont, Canada. C.J .P.Lucena ia with Departamento de Informática, Pontificia
Universidade Católica, Rio de Janeiro-RJ, Brasil. L.M.F. Carneiro holds a doc:toral fellowship from CAPES
(the Bruilian Reaearch Councll) .E-mail addresa: {luin,dcowan,lucena}Ocsg.uwaterloo.ca

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

224 VIl Sif11>ósK> Brasileiro de Engenharia de Software

ia not properly aupported by object-oriented luguagea (5) ud ia not aupporled at ali by strictly
object-oriented deaign methodologiea [18].

Although there have been argumenta made in favor of neating in object-oriented specifi
cation and deaign, we came to the conclusion that most of the argumenta used so far are
not very satis(actory. Some of the argumenta aound like a nostalgic defense of structured de
aign/programming [1, 18], ud some authora even ahow how to converta atructured deaign into
an object-oriented deaign [1]. Other authora [5, 2, 20] have exam.ined a related iuue, namely, the
implemenh.tion of neating in object-oriented programming luguagea. We believe a common
concem at both the design and programmiDg language levela ia neating encapsulation. That is,
the semantics of nesting should aliow refe.rence to definitiona from outúde the containing bloc.k
without violating encapaulation [5, 2, 20].

We feel there ia a need for an appropriate illuatration of the "form veraua (unction dilemma"
that every designer needa to face. ln other worda, a diacuaúon about when to uae decompo
sition by form (inheritance) and when to uae decompoútion by function {nesting) ahould be
presented in the context of a softwue deaign activity. Since problem aolving at the design and
implementation leveis can alwaya take place using only one of the two lcinda of decomposition, a
criterion is neceaaary to justify decisiona that combine both approaches to deaign. The criterion
we propoae in thia paper ia enhanced design reuae.

Our motivation for the combination of inherituce with neating at the design levei comes
from our work on Ab1tract Data Viewa (ADVa) [10, 11]. At firat the concept of ADVs was
uaed only for the deaign of user interfacea. Later thia concept wu generalized to deal with
module interconnection in general and the design of concurrent ud diatributed systems [22).
The justifica.tion for the combined use of nesting and inherituce can be naturaliy explained
in the case of user interfaces. Neating modela the Íllue of "locua of uaociation" in human
interfaces. Neated objecta know "where they are" with reaped to other objecta on the screen,
therefore minimizing the ao-calied constraint problem [19, 7). Inherituce ia normaliy used to
specialize interface objecta.

A juatification for the combined use of the two kinda of decomposition is lesa obvious in
other a.pplication domaina. We discuas thia iuue in thia paper uaing a. aimple software design
aituation. What we have done was to "aimulate" the locua of uaociation aituation in our
example to try to convince the reader that at leut in thia situation (which occurs very often
in aoftware designa), & combined use of the two decompoútion atyles ia juatified beca.uae design
reuae ia clearly improved.

lt should be noted tha.t we discusa apecifica.tion ud deúgn Ílluea in thia paper, not im
plementation iaaues. One contribution of thia paper ia to illuatrate the importance o(nesting
to those reseuchera who are extending formal deaign notationa to encompasa object-oriented
design concepta [24, 8, 9, 13). We alao use the design example to introduce the notiona of mu
imization of reuae as a design criterion, and the propertiea of locua of uaociation, object-aet
browaing and nesting e.ncapaulation. Theae are ali propertiea which are introduced when neat
ing ia uaed as a deaign. notion. ln our work on ADVa we expreaaed nesting uaing the extensions
of VDM proposed by lerusalimschy [16, 17]. ln this paper we use thís extension to VDM and
ADVcharta [6] to expresa the aemantica of neating ud inherituce.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 225

Figure 1: A Hierarchy of Document Typea for & Library - An ia_& Rel&tion

-
lõOODI

IÊJOOÕDLfõ I
Figure 2: The Structure of two Document Typea - An is_a_componenLof Relation

2 The Problem

Conaider an electronic veraion of & library. An electronic library is a collection of documents
in machine-readable format ordered uaing aome acheme auch u the Dewey Decimal System.
We wiah to specify and deaign a progr&m which allowa & uaer of the library to browse ali the
documenta in the library aequentially.

Browaing the library meana that the uaer atarts at the firat document in the library and
examines the cover. lf the document ia of intereat, the user then acana the document in more
det..U by moving among the sectiona of the document in some predetermined order from front
to bad:. The aectiona of the document and the order of thoae aections ia determined by the
type of the document.

3 The Structure of the Library

The library consista of & number of documenta and theae documents &re of many different
typea such u book, report, paper, letter, m&ga.zine, and newapaper. Many of these document
typea can be further aubdivided into different classifications. For ex&mple, a book can be a
novel, technical book, cookbook, or dictionary. Thia relationahip among document types can
be represented u a hierarchy and ia shown in Figure 1. As we move from top to bottom in
the hierarchy each document type becomea more specialized and inherih the properties o{ its
auperior entry in the hierarchy. lnheritance is often called an is_a relation.

Each document type in a library may have a different composition. For example, a novel has
a title, author, preface and a number of chaptera, while a technical book ia composed of a title,

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

226 VIl Simpósio Brasileiro de Engenharia de Software

author, table of contenta, chaptera, appendices and an index1 • The atructure er composition
of a apecific type of document namely, a novel and a technic&l. book is illuatrated in Figure 2
where boxes inside each other indicate composition by nesting2 , and the left to right order
of boxes indic.ates order of appearance in the document. The uterisk (•) beside the name of
a component indica.tes tbat the component may appear sever&l. times in aequence. The term
u..&-componenLofis often used to deacribe the nesting relationship.

4 An Object-oriented Design for the Library

ln thia aection we conaider an object-oriented design for the libra.ry in order to motivate the need
for encapsulation, inheritance, and compoaition by neating. Object-oriented design requires
that we identify the buic objecta which can act together u atomic unita to produce the desired
beha.vior. H we confine the contenta of the library to novela and technic&l. booka, it ia clear
from Figure 2 that we need objecta auch u title, author, preface, chapter, table of contenta,
appendix and index. The library then becomea an ordered collection of documenta and each
document in the library auch u a novel or technical book becomes an ordered composition of
theae buic objecta.

ln order to browae the library we need to define two methoda or functions for ea.ch document,
namely "get..next" a.nd "examine". The method "get..next" will move to the next document and
the method "examine" will allow a detailed examination of each section of a specific document.
The method "get..next" can be defined for all documenta a.s it is only neceasary for the system
to know how to move to the next element in the ordered collection of documenta. The method
"examine" ia more apecialized becauae an examination of a document requires knowledge of the
apecific type of document and ia an example of the requirement for the "locua of usociation".

4.1 Encapsulation and Inheritance

Convention&l. structured design would apecify the "examine" method for books using the
paeudo-code atructure ahown in Figure 3. ln thia Figure the document type is located in a
standard place in each document and ia then interrogated in a case atatement. Ba.sed on the
value in the caae atatement the "examine" method can call the correct function for a apecific
type of document.

ln the object model of design the atate of an object is encapaulated or hidden and is queried
and changed through a aet o(usociated methoda or functions. Since the methods are really part
o{ the object they can be used by naming an object and ita uaociated method. For example,
accesaing the method "examine" for the object "item" can be written u

and replacea the pseudo-code of Figure 3.
We now must &dd the method "get....next" to each object so that the entire library can be

browaed. Unfortunately we now muat duplicate the "get....next" specification for every type of

1Thi8 daa:iptio11 ia a Ãmplifieatio11 of the ltrudure of va.rioua kinda of boolu, but it ia certainly adequate
for tbe preae11t eu.mple.

2 Both ilaherilallce &~~d composition by neatüas could be illultrated uills a tree diagram. We have chosen
two dilrerent repreaentatio111 to emphuiae that theae are difrere11t conceptl.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software

recor4 4oeument (tr.peeode int•s•r;)

.. tho4 exaaine(it ..)
tr.p• it .. : 4oeWIIent
e••• itea.typeeode

novel : exaain•_novel(item)
teebniealbook : examine_teebnieal_book(itea)
cookbook: exaaine_eookbook(item)
dietionary : examine_dietionary(it ..)
report : examine_report(it ..)
paper : examine_paper(item)

•••e
Figure 3: A Conventiona.l P1eudo-code Specification for "examine"

227

object in the library. The concept of inheritance aolves this problem. Inheritance allows the
definition of a type which may be specia.lized and thu1 implementa the hierarchy shown in Figure
1. Since "geLnext" is the sarne for a.l1 documenta, we can now attach the specification and lhe
eorre1ponding 1tate to the document type. When the newer types inherit from documenl
they a.l•o inherit the atate and a.l1 accompanying method1 &uch u "get..next" . This means lhe
apecification and atate for thia method are only located in one place in the program design,
a.lthough it ia acceuible to a.l1 subtypea that inherit from the type document. A type that
a.llowa inheritance ia uaua.lly ca.lled a clua.

4.2 Composition by N esting

lnvoking the method "examine" for each document type requirea th&t each component of lhe
document be displayed in succession under user control. A simplified version of lhe class book
containing only the components preface &nd chapter and their usociated "display" method,
might be expreued aa shown in Figure 4 if we use only the concepts o{ encapsulation and
inheritance. Inheritance ia made explicit with the exprenion:

novel h_a book.

Thia aolution illustratea a atrict object -oriented nyle of design where the designer interpreted
both the relatiom is_a and is_a_componenLof in Figures 1 and 2 as inheritance trees .

Inatance• of the clauea book and nove! mainta.in a variable "where" which records the next
item to be examined in the document. Note the use of the cue atatement with the variable
"where" to select the conect veraion of "examine". Thia aolution hu the sarne problem &s the
one which motivated encapsulation. Also this aolution has to be created for each class because
the aolution must be apecia.lized to that specific class. Such specia.lization limits reuse.

Note tha.t thia specification could be implemented using an array of object pointers. How
ever, the expreuion of neating would not be explicit, but would be implied by the semantics of
the program.

We eret.te the concept of composition by neating to build a. class . Each class is composed
of ita conatituent classea and their associated methods. We illustrate composition by nesting
in Figure 5 by using t. version of the clau novel. The st&tement:

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

228

ela•• book i•-• docuaent
where • (pretace, chapter)

fUDction exa.ine_prefaee(it ..)
ihm. dbplay
where <- chapter

fUDction examine_chapter(item)
item.dhplay
vhere <- preface

ela•• novel i8_a book
where <- prefaçe
method examine(item)

ca•• vhere
prefaee examine_preface(itea)

examine_chapter(item) chapter :
eeac

VIl Sill>ósio Brasileiro de Engenharia de Software

Figure 4: An Object-oriented Approach to the (unction "examine" for the objects book and
novel

ela•• novel i•_a book
novel il_compoaed_of (title/author, preface, chapter)

aethod exa.ine
next.di•play
next <- •ucc(next)

Figure 5: An Object-oriented Approach to the clau nove! uaing composition by nesting

novel i•_compo•ed_of (title/author, preface, chapter)

indicatea that the clua nove! is composed o(the clusea title/&uthor, preft.ce and chapter, and
that they appeu in the order presented. ln our case each of these constituent classes has a
method c..Ued "display" which i& invoked by naming the object of th&t clt.u, t.nd then the
method. For example, "displt.y" for the object "item" o(clua "cht.pter" would be invoked with
the expreaaion

Aaaoci&ted with thls list o(constituenta in et.ch object is & nriable named "next" that is
uaed to traveue this liat. The first time the nriable "next" is used its value is the first object in
the liat of constituents. There is also a succenor method named "succ" that moves the value of
the variable to the next element in the list of conatituenta. The method "succ" will move to the
beginning of the liat of constituenta after acceuing the lut element. Thus, we have provided
the design specification with an object-set browsing capability.

When & clua auch u nove! ia instantiated, ih list of constituents is defined, but the list does
not contain any instances of constituent clusea. That is, the type t.nd order of the constituents

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software

class document
document ia_composed_of ()

method examine
next . diaplay
next <- succ(next)

class book is_a document
book is_composed_of ()

class novel is_a book
novel ia_composed_of (title/author, preface, chapter)

Figure 6: Associating the method "examine" with the class document

229

is known when the class is defined. As an object of a class such as nove! "grows" and "shrinks"
new instances of constituent classes are added and removed írom the list . Hence, methods
such as "insert" and "remove" must be defined for constituent lists and could be based on the
position of the varia.ble "next". We should also note that type and number violations are not
allowed. For example, the constituent list for novel may not have an instance of an index, and
if the list already contains an instance of a preface then trying to enter another preface would
cause a.n error. We say we have achieved locus o{ association through nesting.

We observe that nesting has maintained the separa.tion of concerns, since we fust solved
the problem of manipulating each individual component and then we solve the problem of
composition; the two solutions proceed independently. Although the enclosing object of a class
such as novel knows the identity of its constituent classes, the enclosed objecta of classes such
as preface a.nd chapter have no knowledge of the state of novel. We call this property of the
design nesting encapsulatíon.

Also using this design language involving composition by nesting to invoke the methods
"examine" does not require any knowledge of the position in the constituent list írom either of
these methods. ln fact we could easily cha.nge the constituent list without changing any of the
specification associated with the object novel. This forro of limited change makes any of these
objects highly reusable.

Beca.use the knowledge of position in the constituent list is encompassed by the variable
"next" we can use inheritance to a.ssociate the method "examine" with the cla.ss document.
This concept is illustrated in Figure 6. The constituent lists for document and book are
empty, but this does not affect the program design. These lists become completed when the
cla.ss nove! is declared.

Of course it is possible to have some of the constituents in a list to be composed of lists. This
can be easily handled within the constituent itself. For example, consider a cla.ss tech_chapter
which consista o{ sections. This could be expressed a.s shown in Figure 7 and except for a
change of name is exactly the sarne specification as used in Figure 6.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

230

elaaa ehapter
ehapter ia_eo-Poaed_of ()

aethod examine
next . di aplay
next <- auee(next)

elaaa teeh_ehapter ia_a ehapter

VIl Si11>ósio Brasileiro de Engenharia de Software

teeh_ehapter ia_eo.poaed_of (aeetion(•))
Figme 7: Neated Compoeition

elaaa book ia_a docuaent
book ia_eompoaed_of (author/title, prefaee, ehapter)

elaaa novel ia_a book
Figure 8: A clus novel inheriting a nelt

5 Some Properties of N esting

ln previous sections we deseribed object-oriented design using nesting. ln this section we
present two important properties of nesting namely "inheritance of nesting" and "nesting of
inheritance".

5.1 Inheritance of Nesting

Consider Figure 8 which illuatrates inheritance of nesting. Since a. book already contains
the componenh a.uthor/title, prefa.ce, and chapter, the clua novel which ia a apecialization of
book alao contains these componenh. lnheritance o{ the nest ia a.utoma.tic and does not ha.ve
to be explicitly atated. If we wish to modify the nest of componenh, then we use the version
shown in Figure 9 where we define a. technicaLbook which a.lao contains an index. Here we
explicitly use the phrue "is_a.lao_compoaed_of" to indicate that we inherit the nest of book, but
that we can a.dd to the neat. The neat must be explicitly specified 10 tha.t new elements can be
inserted at any position.

5.2 Nesting of Inheritance

ln Figure 10 we ahow a. clua book that is composed of three cluses a.uthor/title, preface
and chapter. Figure 10 a.lso illustratea wha.t ha.ppens when a. new clua technica.Lbook is

elaaa book ia_a doeuaent
book ia_eompoaed_of (author/title, prefaee, ehapter)

elaaa teehnieal_book ia_a book
novel ia_alao_eompoaed_of (author/title, prefaee, ehapter, index)

Figure 9: A clua technical.book inheriting a nest

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro dd Engenharia de Software 231

elaaa book ia_a doeument
book ia_eompoaed_of (author/title, preface, chapter)

elaaa tecbnieal_book ia_a book
novel ia_alao_compoaed_of (author/title, preface, technical_chapter, index)

elaaa technical_chapter ia_a chapter
Figure 10: A clua technica.Lbook ahowing inheritance of subclasses

defined whlch cont&ina a aubclua of chapter, namely technicaLchapter. Ag&in we use the
phrue ia.alao.compoaed.of to indicate that aome of the clanea in the nest can be inherited
from book but aome may be replaced by aubcluaea.

6 The ADVchart Notation - A Visual Form{llism for
Nesting

ADVcharts &re prim&rily a visual formaliam for describing the structure and flow of control in
a program design and have been found to be eapecially uaeful for deacribing the semantics of
deaigna for interactive object-oriented progr&ma. ADV charts are & formal &pproach to program
deaign in that they can be translated into an equivalent design in a VDM-like notation [16 , 17]
uaing a aet of rules . ln this section we present an example using A DV charts to iUustrate a
formal visual semantics for nesting and inheritance, and to show both inheritance of nesting
and neating of inheritance. A more complete deacription of ADV charts is in [6].

ADVcharh are an extension of Statecharh [15] and Objectcharts [9] which are based on a
finite atate machine not.ation. ADVcharta were originally crea.ted to describe Abstra.ct Data
Viewa (ADVa) [10, 11] a program design concept which allowed for the clean separation between
the uaer interface and the application code, thus , supporting design reuse. ADVs are Abstract
Data Types (ADTs) with some apecia.l properties which make them useful for expressing lhe
deaign of uaer interfaces.

The ADVchart notation conaish of three componente: the configuration diagram, the AD·
Vchart diagram, and the aet of tra.naitiona. The configuration di&gram shows the inherita.nce
atructure of the applica.tion a.nd the ADVchart illustratea the nesting property and reflects the
inheritance atructure.

Each document in the libr&ry has two components: & user view (or user interface) for the
document and ita contenh. The user interface ii represented by an Abstr&ct Data View (ADV)
and the contenta by an Abatract Data. Type (ADT). Both the ADV a.nd the ADT can be
apecialized through inheritance. A configuration diagram ahowa the inheritance hierarchy for
both the ADVa and ADTs and the operations on both of them. The operations on an ADV
are the user input operations and the corresponding displays, while the operations on the ADT
a.re cauaed by the ADV and are a direct consequence of the user actions.

A p&rtial configur&tion di&gram for the document problem discussed earlier in this paper is
ahown in Figure 11. Pa.rt of the inheritance hierarchy for the ADVs is illustra.ted in the diagram
where the ADV for document is specialized to become the ADV for book a.nd further speciahzed
into different types of books. There is no corresponding hier&rchy for the ADT document since
the apecialization of the document is through its viewa not through specializing its contenta.
The operations on the ADV for document are "geLnext" document, and "examine" current

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

232 VIl Simpósio Brasileira de Engenharia de Software

AOV

Docwnen ~'- ~ Ubfa'y·

Oooumen

/
ADV -

1 ~ --:::::::::::::
AOV AOV AOV

AOV T.chnloal e--IC OlellonOfY
Nove! ·-

Figure 11: Configuration Diagr&m for the Document Problem

document. The aingle operation on lhe ADT is "getLibraryDocument". If other ADVs needed
epecialized or overloa.ded operations then these would be shown on lhe appropriate ADV in the
configuration diagram.

Each ADV or ADT in the configuration diagram can be divided into its nested components.
The componente and their relationships in terms of events is ahown in an ADVchart. The
ADVchart for the ADV "Book" consisting of three distinct logical components (Title/ Author,
Preface and Chapten) is shown in Figure 12. This ADVchart when used with the Configuration
Diagram of Figure 11 illustrates the semantica of inhetitance of nesting.

The ADVs are denoted by rectangles with the name of the ADV in a smaller rectangle
in the top left.hand corner. States attached to an ADV are represented by rectangles with
round cornen inside the ADV and lhe n&me of the atate is ahown at lhe top. To implement
neating and preeerve the aeparation o{ concerni the ADVa can be conta.ined inside states. This
ia illustrated in Figure 12 where the state "AnalyseDoc" conta.ina the three ADVs composmg
the ADV "Book" . Et.ch ADV can alao conta.in a decla.ration for the variables that define the
atate of an aHribute of that ADV. An attribute is an identifier and its corresponding value

Transitiona between atatea which are equivalent to state tranaitions in finite state machines,
are illuatrated by arrows joining an initial and a final state. The initial state is at the tail o{
the arrow. A atate can have an initial traneition which ia illuatrated by an arrow with no imllal
atate. One exa.mple ia the transition labeled "examine" from the state "display" in the ADV
"Title/ Author" to the state "display" in the ADV "Preface". Since the definition of the A DV
"Book" needs to be apecialized into entitiea such a.s a nove! or technical book by adding an
component such u a "Table of Contenta" the set of nested components is not complete. Thus,
there ia no tranlition ahown in Figure 12 between the state "display" in the ADV "Preface"
and the atate "display" in the ADV "Chapter" .

'l'ranaitione can only be executed i{ certa.in conditions apply. These conditions are expressed
in a transition apecification such as the one in Figure 13. This Figure shows the spectficatton
for one of the transitiona in Figure 12, where each transition specification consist~ of {ou r parts.
The transition ha.s a label which shows the initial and final states connected by an arrow. The
pre-condition expreuea a predicate which must apply before the transition is fired and the

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 233

- I

.~ J-nJ_ .,.., ... _c,...r

-~-

l Tlle/A- T fllúlaJ

I I " 1'Iiiiõiiõi: ::l

~ u -

@]

Figure 12: ADVchut for the Book Problem

poat-condition expre11e1 the predic&te which &pplies dter the tr&nsition ia complete. The event
atatement cont&ina the name of the event uaociated with the transition. The variable owner in
the poat-conditiona repreaenh the name o{ the apecific ADT which corresponds to this ADV ,
and ia a method o{ binding &n ADV to an ADT. The ch&acter "\" indic&tes a required aervice
aupplied by the ADT.

An ADVcha.rt can inherit the neated componenh írom another ADVch&rt and augment
them. Thia concept ia illuatrated in Figure 14 where the ADV chart for "Technica.l Book" h as
inherited the ahaded components "Title/ Author", "Preface", "Chapter" from the' ADV chart for
"Book" and added the component for the "Table o{ Contenta" ("Table.Cont"). This inheritance
property ia &n&logoua to the norm&l inheritance property o{ object-oriented design; u well

Tranaltloru ADV Book
• Init -+ Analy1eDoc:

pre-condition : {}
event : leL-Dex&()
post·condition : {doe = \ oumcr.gctLi6roryDocumcnt()}

Figure 13: Some Transition Specific&tions for ADV Book

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

234 VIl Simpósio Brasileiro de Engenharia de Software

Figure 14: ADVcharl for Technical Book

u inheriting atate which can be augmented, we alto inherit component atructure which hu
similar propertiea, thua, illustrating the semantica for nesting o{ inheritance. o r coune the set
o{ transitions is modified to show the appropriate sequence o{ evenh. The new transitions are
shown u solid lines. The solid and dotted arrow labeled "examine" in Figure 14 indicates that
the ADV for "Technical Book" is incomplete in that other ADVs and atates could be added.

The ADVcharts can be easily translated into a VDM notation that aupporta nesting (16).
Partia! VDM specifications for the ADVa for "Book" and "Technical..Book" are illustrated in
Figure 15 and Figure 16. The first line of the apecification in Figure 15 indicatea that the
ADV for "Book" inherih ita atructure úom the ADV for "Document". The state variables for
the ADV are specified u well u the fact that the component ADVs are ahown ne1ted inside
the "parent" ADV. The transitions become named eventa in the ADV specification.

7 Conclusions

ln thil paper, we preaent the argument that the divide-and-conquer or decompoaition design
approach to complex objecta, including software aystema, requires both decomposition by form
(object-oriented design) and decomposition by function (structured deaign). ln addition, we
alao claim that, although inheritance and encapsulation support decomposition by form, com
position by nesting is needed in order to expreaa decomposition by function. We also show by

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software

ADV Boole For ADV Document

Declaration: doe: doc_type

ADV Title/ Author

EVENT ezamine O
post-condition: doc.litle + doc.aulhor are dúplayed on lhe aereen

End Tille/ Author

ADV Preface

End Preface

ADV Chapten

End Chapter

EVENT geLnezt 0
externa!: wr doe
post-condition: doe = \owner.getLihraryDocument()

EVENT ezamine O
post-condition: "End of Documenl~ + doc.lille are displayed on lhe screen

End Documenl

Figure 15: VDM-like Specification for Book

ADV TechnicaLBoolc For ADV Boole

ADV Tahle-Of-Content•

EVENT ezaman.e O
post-condition: doc.preface.lableConlents is displayed on lhe screen

End Preface

End Novd

Figure 16: VDM-like Specification for TechnicaLBook

235

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

236 VIl Sif1>ósio Brasileiro de Engenharia de Software

ex.ample ~ha~ al~hough deeompoaition by {unc:tion c:a.n be aupported without eompoaition by
neating, the introduc:tion of c:omposition by neating improve• the reuaability o{ deaign1. Thu1,
we uae deaign reuae u a criterion to juatify the introduction of compoaition by neating at the
deaign level.

Thla paper uaes a aimple example to illuatrate how inheritance, encapaulation, and compo
•ition by nesting can be uaed in the design proce11 and to indicate atrongly that composition by
neating hu a aignificant role to play in object-oriented deaign. Our example alao clarifica the
informal aemantics of composition by nesting for the designers of both deaign and programming
languagea by introducing the no~ons of locua of u•ociation, object-set browaing, and nesting
encapaulation. Some propertiea of nesting and their correaponding semantica have been illua
trated uaing the ADVchart notation and VDM. Thia illuatration providea aome indication of
how to extend formal methoda to incorporate thia important deaign concept.

Moat of the notiona of the design approach iUuatrated in theae examplea can be implemented
mote or leu directly in exiating object-oriented languagea, although they do not use the syn
tactic method we have deacribed here to produce thi1 implementa.tion. With the ayntactic
approach presented in the paper, management of objech would be made euier, becauae the
eonttituent liat containa the namea of all objecta that eompoae an object. Becauae the namea
ue euily found, it ahould be po11ible to build a tool that can locate all the cluaea whlch ma.ke
up a document clua aince they ue coDDected in a neating tree.

8 Acknowledgment

The authon wiah to thank P.J. Bum bulia and M.H. Coffin for their many commenb on the
eontenh of an eulier veuion of thia paper.

References

[1] B. Alabiao. Tranaformation of data tlow analyaia modela to object. ln Proceedings of
OOPSLA, 1988, 1988.

[2) Swediah Standa.rda A11ociation. Simula • Data Proceuing Programming Languages.
Swediah Standud SS636114SIS, 1992.

[3) D. G. Bobrow and M. Stefik. The LOOPS ManuaL Xerox Corporation, 1983.

[4) Grady Booch. Object Oriented Design with App/ications. The Benjamin/Cumminga Pub
liahlng Company, lnc., 1991.

[5) P. A. Buhr and C. R . Zarnke. Neating in an object oriented language ia not for the birds. ln
Proceedings of ECOOP'88, European Conference on Object-Onented Programmmg, 1988.

[6) L. M. F . Cuneiro, D. D. Cowan, and C. J . P. Lucena. lntroducing ADVchuh: a Viaual
Formalism for Describing Abatract Data Viewa. Technical Report 93-20, Computer Science
Depa.rtment, Univenity of Waterloo, 1993.

[7) Luísa. M. F. Carneiro. A Specification -based Approach to User-Jnterface Design. Internal
Report , Computer Science Depa.rtment, Univeuity of Waterloo, December 1992.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 237

[8) D. Curington, D. Duke, R. Duke, P. King, O. Roae, and G. Smith. An Object-Oriented
Extenaion to Z. ln Formal Description Techniques (FORTE 89). North Holland, 1990.

[9) D. Colem&n, F. Haye•, and S. Beu. Introducing Objectchuta or How to Uae Sta.techa.rh
in Object-Oriented De1ign. IEEE Transactions on Software Engineering, 18(1), 1992 1992.

[10) D. D. Cow&n, R. Ieruaa.limachy, C. J . P. Lucena., a.nd T. M. Stepien. Abstra.ct Da.ta. Viewa.
Structured Programming, 14{1):1-13, Januuy 1993.

[11) D. D. Cowan, R. leruaa.limachy, C. J. P. Lucena., and T. M. Stepien. Applica.tion Inte
gration: Conatructing Composite Applica.tiona from Intera.ctive Components. Software
Practice and Ezperience, 23(3):255-276, Ma.rch 1993.

[12) B. J. Cox and A.J. Novobilaki. Object Oriented Programming. Addiaon Wealey, 1991.

[13) J. S. Fitzgerald. Moduluity in Mode-Oriented Formal Specifica.tiona a.nd i h lntera.ction
with Formal Reuoning. Technical report, Deputment of Computer Science, Univeraity of
Muche•ter, Technical Report Seriea, UMCS-91-11-2, 1991.

[14) Adele Goldberg &nd Da.vid Robaon. Smalltalk-80, the Language and its lmplementallon.
Addiaon-Wealey, Palo Alto, CA, Ja.nuuy 1983.

(15) D. Buel. Sta.techuta: A Viaual Forma.liam for Complex Syatema. Science of Computer
Programming, 8:231-274, 1987.

(16) Roberto leruaa.limachy. A Method for Object-Oriented Specifica.tiona with VDM . Technical
report, Monogra.fiu em Ciência. da. Computação, Depa.rta.mento de Inform&tica., Pontifícia.
Universidade Ca.tólica., Rio de Janeiro, Februuy 1991.

(17) Roberto leruaa.limachy. A Formal Specification for a. Hieruchy of Collectiona. to appear
/EE Software Engineering, 1993.

(18) P. Jalote. Functional refinement a.nd neated objecta for object-oriented design. IEEE
7hms. on Software Engineering, 15, 1989.

(19) W. Leler. Constraint Programming Languages. Addiaon Wealey, 1988.

[20) O. L. Ma.daen. Block atructure a.nd object oriented langua.gea. ln B.; Shiver a.nd P. Wegner,
editora, Research Directions in Object-Oriented Programming. MIT Press, 1987.

(21) M. L. Ma.her. Proceu Models for Deaign Syntheaia. AI Magazine, Winter 1990.

[22) A. B. Potengy, C. J. P. Lucena., and D. D. Cowa.n. A Programming Approa.ch for Pa.ra.llel
rendering Applica.tiona. Technical report, Monogra.fiu em Ciência. da. Computa.ção, De
partamento de Informática., Pontifícia. Univeuida.de Ca.tólica., Rio de Janeiro, April1993.

(23) Ja.mea Rumba.ugh et al. Object-Oriented Modeling and Design. Prentice Ha.ll, 1991.

(24) S. A. Schuma.n et al. Object-oriented proceu apecifica.tion. ln Specification and Verification
in Concurrent Svstems. Springer· Verla.g, 1990.

[25) B. Strouatrup. The C++ Programming Language. Addiaon-Wealey, 1986.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396

