VIl Simpésio Brasileiro de Engenharia de Software 223

A RATIONALE FOR BOTH NESTING AND
INHERITANCE IN OBJECT-ORIENTED DESIGN

L.M.F. Carneiro D.D. Cowan C.J.P. Lucena *

Resumo

Tem sido observado que o design de objetos complexos, por exemplo software, requer
decomposigao por forma (objetos atémicos) e decomposi¢io por fungio (agrupamento)
para promover a redugdo do design para um conjunto de componentes que possa ser
gerenciado. No entanto, o paradigma de design orientado por objetos suporta apenas de-
composigio por forma. Este artigo motiva, através de um exemplo simples, a necessidade
de agrupamento (decomposigio por fungdo) e ilustra como a técnica de agrupamento
pode ser incorporada na linguagem utilizada a nivel de design. Nés também demon-
stramos como a introdugio de agrupamento na especificagio e design de software aumenta
a reusabilidade de componentes de forma significativa. ADVcharts, uma nova forma de
formalismo visual, e VDM séo utilizados para representar a semantica de agrupamento.

Abstract

It has been observed that design of complex objects such as software requires both
decomposition by form (atomic objects) and decomposition by function (nesting) in order
to reduce the design to a set of manageable components. However, the object-oriented de-
sign paradigm mostly supports decomposition by form. This paper uses a simple example
to motivate the need for nesting (decomposition by function) and illustrates how nesting
might be incorporated into a design language. We then demonstrate how the introduction
of nesting into software specification and design significantly increases reusability. AD-
Vcharts, a new visual formalism, and VDM are used to provide a semantics for nesting.

1 Introduction

Authors such as Maher [21] have observed that designers in various engineering disciplines
use both decomposition by function and decomposition by form to reduce their projects to
manageable components, Similarly, software designers should use both design strategies since
they also build complex objects. Decomposition by form follows the object-oriented paradigm
and object-oriented programming languages [14, 3, 25, 12] and design methodologies [4, 23]
support decomposition by form through such techniques as creating subclasses (inheritance)
and encapsulation. Decomposition by function requires that an object be divided into smaller
components to which a small set of actions can be applied. The relationship among the larger
component and its constituents is expressed through nesting, a concept that some authors claim

*L.M.F. Carneiro and D.D.Cowan are with the Computer Science Department and Computer Systems Group,
University of Waterloo, Waterloo-Ont, Canada. C.J.P.Lucena is with Departamento de Informética, Pontificia
Universidade Catélica, Rio de Janeiro-RJ, Bragil. L.M.F. Carneiro holds a doctoral fellowship from CAPES
(the Brasilian Research Council).E-mail address: {luiza,dcowan,lucena}@csg.uwaterloo.ca

http://www.cvisiontech.com

224 - VI Simpésio Brasileiro de Engenharia de Software

is not properly supported by object-oriented languages [5] and is not supported at all by strictly
object-oriented design methodologies [18].

Although there have been arguments made in favor of nesting in object-oriented specifi-
cation and design, we came to the conclusion that most of the arguments used so far are
not very satisfactory. Some of the arguments sound like a nostalgic defense of structured de-
sign/programming (1, 18], and some authors even show how to convert a structured design into
an object-oriented design [1]. Other authors [5, 2, 20] have examined a related issue, namely, the
implementation of nesting in object-oriented programming languages. We believe a common
concern at both the design and programming language levels is nesting encapsulation. That is,
the semantics of nesting should allow reference to definitions from outside the containing block
without violating encapsulation [5, 2, 20].

We feel there is a need for an appropriate illustration of the “form versus function dilemma”
that every designer needs to face. In other words, a discussion about when to use decompo-
sition by form (inheritance) and when to use decomposition by function (nesting) should be
presented in the context of a software design activity. Since problem solving at the design and
implementation levels can always take place using only one of the two kinds of decomposition, a
criterion is necessary to justify decisions that combine both approaches to design. The criterion
we propose in this paper is enhanced design reuse.

Our motivation for the combination of inheritance with nesting at the design level comes
from our work on Abstract Data Views (ADVs) [10, 11). At first the concept of ADVs was
used only for the design of user interfaces. Later this concept was generalized to deal with
module interconnection in general and the design of concurrent and distributed systems [22].
The justification for the combined use of nesting and inheritance can be naturally explained
in the case of user interfaces. Nesting models the issue of “locus of association” in human
interfaces. Nested objects know “where they are” with respect to other objects on the screen,
therefore minimizing the so-called constraint problem [19, 7]. Inheritance is normally used to
specialize interface objects.

A justification for the combined use of the two kinds of decomposition is less obvious in
other application domains. We discuss this issue in this paper using a simple software design
situation. What we have done was to “simulate” the locus of association situation in our
example to try to convince the reader that at least in this situation (which occurs very often
in software designs), a combined use of the two decomposition styles is justified because design
reuse is clearly improved.

It should be noted that we discuss specification and design issues in this paper, not im-
plementation issues. One contribution of this paper is to illustrate the importance of nesting
to those researchers who are extending formal design notations to encompass object-oriented
design concepts [24, 8, 9, 13]. We also use the design example to introduce the notions of max-
imization of reuse as a design criterion, and the properties of locus of association, object-set
browsing and nesting encapsulation. These are all properties which are introduced when nest-
ing is used as a design notion. In our work on ADVs we expressed nesting using the extensions
of VDM proposed by lerusalimschy [16, 17]. In this paper we use this extension to VDM and
ADVcharts [6] to express the semantics of nesting and inheritance.

http://www.cvisiontech.com

VII Simpésio Brasileiro de Engenharia de Software 225

Nowel Technical Book Cookbook —Dictionary

Figure 1: A Hierarchy of Document Types for a Library ~ An is_a Relation

[Wlmml
OrECOTO

Figure 2: The Structure of two Document Types — An is_a_component.of Relation

2 The Problem

Consider an electronic version of a library. An electronic library is a collection of documents
in machine-readable format ordered using some scheme such as the Dewey Decimal System.
We wish to specify and design a program which allows a user of the library to browse all the
documents in the library sequentially.

Browsing the library means that the user starts at the first document in the library and
examines the cover. If the document is of interest, the user then scans the document in more
detail by moving among the sections of the document in some predetermined order from front
to back. The sections of the document and the order of those sections is determined by the
type of the document.

3 The Structure of the Library

The library consists of a number of documents and these documents are of many different
types such as book, report, paper, letter, magazine, and newspaper. Many of these document
types can be further subdivided into different classifications. For example, a book can be a
novel, technical book, cookbook, or dictionary. This relationship among document types can
be represented as a hierarchy and is shown in Figure 1. As we move from top to bottom in
the hierarchy each document type becomes more specialized and inherits the properties of its
superior entry in the hierarchy. Inheritance is often called an is.a relation.

Each document type in a library may have a different composition. For example, a novel has
a title, author, preface and a number of chapters, while a technical book is composed of a title,

http://www.cvisiontech.com

226 VIl Simpésio Brasileiro de Engenharia de Software

author, table of contents, chapters, appendices and an index®. The structure er composition
of a specific type of document namely, a novel and a technical book is illustrated in Figure 2
where boxes inside each other indicate composition by nesting? , and the left to right order
of boxes indicates order of appearance in the document. The asterisk (*) beside the name of
a component indicates that the component may appear several times in sequence. The term
is.a_component_of is often used to describe the nesting relationship.

4 An Object-oriented Design for the Library

In this section we consider an object-oriented design for the library in order to motivate the need
for encapsulation, inheritance, and composition by nesting. Object-oriented design requires
that we identify the basic objects which can act together as atomic units to produce the desired
behavior. If we confine the contents of the library to novels and technical books, it is clear
from Figure 2 that we need objects such as title, author, preface, chapter, table of contents,
appendix and index. The library then becomes an ordered collection of documents and each
document in the library such as a novel or technical book becomes an ordered composition of
these basic objects. :

In order to browse the library we need to define two methods or functions for each document,
namely “get_next” and “examine”. The method “get_next” will move to the next document and
the method “examine” will allow a detailed examination of each section of a specific document.
The method “get_next” can be defined for all documents as it is only necessary for the system
to know how to move to the next element in the ordered collection of documents. The method
“examine” is more specialized because an examination of a document requires knowledge of the
specific type of document and is an example of the requirement for the “locus of association”.

4.1 Encapsulation and Inheritance

Conventional structured design would specify the “examine” method for books using the
pseudo-code structure shown in Figure 3. In this Figure the document type is located in a
standard place in each document and is then interrogated in a case statement. Based on the
value in the case statement the “examine” method can call the correct function for a specific
type of document.

In the object model of design the state of an object is encapsulated or hidden and is queried
and changed through a set of associated methods or functions. Since the methods are really part
of the object they can be used by naming an object and its associated method. For example,
accessing the method “examine” for the object “item” can be written as

item.examine;

and replaces the pseudo-code of Figure 3.
We now must add the method “get_next” to each object so that the entire library can be
browsed. Unfortunately we now must duplicate the “get_next” specification for every type of

YThis description is a simplification of the structure of various kinds of books, but it is certainly adequate
for the present example.

?Both inheritance and composition by nesting could be illustrated using a tree diagram. We have chosen
two different representations to emphasise that these are different concepts.

http://www.cvisiontech.com

VIl Simpdsio Brasileiro de Engenharia de Software 227

record document (typecode : integer;....)
method examine(item)
type item : document
case item.typecode
novel: examine_novel(item)
technicalbook: examine_technical_book(item)
cookbook: examine_cookbook(item)
dictionary: examine_dictionary(item)
report: examine_report(item)
paper: examine_paper(item)

aaaaa

Figure 3: A Conventional Pseudo-code Specification for “examine”

object in the library. The concept of inheritance solves this problem. Inheritance allows the
definition of a type which may be specialized and thus implements the hierarchy shown in Figure
1. Since “get_next” is the same for all documents, we can now attach the specification and the
corresponding state to the document type. When the newer types inherit from document
they also inherit the state and all accompanying methods such as “get_next”. This means the
specification and state for this method are only located in one place in the program design,
although it is accessible to all subtypes that inherit from the type document. A type that
allows inheritance is usually called a class.

4.2 Composition by Nesting

Invoking the method “examine” for each document type requires that each component of the
document be displayed in succession under user control. A simplified version of the class book
containing only the components preface and chapter and their associated “display” method,
might be expressed as shown in Figure 4 if we use only the concepts of encapsulation and
inheritance. Inheritance is made explicit with the expression:

novel is_a book.

This solution illustrates a strict object-oriented style of design where the designer interpreted
both the relations is_a and is.a_component.of in Figures 1 and 2 as inheritance trees.

Instances of the classes book and novel maintain a variable “where” which records the next
item to be examined in the document. Note the use of the case statement with the variable
“where” to select the correct version of “examine”. This solution has the same problem as the
one which motivated encapsulation. Also this solution has to be created for each class because
the solution must be specialized to that specific class, Such specialization limits reuse.

Note that this specification could be implemented using an array of object pointers. How-
ever, the expression of nesting would not be explicit, but would be implied by the semantics of
the program.

We create the concept of composition by nesting to build a class. Each class is composed
of its constituent classes and their associated methods. We illustrate composition by nesting
in Figure 5 by using a version of the class novel. The statement:

http://www.cvisiontech.com

VI Simpdsio Brasileiro de Engenharia de Software

class book is_a document
where = (preface, chapter)

function examine_preface(item)
item.display
where <- chapter

function examine_chapter (item)
item.display
where <- preface

class novel is_a book
where <- preface
method examine(item)
case where
preface : examine_preface(item)
chapter : examine_chapter(item)
esac
Figure 4: An Object-oriented Approach to the function “examine” for the objects book and
novel

class novel is_a book
novel is_composed_of (title/author, preface, chapter)

method examine
next.display
next <- succ(next)
Figure 5: An Object-oriented Approach to the class novel using composition by nesting

novel is_composed_of (title/author, preface, chapter)

indicates that the class novel is composed of the classes title/author, preface and chapter, and
that they appear in the order presented. In our case each of these constituent classes has a
method called “display” which is invoked by naming the object of that class, and then the
method. For example, “display” for the object “item” of class “chapter” would be invoked with
the expression

item.display

Associated with this list of constituents in each object is a variable named “next” that is
used to traverse this list. The first time the variable “next” is used its value is the first object in
the list of constituents. There is also a successor method named “succ” that moves the value of
the variable to the next element in the list of constituents. The method “succ” will move to the
beginning of the list of constituents after accessing the last element. Thus, we have provided
the design specification with an object-set browsing capability.

When a class such as novel is instantiated, its list of constituents is defined, but the list does
not contain any instances of constituent classes. That is, the type and order of the constituents

http://www.cvisiontech.com

VI Simpésio Brasileiro de Engenharia de Software 229

class document
document is_composed_of ()

method examine
next.display
next <- succ(next)

class book is_a document
book is_composed_of ()

class novel is_a book
novel is_composed_of (title/author, preface, chapter)
Figure 6: Associating the method “examine” with the class document

is known when the class is defined. As an object of a class such as novel “grows” and “shrinks”
new instances of constituent classes are added and removed from the list. Hence, methods
such as “insert” and “remove” must be defined for constituent lists and could be based on the
position of the variable “next”. We should also note that type and number violations are not
allowed. For example, the constituent list for novel may not have an instance of an index, and
if the list already contains an instance of a preface then trying to enter another preface would
cause an error. We say we have achieved locus of association through nesting.

We observe that nesting has maintained the separation of concerns, since we first solved
the problem of manipulating each individual component and then we solve the problem of
composition; the two solutions proceed independently. Although the enclosing object of a class
such as novel knows the identity of its constituent classes, the enclosed objects of classes such
as preface and chapter have no knowledge of the state of novel. We call this property of the
design nesting encapsulation.

Also using this design language involving composition by nesting to invoke the methods
“examine” does not require any knowledge of the position in the constituent list from either of
these methods. In fact we could easily change the constituent list without changing any of the
specification associated with the object novel. This form of limited change makes any of these
objects highly reusable.

Because the knowledge of position in the constituent list is encompassed by the variable
“next” we can use inheritance to associate the method “examine” with the class document.
This concept is illustrated in Figure 6. The constituent lists for document and book are
empty, but this does not affect the program design. These lists become completed when the
class novel is declared.

Of course it is possible to have some of the constituents in a list to be composed of lists. This
can be easily handled within the constituent itself. For example, consider a class tech_chapter
which consists of sections. This could be expressed as shown in Figure 7 and except for a
change of name is exactly the same specification as used in Figure 6.

http://www.cvisiontech.com

230 VIl Simpésio Brasileiro de Engenharia de Software

class chapter
chapter is_composed_of ()

method examine
next.display
next <- succ(next)

class tech_chapter is_a chapter
tech_chapter is_composed_of (section(®))
Figure 7: Nested Composition

class book is_a document
book is_composed_of (author/title, preface, chapter)

class novel is_a book
Figure 8: A class novel inheriting a nest

5 Some Properties of Nesting

In previous sections we described object-oriented design using nesting. In this section we
present two important properties of nesting namely “inheritance of nesting” and “nesting of
inheritance”.

5.1 Inheritance of Nesting

Consider Figure 8 which illustrates inheritance of nesting. Since a book already contains
the components author/title, preface, and chapter, the class novel which is a specialization of
book also contains these components. Inheritance of the nest is automatic and does not have
to be explicitly stated. If we wish to modify the nest of components, then we use the version
shown in Figure 9 where we define a technical_book which also contains an index. Here we
explicitly use the phrase “is_also_composed_of” to indicate that we inherit the nest of book, but
that we can add to the nest. The nest must be explicitly specified so that new elements can be
inserted at any position. '

5.2 Nesting of Inheritance

In Figure 10 we show a class book that is composed of three classes author/title, preface
and chapter. Figure 10 also illustrates what happens when a new class technical book is

class book is_a document
book is_composed_of (author/title, preface, chapter)

class technical_book is_a book

novel is_also_composed_of (author/title, preface, chapter, index)
Figure 9: A class technical_book inheriting a nest

http://www.cvisiontech.com

VIl Simpésio Brasileiro dé Engenharia de Software 23

class book is_a document
book is_composed_of (author/title, preface, chapter)

class technical_book is_a book
novel is_also_composed_of (author/title, preface, technical_chapter, index)

class technical_chapter is_a chapter
Figure 10: A class technical book showing inheritance of subclasses

defined which contains a subclass of chapter, namely technical.chapter. Again we use the
phrase is_also_composed.of to indicate that some of the classes in the nest can be inherited
from book but some may be replaced by subclasses.

6 The ADVchart Notation — A Visual Formalism for
Nesting

ADVcharts are primarily a visual formalism for describing the structure and flow of control in
a program design and have been found to be especially useful for describing the semantics of
designs for interactive object-oriented programs. ADVcharts are a formal approach to program
design in that they can be translated into an equivalent design in a VDM-like notation (16, 17]
using a set of rules. In this section we present an example using ADVcharts to illustrate a
formal visual semantics for nesting and inheritance, and to show both inheritance of nesting
and nesting of inheritance. A more complete description of ADVcharts is in [6].

ADVcharts are an extension of Statecharts [15] and Objectcharts 9] which are based on a
finite state machine notation. ADVcharts were originally created to describe Abstract Data
Views (ADVs) (10, 11) a program design concept which allowed for the clean separation between
the user interface and the application code, thus, supporting design reuse. ADVs are Abstract
Data Types (ADTs) with some special properties which make them useful for expressing the
design of user interfaces.

The ADVchart notation consists of three components: the configuration diagram, the AD-
Vchart diagram, and the set of transitions. The configuration diagram shows the inheritance
structure of the application and the ADVchart illustrates the nesting property and reflects the
inheritance structure.

Each document in the library has two components: a user view (or user interface) for the
document and its contents. The user interface is represented by an Abstract Data View (ADV)
and the contents by an Abstract Data Type (ADT). Both the ADV and the ADT can be
specialized through inheritance. A configuration diagram shows the inheritance hierarchy for
both the ADVs and ADTs and the operations on both of them. The operations on an ADV
are the user input operations and the corresponding displays, while the operations on the ADT
are caused by the ADV and are a direct consequence of the user actions.

A partial configuration diagram for the document problem discussed earlier in this paper is
shown in Figure 11. Part of the inheritance hierarchy for the ADVs s illustrated in the diagram
where the ADV for document is specialized to become the ADV for book and further specialized
into different types of books. There is no corresponding hierarchy for the ADT document since
the specialization of the document is through its views not through specializing its contents.
The operations on the ADV for document are “get_next” document, and “examine” current

http://www.cvisiontech.com

22 Vil Simpésio Brasieiro de Engenharia de Software

o
ADV e S PO s ADT
Documenl Ubrory -
Documen

v

|

ADV ADV ADV
ADV Tustudaed bl S 5
Novel Book *

Figure 11: Configuration Diagram for the Document Problem

document. The single operation on the ADT is “getLibraryDocument”. If other ADVs needed
specialized or overloaded operations then these would be shown on the appropriate ADV in the
configuration diagram.

Each ADV or ADT in the configuration diagram can be divided into its nested components,
The components and their relationships in terms of events is shown in an ADVchart, The
ADVchart for the ADV “Book” consisting of three distinct logical components (Title/Author,
Preface and Chapters) is shown in Figure 12, This ADVchart when used with the Configuration
Diagram of Figure 11 illustrates the semantics of inheritance of nesting.

The ADVs are denoted by rectangles with the name of the ADV in a smaller rectangle
in the top left-hand corner. States attached to an ADV are represented by rectangles with
round corners inside the ADV and the name of the state is shown at the top. To implement
nesting and preserve the separation of concerns the ADVs can be contained inside states. This
is illustrated in Figure 12 where the state “AnalyseDoc” contains the three ADVs composing
the ADV “Book”. Each ADV can also contain a declaration for the variables that define the
state of an attribute of that ADV. An attribute is an identifier and its corresponding value.

Transitions between states which are equivalent to state transitions in finite state machines,
are illustrated by arrows joining an initial and a final state. The initial state is at the tail of
the arrow. A state can have an initial transition which is illustrated by an arrow with no initial
state, One example is the transition labeled “examine” from the state “display” in the ADV
“Title/Author” to the state “display” in the ADV “Preface”. Since the definition of the ADV
“Book” needs to be specialized into entities such as a novel or technical book by adding an
component such as a “Table of Contents” the set of nested components is not complete. Thus,
there is no transition shown in Figure 12 between the state “display” in the ADV “Preface”
and the state “display” in the ADV “Chapter”.

Transitions can only be executed if certain conditions apply. These conditions are expressed
in a transition specification such as the one in Figure 13. This Figure shows the specification
for one of the transitions in Figure 12, where each transition specification consists of four parts.
The transition has a label which shows the initial and final states connected by an arrow. The
pre-condition expresses a predicate which must apply before the transition is fired and the

http://www.cvisiontech.com

VIl Simpésio Brasileiro de Engenharia de Software 233

doo: doc_type!

=

O

— —

Figure 12: ADVchart for the Book Problem

post-condition expresses the predicate which applies after the transition is complete. The event
statement contains the name of the event associated with the transition. The variable owner in
the post-conditions represents the name of the specific ADT which corresponds to this ADV,
and is a method of binding an ADV to an ADT. The character “\" indicates a required service
supplied by the ADT.

An ADVchart can inherit the nested components from another ADVchart and augment
them. This concept is illustrated in Figure 14 where the ADVchart for “Technical Book” has
inherited the shaded components “Title/Author”, “Preface”, “Chapter” from the ADVchart for
“Book” and added the component for the “Table of Contents” (“Table.Cont"). This inheritance
property is analogous to the normal inheritance property of object-oriented design; as well

Transitions ADV Book
¢ Init —+ AnalyseDoc :
pre-condition : {}
event : get.next()
post-condition : {doc = \owner.getLibraryDocument()}

Figure 13: Some Transition Specifications for ADV Book

http://www.cvisiontech.com

234 . I _ ViI Simposio Brasileiro de Engenharia de Software

Figure 14: ADVchart for Technical Book

as inheriting state which can be augmented, we also inherit component structure which has
similar properties, thus, illustrating the semantics for nesting of inheritance. Of course the set
of transitions is modified to show the appropriate sequence of events. The new transitions are
shown as solid lines. The solid and dotted arrow labeled “examine” in Figure 14 indicates that
the ADV for “Technical Book” is incomplete in that other ADVs and states could be added.

The ADVcharts can be easily translated into a VDM notation that supports nesting [16].
Partial VDM specifications for the ADVs for “Book” and “Technical_Book” are illustrated in
Figure 15 and Figure 16. The first line of the specification in Figure 15 indicates that the
ADV for “Book” inherits its structure from the ADV for “Document”. The state variables for
the ADV are specified as well as the fact that the component ADVs are shown nested inside
the “parent” ADV. The transitions become named events in the ADV specification.

7 Conclusions

In this paper, we present the argument that the divide-and-conquer or decomposition design
approach to complex objects, including software systems, requires both decomposition by form
(object-oriented design) and decomposition by function (structured design). In addition, we
also claim that, although inheritance and encapsulation support decomposition by form, com-
position by nesting is needed in order to express decomposition by function. We also show by

http://www.cvisiontech.com

VIl Simpédsio Brasileiro de Engenharia de Software

ADV Book For ADV Document
Declaration: doc: doc.type

ADYV Title/ Author

EVENT ezamine ()

post-condition: doc.title + doc.author are displayed on the screen
End Title/Author

ADV Preface

End Preface
ADV Chapters

End Chapter

EVENT get.nezt ()

external: wr doc

post-condition: doc = \owner.getLibraryDocument()

EVENT ezamine ()

post-condition: “End of Document” + doc.title are displayed on the screen
End Document

Figure 15: VDM-like Specification for Book

ADV Technical.Book For ADV Book

ADV Table.Of .Contents

EVENT ezamine ()
post-condition: doc.preface.tableContents is displayed on the screen
End Preface
End Novel
Figure 16: VDM-like Specification for Technical-Book

http://www.cvisiontech.com

236 VIl Simpésio Brasileiro de Engenharia de Software

example that although decomposition by function can be supported without composition by
nesting, the introduction of composition by nesting improves the reusability of designs. Thus,
we use design reuse as a criterion to justify the introduction of composition by nesting at the
design level.

This paper uses a simple example to illustrate how inheritance, encapsulation, and compo-
sition by nesting can be used in the design process and to indicate strongly that composition by
nesting has a significant role to play in object-oriented design. Our example also clarifies the
informal semantics of composition by nesting for the designers of both design and programming
languages by introducing the nolions of locus of association, object-set browsing, and nesting
encapsulation. Some properties of nesting and their corresponding semantics have been illus-
trated using the ADVchart notation and VDM. This illustration provides some indication of
how to extend formal methods to incorporate this important design concept.

Most of the notions of the design approach illustrated in these examples can be implemented
more or less directly in existing object-oriented languages, although they do not use the syn-
tactic method we have described here to produce this implementation. With the syntactic
approach presented in the paper, management of objects would be made easier, because the
constituent list contains the names of all objects that compose an object. Because the names
are easily found, it should be possible to build a tool that can locate all the classes which make
up a document class since they are connected in a nesting tree.

8 Acknowledgment

‘The authors wish to thank P.J. Bumbulis and M.H. Coffin for their many comments on the
contents of an earlier version of this paper.

References

(1] B. Alabiso. Transformation of data flow analysis models to object. In Proceedings of
OOPSLA, 1988, 1988.

[2) Swedish Standards Association. Simule - Data Processing Programming Languages.
Swedish Standard $S636114SIS, 1992.

[3] D. G. Bobrow and M. Stefik. The LOOPS Manual. Xerox Corporation, 1983.

[4) Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummings Pub-
lishing Company, Inc., 1991.

[5] P. A. Buhr and C. R. Zarnke. Nesting in an object oriented language is not for the birds. In
Proceedings of ECOOP'88, European Conference on Object-Oriented Programming, 1988.

(6] L. M. F. Carneiro, D. D. Cowan, and C. J. P. Lucena. Introducing ADVcharts: a Visual
Formalism for Describing Abstract Data Views. Technical Report 93-20, Computer Science
Department, University of Waterloo, 1993.

[7) Luiza M. F. Carneiro. A Specification-based Approach to User-Interface Design. Internal
Report, Computer Science Department, University of Waterloo, December 1992.

http://www.cvisiontech.com

VIl Simposio Brasileiro de Engenharia de Software 237

[8] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. An Object-Oriented
Extension to Z. In Formal Description Techniques (FORTE 89). North Holland, 1990.

[9] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How to Use Statecharts
in Object-Oriented Design. /EEE Transactions on Software Engineering, 18(1), 1992 1992.

[10] D. D. Cowan, R. lerusalimschy, C. J. P. Lucena, and T. M. Stepien. Abstract Data Views.
Structured Programming, 14(1):1-13, January 1993,

[11] D. D. Cowan, R. lerusalimschy, C. J. P. Lucena, and T. M. Stepien. Application Inte-
gration: Constructing Composite Applications from Interactive Components. Software

Practice and Ezperience, 23(3):255-276, March 1993.
[12] B. J. Cox and A.J. Novobilski. Object Oriented Programming. Addison Wesley, 1991.

[13] J. S. Fitzgerald. Modularity in Mode-Oriented Formal Specifications and its Interaction
with Formal Reasoning. Technical report, Department of Computer Science, University of
Manchester, Technical Report Series, UMCS-91-11-2, 1991.

[14] Adele Goldberg and David Robson. Smalltalk-80, the Language and its Implementation.
Addison-Wesley, Palo Alto, CA, January 1983,

[15] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231-274, 1987.

(16] Roberto Ierusalimschy. A Method for Object-Oriented Specifications with VDM. Technical
report, Monografias em Ciéncia da Computagio, Departamento de Informdtica, Pontificia
Universidade Catélica, Rio de Janeiro, February 1991.

[17] Roberto Ierusalimschy. A Formal Specification for a Hierarchy of Collections. to appear
IEE Software Engineering, 1993.

(18] P. Jalote. Functional refinement and nested objects for object-oriented ;ieaign. IEEE
Trans. on Software Engineering, 15, 1989,

[19] W. Leler. Constraint Programming Languages. Addison Wesley, 1988.

[20] O.L. Madsen. Block structure and object oriented languages. In B.; Shiver and P. Wegner,
editors, Research Directions in Object-Oriented Programming. MIT Press, 1987.

[21) M. L. Maher. Process Models for Design Synthesis. A/ Magazine, Winter 1990.

[22] A. B. Potengy, C. J. P. Lucena, and D. D. Cowan. A Programming Approach for Parallel
rendering Applications. Technical report, Monografias em Ciéncia da Computagio, De-
partamento de Informética, Pontificia Universidade Catélica, Rio de Janeiro, April 1993,

(23] James Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[24] S. A. Schuman et al. Object-oriented process specification. In Specification and Verification
in Concurrent Systems. Springer-Verlag, 1990.

[25) B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396

