VIl Simpésio Brasileiro de Engenharia de Software 205

A Process Model for Quality guided Programming
An Approach to Making Quantitative Evaluation of Software Systems Useful for Practitioners

STEFAN BIFFL THOMAS GRECHENIG

D?'mmofmw
‘echnical of Vienna,
, Vienna,
A—lOloAulria.Emope

EMail: Biffl@eimoni.tuwien.ac.at
Tel.: ++43-1-58801-4082
Fax: ++43-1-504 15 80

Abstract

Quantitative evaluation of software systems has not yet been accepted by practitioners. Early
expectations especially into code analysis have not been met so far. Among several reasons for the
rare use in practice we suppose a lack of empirical data, a dominant focus in research on formal
aspects, an unreasonable embedding in the development process. ‘Dwfollowing paper deals with
more technical reasons: lack of flexibility and usability of code measuring tools
We outline a process model for quality assurance during the coding phase providing human reviews
as well as quantitative evaluation. The model is based on the l‘deaa.fermmmly adapting
measuring tools to the goals of a project which will result in a metric guided coding
cycle. The system presented generates software measuring tools providing the necessary flexibility
fnrqnckadapumathand The generator is equipped with a clear separation dm

metric description making both reusable when a new tool design is being generated.
with several commercial programming languages and most classical code metrics proved the claim
of flexibility and usability.
We postulate that quantitative evaluation can work in practice if metrics, project constraints and
mm;mbmmaxﬁadwﬁ]unalomlpmceuofcdkﬂMgmalchar
Ktym:‘.} quality assurance, software metrics, quantitative uation of software, tools for
metric lysis

1. Introduction

Software quality assurance (QA) has been a serious issue for industrial deve for at least ten
years now. Nevertheless quality assurance groups have never been provided with essential rights to
interfere in actual development. The typical QA group is a team of rather learned people whose
specific knowledge is not used to an appropriate extent, though. Only within a few conscious
development environments at least software document reviewing has been established. The acceptance
of QA methods in practice is at the lowest leven concerning quantitative approaches: Software metrics
- could not provide the project information expected and
- therefore were applied.
Mwﬁhmmchhnbmdoumwummeﬂ:eg;pbuwmthethemyohoﬂwmmm“m
their application. [3], [25] suggested process models g{:)-nﬁm
Some case studies on 'S'lmcalexpmences have been reported (e.g. [20], [15], [32]). Nevcrﬁ:eleu

mainstream research behaves as if it were necessary to market the use of software metrics as such
([35]). This is a clear that despite the work mentioned above, metrics and especially code metrics
have still not yet to be successful in practice. the various reasons we

A focus on formal aspects: many collections of formulas have been suggested (e.g. [26], [1], [10] or
[37]) that should map software characteristics like complexity, information contents, structure of data
flow, structure of control flow. Obviously most of the metrics that have been suggested during the last
15 years are of a certain mathematical and statistical beauty. But they did not really bridge the gap to

http://www.cvisiontech.com

296 VII Simpésio Brasileiro de Engenharia de Software

the needs of software engineers at work. Practitioners want project oriented information. Mostly this

A Jock of mmpletead Botes (Rsagh maney piciomoes ave bk épertod; o gonstal sy b bos
A : many no n
derived from them. Probably this is within the variety of today's development conditions.

Results are reliable only within a certain environment and cannot be transferred easily. At least up to
now no parametrized theory based on empirical results has been derived, that would allow for a
mmdahmmmmmdnuiﬂoummdcwkwm

The embedding in the development process: In practice code metrics as means of quality
assmwemapphamdmnﬂybefueaplmofoodehmﬁemd]obbnuﬁuﬁﬂﬁlhn;ﬁmﬁ
requirements and testing. This is why many developers feel about code metrics as if they were some
unnecessary appendix. Quantitative requirements to code have to be embedded in the development
process together with other quality assuring activities like e.g. a reviewing ure. This proces

serves the purpose of quality guided deve whidmmhhaham mndud([n})
Though it is often expected, it is impossible to gather information which is above the level of static
semantics, e.g. on the quality of mnemonics or the readability of code comments, relying on code
metrics only. Code metrics are no substitute for other quality assurance activities.

Metrics are most effectively defined, adapted or modified by each quality assurance group on their
own by collecting local information and extracting local standards. One condition is a certain comfort
in defining metrics and actual measuring. In fact this uncovers another important but underestimated
technical reason for practitioners’' low acceptance: a lack of flexible tools.

The following paper deals with a tool that supports the generation of code measuring tools in a
flexible way. hmhpuzuofcpckmdumphdaﬁmn.adnpuon.mdmdiﬁuﬂondwde
measuring tools used during the development of a SW-project. The concept provides independence of

mmcnndhnmgedeﬁmnm.UmaHymmhndmgmdfmm language (one
specific compiler) and a certain set of metrics. Separating the descriptions of and metrics
from each other makes

- the metric ions reusable and

- the number of definitions just growing linear with respect to the number of languages and

metrics.

Part 2 of this paper deals with a quality assurance process dm,gnedfondnpﬁngoodnmmmtokml
condiﬁons.Agmorfumunngtooh,Membluﬂle ty assurance group to make quick

tmlchmgumdiummﬂwd:uulwhﬂmudmlhedmm3 Inchnpuhhemnlgmunion
of a tool is presented and some experiences are reported. 5 outlines an example of using a
measuring tool for metric guided . Above all, the key issue to an ml.luaeolqumnngw
techniques is their organizational

2. A process for creating, assuring and standardizing code quality

We mentioned above that quantitative code analysis will be more successful if
- it is applied together with other quality assurance activities,
- nlspmpulymbeddedmd:ep'msofqnhtygudnddevehpmmmmrummmhnid
and

- :tfommonp@ngmfumﬂonmdumngmwhwhmlocdwuhmml
certain domain of developer's business environment.
In the following we sk: mwmodelfmbothgnmtnuvemdquahmweaulmwﬁdl
defines a process of quality guided programming. It will make clear that a flexible tool for code
measuring is only one piece in a bigger mosaic. Though it is a necessary condition.

Adjusting metric definitions to project goals and standards is an iterative process collecting experience
bymusmingmﬂoodemddowlymmnﬂnngtbenpbetwmduabsmmjeamhm one
handandthemeumingrewlu(muncvahu)m&emhﬂltuamofm metric values
ject constraints which should be guided and performed by the quality assurance group.
ing more generally, mmmm-ammmmwu
iupogmnm

http://www.cvisiontech.com

VIl Simpdsio Brasileiro de Engenharia de Software 297

Nmntnumnlbbwduivemfmmmonoodequﬁtyﬂmcodemeﬂiuonly We

regard quantitative code analysis uommammg:gmﬂtyum In the following the process of
reviewing code by team members and is taken as an example for
further quality assuring activities among . Nevertheless we will focus only on metrics for details.
[Software development department)
development project team
project manager
A
software-engineers,
programmers quality assurance
N\— A /)
Figure 1: The metric-engineer 's organizational embedding
in a software development department

We outlined that metrics will be at their best if applied locally with respect to determined types of
projects and organizational and economic premises. To build up and maintain significant information
requires a person, who is close enough to the software development team to be sensitive about their
needs on one hand, but who is on other hand not involved so much as to get overrun by the
project's milestones and deadline pressures like it often happens to the programmers.

We call this position metric-engineering. The metric-engineer is a person within the quality assurance
team (see fig. 1). Hehhemppmuthepm;emmmm&lmmngquahtymmmdmm the
actual software which programmers produce. He/she same organizational position as e.g. the
person who is responsible for the process and quality of code reviewing. Collecting information
through metrics needs an experienced software-engineer with supplemental knowledge on formal
methods of quality assurance and a solid background in literature of software metrics and models
close to that.

Figure 2 shows a code quality assuring process in which the metric engineer's holds an m;xmln
position. Three roles have to be considered: The project-manager (PM) serves as an expert for the
goals of the whole project, a metric-engineer (ME) knows about metrics and models for rating the
possible alternatives to achieve the easgodandlhewﬁwm-enm(smwhomphmmtthe
product following the technical and a set of given metrics.

In the following paragraphs the steps in figure 2 are briefly described. A practical example is
discussed in chapter 4.

Analysis of goals: The process starts with the PM's analysis of the project's goals (e.g. reusable
code, high quality documentation, meeting deadlines, etc.), identifying the range of possibilities to
l@hﬂeﬂwgodaand%bvehofmqumh!qummﬂsfmth&ndﬂ'mﬂm

Goals/ PM and the ME meet to deduce questions, criteria and quantifiable
categories from the goals, which can yield quantitative information about the achievement of the goal.
From this catalogue of questions a set of metrics will arise, which has to be measured in order to
answer the questions. On the basis of these metrics the possible alternatives to solve the problem get
evaluated, cost and benefits are being estimated (GQM, see [3]).

Selection of metrics: The PM and ME decide, which alternative to realize as their first choice. For
mwwmmmmmmmmmmm.wmmmMmm
task is finished: minimum, maximum, and a favorite value. The metrics get weighed, as to make the
relative importance meeting their values obvious. At the end of this step the measuring tools are

etric guided programming: Software engineers and programmers are informed about their
ubtuhandthememcmtdaﬂnedbefm Usually the metric engineer provides them with the

generated measuring tool. The software engineers start planning, designing, coding, and testing. They

http://www.cvisiontech.com

298 VIl Simpésio Brasileiro de Engenharia de Software

should know the principal goals of low maintenance costs and fast reaction to bugs identified at the
time of production.

L software enginecring after coding 4

Figure 2: A process for gathering, adapting and
controlling standards for quality oriented coding
Evaluation and rating: While the SE works on the solution of his the ME measures or
helps to measure the newly developed pieces of code and provides to the SE such us to

e him to adapt his style of working to the metric-tables if necessary. Partly this should already
happen in the phase before through the programmers' self control. During the phase at hand metric-
tables can get changed too, in order to fit "coding reality". In both cases the loop back to "metric
gu;ldedpmymmg " is taken. If the SE's results and the metric-model meet, the cycle to the
ollowing step.

mmﬁmmmummmmmm@mmmmo{m
product which seem to be more complex and less documented. In order to be able to fine-tune his

http://www.cvisiontech.com

Vil Simpésio Brasileiro de Engenharia de Software 299

measuring tools for the various projects in the software development department, the ME will certainly
needmmwhnhmbhshmwshﬁhwmmampleway This is the idea of the
measuring tool generator described in paper

Revision of metrics: The degree of of the PM's qualitative requirements is to the
actual results of maintaining the quantitative indicators. The border-values and weights of the metrics
get adapted. These new metric-tables can be used during step two of a similar project, where, if project
constraints are comparable, the previous metric-table can serve as a useful initialization.

Within the whole process of quality-guided development one can regard the so-called quantitative
evaluation as one special form of review. To say it in other words: anything that can be automatically
measured by SW metrics could be a result of human review, too. But reviewing is costly. So one of
the goals of any QS group should be to move criteria control from human reviewing to metric analysis
as much as possible (see fig. 2).
Putting the above cycle into actual work requires a tool which can be adapted easily by the metric
. It is obvious that adaption is somehow permanent, therefore the client and not only the tool
vendor has to be le to generate new tools. The best place for this tool would be that of a
component of some framework (e.g. a CASE-tool).

3 Mmmdhwmdmhk:aneﬂbkwuummlﬂm

Code analyzers and measuring tools are useful for the automation of formal source code evaluation.
They are of particular use during the phases of testing and maintenance of ill-documented source
code. Traditionally code analyzers have been built one by one including the knowledge of the
meumwummmmummwua

wdﬂuxhhly.ﬁthehnguagembepnmdaﬂ:emmumbemmmadchme.myndapnmh
difficult: the internal structure of the measuring tool must be known to the person performing the
change. The use of parser generators like Lex and Yacc for definition is a si way of
improvement which we applied here. Within these the functi of the code analyzer is stored in
semantic actions scattered all over the language definition in EBNF.
Inuseofachangemgnmm(eg due to extensions) it is quite easy to adapt. However if you want
to evaluate code according to different sets of metrics the metric procedures have to be coded by hand
into several instances of the grammar representations.

- N
5 Languages 4 Metric Sets

S

3: Illustrating the economic advantages
a?:pmw"dmicdaﬁniﬁom

A quality assurance group typically experiments with different sets of metrics over different
programming languages. Reuse is desirable in this case.

http://www.cvisiontech.com

W i VI Simpésio Brasileiro de Engenharia de Software

A clear separation into two independent representations made obviously sense: in one the language is
formally defined and in the other the metric algorithm. These two modules communicate via

3.1 The basic architecture of the tool

lfyouwamw:mphme:umngmohfmﬂmmmummwux N
tools are needed. Traditionally each of these M x N tools have been
metric definitions, the effort can be reduced to M + N implementations. ilhmtbe

potential of savings through separation.

Fig. 4 shows the overall structure of a measuring tool: It consists of the three

description, event manager and metric procedures. The dacrlpﬂmcmluofllumc
grammar description and tokens. Standard events are there to be triggered at appropriate
times during measurement. The analyzing metric procedures are operations which compute metric
values and generate output. The event manager serves as an interface between language and metric
definition. It can understand a set of standard events which are generated by the language part and
routes them to the appropriate procedure in the metrics part. So the event manager provides two

services:
- "enter_evenr" enters a relation of a standard event to a procedure, which shall act upon this event
at run-time, into a routing table at initialization time.
- "event" routes a particular event via use of the routing table to a metrics procedure at parsing

time.
(" Measuring Tool e
Language Event manager | Metric
description procedures
e Y
& between algorithms
lexical tokens Language
-4~ and -
Metrics
_ v,

Fig. 4: The basic architecture of the generator

Figure 5 shows the actual process of generating a measuring tool. Lex and Yacc are used for language
definition and formal grammar yielding C-code. The second input is a collection of C-functions (see
bottom middle) to define the metrics. These inputs are linked together with the fixed C-code of the
event manager. Linking them constructs an executable measuring tool.

3.2 Generating and adapting a metric tool

In the following the internal structure of a measuring tool as well as the flow of data and flow of
control within are described. After establishing the connection between events and procedures, control
is passed on to the EBNF-grammar rules in the language part which represent the syntactic structure
of the text input. The lexical analyzer identifies tokens. During parsing the analyzer triggers
event messages which invoke the routing service of the event manager.

The event manager uses the event table to find and call the associated metric procedure. Any active
metric procedure has access to the current context and status of the analysis. The metric procedures
compute the metric values, produce output and return the control to the syntactic parser.

http://www.cvisiontech.com

VIl Simpdsio Brasileiro de Engenharia de Software

_2nd step: define the metrics

Gustep:deﬁnethelanguage R
.
&
C
‘Il ¢
C
o
- OUTPOT
P measure EXE
i
1
e
b o

‘Fig. 5: Generating a measuring tool

(Halﬂcad. C

%

/* mamiber of o

-P mamsber of wll &all -

o, #ﬁ_‘ opersiors ‘operends

;ﬁhl_l.um /* increment the mimmber of statemants */

wold Ine_hN1{) 7 increment the mumber of opsratars */

1 BN | 7* BN gots Incremented only If the
‘opersinn ls mot yet bn the oparstor Hat =/

fﬂm 1 wriie ouf & summry %/

nialsteads N1 counts %4."bN1
nMlodules B’ counts %ed lines. CLINER

Init() 7 indtlaftoe avemi-tabls %

enter_svent("statament”, PROD_START,
—H‘I-__-'m Alrh_ﬁﬂl
‘onter_svent("expression”, FROD.
—mmnm
mwin() /™ medn progrem %

Qaw—u

ol

Fig. 6: A sample cut from a metric definition (Halstead)

input to the measuring tool is structured text according to the
like the Pascal statements in fig. 7. Measuring results are collected as
In fact any output event procedure can be defined
status during parsing. Fig. 6 shows a sample cut
complexity ;

e definition in source code
data in the event manager.
angprmnorﬁle-thmpsamy desired

the code for the implementation of the Halstead

http://www.cvisiontech.com

302 VIl Simpdsio Brasileiro de Engenharia de Software

(_ PASCALLEX
(_ PASCALBNF “
Wiachaie “merc b 7 gicbal vy simen defaitions 5
'b'ﬂl oken deflnition %/ :‘ 1 it %
Wnciede = ghobal yysiemm definitions */ :ll p’q_'.~'
™ deciwrsions of whens, which ars -

mﬁ?ﬁg&mwmvumm ww

- - /* END when %/

[rogram Fmﬁm'f .

fm:mmw-ﬂ---" “'r 5 g

hﬂ' e - 1 et oo recarn_ioken;

——— i

1 /* iebentifier %/

R —— S

v enc: 1= — el

- - —r——_———

FOR qualident ASSIGN sxpression TO sxpression DO ststsment SCOL]

: NS hes

Fig. 7: A sample cut from a language definition (Pascal)

We generated tools for various practical and scientific sofar:e. . a Modula-2 for a
metric set around Lines of Code, Lines of Comment, , Henry & and
Rechenberg, whchmuaedfwcvahmngmmmmmm written by 500

FOW'
students on 4 lem requirements. Since this early application we generated tools for PASCAL, C,
C++ and Chill, implementing many major static code metrics for procedural languages and some for

their object oriented extensions. In any case the presented concept proved to be successful with
respect to reusability of metric descriptions.

4. Applying the tool within a quality assuring process: an everyday example

The generator's main design principles are flexibility and usability. These are characteristics on a
purely technical and theoretical level at first. Dealing with "everyday software development” in
industry these criteria come up in a more practical level also. ‘Ihefllmchahem&.mbedmm
The latter is illustrated in this chapter: The actual application of the generator covers the steps
of metrics and metric guided programming (see grey area in fig. 2). The scenario at hand is a contract
of a software developer whose client is conscious about possible maintenance costs. The process
described in part 2 can be sketched by the following six steps:
Analysis of goals:
The PM has to plan a specific development project. In the contract it says that in case of high
maintenance costs they have to be covered by the supplier. Therefore the main requirement is low
maintenance cost over the product's life-span. Another requirement is a guaranteed repair-time of
not more than one week in case of errors. The PM can define these requirements as more or less

informal quality attributes. His/her message to the quality assurance group will be: Software
must be cheap in maintenance, and short in errors that cannot be eliminated quickly.

Goals/

'questions/metrics:
With a first glance at the PM's goals the ME can see that they are too informal to be tested. They
mabofoomc&nmbeudugmddhaﬁﬂheprahcﬁmmﬂ Aﬂtrmarxningan
the issues of maintainability and "quick elimination of errors that occur” they agree on the
criteria: 1) Any rocedurzhauobeweﬂdocmemad. Cauplcxpamhaverobc documented
intensely. They lines of comment as a measure of documentation. To identify "complex

pansofcode'rhey rhemsumqftomfcompkxiryacconﬂngm[ﬂ}wﬂhmwwm
statement .

http://www.cvisiontech.com

Vil Simpsio Brasileiro de Engenharia de Software 303

Selection of metrics:
The ME and PM set up metric-tables to specify their ideas of step two (see table 1):

Metric programming:
The metric engineer hands a tool (creation according to part 3) on to pmlfmmmrs, that allows
for quantification of code due to the criteria developed in c). That tool will print out warnings, if
the standards defined in the metric-table are not met.

Evaluation and rating:
Either in regular intervals or whenever the programmers deliver a piece of code the ME
measures the product, interprets the numbers, and discusses his findings with the SE. This may
lead to the SI:P refining his code (back to previous phase) or to the acceptance of the part of the
product which is currently discussed (advance to next step).

comments at each procedure head 1 40 5 |
comment lines at each statement which I 10 3 0.4
enclose code whose McCabe camp!exiry
exceeds 4 3
ratio comment lines to total lines 30% 60% 40% 0.3

Table 1: Sample metric-tables as a constraint for coding activities targeting lower maintenance costs

Revision of metrics:
After completion of the project the PM and the ME meet again to discuss the success of their
policy. They recognize that the code of the recent project is actually better documented as it is
'y the case in the department. Due to the selective reviews of the ME during the project some
major sources of errors as well as of confusion were removed through documentation or
redesign. In the basic questions on maintenance cost and time to fix for errors they agree on
having a log-book as a documentation of these items and on meeting for the purpose of a review
every quarter. The experience gained in this lprocess will be used to lift the quality of retuned
metric-tables thus forming a department-wide learning curve.

Though we collected several experiences in applying the tool for different metrics and languages, we
are still in an early stage with evaluating the use of the process described in fig. 2. Up to now we
in testing metric guided programming in student projects of 15000- lines of code in
size. Groups of 5-8 people developed a software system from the phase of requirement engineering to
prmmon for maintenance during a whole academic year. The phase of coding took two months
span. We focused on simple metrics like the ratio of LoC and total lines, line oriented
complexity lumts and higher density of comments at procedure heads. Programmers' reaction was
ambivalent. In a way they feel too strongly controlled by unreasonable rules. Obviously they have to
be involved in the metric design procedure, t0o, in order to make them understand a code measuring
tool not only as a cut to their creativity but as a useful facility as well.

5. Conclusion

Within this paper we outlined an approach for making quantitative evaluation of software systems
useful for practitioners. This oach is based on the idea of developing coding rules locally. A
proous model has been described which assures quahty guided programming by using the
‘ﬂ:mﬂm“ evaluation. Its implementation affords Inghgoﬁmble tool for measuring
internal structure of a tool-generator has been explained and also its application. On
themcnl level that tool concept provides flexibility and usability whereas on the technical level it
provides a clear separation of metric and language definitions.
Nevertheless, a good tool is just one technical condition for practical expediency of software metrics.
Matters of organization and psychology are the subsequent "real” problems of the domain.

http://www.cvisiontech.com

304 VIl Simpésio Brasileiro de Engenharia de Software

Bibliography

[1] Adamov R., Baumann P., Literature Review on SW-Metrics, Institut fiir Informatik der
Universitiit Ziirich, Okt.1987

[2] Albrecht A. J., Gaffney J. E.,, SW-Function, Source Lines of Code, andDwelmem
Prediction: A SW-Science Validation, IEEE TSE, Vol. SE-9, No. 6, pp. 639-648 1983

[3] Basili V., Tayloring the SW process to Project Goals and Environments, In Proc. of the 9th Int.
Conf. on SE. ACM, 1987

[4] Bermry, R.gE.s. Meekings B.A.E., A Style Analysis of C Programs, CACM, Vol. 28, No. 1, pp. 80-
88., Jan 1985

[5] Binder L.H., Poore J.H., Field Experiments With Local Software Quality Metrics, Software -
Practice and Expmcnce. "Vol. 20(7), p-631-647, 1990

[6] Boehm B.W. Software engineering economics, IEEE TSE, VoLSE-lO,No of 4-21 Jan. 1984

[71 Boehm B.W., Understanding and controlling software costs, [EEE TSE, Vol.14, No.10, p.1462-
77, Oct.1988

[8] Briand L.C., Basili V.R., Hetmanski C.J., Providing an Empirical Basis for
Venﬁcmonmd'resung Phases of SW Development, Proc. on Int. Symp. on § Rehalnhty
Engineering, North Carolina, USA, Oct 1992

[9] Conte, Dunsmore, Shen, SW Engineering Metrics And Models, Benjamin/Cummings, 1986

[10] Cote V., Bourque P., Oligny S., Rivard N., J., Software metrics: an overview of recent results,
Syst. Softw., Vol.8, No.2, March 1988, p.121-31.

[11] Gill GK., Kemerer C.F., Cyclomatic Comggenty Density and Software Maintenance
Productivity, IEEE TSE, Vol. 17, No. 12, Dec. 1991, p.1284-1288

[12] Grechenig Th., Biffl St., Taylor your own metrics environment: AMATO - a tool for the metric-

engineer, Proc. of Eurometrics 92, Briissel, p. 287-300, Apr. 1992

[13] Hamed.MH Elements of SW-Science, Elsevier North-Holland, 1977

[14] Hausen H. L.Mlillerbng Uber das Priifen, Messen und Bewerten von SW. Methoden und
Techniken der analytischen SW-Qualitiitssicherung., Informatik-Spektrum, Band 10, 1987

[15] HonIII S.E., Auunn? SW Quality through Measurements: A Buyer's Perspective, J. Systems
SW, 1990, Vol. 13, p.117-130, 1990

[16] Hockel H., Itzfeld W.D., QualitiitsmaBe fiir SW in der Praxis, ONLINE 9/86, Sept. 1986

[17] Ince D., So&ware Metrics. Measurement For Software Control and Assurance, Editors:
Kitchenham B.A., Littlewood B. London, UK: Elsevier Appl. Sci. Publishers 1989, p. 27- 62,
1989

[18] Kafura, D.; Reddy, G.R., The use of software complexity metrics in software maintenance, IEEE
TSE, Vol.SE-13, No.13, p.335-43, March 1987

[19] Monitoring software development using metrics, Kitchenham B. A. UK IT 88 Conference Pub-
lication; London, UK: Inf. Eng. Directorate 1988, p. 45-8 of xix+618, Conf..Swansea, July
1988

[20] Kitchenham B. A.; Walker J. G., A quantitative q?xnu:h to monitoring software development,
Software Engin. Journal, Vol.4, No.1, p.2-13., Jan.1989

[21] McCabe, TJ., A Complexity Measure, IEEE TSE, Vol. SE-2, No. 4, pp. 308-320., Dec 1976

[22] McGarry F.E. Using software metrics and measurements to i e software productivity and
quality, Proc. of the Comp. Standards Conference 1988, Washington, DC: IEEE Comp. Soc.
Press 1988, p. 105 of x+111., 1988

[23] Oman P.W., Cook C.R., Design and Code Traceability Using a PDL Metrics Tool, J. Systems
SW, 1990, Vol. 12, p.189-198

[24] Page D.R., Static Code Analysis For COBOL Development: The Advantages of An Automated
Programming Support Tool, Unisphere 8, 12: 64-66, Mar 1989

[25] Panlish Dan, Best practices of software metrics, Tutorial 3, European conference on quantitative
evaluation of software and systems, Proc. of Eurometrics 92, Briissel, 1992

[26] Prather, R.E., An Axiomatic Theory of SW Complexity Measure, Computer Journal, Vol. 27,
No. 4, pp. 340-347, Nov 1984

[27] Rechenberg P., Ein neues MaB fiir die softwaretechnische Komplexitiit von Programmen,
Informatik Forschung und Entwicklung 1; p. 26-57, 1986

http://www.cvisiontech.com

VIl Simpésio Brasileiro de Engenharia de Software

(28]
[29]
[30]
31]

(32]
(33]
[34]
[35]

[36]
37

Redmond J.A., Ah-Chuen R., Software Metrics - A User's Perspective, J. Systems SW, 1990,

Vol. 13, p.97-110

Rombacg H.D., SW-design metrics for maintenance, Proc. 9th Annu. SE Workshop, NASA

Godard, pp. 100-134, Nov. 1984

Rombach H.D.,Basili V.R., Quantitative SW-Qualitiitssicherung. Eme Methode zur Definition

und Nutzung geeigneter MaBe., Informatik-Spektrum, Band 10,

Rombach H.D., Ulery B. T., Establishing a Measurement Bned Maimmme Improvement
gram: Lessons Learned in the SEL, Proc. of Conf. on SW Maintenance 1989, Miami FL,

g 50-57 October 1989

amadzadeh M.H., Nandakumar K., A Study of Software Metrics, J. Systems Software, 16; p.

229-234, 1991

Schneidewind N.F., Methodology For Validating Software Metrics, TSE, Vol. 18, No. 5,

May 1992, g 410422

Sherif, Y.S.; Ng, E.; Steinbacher, Computer software development: quality attributes,

measurements, and mmics, J. Naval Research Logistics, Vol.35, No.3, p.425-36, June 1988

Siegel Stan, Why we need checks and balances to assure quality, IEEE Software, Jan.1992

Whale G., SW Metrics and Plagiarism Detection, J. Systems SW, Vol. 13, p.131-138, 1990

Zuse H., Bollmann P., Reply to: Erhard Konrad: Software Memcs. Measurement Theory, and

:ﬂlﬂ%ﬂﬂ 2(_?1;160111 Remarks on a New Approach, ACM SIGPLAN Notices, Vol. 26, No. 5,

ay 1991, p.27-

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396

