
VIl Sil1lósio Brasileiro de Engenharia de Software

A Process Model for Quallty gulded Programmlng
An Approacb to Making Quantitarive Evaluaâon of Software Systems Useful for Practitioners

STBPAN BIFFL THOMAS ORBCHBNIG

Department of Software Engineering,
Tedmical University of Vienna,

Resselgasse 312/188, Vienna,
A-1 040 Austria, Europe

E.Mail: Biffl@eimoni.tuwien.ac.at
Tel.: ++43-1-58801-4082
Fax: ++43-1-504 15 80

Abstrad

295

Quonlitative evaluation of software systems ha.s not yet been accepud by practitioners. Early
upeCUJtions especially into clHk analysi.J have not been met so for. Atnong severa/ reasons for IM
rare 11se in practice we s11ppose a laclc of empírica/ data, a dominant focw in research on formal
as~s, an ~~nrrasonable embedding in tM development process. The following pape r tkals with
more tedrnicol reasotLJ: loc1c of jluibility and u..sability of code meas11ring tools.
We 011tline a process model for q~~ality assurance during tM coding pha.se providing human reviews
as weU as qiUJIIIitative eval~~ation. The model is based on the idea of permanently adapting
meo.nuiltg tools to tM goals of a project which will result in a metric and review guitkd coding
cyck. The system presented gene rates software measuring tools providing tM necessary jlexibility
for q~~id adaptions at lrand. The generator is equipped with a clear separation of lang~~age and
metric tkscription malcing both reusable wMn a new too/ tksign is being generated. Experiments
with severa/ commercial programming lang~~ages and most classical clHk metrics proved tM claim
of jkxibüity and usability.
We postlllate that quantitative evaluation can work in practice if metrics, project constraints and
manogement goals arr matched within a local process of collecting empírica/ data.
~onb: qllOlity assurance, software metrics, q~~antitative eval~~ation of software, tools for
metric ONÚysis

1. I.Dtrochactioa

Software quality assurance (QA) has been a serious issue for industrial developers for at least ten
years now. Nevertheless quality assurance groups have never been provided with essential rights to
interfere in actual development. 1be typical QA group is a team of rather leamed people whose
~c know1edge is not used to an appropriate extent, though. Only within a few conscious
developrnent environmenà at 1east software document reviewing has been established. Tbe acceptance
ol QA metbods in practice is at tbe lowest leven conceming quantitaâve approaches: Software metrics

- oould not provide tbe project infonnaâon expected and
- tberefore were scarcely applied

Meanwbile research has been done to overcome tbe gap between the theory of software metrics and
tbeir application. [3], [25] suggested process models for implementing quantitative quality assurance.
Some case studies on practical experiences have been reported (e.g. [20], [15], [32]). Nevertheless
JDaiostream research still behaves as if it were necessary to market tbe use of software metrics as such
([35]). This ia a clear sign that despite the work mentioned above, metrics and especially code metrics
bave still not yet proved to be successful in practice. Arnong tbe various reasons we presume
A locas OD formal aspects: many col.lections offormulas have been suggested (e.g. [26], [1], [10] or
[37]) that sbould map software characteristics like complexity, information contents, structure of data
ftow, sttucture of control flow. Obviously most of the mettics that have been suggested during the last
15 years are of a certain mathematical and statistical beauty. But tbey did not really bridge the gap to

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

296 VIl Simpósio Brasileiro de Engenharia de Software

the needs of software engineen at work.. Practitiooers want project oriented infmnation. Mostly tbis
is mucb more than aggregaring measures 011 single code Unes.
A ladr. of emplrlcal data: tbougb many experiences bave been reported, no general theory has been
derived from them. Probably this is i.mpossible within tbe variety of today's development conditions.
Results are reliable only within a certai.n environment and cannot be transfer:red easily. At least up to
now no parametrized tbeory based on empirical results bas been derived, tbat would allow for a
reasonable customization and application in anothc:r developmem environment.
Tbe embedding ln the denlopment process: ln practice code metrics as means of quality
assurance are applicated usually before a piece of code is on the real job but after fulfilling functional
requirements and testing. 'This is why many developers feel about code metrics as if they were some
unnecessary appendix. Quantitative requirements to code bave to be embedded in the development
process together with otber quality assuring activities l.ike e.g. a reviewing procedure. This process
serves the purpose of quality guided development wbich can establisb a sort of local standard ([12)).
Though it is often expected, it is i.mpossible to gatber information which is above the levei of static
semantics, e.g. on the quality of mnemonics or the readability of code comments, relying on code
metrics only. Code metrics are no substitute f01: otbc:r quality assuranoe activities.

Metrics are most effectively defined, adapted or modified by eacb quality assurance group on their
own by collecting local infOJ:mation and extracting local standards. One coodition is a certain comfort
in defining metrics and actual measwing. ln fact this uncovc:rs anotbc:r important but undc:restimated
tecbnical reason for practitiooen' low acceptance: • Jack olllexible tools.
The following paper deals witb a tool that supports the generation of code measuring tools in a
flexible way. It serves the purpose of quick and simple definition, adaption, and modification of code
measuring tools used during tbe development of a SW -project. 1be concept provides independence of
metric and language definition. Usually measuring tools are designed for one specific language (one
specific compilc:r) and a certain set of metrics. Separating the descriptions of language and metrics
from each otber maltes

- the metric desaiplions reusable and
- the numbc:r of definitions just growing linear with respect to the numbc:r of languages and

metrics.

Part 2 of tbis papc:r deals with a quality assurance process desigoed for adapting code metrics to local
conditions. A generator for measuring tools, that enables the quality assurance group to make quick
tool changes and its internal technical solution is described in part 3. ln cbapter 4 the actnal generation
of a tool is presented and some experiences are reported. Part S outlines an example of using a
measuring tool for metric guided development. Above aU, the lcey issue to an actual use of quantitative
techniques is their <rganizational embedding.

2. A process for cnating, aiSUring and stand.udizing code quality

We mentioned above tbat quantitarive code analysis will be more successful if
- it is applied togedler with otber quality assurance activities,
- it is properly embedded in the process of quality guided development with respect to technical

and organizational aspects,
- it focuses on gathering information and assuring standards whicb are local with respect to a

certain domain of projects within a developer's business environment
ln the following we aketcb a practical model for both quantitative and qualitative analysis wbicb
defines a process of quality guided programming. lt will make clear that a flexible tool for code
measuri.ng is only ooe piece in a biggc:r mosaic. Thougb it is a nccessary coodition.

Adjusting metric definitions to project goals and standards ia an iterative process collecting experience
by measuring actual code and slowly minimiz:ing the gap between the abstract project goals on one
band and the measuring results (metric values) on the otbc:r.lt is a p-ocess of matching metric values
and project constraints wbicb sbould be guided and performed by the quality assurance group.
Speaking m<R generally, tbis cyc1e process serves as a mediat<r between the project managemelll aod
its p-ogrammera.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 297

Nevertbeless, it is unreasonable to derive information on code quality from code mebics only. We
regard quantitative code analysis as one means of quaüty assurance. ln tbe following tbe process of
reviewing code by team memben and experieoced senior program.mers is taken as an example for
fur1ber quaHty assuring activities among otbers. Nevertheless we will focus only on metrics for details.

mebic-engineer

odl« fuac:tiou of

quallty -IDJICle
Figure 1: The mebic-engineer 's organizational embeddi.ng

in a software development department

We outlined that mebics will be at tbeir best if applied locally with respect to detennined types of
projects and organizational and economic premises. To build up and maintain significant information
requires a person, who is close enough to the software development team to be sensitive about their
needs on one hand, but who is on the other hand not involved so much as to get overrun by the
project's milestones and deadline pressures likc it often happens to the programmers.
We caU this position metric-engineering. The metric-engineer is a person within the quality assurance
team (see fig. 1). He/she supports the project manager in planning quality issues and measures the
actual software which programmers produce. He/she holds the same organizational position as e.g. the
person who is responsible for the process and quality of code reviewing. Collecting information
through metrics needs an experienced software-engineer with supplementallmowledge on formal
methods of quality assurance and a solid background in literature of software mebics and models
close to that.
Figure 2 shows a code quality assuring process in which the mebic engineer's holds an important
position. 1bree roles have to be considered: The project-manager (PM) serves as an expert for the
goals of the whole project, a mebic-engineer (ME) lr:nows about mebics and modela for rating the
possible altematives to achieve the project's goal and the software-engineers (SE), who implement the
product following tbe technical model and a set of given metrics.

ln the following paragraphs the steps in figure 2 are briefly described. A practical example is
discussed in chapter 4.

Analysis of goals: The process starts with the PM's analysis of the project's goals (e.g. reusable
code, high quality documentation, meeting deadlines, etc.), identifying the range of possibilities to
achieve tbese goals and setting leveis of necessary quality requirements for these alternatives.
Goalllquestlonslmetrics: The PM and the ME meet to deduce questions, criteria and quantifiable
categories from the goals, whicb can yield quantitative information about the achievement ofthe goal.
From this catalogue of questions a set of mebics wiU arise, which has to be measured in order to
answer the questions. On the basis of these mebics the possible alternatives to solve the problem get
evaluated, cost and benefits are being estimated (GQM, see [3]).
Selectlon ol metrlcs: The PM and ME decide, which alternative to realize as their first choice. For
each metric identified in the previous step, they establish value-tables, which should be met wben the
task is finished: minimum, maximu.m. and a favorite value. The mebics get weigbed. as to malte the
relative importance meeting their values obvious. At the end of this step the measuring tools are

~gulded prop-amming: Software engineers and program.mers are informed about their
subtasb and the mebic suit defined before. Usually the mebic engineer provides them with the
generated measuring tool. The software engineers start planning, designing, coding, and testing. 1bey

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

298 VIl SÍI1)ÓSiO Brasieio de Erlgentaia de Software

sbould lmow tbe principal goals of low m.ei••a~ano:e costa aad fat reac:tioa to bup idenâficd lt tbe
time of p-odu<:tion.

(=::::)

Figure 2: A poa:ss for gatbering, adapting aad
conttolling standards for quality orieoted coding

Evaluation and nting: Whi1e tbe SE worb 011 tbe solution of bis problem, tbe ME measures or
belps to measure tbe newly developed pieces of code and provides feedback to tbe SE such us to
enable bim to adapt bis style of worláng to tbe metric-tables if necessary. Partly this sbould already
bappen in tbe pbase before through tbe programmcrs' self conttol. During tbe pbase lll baad mettic­
tables can get cbanged too, in arder to fit "coding reality" . ln both cases tbe loop back to pbase "mettic
guided programming" is taken. H tbe SE's ~ and tbe mettic-model meec. tbe cycle advaocea to tbe
following step.
lhe beoefit in comparison to the usual review procesa is: lhe ME can coocentrate oo tbe ~ of tbe
product which seem to be more complex aad leu docwnented. ln order to be able to fioe-nme bis

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Sirl>ósio Brasileiro de Engenharia de Software 299

measuring toola for tbe various projeca in tbe software development department, tbe ME will certainly
need an environmeot wbich enables bim to sbape bis mettics in a simple way. This is the idea of the
measuring tool generator described in part 3 of thia paper.
Re.tslon of metrics: Tbe degree of fitness of the PM's qualitative requirements is compared to the
actual results of maintaining tbe quantitative indicators. The border-values and weights of the metrics
get adapted. These new metric-tables can be used during step two of a similar project, where, if project
consttaints are companble. tbe previous mdric-table can serve as a useful initialization.

Within tbe whole process of quality-guided development one can regard the so-called quantitative
evaluation as one special fonn of review. To say it in other words: anything that can be automatically
measured by SW mettics could be a result of buman review, too. But reviewing is costly. So one of
tbe goals of any QS group sbould be to move aiteria control from human reviewing to metric analysis
as mucb as posaible (see fig. 2).
Putting tbe above cycle into actual work requires a tool wbich can be adapted easily by the metric
engineer. It is obvious tbat adaptioo is somehow permanent, therefore the client and not only tbe tool
vendor has to be capable to generate new tools. The best place for this tool would be that of a
componeot of some development framework (e.g. a CASE-too!).

3. lndepenclent deftnttlon of laJiauage anel metric:: a Dellible tool as a nec:essary c:ondition

Code analyzers and measuring tools are useful for the automation of formal source code evaluation.
1bey are of particular use dming tbe pbases of testing and maintenance of ill-documented source
code. Traditionally code analyzers bave been built one by one including the knowledge of the
programm.ing language to be parsed and the code characteristics to be evaluated. This approach is of
limited flexibility. If tbe language to be parsed or the mettics to be measured change, any adaption is
difficult: the internal structure of the measuring tool must be known to the person performing the
change. Tbe use of parser generators like Lex and Yacc for language definition is a simple way of
improvement wbich we applied bere. Witbin tbese the functionality of the code analyu:r is stored in
semantic adions scattcred ali over tbe language definition in EBNF.
ln case of a change in grammar (e.g. dueto extensions) it is quite easy to adapl However if you want
to evaluate code BC(Uding to different sets of metrics tbe metric procedures have to be coded by hand
into severa! instances of tbe grammar representations.

20 MeasuriD& Toola

18 ...•
~ B rn ... ~
6 +: ~EEJ ... EI)
B ll EEJ ... EE
IMo=! ~~
~ ~···~

Fig. 3: IUustrating tbe economic advantages
of separating language and metric definitions

A quality assurance groop typically experimenta with different seta of metrics over different
programming languagea. Reuse is desirable in this case.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

300 VIl ~ Brasieiro de Erlgar1taia de Sdtwanl

A clear separation into two iodepeDdent IepeseoàltiooaliUide obrioualy ~e~~~e: iD oae lhe~ is
formally defined and iD tbe otber the metric algorithm. Thae two modules commUDic:ate m
standardiud event mesaaga tbus making bodl modules reuable 011 MIUI'Ce md object code leftL

3.1 The bask arcbitedare ol the tool

lf you want to implement measuring toola foc N metric Ida OD M programiiiÍD8 Jaasu1es. M x N
tools are needed. Traditiooally eacb of tbese M x N toola bave beeD coded. ~ laapqe md
metric definitions, the effoct can be reduced to M + N implemeubâoaa. Pipre 3 illastnla tbe
potential of savings tlwuugb ~on.

Fig. 4 shows tbe overall structure of a measuring tool: lt COIIIiJtl of tbe three pu1l languqe
description, event JJ181l88er aod metric procedures. 1be ltmpa;e ducripriota CODii.la of alangaage
grammar description aod tobns. Standard events are provided there to be ttigaal 1t ~
times during measurement. 1be analyziog metric procetblru ~~e openâons wbich compu1e IDdric
values and generate output. 1be ~ 1r10110ger serves u a iater&ce between Jaasu3e md IDdric
definition. It can undentaod a set of standard events wbich ~~e p:ot~illtd by tbe llmpap .,-t md
routes them to tbe appropriate procedure iD the mettics .,.n.. So tbe eYeut IllaDaF profldes two
services:

- "Dite r _evml' enters a relation of a staodlad eveut to a JIIOC*'duie. wbich bll act upOD tbia eYeut
at ruo-time, into •l'OUtÍDI table 1t injtjali7llrioo time.

- "evel'll" routes a particular event via use of tbe routi.Da table to a IDdlic:s proc:»dwe at .,...0.,
time.

Measuring Tool

I...apqe BYat-... ...-.e
detc:ripdoa
ar-..- ~~-.face- Mdrtc>

a: belweetl ,
J,eDQitollnl

- r- llld
Melrk:a

F'tg. 4: 1be basic an:hittduie of tbe geuea ...

figure S shows tbe acmal procaa of gencnding a measuring tool. Lex md Y 8CC .-e UleCi for laag-ae
definition and focmal ~ yielding C-<:Ode. 1be aecood iDpat ia a collection of C-flmcUons (aee
bottom middle) to define tbe metrics. These inputs are linbd top:dla' witb tbe fixed C-<:Ode of tbe
event manager. Linlàng tbem construct3 an executable meas+•iug tooL

3.2 Geaei'1IÜIICate

ln the following the internal structure of a measuring tool a well a tbe flow of data aDd f1ow of
control within are desaibed. After establisbing tbe CODDeCtioa between eveats aDd proa;cbea. COIIIrol
is passed on to tbe FBNF-grammar rules iD tbe language .,-t wbicb •epeeem tbe syulaCiic llti1ICbDe
of the text input. 1be lexical analyzer identifies tokena. I>uri.ag pwaing tbe analyzer ttigp:n
standardi.zed event messages wbich invob tbe routiDg service of lhe eveut m....-.
1be event JJ181l88er uses tbe event table to find aDd call tbe aeociilltd mdric proc:»dwe. ADy actift
metric procedure bas accesa to tbe current context aDd statua of lheIym. 'lhe mdric proc:»dwea
compute tbe metric values, pocb::e output aod recum tbe ooattol to lhe l)'lllactic .,..aer.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Sil1>ósio Brasileiro de Engenharia de Software

lst step: define the language

Grommar - -

~
y

~&'
e c

Token X c

~~
c

1......- -
c

event o
m c: uv ::11 manaxer
p ~measure~

6~!~ i
I
e

metnc r
procedures

tm=Q '--

2nd step: define the metrics

Habtuui.C

ro ,.-..--..
-----... OO_.ITAaT.lo<_..~
~--.PO.OO_.ITAI<T,loo.JINI~ _ _ ._.-_..,PIIOOJII'I).loONI~

----~·"""'....,..,..,.)

~--·1
~
lolt(~

,,~

Fig. 6: A sample cut from a metric definition (Halstead)

301

Tbe input to the measuring tool is structured text according to the language definition in source code
like the Pascal statements in fig. 7. Measuring resulta are collected as global data in tbe event manager.
ln fact any output event pl'ocedure can be defined producing printouts or file-durnps at any desired
status during parsing. Fig. 6 shows a sample cut of the code for the implementation of the Halstead
complexity metric.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

302 VIl Sinpósio Brasileiro de Engenharia de Software

PASCALLEJC
PASCALBNF :,__...,.,..... __ .,
:!.- ,. ... _ ., "I -=:,. ___ .,

~~ ,.,.~-t .. , N>~_, __ ...,., - ,., -....... -~., _,._,...,...._
AAaA Y, - ,_TO TYftl utfTIL UPA#.AOW YA& WHaJI WJ1M

--,JIIIOO..ftAit'l) ::n-- ,.....-t.,......,
.....,.. I ,...,,

--· .:c;:---.... ..,.,._.., ClUU

~--. ..,.. ,. .,....,.., I I _.___..I'RJN>• I,......,._ .. .,

~,.,......,.. I •• , ~POR _,

~--: .. .:.-- I
I t.·~, - ,.,.._..,.__....,

~--- IDitbr.;.~,.::~ I
.... __
•-
.;,~ ~ ____...../ ~

~--... _-1'0....-DO-.COO.. I
1 ,_

./

fig. 7: A sample cut from a language definition (Pascal)

We generated tools for various practical and scientific purposes so far: e.g. a Modula-2 parser for a
mettic set around Lines of Code, Lines of Comment, Halstead. McCabe, Henry de Kafura and
Rechenberg, which was used for evaluating more than 2000 ahort problem prognuns written by .500
students on 4 problem requ.irements. Since this early application we genecated tools for PASCAL, C.
C++ and Chill, implementing many major static code mettica foc procedurallanguages and some foc
their object oriented extensions. ln any case the presented concept proved to be successful with
respect to reusability of mettic descriptions.

4. Applying tbe tool within a quality aasurlng procea: an neryday eumple

The generator's maio design principies are flexibility and usability. 1bese are characteri.atica on a
purely technical and theoretical levei at first . Dealing with "everyday software development" in
industry these aiteria come up in a more pracócallevel also. The forma- has been deaaibed in pm 3.
The latter is illustrated in this chapter. The actual appli.cation of the genentor covers the atep1 u/ectiora
of metrics and metric guided programmirag (see grey area in fig. 2). The scenario at hand is a contract
of a software developer whose client is conscious about poasible maintenance coats. The process
desaibed in part 2 can be sketcbed by the following six ateps:

Analysis of goals:
The PM ha.s to plan a specific development project. ln the contract it says that ira cau of high
mairatenance costs they have to be covered by the supplier. Thenifore the moira requirement is low
maintenance cost ove r the product's lifo-span. Arwther requirement is a guaronteed repair-túne of
not more than one week ira case of errors. The PM cara define these requiremoús as more or lu.s
informal quality attributes. His/her me.ssage to the quolity assurance group will be: Software
mu.st be cheap ira mointenance, and short ira errors thot cannot be eliminaled quickly.

Goalslquestlonslmdrics:
With afirst glance a1 the PM's goals the ME can see thot they are too infomwl to be tested. Tltey
are also too imprecise to be u.sed as guidelines for the production process. After SOtM arguing on
the issues of mointainability and "quick elimination of errors that occur" they agree ora the
criteria: 1) Any procedure has to be well documented. 2) Complu parts have to be documerrted
intensely. They decide for lines of comment as a measure of docll1fiDitaliora. To idnatify "complu
parts of code" they talce the measuru of total complaity according to [21 J with respect to one
#Qiement.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Sin1>ósio Brasileiro de Engenharia de Software 303

Selection ol metrics:
Tlu! ME and PM set up metric-tables to specify their ideas of step two (see table 1):

Metric picled prognmming:
Tlu! metric engineer hands a too/ (creation according to part 3) on to programmers, that allows
for quantijication of code dueto the criteria developed in c). That too/ will print out wamings, if
the standards dejined in the metric-table are not met.

Evaluation anel rating:
Either in regular intervals or whenever the programmers deliver a piece of code the ME
measuns the product, interprets the numbers, and discusses his jindings with the SE. This may
lead to the SE rejining his code (back to previous phase) or to the acceptance ofthe part of the
product which is currently discussed (advance to next step).

Measure minimum maximum favorite value weigbt
comments at eachp!ocedure head 1 40 5 0.3

comment lines at each statement which 1 10 3 0.4
enclose code whose McCabe complexity

exceeds4
ratio comment fines to total/ines 30% 60% 40% 0.3

Table 1: Sample metric-tables as a constraint for coding activities targeting lower maintenance costs

Revbion of metrics:
After completion of the project the PM and the ME meet again to discuss the success of their
policy. They recogniz:.e that the code of the recent project is actually better documented as it is
usually the case in the department. Dueto the selective reviews ofthe ME during the project some
major sources of errors as well as of confusion were removed through documentation or
redesign. ln the basic questions on maintenance cost and time to jix for errors they agree on
having a log-book as a documentation of these items and on meeting for the purpose of a review
every quarter. The experience gained in this process wi/1 be used to lift the quality of retuned
metric-tables thus forming a department-wide leaming curve.

Thougb we coUected several experiences in applying tbe tool for different metrics and languages, we
are still in an early stage witb evaJuating tbe use of tbe process described in fig. 2. Up to now we
proc::ecded in testing metric guided programming in student projects of 15000-2()()()() lines of code in
size. Groups of S-8 people developed a software system from tbe pbase of requirement engineering to
preparation for maintenance during a whole academic year. The phase of coding took two months
withln tbat time span. We focused on simple metrics like tbe ratio of LoC and total lines, line oriented
complexity limits and higber density of comments at procedure beads. Programmers' reaction was
ambivalenl ln a way tbey feel too strongly controUed by unreasonable rules. Obviously tbey bave to
be involved in tbe metric design procedure, too, in order to make tbem understand a code measuring
tool not only as a cut to tbeir creativity but as a useful facility as well.

S. Concluslon

Witbin tbis paper we outlined an approacb for malcing quantitative evaJuation of software systems
useful for practitioners. This approacb is based on tbe idea of developing coding rules locally. A
process model bas been described wbicb assures quality-guided programming by using tbe
techniques of quantitative evaJuation. Its implementation affords a highly flexible tool for measuring
source code. 'The internal structure of a tool-generator has been explained and also its application. On
tbe practicallevel that tool concept provides flexibility and usability wbereas on tbe tecbnicallevel it
provides a clear separation of metric and language definitions.
Nevertheless, a good tool is just one technicaJ condition for practical expediency of software metrics.
Matters of organization and psychology are tbe subsequent "real" problems of tbe domain.

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

304 VIl Sinpósio Brasileiro de Engenharia de Software

BlbUograpby

[1] Adamov R., Baumann P., Literature Review on SW-Metrics, lnstitut für Informatik der
Universitiit Zürich, Okt.1987

[2] Albrecht A. J ., Oaffney J. E., SW -Function, Source Lines of Code, and Deve1opment Effort
Prediction: A SW-Science Validarion, IEEE TSE, Vol. S&9, No. 6, pp. 639-648., Nov 1983

[3] Basili V., Tayloring tbe SW pr-ocess to Project Goals and Environments, ln Proc. of tbe 9th lnt.
Conf. on SE, ACM, 1987

[4] Beny, R. E., Meelcings B.A.E., A StyleAnalysis ofC Programs, CACM, Vol 28, No. I , pp. 80-
88., Jan 198S

[S] Binder L .H., Poore J.H., Field Experiments With Local Software Quality Metrics, Software -
Practice and Experience, Vol. 20(7), p .631-647, 1990

[6] Boehm B.W. Software engineering economics, IEEE TSE, Voi.S&lO,No.l,p.4-21 Jan. 1984
[7] Boehm B.W., Understanding and conttolling software costs, IEEE TSE, Voll4, NoJO, p.1462-

77, Oct.l988
[8] Briand L. C., Basili V .R., Hetmanski CJ., Providing an Empírica! Basis for Opti.mizing tbe

Veri.fication and Testing Phases of SW Deve1opment, Proc. on Int. Symp. on SW Reliability
Engineering, North Carolina, USA, Oct 1992

[9] Conte, Dunsmore, Shen, SW Engineering Metrics And Models, Benjamin/Cummings, 1986
[1 O] Cote V., Bourque P ., Oligny S., Rivard N ., J ., Software metrics: an overview of recent results,

Syst. Softw., Vol8, No.2, March 1988, p.121-31.
[11] Gill G.K., Kemerer C .P., Cyclomatic Complexity Density and Software Maintenance

Productivity, IEEE TSE, Vol. 17, No. 12, Dec. 1991, p.l284-1288
[12] Grechenig Th., Biffl St., Taylor yom own metrics envitonment: AMA TO - a tool for the metric­

engineer, Proc. ofEurometrics 92, Briissel, p. 287-300, Apr. 1992
[13] Halstead, M.H., Elernents of SW -Science, Elsevier North-Holland, 1977
[14] Hausen H. L.,Müllerburg M., Über das Priifen, Messen und Bewerten voo SW. Methoden und

Techniken der analytischen SW-Qualitiitssicberung., Infonnatik-Spektrum, Band lO, 1987
[IS] Hon m S.E., Assuring SW Quality through Measorements: A Buyer's Perspective, J. Systems

SW,l990, Vol. 13,p.117-130,1990
[16] Hõckel H., Itzfeld W.D., Qualitiitsma8e fiir SW in der Praxis, ONLINE 9/86, Sept. 1986
[17] Ince D., Software Metrics, Measurement For Software Control and Assurance, Editora:

Kitchenham B.A., Littlewood B. London, UK! Elsevier Appl. Sei. Publiahen 1989, p. 27- 62,
1989

[18] Kafura, D.; Reddy, G .R., The use of software complexity metrics in software maintenaoce, IEEE
TSE, Voi.S&l3, No.l3, p.33S-43, Marcb 1987

[19] Monitoring software development using metrics, Kitchenham B. A. UK IT 88 Conference Pub­
lication; London, UK: Inf. Eng. Directorate 1988, p . 4S-8 of xix+618, Conf.:Swansea, July
1988

[20] Kitchenham B. A.; Walker J. 0 ., A quantitative approach to monitoring software development,
Software Engin. Journal, Vo1.4, No. I , p.2-13., Jan.l989

[21] McCahe, T J ., A Complexity Measure, IEEE TSE, VoL S&2, No. 4, pp. 308-320., Dec 1976
[22] McGarry F.E. Using software metrics and measmements to impr-ove software pr-oductivity and

quality, Proc. of the Comp. Standards Conference 1988, Washington, DC: IEEE Comp. Soe.
Press 1988, p. 105 ofx+lll., 1988

[23] Oman P.W., Cook C .R., Design and Code Traceability Using a PDL Metrics Tool, J. Systems
SW, 1990, Vol. 12, p .189-198

[24] Page D.R., Static Code Analysis For COBOL Deve1opment: The Advantages of Ao Automated
Programming Support Too!, Unispbere 8, 12: 64-66, Mar 1989

[2S] Paulish Dan, Best practices of software mettics, 1\rtorial 3, European conference on quantitative
evaluation of software and systems, Proc. of Eurometrics 92, Briissel, 1992

[26] Prather, R.E., Ao Axiomatic Theory of SW Comp1exity Mcasore, Computer Joumal, Vol. 27,
No. 4, pp. 340-347, Nov 1984

[27] Rechenberg P ., Ein neues Ma8 für di e softwaretechnische Komplexitlit voo Programmen,
Informatik Forschung und Entwicklung 1; p. 26-57, 1986

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

VIl Simpósio Brasileiro de Engenharia de Software 305

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
(37]

Redmond J.A., Ah-Chuen R., Software Metrics- A User's Perspective, J. Systems SW, 1990,
Vol. 13, p.97-110
Rombacb H.D., SW-design metrics for maintenance, Proc. 9th Annu. SE Workshop, NASA
Godard, pp. 100-134, Nov. 1984
Rombach H.D.,Basili V.R., Quantitative SW-Qualitiitssicherung. Eine Methode zur Definition
und Nuttung geeigoeter Ma.Be., Infonnatik-Spektrum, Band 1 O, 1987
Rombach H.D., Ulery B. T ., Establishing a Measurement Based Maintenance Improvement
Program: Lessons Learned in the SEL, Proc. of Conf. on SW Maintenance 1989, Miami FL,
p.50-57, October 1989
Sarnadzadeh M.H., Nandakumar K., A Study of Software Metrics, J . Systems Software, 16; p.
229-234, 1991
Schneidewind N .F., Methodology For Validating Software Metrics, IEEE TSE, Vol. 18, No. 5,
May 1992, p.410-422
Sherif, Y .S .; Ng, E .; Steinbacher, Computer software development: quality attributes,
measurements, and metrics, J . Naval Research Logistics, Vol.35, No.3, p.425-36, Juoe 1988
Siegel Stan, Why we need checks and balances to assure quality, IEEE Software, Jan.l992
Whale 0 ., SW Metrics and Plagiarism Detection, J. Systems SW, Vol. 13, p.131-138, 1990
Zuse H., Bollmann P., Reply to: Erhard Komad: Software Metrics, Measurement Theory, and
Viewpoints- Criticai Remarks on a New Approach, ACM SIOPLAN Notices, Vol. 26, No. 5,
May 1991, p.27-36

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396

