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Abstract

Amongst the various testing strategies, mutation testing has been empirically found to be
the most effective in detecting faults. However, mutation often imposes unacceptable demands
on computing and human resources due to the large number of mutants that need to be com-
piled and executed on one or more test cases. In addition, the tester needs to examine many
mutants and analyze these for possible equivalence with the program under test. For these
reasons, mutation is generally regarded by the practicing test engineer as too expensive to use.
As one significant component of the cost of mutation is the execution of mutants against test
cases, we believe that the cost can be reduced dramatically by reducing the number of mutants
that need to be examined. We report the results from a case study designed to investigate
two alternatives to reduce the cost of mutation. The alternatives considered are: (1) randomly
selected % mulation and (2) constrained mutation. We provide experimental data indicating
that both alternatives lead to test sets that distinguish a significant number of all mutants and
provide high all-uses coverage.

Resumo em portugués

Entre as varias estratégias de teste existentes, “mutation testing” (teste por mutacao) tem
sido empiricamente demonstrado ser o mais efetivo em detectar falhas. Entretanto, “muta-
tion testing” frequentemente impde uma demanda inaceitdvel nos recursos computacionais e
humanos, devido ao grande nimero de mutantes que necessitam ser compilados e executados
et um ou mais casos de teste. Além disso, a pessoa responsavel pelo teste precisa examinar
virios mutantes e analisi-los em relagio a uma possivel equivaléncia com o programa sendo
testado. Por estas razoes, “mutation testing” é em geral considerado por engenheiros de teste
como dispendioso demais para ser usado. Como um componente significativo do custo do “mu-
tation testing” ¢ a execugao dos mutantes nos diversos casos de teste, nds acreditamos que o
custo pode ser dramaticamente reduzido diminuindo-se o niimero de casos de teste que precisam
ser examinados. Nés reportamos os resultados de um caso de teste projetado para investigar
duas alternativas para a redugao do custo de “mutation testing”. As alternativas consideradas
sao: (1) =% das mulagies selecionadas aleatoriamente e (2) mulagdo resirila. Apresentamos
dados experimentais indicando que ambas alternativas resultam em conjuntos de teste que dis-
tinguem um niimero significativo de fodos mutantes e fornecem alta cobertura para “todos os
usos” (“all-uses”).

*This research was supported in part by NSF award C!C"R-9102331 and Purdue Research Foundation Research
Cirant No. 6901999,
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1 Introduction

Testing of program P involves, among other activities, the construction of test cases, execution of
P against these test cases, and the observation of program behavior to determine its correctness,
Once any faults found in the program have been discovered and removed, one has at hand a test
set T consisting of one or more test cases on which P behaves as desired. One may evaluate the
adequacy of T using one or more of several test adequacy criteria. If T is inadequate with respect
to some criterion (7, then one may add test cases to 7" in an effort to satisfy (". Thus, an adequacy
criterion serves a dual purpose. One, it enables a tester to evaluate how good is a test set. Two,
it aids the tester in constructing new test cases. Note that “improvement” of a test set by the
addition of test cases in an effort to satisfy some adequacy criterion may or may not reveal any
hidden fault.

When a test set is enhanced to satisfy a criterion, one can merely hope that the new test
cases 5o generated reveal any faults. We also note that there may exist more than one, possibly
infinite, test sets that satisfy a given adequacy criterion. Not all of these test sets may be good at
revealing faults in the program. However, cost considerations may require the generation of only
one adequate test set with respect to a given criterion.

Of the many criteria available for evaluating the adequacy of test sets, we are concerned with
mutation based criteria [8]. However, the cost of mutation testing has been a major bottleneck
in its use by practitioners. In an effort to reduce its cost, we examined two alternatives. These
alternatives are termed (1) randomly selected 2% mutation eriterion and (2) constrained mutation
criterion [17]. We often refer to any one of these two criteria as alternate mutation and to the
traditional mutation as complete mutation or simply as mutation. The alternate criteria reduce the
number of mutants to be executed by a machine and the number of mutants to be examined by
a tester. For these criteria, we ask the question: what are costs and relative strengths of the two
criteria? The cost is measured in terms of the size of a test set required to satisfy a criterion and
the number of mutants that need to be examined. The strength is measured in terms of the ability
of an adequate test set to distinguish non-equivalent mutants and cover feasible def-uses examined
in data flow testing. These criteria are defined later in this paper.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of
mutation based adequacy criteria used in the remainder of this paper. In this section we also argue
why a comparison of the kind we have reported here is important and useful to a tester. In Section 3,
we explain how we compare the cost and strength of various mutation based test adequacy criteria.
Our experimental methodology is described in detail in Section 4. Data collected from experiments
and its analysis appear in Section 5. Section 6 explains how a practicing tester can benefit from
our study. Our conclusions appear in Section 7.

2 Mutation based test adequacy criteria

2.1 Mutation criterion

Let P denote the program under test with [ as its input domain. Test cases are selected from the
input domain. T C D is a test set consisting of one or more test cases. Let m be a syntactically
correct program obtained by making a syntactic change in P. m is known as a mutant of P.
Let r be a rule according to which P is changed. r is also known as a mutant operator. There
could potentially be an infinite number of mutant operators. However, to keep mutation testing
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operators [2, 4, 7, 20]. Consider, for example, a mutant operator that generates two mutants of P
by replacing a use of z by # + 1 and z — 1. When applied to a program containing the assignment
statement z := x+y, this mutant operator will generate two mutants of P, one obtained by replacing
this assignment by = := z 4 1 4+ y and the other by replacing this assignment by z 1=z — 1 4 y.

The application of a set of mutant operators R to P results in a set of mutants my, my,
ceoymy,n > 0. Mutant m; is considered equivalent to P if for all t € D, P(t) = my(t). When
executed against a test case t, mutant m; is considered distinguished from P if P(t) # mi(t). Un-
less distingnished, a non-equivalent mutant is considered live. One may obtain a variety of mutation
based criteria by varying R. Hereafter, we refer to the mutation based criterion wrt! a given R
simply as mutation criterion. |

A test set T may be evaluated against the mutation criterion by executing each mutant against |
elements of T. The ratio of the number of mutants distinguished to the number of non-equivalent |
mutants is the mutation score of T for P. T is considered adequate wrt mutation criterion if the
mutation score is 1.

Although mutation testing has been empirically found [1, 4, 22] to be the most effective of the I
software testing methods proposed in detecting faults, it suffers from the problem of performance.
The complexity of mutation is O(n*), where n is the number of variable references in the program.
The number of mutants generated can be prohibitively large even for programs that are less than
100K lines of code. Thus, it is generally believed in the testing community that mutation testing is
too expensive to use in practice. Since the major computational cost of mutation testing is incurred
when executing mutants against test cases, we believe that this cost can be reduced by reducing the
number of mutants to be examined. Based on this premise, we propose the randomly selected z%
mutation and the constrained mutation [17] criteria described below. These criteria are examined
for their cost effectiveness and strength as compared to mutation testing.

2.2 Randomly selected r% mutation criterion

One mechanism to reduce the cost of mutation testing is to examine a small percentage, say z%,
of randomly selected mutants of each mutant type and ignore the remaining mutants[2]. Earlier
empirical investigations by Acree [1], Sayward, and Budd [4] have shown that even with test cases
generated using only 10% of the mutants, no more than 1% of the noun-equivalent mutants were
overlooked. The encouraging results from these studies have led us to investigate the effects of
varying the percentage of mutants selected between 10% and 100%. In this paper we present
results for experiments conducted by varying the selected percentage from 10 to 40.

2.3 Constrained mutation criterion

Another mechanism to reduce the cost of mutation testing is constrained mutation [17]. Using
constrained mutation one examines only a few specified types of mutants and ignores the others.
For example, the constrained abs/ror mutation, studied in this paper, examines only the abs and ror
mutants. The abs mutant operator generates mutants by replacing a use of z by abs(z), —abs(z),
and zpush(z)? wherever possible, When applied to a program containing an assignment statement
z 1= x 4 y, the abs operator generates three mutants obtained by replacing this assignment by,
respectively, z := abs(z) 4+ y, z := —abs(z) + y, and z := zpush(z) + y.

'wrt: with respect to
1.

*A mutant containing zpush(z) is considered distinguished if a test causes the value of = to be 0 when execution
reaches the mrtated expression,
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The ror mutant operator generates mutants by replacing one relational operator by other re-
lational operators. In addition, it also replaces each condition consisting of at least one relational
operator by boolean constants true and false. For example, when applied to a program contain-
ing a predicate if (x = 0) then, this mutant operator generates the following seven conditions:
(z<0), (z<0), (#0), (x >0), (z 20), (true), and (false). More about these
mutant operators may be found in Mothra[s).

One significant issue that arises while using constrained mutation is that of selecting a small
set of mutant operators. A good selection of mutant operators can reduce the execution cost
dramatically without significantly sacrificing the error detecting capability of mutation testing. We
conducted our experiments using the abs and ror operators for the following reasons.

1. Significance of abs mutants:

When the abs operator is applied to a program, mutants are generated at all points where an
absolute value sign can be inserted. To distingnish such mutants, a positive, a negative, and
a zero value is necessary for the mutated expression when execution reaches that point. This
requirement forces a tester to select test cases from different parts of the input domain which
may possibly make the program fail if errors exist. We notice that Acree [1] also investigated
the abs operator. ]

2. Significance of ror mutants:

When the ror operator is applied to a program, mutants are generated at all points where
a predicate can be replaced by its alternatives. For example, a mutant can be generated
by changing a < operator in a predicate to a < operator. To distinguish this mutant, it's
necessary to have a test case satisfying the original predicate but not the mutated predicate,
i.e., a test case satisfying the equal sign of the predicate is required. Thus, distinguishing ror
mutants forces a tester to construct test cases which examine points on or near a predicate
border. Such process has been shown [3, 4, 6] to be effective in revealing certain types of
errors such as the domain errors defined by Howden [15].

3 Comparison methodology

Weyuker et al [23] critically examined different relationships among test adequacy criteria. They ar-
gue that effectiveness, cost, and difficulty of satisfaction are several meaningful bases against which
test adequacy criteria should be compared. Effectiveness refers to the fault detection capability of
a criterion, Cost refers to the work necessary to satisfy it. Difficulty of satisfaction, also known as
the subsumption relationship [6] and the strength [16, 19], refers to the computation of scores on
one adequacy criterion using adequate test sets of another criterion. In this work, we compare the
cost of satisfying the mutation, 2% mutation, and abs/ror mutation adequacy criteria. We also
compare the relative strengths of these criteria,

3.1 The cost criteria

The cost of mutation testing can be measured in several ways. We selected two cost metrics. One
is the number of test cases required to satisfy a criterion. As construction of each test case requires
effort from a test case developer, this appears to be a reasonable cost metric. The second metric
is the nomber of mutants to be examined. As mutants are to he executed ap ore gr wmore test
cases, a reduction in the number of mutants leads to a reduction in the time to execute them. It is
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also likely to result in a reduction in the time spent by a tester in examining mutants for possible
equivalence. We use Equation (1) to compute the reduction in terms of the number of test cases
wrt the mutation adequacy criterion. Similarly, the reduction in terms of the number of mutants
to be examined wrt the mutation adequacy criterion is computed using Equation (2).

average size of test sets adequate wrt alternate mutation
average size of mutation adequate test sets

(1 ) + 100% (1)
_ total number of mutants examined when using alternate mutation

(1 total number of mutants examined in mutation

) + 100% (2)

3.2 Strength of an adequacy criterion

Strength of an adequacy criterion can be measured in several ways. We selected two measures. One,
the strength is measured in terms of the mutation scores. Two, the strength is measured in terms
of the all-uses scores [21]. Mutation scores defined in Equation (3) measure the loss in strength
in terms of the power to distinguish non-equivalent mutants wrt the mutation adequacy criterion
when using alternate mutation. Similarly, the all-uses scores defined in Equation (4) measure the
loss in strength in terms of the coverage of feasible all-uses wrt to the mutation adequacy criterion
for alternate mutation.

number of mutants distinguished by a test set g
total number of non-equivalent mutants

number of all-uses covered by a test set

Vil e of T s T )

Supported by data, we argue in Section 5 that both z% and abs/ror mutation adequacy criteria

have almost the same power in distinguishing non-equivalent mutants and covering feasible all-uses

as the mutation adequacy criterioni. On the other hand, 2% and abs/ror mutation adequacy criteria
provide significant reductions on both size and expense wrt the mutation adequacy criterion.

100% (3)

4 Experimental methodology

Our experiments were conducted using two testing tools, Atac[12, 13, 14] and Mothra[5]. Atac
is a data flow coverage measurement tool for C programs. Given a program and a test set, Atac
computes the block, decision, p-use, c-use, and all-uses coverage. Mothra is a mutation testing
tool for Fortran 77 programs. Given a program and a test set, Mothra generates a set of mutants,
executes them against test cases in the test set, and computes the mutation score. While using
these tools it is the tester’s responsibility to determine equivalent mutants and infeasible all-uses.
As the two tools accept programs in different programming languages, we faced an additional task
of preparing programs for input to these tools. Preparation of programs, generation of adequate
test sets, and a few other components of the experiments conducted, are described below.

4.1 Program selection and preparation

We used a suite of four programs described below. Source listing of each of these programs can be
found in [19].
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e FIND: This program is based on the Pascal version of Hoare’s find program[11] used by
Frankl and Weiss [9] with all reported faults removed. FIND takes two inputs, an array a and
an index f, and permutes the elements of a so that elements to the right of position f are
greater than or equal to a[f] and elements to the left of position f are less than or equal to

a[f}.

e STRMAT1 and STRMAT2: Both programs[9], with all reported faults removed, take a text and
a pattern of zero or more characters. If the pattern appears in the text then the position of
the first occurrence of the pattern in the text is returned, otherwise a 0 is returned. Although
both programs share the same specification, their structures are different. STRMAT1 has a do
while loop whereas STRMAT2 accomplishes the same task with a while loop. This syntactic
difference makes STRMAT1 and STRMAT2 behave as two distinct programs in terms of the
number of feasible all-uses and non-equivalent mutants.

o TEXTFMT: The correct version of the text formatting program in Goodenough and Gerhart [10]
was used with all seven reported faults fixed, Other routines in this program are based on
the Pascal routines used by Frankl and Weiss [9]. TEXTFMT takes a text as input and formats
it. The text can be viewed as a sequence of words separated by spaces, tabs, and new lines,
The formatted output sequence of words is identical to the input sequence and satisfies the
properties given by Gerhart et al[10].

The source of each of the above programs was available in Pascal. We translated these programs
to Fortran =7 and C. Since the tools we used support different programming languages, substantial
effort and care went into the program translation from one language to another. This translation
involved rewriting the programs with as little modification as possible and testing them to make
sure that both the Fortran 77 and C versions provided identical results as the original Pascal
version. Only black box testing was used in this step.

4.2 Experiments

We generated mutants in our experiments using all mutant operators in Mothra except the goto
mutation operator’. Depending on the number of mutants examined, experiments were labeled for
reference as indicated in Table 1. Note that experiments M, A-G, and H were designed to investigate
mutation, randomly selected 2% wmutation, and constrained abs/ror mutation criteria, respectively.

4.3 Adequate test set generation

For experiments labeled EXPT-M, 30 mutation adequate test sets were generated randomly. To
be able to complete the experiments in reasonable time, we restricted the input domain of each
program as shown in Table 2.

When random test case generation failed to generate a mutation adeguate test set in spite of
repeated trials, additional test cases were generated manually. There were two parameters that
controlled the number of trials before the random test case generation process for one test set was
abandoned. First, we wanted to limit the time to execute mutants on test cases so as to be able

*The goto mutants were excluded for a historical reason. In our another study [19] we conducted a similar
comparison on the relative strength between the all-uses and mutation adequacy cnmn. Since the C-version of
our programs did not contain any goto statement, we decided that for a fair comp , goto stat ‘-}lould be
aycludad fram, v.viation
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Table 1: Experiment sets

[ Experiment | Mutants examined

EXPT-M [all by Mothra except golo

| EXPT-A randomly selected 10% of each mutant type
EXPT-B randomly selected 15% of each mutant type
EXPT-C randomly selected 20% of each mutant type
EXPT-D randomly selected 25% of each mutant type
EXPT-E randomly selecied 30% of each mutant type
EXPT-F randomly selected 35% of each mutant type
EXPT-G randomly selected 40% of each mutant type
EXPT-H abs and ror mutants

Table 2: Input domain for random test case generation

Program

Constraints

e | <array size < 10
¢ | < index < array size
® array element € {z | 0 < x < 100, 2 is an mteger)

STRMAT1

o 0 < text length < 4

® 0 < pattern length < 4
o text clement € {a, b}

® pattern element € {a,b}

@ 0 < text length < 4
® 0 < pattern length < 4
o text element € {a,b)

® pattern el

L€ (a.b)

® 0 < texi lenglh < 15

o text element € {all uppercase and lowercase letters, tab, space, newline}
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to complete the experiments in reasonable time. As the number of trials increased, the mutation
score increased slowly. Second, there was a natural desire to decrease the number of mutants to
be examined manually to save on human effort. The number of trials used in each experiment
was determined as a reasonable balance between the need to reduce the execution time and human
effort. In our experiments, 150, 250, 100, and 250 trials were used for the generation of each
mutation adequate test set of FIND, STRMAT1, STRMAT2, and TEXTFMT, respectively. Details of these
procedures can be found in [19]. We note that Weyuker [23] has also proposed random selection of
test sets in such experiments for different data flow adequacy criteria.

Similar procedures were used to generate 2% and abs/ror mutation adequate test sets. Note
that (1) for abs/ror mutation, 30 adequate test sets were generated for each program, and (2) for
randomly selected % mutation, 5 adequate test sets were generated for each program and = where
z € {10, 15, 20, 25, 30, 35, 40}.

Test sets generated by human testers could have introduced bias in the results. This may
happen, for example, when the testers are familiar with the programs used in the experiments and
therefore generate test sets that favor one testing method over another. Second, there could be a
large number of test sets that satisfy an adequacy criterion. Selecting only one of these may possibly
lead to false conclusions. As indicated above, our study overcomes each of these weaknesses by
generating multiple adequate test sets antomatically for each criterion.

EBach adequate test set generated contained no redundant test case. This implies that each test
case in any adequate test set distinguishes at least one non-equivalent mutant. This requirement is
intended to make a fair comparison among different criteria. In the absence of this requirement one
may always generate a z% or abs/ror mutation adequate test set which is also mutation adequate
by merely adding the test cases required to distinguish any live mutant.

Equivalent mutants were identified manually. However, the failure of random test case gener-
ation to generate a test case that distinguishes a mutant resulted in a fairly small set of mutants
examined manually. The number of equivalent mutants for each program are listed in Table 3.

5 Experimental results and analysis

Table 3 lists the number of mutants and decisions for the programs used. Larger programs tend to
generate larger number of mutants. We note that FIND has the largest number of non-equivalent
mutants (854) and TEXTFMT contains the largest number of decisions (18). The smallest number of
non-equivalent mutants (446) and decisions (12) are in STRMAT2. These metrics serve as indicators
of the relative complexity of programs considered in our experiments.

Tables 4 and 5 contain the all-uses and mutation scores using mutation, £% mutation and
abs/ror mutation adequate test sets, respectively. Scores in the above tables are computed as
percentages. Table 6 lists the size of mutation, % mutation, and abs/ror mutation adequate tests,
respectively. Table 7 lists the number of mutants examined in mutation, z% mutation, and abs/ror
mutation.

5.1 Comparison based on all-uses scores
From our experimental data and the summary in Table 4 we make the following observations:
(1) All-uses scores using mutation adequate test sets:

o Fom FTHD STNMATY and STRMYTY asch santptine sdsayate tee cof 'z Sy 2danvate
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l
|
:

mber J| percentage || number || percentage ber || P age |_percentage |
mutants | equivalent 62 || 677% || 126 || 20.10% 64 12.56% || 126 || 13.43% |
valent Bo4 a.0% || S0l 79.90% W__ B745% || 812 || #6.57% |

blocks feasibl 20 100% 7 BOATHR 15 100% 2 100%
- — [1] u 2 m 0 5‘ 0 r
decisions | feasible 6 94.12% 14 B7.50% 12 100% 8 100% |
infeasible i 5.8E% 3 T2.50% 0 0% 0 L

all-uses | feasible 08 82,35% 58 92.06% || 58 87.88% <) 62.26%
fcasibic I || 17.66% 5 7o4% < 12.17% 20 37.74% |

Table 4: All-uses scores using mutation, z% mutation, and abs/ror mutation adequate test sets

Experiment | FIuD || sTematy || sTemat2 || TEXTFWT
EXPT-M | average 100.00 100.00 100.00 99.39
sid. dev, || 0.00 || 0.00 || 0.00 1.23
EXPT=A % 99.59 9703 08.62 96,07
5 0.56 .80 2.14
EXPT-B 99.39 || 9931 9931 96.97
% 056 || 152 .54 303 |
EXPT-C | % 9939 || 9862 || 97.93 98.79
Cdev. | 0.56 || 1.89 | —1.66 |
T B S S
dev. || 0- .54 1.
EEFTE [average | 9080 | 0000 | 9o31 | 9515
std. dev 0.46 || 0.00 1.54 166 |
EXPT-F | average || 100.00 || 100,00 || 100.00 98.18
std. dev, 0.00 0.00 1.66
EXPT-0 | average || 9980 | 10000 || 9931 || 9879 |
sid. dev. || _0.46 || 0.00 1.54 1.66 |
EXPT-N 99.56 07.13 96.27 95.45 |
"'Hr 0.51 385 354 1.1 |

TSee Table 1 for experiment names.
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Table 5: Mutation scores using mutation, % mutation, and abs/ror mutation adequate test sets

[ Experiment? vimn_|[ stamars || samara [[ rexrent

EXPT-N | average ]| 100.00 ]| 100.00 ]| 100,00 ]| 100.00 |
std. dev. | 0.00 || 000 | 000 | 0.00 |
EXPT-A B7.50 || 97.25 96.37 §9.01
. dev T 097 I T30 117 085
aver, o
EXPT-B age 07.52 || 97.06 o874

| s dev. || 0.05 || 0.0 0.57
EXPT-C 07.59 98.28 BH RO
. dev |G . XL

EXPT-D | average i. 92

std. dev. 0.23 0.53

EXPT-E | average 08.96 949.51

std. dev 0.00 0.23

EXIPT-F | average [LET] 099,63

std. dev. A 0.8 0.23

EXIPT-G wx 99.23 08.88 99.60 99,85

std. ) 0.21 0.11 0.19 0.16

EXIPT=N | a 98.29 08.84 95.70 05.90

. .“5 Ev. 0.45 0.57 i 1.33

Table 6: Size of mutation, % mutation, and abs/ror mutation adequate test sets

| Experiment ! FIND || sTRMAT: || STRMAT2 || TEXTFWT
EXPT-R 24.57 || _20.23 17.57 || 16.67 |

“ﬁ%‘m——“m 211 204
[ EXPT-A | average 9.20 || 10,00 || ® 9

std, dov. || 0.45 | 152 1207 |

2|

g bod et
z|
2s
8

EXPT-B 10.40
ad. dev—{ om0 157 705|035 |
EXPT-C | average || 13.00 || 12.60 10.40 12.00 |

:
3
]

std. dev. | 1.22

EXPT-D | a 13.80 || 13.60 11.00 9.00
“iﬁ&‘.‘ 205 || 241 187 .32
EXPT-E | average || 14.60 || 14.80 11.20 12.60 |
std. dev. m.% 207 217 104
EXPT-F 16 14.00 12.00 12.20
. dev | 1A T o {28 ]
EXPT-G | average || 15.80 || 15.20 12.60 12.60
std. dev. || 084 || 1.48 2.79 T4
EXPT-H | average || 14.73 || 12.00 8.27 6.97
std. dev. || 1.68 || 1.58 || 1.38 1.27

TSee Table 1 for experiment names.
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Table 7: Mutants! examined in mutation, z% mutation, and abs/ror mutation

Experiment? FIND STRMATL STRAAT2 TEXTFAT
||| number || percentage || sumber || percentage || number || percentage | _“l"'__m.
EXPT-N [ 916 ]| 100.00% ]| 627 || 100.00% ]| 510 || 100.00% || ©38 || 100.00% |
EXPT-A 94 10.26% @5 10.37% 50 || 9.80% 103 10.08% |
EXPT-B 135 14.74% 95 15.15% 78 15.20% 155 16.52% |
EXPT-C 184 20.09% 124 19.78% 101 9 210 22.30%
EXPT-D W % | T | 0% || 2 || 0% || 367 | 2s.a6% |
EXPT-E 278 30.350% 190 || 3030% | 154 | 30.20% 318 33.90%
EXPT-F 321 || 95.04% 720 35.00% 179 35.100% 363 38.70%
EXPT-0 368 || 40Tk | 252 10.19% 205 10.20% || 414 44.14%
EXPT-H 166 18.12% 125 || 1904% || 9 || 1041% || 135 || 14.39% |
Tincluding both equivalent and non-equival

See Table 1 for experiment names,

o For TEXTFMT of the 30 mutation adequate test sets obtained, a total of 24 are all-uses
adequate.

(2) All-uses scores using % mutation adequate test sets:

e For FIND, STRMAT2, and TEXTFMT of the 40 2% mutation adequate test sets obtained, a
total of 29, 32, and 11 are all-uses adequate, respectively,

o For STRMAT1, each 25%, 30%, 35%, and 40% mutation adequate test set is all-uses
adequate.

o All-uses scores of test sets adequate wrt to 2% mutation for FIND, STRMAT1, STRMAT2,
and TEXTFMT are at least 98.97%, 96.55%, 93.10%, and 93.94%, respectively.

(3) All-uses scores using abs/ror mutation adequate test sets:

o For FIND, STRMAT1, STRMATZ2, and TEXTFMT of the 30 abs/ror mutation adequate test sets
obtained, a total of 17, 18, 6, and 2 are all-uses adequate, respectively.

o All-uses scores of test sets adequate wrt to abs/ror mutation for FIND, STRMAT1, STRMAT2,
and TEXTFMT are at least 98.98%, 89.66%, 87.93%, and 93.94%, respectively.

The above observations indicate that the average all-uses scores using mutation adequate test
sets are less than 5% higher than those obtained using 2% mutation and abs/ror mutation adequate
test sets, respectively.

From Table 4 and 6, we also find that the average all-uses scores using higher z% mutation
adequate test sets may not necessarily be higher than those using lower z% mutation adequate
test sets. An example of this occurs in TEXTFNT for which the average all-uses score in EXPT-E
(95.15%) is lower than that in EXPT-B (96.67%) even though the percentage of mutants examined
in EXPT-E (33.90%) is higher than that in EXPT-B (16.52%). In addition, we find that abs/ror
mutation adequate test sets result in almost the same all-uses coverage as % mutation adequate
test sets regardless of the value of z%.
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5.2 Comparison based on mutation scores

From our experimental data and the summary in Table 5 we make the following observations:

(1) Mutation scores using z% mutation adequate test sets:

o For FIND, STRMAT1, and STRMATZ2, (i) none of the % mutation adequate test set is
mutation adequate, (i) 10%, 15%, and 20% mutation adequate test sets give a mutation
score of at least 96.14%, 95.21%, 94.84%, respectively, and (i) 25%, 30%, 35%, and
40% mutation adequate test sets provide more than 98% mutation coverage.

o For TEXTFMT, (i) 2 out of 5 40% mutation adequate test sets are mutation adequate, and
(i) all 40 % mutation adequate test sets provide more than 98.15% mutation coverage.

(2) Mutation scores using abs/ror mutation adequate test sets:

e For none of the four programs is an abs/ror mutation adequate test set mutation ade-
quate,

e For FIND, STRMAT1, STRMAT2, and TEXTFMT, each of the 30 abs/ror mutation adequate test
sets gives a mutation score of at least 97.67%, 97.60%, 91.48%, and 92.73%, respectively.

The above observations indicate that #% and abs/ror mutation adequate test sets suffer less
than 5% loss on average mutation scores. The result on z% mutation is similar to those given in
the earlier studies by Acree [1] and Budd [4].

From Table 5 and 6, we also find that the average mutation scores using higher % mutation
adequate test sets may not necessarily be higher than those using lower z% mutation adequate
test sets. An example of this occurs in TEXTFMT for which the average mutation score in EXPT-D
(98.92%) is lower than that in EXPT-A (99.01%) even though the percentage of mutants examined
in EXPT-D (28.46%) is higher than that in EXPT-A (10.98%). In addition, we find that abs/ror
mutation adequate test sets give almost the same mutation coverage as 2% mutation adequate test
sets regardless of the value of z.

5.3 Size and expense comparison

Figures | and 2 contain the size and expense reduction computed using Equations (1) and (2),
respectively, for #% and abs/ror mutation adequacy criteria. From these two figures we make the
following observations:

(1) The use of abs/ror mutation adequacy criterion leads to at least an 80% expense reduction
and a 40% to 58% size reduction,

(2) The use of 2% mutation adequacy criterion results in a 60% to 90% expense reduction and a
24% to 63% size reduction.

(3) A larger expense reduction, i.e., fewer mutants need to be examined, may not guarantee a
correspondingly larger size reduction. An example of this occurs in TEXTFMT for which the size
reduction in EXPT-B (37.61%) is less than that in EXPT=D (46.01%) even though the expense
reduction in EXPT-B (83.48%) is larger than that in EXPT-D (71.54%).

In summary, we find that both % and abs/ror mutation adequacy criteria provide significant
size and expense reduction wrt to the mutation adequacy criterion. Such reduction is achieved
without any significant loss in the ability of the adequate test sets to distinguish non-equivalent
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Figure 1: Size reduction for z% and abs/ror mutation adequacy criteria.
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Figure 2: Expense reduction for z% and abs/ror mutation adequacy criteria.
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6 Implications for a tester

It is important to examine the implications of our observations for a tester. First, we caution that
our observations are made from a single case study. Thus, it may not be wise to generalize to all
programs. Figure 3 presents a summary of the experimental results for STRMAT1. We identify the
following implications from this figure.

1. 10% random mutation leads to a small number of mutants to be examined by a tester and
results in an average of 97.3% mutation score. This implies that a tester can do reasonably
well in distinguishing all mutants by targeting a small number of randomly selected mutants.

2. The above implication also holds for abs/ror mutation.

3. A tester may hope to obtain a high all-uses score by targeting only a small percentage of
mutants selected either randomly or selectively.

Each of the above observations imply that within tight budget and time constraints a tester
may use random or constrained mutation testing and still hove to obtain a eood test set wrt to
complete mutation or the all-uses criteria. Another implication is that one need not examine all-
uses to improve a test set. If a test set needs to be improved, one may examine additional live
mutants and generate new test cases. If there are no additional live mutants then chances are that
all all-uses have already been covered.

size reduction: 40.68% (abs/ror) & 50.57% (10%)
expense reduction: 80.06% (abs/ror) & 89.63% (10%)

Figure 3: An overall comparison among mutation and its alternatives on STRMAT!

7 Conclusions

In this study we find that compared to mutation testing, both randomly selected % mutation
and constrained mutation provide significant reductions in terms of the number of test cases and

*For the remaining three programs in our suite of four programs, we obtained similar conclusions. However, due
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the number of mutants to be examined. This gain is, however, accompanied by a small loss in
the ability to distinguish non-equivalent mutants and cover feasible all-uses. These data suggest
that examining only a small percentage of mutants may be a useful heuristic for evaluating and
constructing test sets in practice. We also conclude that the alternate mutation criteria may serve
as cost-effective alternative to mutation testing in applications that do not demand an ultra-high
level of mutation coverage. Although our conclusions are made from a suite of four small programs,
the confidence of its validity increases as the number and variety of programs for which it holds
increases.

Based on the size, ezpense, and relative strength comparison, our data indicate no clear pref-
erence for abs/ror mutation and z%, such as 10%, mutation. We are currently working on a
comparison of the error detection effectiveness amongst these criteria [18]. Experiments with con-
strained mutation using various combinations of mutant operators and larger size programs, in
terms of the number of mutants that have to be examined, are also ongoing. Results from such
studies might shed more light on the value of constrained mutation.
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