
A Refinement Theory for Concurrent Object Oriented
Languages

PAULO BORBA

Departamento de Informática
Universidade Federal de Pernambuco

phmbQdi.ufpe.br

Abstract

A notion of refinement for concurrent object-oriented programs was originally
presented in [3]. ln th.is article we prove that the refinement relation associated to
this notion is a congruence with respect to various standard programming language
constructors, including parallel and sequential composition, conditionals, and non
deterministic internal choice. We also establish a weaker compositionality result
for the atomic evaluation constructor, and illustrate how nove! compositionality
properties can be derived from the basic congruence property.

KEY WORDS: Formal methods, Object oriented programming, Refinement, Concurrency.

1 lntroduction

The importance of formal methods for software development is nowadays significantly rec
ognized. This is mainly justified by the h.igh levei of reliability achieved by complex systems
developed using languages having a clear mathematical semantics (13, 12] and allowing for
mal proofs that design steps refine (satisfy) specifications [11].

However, among other factors, the industrial uptake of formal methods (4] depends
crucially on adequate refinement theories and associated proof techniques to support the use
of those methods in practice. ln particular, formal (or even rigorous) software development
is not at ali practical unless there are theories justifying the compositional and stepwise
refinement of specifications and implementatioos.

As originally presented io (3] , based oo the operatiooal semantics of ao arbitrary object
oriented language (12] , we can directly define a notion of refinement for concurrent object
oriented programs written in that language. Moreover, (3] shows that this notioo (relation)
has some basic properties (e.g. , reflexivity and transitivity) aod comes up together with
an effective proof technique for proving refinement. As illustrated io (3], this notion has
bef'n explored and proved to be quite suitable as a basis for formal stepwise development
of concurrent object-oriented software, provided that the associated operational semantics
satisfy some mild and natural conditions.

ln this article we formalize those conditions and, provided that they are satisfied by the
operational semantics, we prove that the refinement relation mentioned above is a congru
ence with respect to various standard programming language coostructors, iocluding parallel

Ana1s do X-SBES. Outubro de 1996 39 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

and sequential composition, conditionals, and nondeterministic internal choice. We also es
tablish a weaker compositionality result for the a.tomic eva.lua.tion constructor, which does
not preserve refinement, a.nd illustra.te how nove! compositiona.lity properties ca.n be derived
from the ba.sic congruence property. ln this wa.y we justify compositional development of
concurrent object-oriented software a.nd set the ba.sis for a. refinement ca.lculus in the style
of [1 1].

We formalize only the essentia.l concepts necessa.ry for deriving the compositiona.lity
results. Proofs are omitted for legibility a.nd spa.ce rea.sons. Those proofs are presented
in deta.il in [1], where one can see tha.t they are not complica.ted and are ba.sed on very
simple proof techniques such a.s case analysis and transition induction [10]; however, some
of them are quite long and tedious. Indeed, the empha.sis is not on presenting the proofs,
but on presenting and analysing the results and its intuitions, in addition to describing the
necessary mathematical machinery and the approach used to derive tbe results in a simple
way. By following this a.pproacb a.nyone acquainted to tbat ma.cbinery can ea.sily reproduce
the results or adapt them for otber contexts.

2 Operational Semantics

An object-oriented program (specification) defines a corresponding object-oriented system:
tbe program describes the structure of tbe objects that the system may have, and the be
ha.vior of the methods and attributes a.ssociated to those objects. Object creation. object
deletion, and method execution change tbe state of a.n object-oriented system. Such a state
consists of information about existing objects in the system (databa.se state), and expressions
being concurrently eva.lua.ted.

The operational semantics [2] of an object-oriented language formalizes the notions of
states and state transitions due to eva.lua.ting expressions. States are represented by pairs
formed by an expression and a databa.se state, represented a.s (e, P}, for an expression e and
a databa.se state P. Tbe first corresponds to the expressions being eva.luated in the state,
and the second contains information a.bout tbe objects in tbe sta.te. Respectively, we use TP
and Db(P) to denote the families of expressions (terms) and databa.se states a.ssociated to
P. When not confusing, databa.se states are just ca.lled "states". The initial databa.se state
a.ssociated to a specification (program) P is represented by 0p , which conta.ins only objects
introduced by P and information about their respective attributes. Also, we use Conf(P) to
denote the set of ali configurations a.ssociated to a specification P.

State transitions are specified by the transition relatiou

-+p Ç Conf(P) x Conf(P) ,

which actually defines tbe operatioua.l semantics of P; it indicates how an expression is
evaluated in a databa.se sta.te. When not confusing, we write -+ instead of -+p. Similarly,
the relation -+" denotes the transitive, reflexivP closure of -+; also, we write Pf+ if there is
no P' such that P -+ P' (tbis mea.ns that the expression in P cannot be further evaluated}.
La.stly, if P-+ • P' then we say that P' is a-+ · -derivative of P; a. corresponding terminology
is used for -+.

This transition relation is inductively defined over the syntax of expressions by inference
rules which indicate how we can infer that two configurat ions are related (i.e., there is a

40 Ana1s do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

transition from one to the other), assuming that some others are related. For instance, the
semantics of parallel composition can be defined by rules such as

(e, V) -+ (e', V')
(e li j , V) -+ (e' li j, V') (v li e, V) -+ (e, V)

where v is a "fully evaluated expression"-an object identifier or an evaluated functional
expression, such as an integer number, a character, etc. Of course, it is also necessary to
have similar symmetric rules for evaluation·of the argument on the right of the composition,
indicating that the evaluation of the expressions can be freely interleaved .

A nondeterministic externa/ choice constructor can be specified by the rules

(e, V) -+ (e', V')
(e O f , V)-+ (e', V') (v O e, V) -+ (v, V)

and similar symmetric ones, which indicate that transitions from the choice between two
expressions correspond to transitions from one of the expressions. Note that a fully evaluated
argument may be chosen by the choice without changing the database.

We can also define the semantics of an atomic evaluation constructor using rules such as
the following:

(e, V) -+" (v, V')
([e], V) -+ (v, V')

--.terminating((e, V))
([e], V) -+ ([e] , V)

where we say that a configuratioo is terminating if there is no infinite sequence of -+
transitions from it. Intuitively, the atomic evaluation of an expression corresponds to its
full evaluation in only one step (transition). So if the evaluation of the expression to be
atomically evaluated does not terminate, the atornic expression does not terminate as well.
ln fact , it behaves as a divergent process that does not modify the state.

The semantics of other constructors such as _; _ (sequeotial), iLthen_else..fi (con
ditional) and result_;_ (evaluates its first argument aod then evaluates the secood one.
yielding t he value resulting from the evaluation of the first) can be formally defined follow
ing the sarne !ines above. Contrasting, the semantics of method and attribute evaluation.
and also object creation and deletion, will not even be discussed in this article since it may
vary a lot depending on the language, and it is not directly relevant to the derivation of the
compositionality results that we will present. The semantics of those aspects are formally
specified for a specific language in [2), for example.

3 Refinement

Based on the operational semantics of an arbitrary object-oriented language, the refinement
notion originally presented in [3) considers refinement of states, expressions, and programs
written in that language. In this article we discuss only refinement of states and expressions.
Basically, a state P is simulated by a state Q if whatever can be observed by performing
experiments with Q can also be observed by performing the sarne experiments with P. ln
this case, if experiments are done with Q, we cannot detect whether Q or P is being used,
even though the experiments clone with P might let us make more observations than if Q
were used.

Ana1s do X-SBES, Outubro de 1996 41 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

The only kind of experiment that we can make with object-oriented systems is to invoke
visible operations (i.e., methods, attributes, and object creation and deletion routines) with
arbitrary arguments. This results in a new state having the invoked operation as one of the
expressions to be evaluated. Here are the aspects that we can observe from a state P:

I. the values of visible attributes of the objects in P ;

2. the results yielded by the expressions being evaluated in P; and

3. whatever can be observed by performing experiments with the states that can be im-
mediately reached from P due to the execution of the expressions in P.

According to the last item and the notion of simulation we can conclude tbat if P is sim
ulated by Q tben states immediately reached from Q simulate states immediately reached
from P. However, a better definition of simulation can be obtained if we relax tbis strong
correspondence between state transitions. ln fact , it is only important that states immedi
ately reached from Q simulate states eventually reacbed from P . Tbis is enough because
in this case tbe observations that we can make from Q are equivalent to observations that
we can make from P when we fail to observe some intermediate states. This still implies
tbat the observable bebavior associated to Q is a particular case of tbe observable behavior
associated to P; tbat is tbe essence of simulation.

Note that both notions of simulation discussed so far depend only on the notions of
experiment and observation. lndeed, one state might simulate another even if tbey have
different {internal) structures, and are associated to systems specified by different specifica
tions. However, the experiments and observations should be meaningful for both systems.
ln general, given states P and Q respectively related to specifications P and Q, Q may only
simulate P if the observations and experiments introduced by P are also introduced by Q.
Only in this way we can compare the effects of performing the sarne experiment with P and
Q.

3.1 Simulations

Based on operational semantics, now we formalize the finer notion of simulation, which was
originally presented in [3]. First let t'(P) denote the set of experiments associated to a
specification P. Also let :Ft'(e) indicate that the expression e is fully evaluated, according to a
specification P tbat should be understood from the context where :Ft'(e) is used; otherwise,
we write .Ft'p(e). Furthermore, for fully evaluated terms p and q respectively related to
specifications P and Q, assume that equality is denoted by p =(P,Q) q; it holds if p and q
are th<:" sarne object identifiers or if th<:"y are the sarne element of an ADT that is defined by
both P and Q.

Assuming that the observations and experiments introduced by a specification P are
also introduced by a spec ification Q, the relation of si mulation between states of P and Q is
defined as the union of ali relations S Ç Conf(P) x Conf(Q) such that (P, Q) E S implies
the following:

l. Whenever Q ~ Q' then , for some P' , P~· P' and (P', Q') E S.

2. lf Qf+ then , for some P' ,

42 Anazs do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

(a) P-+" P'f+;

(h) :Fêp(p') ~ :FEQ(q);

(c) if :FEp(p') theo p' =(P.Q) q; aod

(d) (P', Q) E S.

P. Borba

3. For aoy experimeot exp E E(P), wheoever (exp , Q) -+. Q'f+ then, for some P' ,

(a) (exp, P) -+" P'f+;

(b) (P', Q') E S; and

(c) ((p , P'), (q, Q')) E S.

where P aod Q denote configurations, P and Q denote their respective database states, aod
p aod q denote their respective expressions. Relations having those special properties are
called (P, Q)-simulations.

Item 1 above says that any state immediately reached from Q is related to some state that
might eveotually be reached frorn P. Conditioo 2 iodicates that if the expressioo i o Q canoot
be further evaluated then the expressioo io P might eveotually reach the sarne situation;
wheo this happeos, the resulting states will be related by S and the results yielded by the
evaluatioo of the expression in Q will also be yielded by the evaluatioo of the expressioo
io P. ln other words, the results of the evaluatioo of expressioos in Q might eventually be
observed frorn P.

Cooditioo 3 says that performing the sarne experirneot with Q and P leads to states
related by S; by condition 2, this irnplies that the experirnents yield the sarne results wheo
perforrned in both states. Furtherrnore, if ao experirnent cannot be perforrned with Q (its
corresponding operatioo is not enabled, because it cannot be executed in a particular state),
then performing the sarne experimeot with P results in a state related to Q by S; this usually
means that the experimeot cannot be perforrned with P as well.

Those conditions reflect the ideas that we have introduced about sirnulation of states.
However, they are based oo a central assurnption: operations used as experirnents are atomic
and terrninating. Note that this does not irnply that all available rnethods have to be atomic
and termioating; indeed, nonatornic aod nonterrninating rnethods can be defioed as hidden
operations. lo [3], this assurnption is analyzed and justified .

3.2 Refinement of States

Note that if the pair (P, Q) is in a (P, Q)-simulation then whatever cao be observed by
performing experiments with Q can also be observed by performing experiments with P;
this guarantees that one state sirnulates another. lo fact, we say that a state Q E Conf(Q)
simulates (or refines) a state P E Conf(P) , denoted P Ç(P.Q) Q, if there is a (P, Q)
simulation containiug the pair (P, Q). Formally,

ç(P,Q) = u{s Is is a (P , Q)-simulation}.

A direct result from this definition is the following:

Ana1s do X-SBES. Ou rubro de 1996 43 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

Theorem 3.1 Assurning that the observations and experirnents introduced by a specifica
tion P are also introduced by a specification Q, the refinernent relation on states Ç(P,QJ is
the largest (P, Q)-sirnulation. O

This was proved in [3]. lt is also easy to check that the identity relation on configurations
of the sarne prograrn is a sirnulation , and that Ç(P,PJ is reflexive and transitive; actually, we
have that P Ç(P.OJ O and O Ç(O.Q) Q imply P Ç(P.Q) Q.

From the definition above we conclude that in order to prove that a state P is simulated
by a state Q, it is enough to find a simulation containing the pair (P, Q). ln fact, this
is a very effective proof technique which makes proofs easier. ln order to find a candidate
sirnulation relation it is necessary to have some knowledge about the behavior of expressions
and tbe relation between different representations for object states. After a candidate is
found , it remains to check the conditions from the definit ion of sirnulation; that is a routine
task which requires only the application of the transition rules of the operational sernantics
and checking whether the resulting states are related. Hereafter we let P Ç (P, Q) Q hold
whenever (p, P) Ç(P.Q) (q, Q) holds for some p and q.

3.3 Refinement of Expressions

Based on the notion of refinernent of states, we can define refinernent of expressions. First
recall that the initial database state associated to a program P is represented by 0p. Also,
assume that states reached by performing ao arbitrary (possibly ernpty) sequence of exper
iments with an initial state are called reachable (database) states.

For expressions p and q respectively related to specifications P and Q, we say that p

is refined by q when t he evaluation of p in any reachable state P of P is sirnulated by the
evaluation of q in a state Q reached frorn 00 by performing the sarne sequence of experirnents
used to reach P. (By the definition of simulation , this already considers that the evaluation
of the expressions might be interfered by experiments.) Hence, when P and Q are the sarne
specification, p is refined by q if the evaluation of p in any reachable state is simulated by
the evaluation of q in the sarne state.

By analysing the definition of simulation of states, it is easy to check that an alternative
way of expressing the ideas above is saying that p is refined by q if the evaluat ion of q in the
initial state of Q sirnulates the evaluation of p in the initial state of P. So, for specifications
P and Q, an expression q E 7Q simulates (or refines) p E Íp , denoted p Ç(P,Q) q, if

(p, 0p} Ç(P.OJ (q, 0o),

The reflexive and transitive properties of refinement of states are also valid for this definition
of refinement of expressions.

4 Refinement Theory

Now we develop a theory in order to show that the relation of refinement of expressions
introduced in t he previous section is a congruençe with respect to rnost constructors intro
duced in Section 2; that is, choosing parallel composi tion as example, we are interested in
proving that

p Ç(P.Q) q irnplies p li o Ç(P,Q) q li o,

44 Anais do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

for any expression o formed by experiments of P and most of the programming language
constructors introduced in Section 2.

ln fact, the congruence property only holds for contexts formed by visible operations
(experiments). This is what should be expected for any notion of refinement based on the
observational behaviour of states with respect to a restricted group of visible operations.
This is definitely the case of the notion of refinement introduced in the last section (see
condition 3c of the definition of simulation). So there is no guarantee that the evaluation of
a hidden operation in two states related by Ç will not have completely different observable
effects.

The congruence property of refinement of expressions is what supports the compositional
verification and derivation of implementations; that is essential for formal development of
large systems. But note that this only supports compositionality in the small (i.e., regarding
expressions and their composition, as considered in [10)). Compositionality in the large (i.e.,
regarding modules and their composition [5]) should be supported by a congruence property
of refinement of programs (see [3] for the details) with respect to module interconnection
operations (such as module importation); however, this is out of the scope of this work which
does not consider the semantics of module systems.

ln order to derive the compositionality results we proceed as follows. First we formalize
the constraints on experiments informally described at the end of Section 3.1. Those con
straints allow us to prove that Ç(P,QJ includes the identity on experiments whenever there
is a (P, Q)-simulation relating initial states; that is, for any experiment exp, exp Ç(P,Q) exp
whenever there is a (P, Q)-simulation relating initial states. We also extend this result for
composition of experiments using some of the programming language constructors mentioned
in Section 2. It then becomes easy to derive the desired congruence result; we consider each
constructor separately.

4 .1 Experiments

As discussed in Section 3.1, experiments should be terminating and atomic. An expression
e E 7P is terminating, denoted J_p e, if (e, V) is terminating for any database state V E
Db(P), where a configuration is terminating ifthere is no infinite sequence of -+p-transitions
from it . We drop the subscript from .! when it is not confusing.

Atomicity is not only achieved by ensuring that an expression is fully evaluated in one
-+-transition. ln fa.ct, we consider that the atomic evaluation of an expression ca.n take many
transitions, as long as the only (if any) transition that depends on the sta.te or corresponds
to a choice is the last one; also, such a. transition must yield a. fully evaluated expression.
Note that this sti ll guarantees that any access to the database and any choices are made in
only one -+-transition; no information is lost by the other tra.nsitions. ln order to formalize
those ideas, we introduce the relation =1 . which indicates that an expression evalua.tes to
another in one -+-transition without accessing the database state nor making choices. Here
is the formal definition:

p =tp q

if, for any database state V E Db(P),

(p, V) -t p (q, V) and (p, V) -+p O=> 0 _ (q, V),

Anais doX-SBES. Outubro de 1996 45 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

where = is the identity on configurations. An obvious extension of ~ for states is defined
as follows:

p :::::;p Q

if
p ~P q and P -?p Q,

assuming that p and q are respectively the expressions in P and Q. (Note that P ~P Q
imply P:: Q, where P and Q are respectively the database states in P and Q, and =
denotes the identity on database states.) We drop the subscripts from those relations when
not confusing. Also, when P ~ Q does not hold, we write P ;4 Q. A similar notation is used
for the associated relation on expressions. Lastly, the reflexive and t ransitive closure of :::::;
is represented by ~·.

We can then formalize the constraint on experiments, where :FCp(P) is an abbreviation
for :FCp(p): exp E C(P) implies ,J.p exp and, for any V E Db(P), whenever (exp, V) -?f. O
then either

(exp, V) ~P 0

o r for some Q,
(exp , V) ~P Q -?p O and :FCp(0).

When reasoning about refinement involving two specifications, this property of experiments
should be valid for experiments of both specifications.

4.1.1 Transition lnduction

The relation :::::;· can be formally defined by the following inference rules:

p ~·o o ~ q

p ~- p p ~· q

Hence any transition p ~· q can be justified by a proof tree constructed using those rules.
This allows us to prove properties of a ~·-transition by induction on the depth of proof
trees. This is a well known proof technique extensively used in [10], where it is called proof
by transition induction; it will be quite useful here too. The sarne technique can also be
used to prove properties of -+-transitions.

Using this proof technique, we now derive a property of ~· that will be useful for proving
some results that will be presented)ater. Informally, if p ~· q then, for any database state
V , there i~ a uni que sequence of transitions from (p, V) to (q, V), since during the evaluation
of p to q the database state cannot be modified and no choices can be made. So, whenever
(p, V)-?" O then either O is one of the states in the sequence of transitions from (p, V) to
(q, V), or O is a -?"-derivative of (q, V). This is formalized by the following lemma.

Lemma 4.1 If p ~P q then, for any V E Db(P), whenever (p, V) -?p O then

(q, V) -?p O orO ~P (q, V).

o

46 Anais do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

4.1.2 Properties of Experiments

Using Lemma 4.1, we can derive a direct consequente of the constraint on experiments:
during the evaluation of an experiment, any transition that makes a choice or access the
database leads to a fully evaluated state. Thls is formalized by the following lemma.

Lemma 4.2 Let exp E t:(P). Whenever (exp, V) =ti> O -tp P and O ;4P P then

P -/+P and FEp(P).

o

Motivated by condition 3c of the definition of simulation and the atomic nature of ex
periments, we now proceed to prove that, for any experiment e:rp E t:(P}, exp Ç(P,Q) ezp
whenever there is a (P, Q)-simulation relating irutial states. ln fact , as essentially no infor
mation is Jost by ::t-transitions, we derive the more general result that any ::::fp-derivative
of exp is simulated by any ::tQ-derivative of exp, where o is a ::::fp-derivative of exp if
ezp =ti> o. ln order to accomplish that, we give a (P, Q)-simulation relating ::t-derivatives
of e:rp , for any exp E E(P) . But first we derive two auxiliary Lemmas which will help us to
prove the fust two conditions of this simulation relation (see the definition of simulation on
Section 3.1).

Lemma 4.3 Let exp E t:(P) and P Ç(P,Q) Q. For any ezpp and expq such that exp =ti>
ezpp and exp ::::tQ expq, whenever (expq, Q) -+ (ezpq', Q') then, for some (expp', 'P'),

o

(expp , 'P) -+ • (expp', 'P'),

(p, 'P') Ç(P,Q) (q, Q'),

ezpp' =(P,Q) expq' or exp ::tp ezpp' and exp ::::tQ expq'.

Now we introduce the second lemma.

Lemma 4.4 Let e:rp E E(P) and P Ç(P,Q) Q. For any ezpp and expq such that ezp =ti>
ezpp and e:rp ::tQ expq, if (expq, Q}-/+ then, for some (expp', 'P'},

o

(ezpp, 'P} -+" (ezpp', 'P') -/+ ,
(p, 'P') Ç(P,Q) (q, Q),

FEp(ezpp') ~ FEQ(expq),

FEp(expp') implies expp' =(P,Q) ezpq, and

-.FEp(expp') implies ezp =ti> expp'.

The following lemma introduces the simulation relating ::t-derivatives of an experiment e:rp.

Anais do X-SBES, Outubro de 1996 47 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

Lemma 4.5 Let S be the relation consisting of Ç(P,QJ and ali pairs in the forro

((ezpp, 'P) (expq, Q)),

wbere 'P Ç(P,QI Q and there is an exp E t'(P) such that exp :::tf. expp and exp =tq ezpq.
Then Sisa (P, Q)-simulation. O

Now we can prove that any :::tp-derivative of an experiment exp is simulated by any :::tQ
derivative of ezp whenever there is a (P, Q)-simulation relating initial states.

Theorem 4.6 Let ezp E t'(P), exp :::tf. expp, and exp =tq expq. Thus, if 0P Ç(P,Q) 0Q
then expp Ç(P.Q) expq. O

Then we can easily derive the expected result: Ç(P.Q) includes the identity on experiments
whenever there is a (P, Q)-simulation relating initial states.

Corollary 4. 7 Let ezp E t'(P). Thus, if 0p Ç(P,Q) 0Q then exp Ç(P,Q) exp. O

4.2 Composition of Experiments

Following the !ines of the presentation that Ç(P,Q) includes the identity on experiments
whenever there is a (P, Q)-simulation relating initial states, now we prove the more general
result that Ç(P,Q) includes the identity on composition of experiments whenever there is
a (P, Q)-simulation relating initial states. By composition of experiments we mean a term
formed by composing experiments and fully evaluated expressions with some of the construc
tors described in Section 2, except the atomic evaluation and (external) nondeterministic
choice constructors which only preserve refinement when their arguments satisfy some spe
cific conditions, as we will discuss)ater. We use Ct'(P) to denote the set of composition
of experiments of a specification P.

As made explicit at the beginning of this section, we are interested in proving that
cexp Ç(P,Q) cezp, for any cexp E Ct'(P), whenever there is a (P, Q)-simulation relating
initial states. But, in fact , we prove the more general result that any :::tp-derivative of cezp
is simulated by any :::tQ-derivative of cexp, where the set of :::tp-derivatives of a composition
of experiments cexp, denoted cexp :::tf., is defined by equations such as the following:

cexp :::tf, = {e I cezp :::tf. e}, if cexp E t'(P).

cexp :::tf, = { cexp }, if :Ft'p(cezp).

(cezp1 li cexp2) =*P =
(cexp1 ; cexp2) :::tf. =

{c, li e2l c, E cezp1 :::tp and e2 E cezp2 =tf.}

{ e1 ; cezp1 I c, E cezp 1 :::tf.}

for any cezp1 andcezp2 E Ct'(P). Note that ccxp E ccxp :::tf..

4.2.1 Properties of Composition of Experiments

ln order to prove the more general result , we givE' a (P, Q)-simulation relating :::t-derivatives
of cexp for any cezp E Ct'(P). The first two conditions of this simulation relation can be
easily proved by using two auxiliary Lemmas similar to the ones introduced in Section 4.1.2.
For space reasons, we omit the lemmas here and introduce the simulation relation directly.

48 Anais doX-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

Lemma 4.8 Let S be the relation consisting of Ç(P,Q) and ali pairs in the form

((cexpp, P), (cexpq, Q)),

where P Ç(P,Q) Q and there is a cexp E C&(P) such that cezpp E ce:rp ~j, and cezpq E
cexp ~Q· Then S is a (P, Q)-simulation. O

This lemma can be proved similarly to Lemma 4.5. This allows us to prove that any =tp
derivative of a composition of experiments. cexp is simulated by any ~Q-derivative of cexp
whenever there is a (P, Q)-simulation relating initial states.

Theorem 4.9 Let cezp E C&(P), cexpp E cexp ~j, , and ce:rpq E cexp ~Q· Thus, if
0p Ç(P.Q) 0Q then ce:rpp Ç(P,Q) cexpq. O

This theorem can be proved similarly to Theorem 4.6. Then we can easily derive another
result: Ç(P,Q) includes the identity on composition of experiments whenever there is a (P, Q)
simulation relating initial states.

Corollary 4.10 Let cexp E C&(P). Thus, if 0P Ç(P,Q) 0Q then cexp Ç(P,Q) ce:rp. O

4.3 Congruence Property of Refinement

Using the results introduced so far, it becomes easy to derive the expected congruence result.
Essentially, we verify that refinement is preserved by severa! of the constructors introduced
in Section 2. This is realized by presenting specific simula.tion rela.tions.

4.3.1 Parallel Composition

First let us consider parallel composition. The following lemma is the essence of the proof
that refinement is a. congruence with respect to pa.rallel composition.

Lemma 4.11 Let S be the relation consisting of Ç(P,Q) and all pairs in the forro

((p li cexpp, P), (q li cexpq, Q)),

where (p, P) Ç(P,Q) (q, Q) and there is a cexp E C&(P) such that cexpp E cexp ~P and
cexpq E cexp ~Q · Then Sisa (P, Q)-simulation. O

Using this lemma. we can easily verify that refinement is preserved by the pa.ra.llel composition
of deriva.tives of the sarne composition of experiments. This is a. general compositionality
result .

Theorem 4.12 Let cexp E C&(P), cexpp E cr.:rp ~;. , and ce:rpq E uxp =tQ·

If p Ç(P,Q) q then p li cexpp Ç(P.Q) q li ce:rpq.

o

Finally we obtain the promised compositiona.lity result, by specia.lizing the result a.bove.

Corollary 4.13 Let cexp E C&(P). If p Ç(P,Q) q then p li ce:rp Ç(P,Q) q li ce:rp. O

Anais doX-SBES, Outubro de 1996 49 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

There is also a symmetric result for parallel composition:

Theorem 4.14 Let cup E CE(P). If p Ç(P.Q) q then cezp li p Ç(P,Q) cup li q. O

It can be derived following exactly the sarne line sketched above. Similarly, we can prove
that refinement of expressions is a congruence with respect to the constructors introduced
in Section 2; we omit the details here.

4.3.2 Atomic Evaluation

Contrasting with the other constructors, atomic evaluation is unary. So the congruence
property is expressed in the following way: p Ç(P.Q) q implies [p] Ç(P,Q) [q] .

Note that, by Corollary 4.10, th.is property immediately implies that

[cup] Ç(P.Q) [cup],

for any cezp E CE(P), whenever 0p Ç(P,Q) 0Q.
Indeed, the congruence property stated above does not hold because the behaviour of

the atomic evaluation constructor depends on whether its argument always terminates and
whether it can be fully evaluated, whereas those aspects are abstracted by our definition of
refinement. ln fact, an expression [q] onJy blocks (i.e., its evaluation does not lead to any
state and the expression is not fully evaluated) in a state 1J if the evaluation of q in this state
always terminates and never yields a fully evaluated expression. On the other hand, it is
easy to check that a blocking state (q, 'D} may be a refinement of a state (p, 'D) that might
either lead to (q, 1J), yield a result , or diverge. ln this case, ([q], 1J) is not a refinement of
([p], 1J}, since the first configuration blocks whereas the second does not.

Naturally, a notion of refinement considering the aspects discussed above would be a
congruence with respect to the atomic evaluation constructor. ln fact, such a more concrete
notion of refinement can be obtained by extending our definition of refinement in a very
simple and natural way. Using our definition of refinement, we can only establish a weaker
compositionality result. Indeed, refinement is onJy preserved by the atomic evaluation con
structor if the arguments of this constructor satisfy some conditions, corresponding to the
aspects discussed above. This is formalized by the following simulation, where we write
N:FEp(P) to indicate that P never fully evaluates; formally, N:FEp(P) if

whenever P -+f. P' f+p then -.:FEp(fY).

Also, we write -l.P P to indicate that P is terminatiog.

Lemma 4.15 Let S be the relation consisting of Ç(P,Q) and ali pairs in the form

(([p], 'P}, ([q] , Q}),

where (p, P} Ç(P.Q) (q, Q} and, for any 1J and 1Y such that 1J Ç(P,Q) TY ,

• -l.Q(q, TY} impliesJ,p(p, 'D),and

• N:FEQ((q , TY)) implies N:FEp((p, 1J)).

50 Anais do X-SBES, Ou rubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

Then Sisa {P, Q)-simulation. O

Now we can easily establish the weaker compositionality result for the atomic evaluation
constructor.

Theorem 4.16 For any V and V' such that V Ç(P,QJ V', if

N:F&Q((q, V')) implies N:F&p((p, V)),

and .!.Q(q, V') implies J.p(p, V) then

p Ç(P.Q) q implies [p] Ç(P.Q) [q].

o

4.3.3 Nondeterministic Choice

The notion of refinement introduced in [3] and discussed in Section 3 abstracts from the
power of expressions of making externa! choices; that is, an expression that cannot make
an externa! choice (it always blocks) may be refined by an expression that can always make
choices (it never blocks). lndeed, a blocked state P may be refined by a state Q that
eventually reaches P, since by the definition of simulation -+transitions from Q may be
matched by zero -+transitions from P.

This suggests that the notion of refinement mentioned above is not preserved by externa!
choice. ln fact, it is not. For example, let p and q be expressions such that p Ç q and q can
make choices whereas p cannot. Also, assume that cexp is a non fully evaluated composition
of experiments. So p O cezp can only lead to an expression cerp' derived from cexp, whereas
q O cexp can either lead to cexp' or to an expression q' derived from q. Therefore, as there
is a transition from q O cerp that cannot be matched by p O cezp, we must conclude that
the first expression is not a refinement of the second.

A notion of refinement that does not abstract from the power of expressions of making
externa! choices can be easily derived from the notion of refinement presented in [3], by
essentially requiring initial transitions from an expression to be matched by at least one
transition (instead of zero or many) from a related expression. That would be preserved by
the externa/ choice method combiner.

Here we shall be content to show that the notion of refinement we are using in this article
is preserved by the internal choice method combiner, which is defined in the following way:

P Or Q = (skip ; P) O (skip ; Q) .

where P and Q are variables and skip is any operation that does nothing and always ter
minate. This constructor preserves our notion of refinement because its behaviour does not
depend on the behaviour of its arguments. This is a quite satisfactory result since inter
nal choice seems to be more useful tban externa! choice in the context of object-oriented
languages [2]. The following simulation is the first step towards deriving this result.

Anais doX-SBES, Outubro de 1996 51 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

Lemma 4.17 Let S be the relation consisting of ç;(P,Q) and ali pairs in the forms

((p Or cezpp, 'P)

((skip ; p O skip ; cerpp, 'P} ,

((cerpp Or p, 'P)

((skip ; cezpp O skip ; p, 'P)

(q Or cezpq, Q)),
(skip ; q O skip ; cerpq, Q}),
(cezpq Or q, Q}), and

(skip ; cezpq O skip ; q, Q)),

where (p, 'P} ç;(P,Q) (q, Q} and there is a cerp E CC(P) such that cerpp E cerp :::;p and
cezpq E cerp ::::;Q. Then S is a (P, Q)-simulation. O

We can then easily verify that the internal choice method combiner preserves refinement,
following an approach similar to the one followed for parallel composition. First we derive a
general compositionality result.

Theorem 4.18 Let cerp E CC(P), cezpp E cezp :=;f., and cezpq E cerp ::::;Q. If p !;(P,Q) q
then

p Or cerpp ç;(P.Q) q Or cezpq

o

And finally, by a trivial specialization, the desired compositionality result.

Corollary 4.19 Let cerp E CC(P). If p ç;1P,Q) q then p Or cezp ç;(P,Q) q Or cerp O

Symmetric results ~ould be obtained in a similar way.

5 Other Compositionality Properties

The basic compositionality properties of standard programming language constructors were
established in previous sections, by showing that refinement is preserved by them. ln this
section we show how other compositionality properties can be derived from the basic prop
erties. We use the sequential composition constructor in the examples. Similar results can
be derived for other constructors.

First let us assume the basic compositionality properties of sequential composition: if
p ç;(P,Q) q then, for any cerp E CC(P),

p ; cezp ç;(P,Q) q ; cerp and cerp ; p ç;(P.Q) cezp ; q.

As briefly discussed before, this result depends crucially on the condition cezp E CC(P),
since our notion of refinement is based on the observational behaviour of states with respect
to a restricted group of experiments.

Now consider the following compositiouality property:

p ç;(P,Q) q and p' ç;(P.Q) q'

implies
p ; p' !;(P,Q) q ; q'.

ln geueral , this property is not valid because p' ç;(P.Q) q' esseutially indicates that p' is
simulated by q' when they are evaluated in reachablc database states related by ç;(P,Q)l

52 Anais doX-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

whereas p Ç(P,Q) q just indicates that the evaluation of p and q in reachable states related
by Ç(P,Q) leads to states related by Ç(P,Q)i but note that those resulting states are not
necessarily reachable, since p and q rnight not be formed exclusively by experiments. So we
cannot always expect p ; p' to be simulated by q ; q'. On the other hand, the congruence
result is valid because cerp E Ct:(P) is simulated by ce:rp when they are evaluated in any
states related by Ç(P,Q) (see Lemma 4.8), if reachable or not.

Although the compositionality property stated above is not valid, the following weaker
version of it is indeed valid: for q, p' E Ct:(P),

p Ç(P,P) q and p' Ç(P,Q) q'

implies

P i p' Ç(P, Q) q ; q'.

It follows from the general transitivity property of Ç(P,Q) (discussed on Sections 3.2 and
3.3) since, under the conditions stated above, by the basic compositionality properties of
sequential composition, we have

p ; p' Ç(P,P) q ; p' and q i p' Ç(P,Q) q ; q'.

A similar property can be derived in the sarne way by assuming that q', p E Ct:(P) instead
of q, p' E Ct:(P). ln fact, those properties would even be valid for ~-derivatives of the
composition of experiments.

Many other compositionality properties could be easily derived as well. It is important to
note that a particular group of those properties can be used to suggest a specific methodology
for formal development of object-oriented software. ln this article we limit ourselves to give
the basis for deriving those properties.

6 Conclusions

We established severa! properties of the notion of refinement introduced in [3]. ln particular,
we proved that the relation of refinement of expressions is a congruence with respect to
severa) standard programming language constructors. We also explained how to derive nove!
compositionality results from the basic congruence result. The congruence property justifies
the compositional verification and derivation of implementations; this is essential for formal
development of complex systems in practice. However, we only considered compositionality
in the small; properties of compositionality in the large are related to the semantics of
module systems, which was not discussed in this article.

The proof of the congruence result justified and provided a deep insight into some of the
technical decisions adopted in [3]. For instance, by analysing the proof we could conclude that
the congruence result can only be obtained if experiments have an atomic and terminating
nature. Moreover, we indicated that atomicity of experiments does not necessarily mean
that experiments have to be evaluated in one state trausition. lnstead, the fully evaluation
of an experiment may take many transitions, as long as the only (if any) transition that
depends on the state or corresponds to a nondeterministic choice is the last one. That is the
essence of atomicity.

Anais do X-SBES, Outubro de 1996 53 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

REFINEMENT THEORY

We could also conclude that the congruence property is only valid for contuts formed by
visible operations (experiments). ln fact, this should be expected for any notion of refinement
based on the observational behaviour of states with respect to a restricted group of visible
operations. ln particular, refinement is nota congruence with respect to contexts formed by
user defined method combiners, since they might just be abbreviations for a combination of
hidden operations.

We explained why refinement is not a congruence with respect to the atomic evalua
tion and nondeterministic e:.ctemal choice constructors. Basically, the behaviour of those
constructors depends on some aspects which are abstracted by the notion of refinement ex
plored in this article. However, we verified that nondeterministic internal choice preserves
refinement, anda weaker compositionality result is valid for the atomic evaluation construc
tor. lndeed, this weaker result indicates how the atomic evaluation constructor should be
used in practice. Lastly, we concluded that refinement is not in general a congruence with
respect to visible operations (methods and attributes), since p Ç q does not necessarily
imply that p and q have the sarne or related types; in fact , this depends on the type system
of a particular language. So, for a visible operation op, op(p) might be a well formed term
whereas op(q) is not.

ln [1] , the general results presented in this article have been specialized to prove that
FOOPS' (6, 2] notion of refinement is a congruence with respect to most constructors of that
language. Those results are not proposed as the only tools that should be available for formal
software development; instead, it is indeed a basis for the definition of refinement calculi (11]
and methodologies for formal development of concurrent object-oriented software.

ln fact, just a few notions of refinement of concurrent object-oriented prograrns have
been proposed so far. We will comment on two of those notions, concluding that none of
them provide a general definition of refinement with compositionality results such as the
ones presented here. One of them (7], actually considers only refinement of object based
concurrent programs, presenting many examples of formal development of programs. Most
examples are simple and elegant, and use a few refinement preserving transformation rules.
However, no general definition of refinement is proposed; although the semantics of the
language presented in [7] is given in terrns of a process algebra, the notions of equivalence
and refinement of the algebra cannot be directly used to define the notion of refinement of
the language (8].

Another approach for refinement of object oriented concurrent programs is described
in (9], which gives an overview of a general notiou of refinement for a concurrent object
oriented specification language. This notiou of refinement is compositional in thc large.
However, compositionality in the small, as considered here, and proof techniques are uot
discussed.

Acknowledgements

I wish to thank Professor .Joseph Goguen for his support and collaboration. This work was
supported in part by CAPES, Grant 2184-91-8, and CNPq, Grant 301021/95-3.

References

[1] Paulo Borba. Semantics and Refinement for a Concurrent Object Oriented Language.

54 Anais doX-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

P. Borba

PhD thesis , Oxford University, Computing Laboratory, Programming Research Group,
July 1995.

[2] Paulo Borba and Joseph Goguen. Ao operational semantics for FOOPS. ln R. Wieringa
and R. Feenstra, editors, Working papers ofthe lnternational Workshop on lnformation
Systems-Correctness and Reusability. September 1994.

[3] Paulo Borba and Joseph Goguen. Refinement of concurrent object oriented programs.
ln Stephen Goldsack and Stuart Kent.,.editors, Formal Methods and Object Technology,
Chapter 11. Springer-Verlag, 1996.

[4] George Cleland and Donald MacKenzie. Inhibiting factors, market structure and the
industrial uptake of formal methods. ln Jnternational Workshop on Industrial Strength
Formal Specification Techniques. IEEE Computer Society Press, Boca Raton, Florida,
April 1995.

[5] Joseph Goguen. Parameterized programming. Transactions on Software Engineering,
SE-1 O(5) :528-543, September 1984.

[6] Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational
programming, with logical semantics. ln Bruce Shriver and Peter Wegner, ecütors,
Research Directions in Object-Oriented Programming, pages 417-477. MIT, 1987.

[7] Cliff Jones. An object-based design method for concurrent programs. Technical Report
UMCS-92-12-1, Department of Computer Science, University of Manchester, 1992.

[8] Cliff Jones. Process-algebraic foundations for an object-based design notation. Technical -
Report UMCS-93-10-1, Department of Computer Science, University of Manchester,
1993.

(9] Kevin Lano and Stephen Goldsack. Refinement and subtyping in formal object-oriented
development. ln R. Wieringa and R. Feenstra, editors, Working papers of the Jnter
national Workshop on lnformation Systems-Correctness and Reusability. September
1994.

(10] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[11] Carroll Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.

[12] Gordon Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN- 19, Computer Science Department, Aarhus University, September 1981.

(13] David Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

Anais do X-SBES, Outubro de 1996 55 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382

