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Abstract 

A notion of refinement for concurrent object-oriented programs was originally 
presented in [3]. ln th.is article we prove that the refinement relation associated to 
this notion is a congruence with respect to various standard programming language 
constructors, including parallel and sequential composition, conditionals, and non
deterministic internal choice. We also establish a weaker compositionality result 
for the atomic evaluation constructor, and illustrate how nove! compositionality 
properties can be derived from the basic congruence property. 

KEY WORDS: Formal methods, Object oriented programming, Refinement, Concurrency. 

1 lntroduction 

The importance of formal methods for software development is nowadays significantly rec
ognized. This is mainly justified by the h.igh levei of reliability achieved by complex systems 
developed using languages having a clear mathematical semantics (13, 12] and allowing for
mal proofs that design steps refine (satisfy) specifications [11]. 

However, among other factors, the industrial uptake of formal methods (4] depends 
crucially on adequate refinement theories and associated proof techniques to support the use 
of those methods in practice. ln particular, formal (or even rigorous) software development 
is not at ali practical unless there are theories justifying the compositional and stepwise 
refinement of specifications and implementatioos. 

As originally presented io (3] , based oo the operatiooal semantics of ao arbitrary object
oriented language (12] , we can directly define a notion of refinement for concurrent object
oriented programs written in that language. Moreover, (3] shows that this notioo (relation) 
has some basic properties (e.g. , reflexivity and transitivity) aod comes up together with 
an effective proof technique for proving refinement. As illustrated io (3], this notion has 
bef'n explored and proved to be quite suitable as a basis for formal stepwise development 
of concurrent object-oriented software, provided that the associated operational semantics 
satisfy some mild and natural conditions. 

ln this article we formalize those conditions and, provided that they are satisfied by the 
operational semantics, we prove that the refinement relation mentioned above is a congru
ence with respect to various standard programming language coostructors, iocluding parallel 
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and sequential composition, conditionals, and nondeterministic internal choice. We also es
tablish a weaker compositionality result for the a.tomic eva.lua.tion constructor, which does 
not preserve refinement, a.nd illustra.te how nove! compositiona.lity properties ca.n be derived 
from the ba.sic congruence property. ln this wa.y we justify compositional development of 
concurrent object-oriented software a.nd set the ba.sis for a. refinement ca.lculus in the style 
of [1 1]. 

We formalize only the essentia.l concepts necessa.ry for deriving the compositiona.lity 
results. Proofs are omitted for legibility a.nd spa.ce rea.sons. Those proofs are presented 
in deta.il in [1], where one can see tha.t they are not complica.ted and are ba.sed on very 
simple proof techniques such a.s case analysis and transition induction [10]; however, some 
of them are quite long and tedious. Indeed, the empha.sis is not on presenting the proofs, 
but on presenting and analysing the results and its intuitions, in addition to describing the 
necessary mathematical machinery and the approach used to derive tbe results in a simple 
way. By following this a.pproacb a.nyone acquainted to tbat ma.cbinery can ea.sily reproduce 
the results or adapt them for otber contexts. 

2 Operational Semantics 

An object-oriented program (specification) defines a corresponding object-oriented system: 
tbe program describes the structure of tbe objects that the system may have, and the be
ha.vior of the methods and attributes a.ssociated to those objects. Object creation. object 
deletion, and method execution change tbe state of a.n object-oriented system. Such a state 
consists of information about existing objects in the system ( databa.se state), and expressions 
being concurrently eva.lua.ted. 

The operational semantics [2] of an object-oriented language formalizes the notions of 
states and state transitions due to eva.lua.ting expressions. States are represented by pairs 
formed by an expression and a databa.se state, represented a.s (e, P}, for an expression e and 
a databa.se state P. Tbe first corresponds to the expressions being eva.luated in the state, 
and the second contains information a.bout tbe objects in tbe sta.te. Respectively, we use TP 
and Db(P) to denote the families of expressions (terms) and databa.se states a.ssociated to 
P. When not confusing, databa.se states are just ca.lled "states". The initial databa.se state 
a.ssociated to a specification (program) P is represented by 0p , which conta.ins only objects 
introduced by P and information about their respective attributes. Also, we use Conf( P) to 
denote the set of ali configurations a.ssociated to a specification P. 

State transitions are specified by the transition relatiou 

-+p Ç Conf(P) x Conf( P) , 

which actually defines tbe operatioua.l semantics of P; it indicates how an expression is 
evaluated in a databa.se sta.te. When not confusing, we write -+ instead of -+p. Similarly, 
the relation -+" denotes the transitive, reflexivP closure of -+; also, we write Pf+ if there is 
no P' such that P -+ P' (tbis mea.ns that the expression in P cannot be further evaluated}. 
La.stly, if P-+ • P' then we say that P' is a-+ · -derivative of P; a. corresponding terminology 
is used for -+. 

This transition relation is inductively defined over the syntax of expressions by inference 
rules which indicate how we can infer that two configurat ions are related (i.e., there is a 

40 Ana1s do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


P. Borba 

transition from one to the other), assuming that some others are related. For instance, the 
semantics of parallel composition can be defined by rules such as 

(e, V) -+ (e', V') 
(e li j , V) -+ (e' li j, V') (v li e, V) -+ (e, V) 

where v is a "fully evaluated expression"-an object identifier or an evaluated functional 
expression, such as an integer number, a character, etc. Of course, it is also necessary to 
have similar symmetric rules for evaluation·of the argument on the right of the composition, 
indicating that the evaluation of the expressions can be freely interleaved . 

A nondeterministic externa/ choice constructor can be specified by the rules 

(e, V) -+ (e', V') 
(e O f , V)-+ (e', V') (v O e, V) -+ (v, V) 

and similar symmetric ones, which indicate that transitions from the choice between two 
expressions correspond to transitions from one of the expressions. Note that a fully evaluated 
argument may be chosen by the choice without changing the database. 

We can also define the semantics of an atomic evaluation constructor using rules such as 
the following: 

(e, V) -+" (v, V') 
([e], V) -+ (v, V') 

--.terminating( (e, V )) 
( [e], V) -+ ( [e] , V) 

where we say that a configuratioo is terminating if there is no infinite sequence of -+
transitions from it. Intuitively, the atomic evaluation of an expression corresponds to its 
full evaluation in only one step (transition). So if the evaluation of the expression to be 
atomically evaluated does not terminate, the atornic expression does not terminate as well. 
ln fact , it behaves as a divergent process that does not modify the state. 

The semantics of other constructors such as _; _ (sequeotial), iLthen_else..fi ( con
ditional) and result_;_ (evaluates its first argument aod then evaluates the secood one. 
yielding t he value resulting from the evaluation of the first) can be formally defined follow
ing the sarne !ines above. Contrasting, the semantics of method and attribute evaluation. 
and also object creation and deletion, will not even be discussed in this article since it may 
vary a lot depending on the language, and it is not directly relevant to the derivation of the 
compositionality results that we will present. The semantics of those aspects are formally 
specified for a specific language in [2), for example. 

3 Refinement 

Based on the operational semantics of an arbitrary object-oriented language, the refinement 
notion originally presented in [3) considers refinement of states, expressions, and programs 
written in that language. In this article we discuss only refinement of states and expressions. 
Basically, a state P is simulated by a state Q if whatever can be observed by performing 
experiments with Q can also be observed by performing the sarne experiments with P. ln 
this case, if experiments are done with Q, we cannot detect whether Q or P is being used, 
even though the experiments clone with P might let us make more observations than if Q 
were used. 
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The only kind of experiment that we can make with object-oriented systems is to invoke 
visible operations (i.e., methods, attributes, and object creation and deletion routines) with 
arbitrary arguments. This results in a new state having the invoked operation as one of the 
expressions to be evaluated. Here are the aspects that we can observe from a state P: 

I. the values of visible attributes of the objects in P ; 

2. the results yielded by the expressions being evaluated in P; and 

3. whatever can be observed by performing experiments with the states that can be im-
mediately reached from P due to the execution of the expressions in P. 

According to the last item and the notion of simulation we can conclude tbat if P is sim
ulated by Q tben states immediately reached from Q simulate states immediately reached 
from P. However, a better definition of simulation can be obtained if we relax tbis strong 
correspondence between state transitions. ln fact , it is only important that states immedi
ately reached from Q simulate states eventually reacbed from P . Tbis is enough because 
in this case tbe observations that we can make from Q are equivalent to observations that 
we can make from P when we fail to observe some intermediate states. This still implies 
tbat the observable bebavior associated to Q is a particular case of tbe observable behavior 
associated to P; tbat is tbe essence of simulation. 

Note that both notions of simulation discussed so far depend only on the notions of 
experiment and observation. lndeed, one state might simulate another even if tbey have 
different {internal) structures, and are associated to systems specified by different specifica
tions. However, the experiments and observations should be meaningful for both systems. 
ln general, given states P and Q respectively related to specifications P and Q, Q may only 
simulate P if the observations and experiments introduced by P are also introduced by Q. 
Only in this way we can compare the effects of performing the sarne experiment with P and 
Q. 

3.1 Simulations 

Based on operational semantics, now we formalize the finer notion of simulation, which was 
originally presented in [3]. First let t'(P) denote the set of experiments associated to a 
specification P. Also let :Ft'( e) indicate that the expression e is fully evaluated, according to a 
specification P tbat should be understood from the context where :Ft'( e) is used; otherwise, 
we write .Ft'p( e). Furthermore, for fully evaluated terms p and q respectively related to 
specifications P and Q, assume that equality is denoted by p =(P,Q) q; it holds if p and q 
are th<:" sarne object identifiers or if th<:"y are the sarne element of an ADT that is defined by 
both P and Q. 

Assuming that the observations and experiments introduced by a specification P are 
also introduced by a spec ification Q, the relation of si mulation between states of P and Q is 
defined as the union of ali relations S Ç Conf(P) x Conf(Q ) such that (P, Q) E S implies 
the following: 

l. Whenever Q ~ Q' then , for some P' , P~· P' and (P', Q') E S. 

2. lf Qf+ then , for some P' , 

42 Anazs do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


(a) P-+" P'f+; 

(h) :Fêp(p') ~ :FEQ( q ); 

(c) if :FEp(p') theo p' =(P.Q) q; aod 

(d) (P', Q) E S. 

P. Borba 

3. For aoy experimeot exp E E(P), wheoever (exp , Q) -+. Q'f+ then, for some P' , 

(a) (exp, P) -+" P'f+; 

(b) (P', Q') E S; and 

(c) ((p , P'), (q, Q')) E S. 

where P aod Q denote configurations, P and Q denote their respective database states, aod 
p aod q denote their respective expressions. Relations having those special properties are 
called ( P, Q )-simulations. 

Item 1 above says that any state immediately reached from Q is related to some state that 
might eveotually be reached frorn P. Conditioo 2 iodicates that if the expressioo i o Q canoot 
be further evaluated then the expressioo io P might eveotually reach the sarne situation; 
wheo this happeos, the resulting states will be related by S and the results yielded by the 
evaluatioo of the expression in Q will also be yielded by the evaluatioo of the expressioo 
io P. ln other words, the results of the evaluatioo of expressioos in Q might eventually be 
observed frorn P. 

Cooditioo 3 says that performing the sarne experirneot with Q and P leads to states 
related by S; by condition 2, this irnplies that the experirnents yield the sarne results wheo 
perforrned in both states. Furtherrnore, if ao experirnent cannot be perforrned with Q (its 
corresponding operatioo is not enabled, because it cannot be executed in a particular state), 
then performing the sarne experimeot with P results in a state related to Q by S; this usually 
means that the experimeot cannot be perforrned with P as well. 

Those conditions reflect the ideas that we have introduced about sirnulation of states. 
However, they are based oo a central assurnption: operations used as experirnents are atomic 
and terrninating. Note that this does not irnply that all available rnethods have to be atomic 
and termioating; indeed, nonatornic aod nonterrninating rnethods can be defioed as hidden 
operations. lo [3], this assurnption is analyzed and justified . 

3.2 Refinement of States 

Note that if the pair (P, Q) is in a (P, Q)-simulation then whatever cao be observed by 
performing experiments with Q can also be observed by performing experiments with P; 
this guarantees that one state sirnulates another. lo fact, we say that a state Q E Conf(Q) 
simulates (or refines) a state P E Conf(P) , denoted P Ç(P.Q) Q, if there is a (P, Q)
simulation containiug the pair (P, Q). Formally, 

ç(P,Q) = u{s Is is a (P , Q)-simulation}. 

A direct result from this definition is the following: 
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Theorem 3.1 Assurning that the observations and experirnents introduced by a specifica
tion P are also introduced by a specification Q, the refinernent relation on states Ç(P,QJ is 
the largest (P, Q)-sirnulation. O 

This was proved in [3]. lt is also easy to check that the identity relation on configurations 
of the sarne prograrn is a sirnulation , and that Ç(P,PJ is reflexive and transitive; actually, we 
have that P Ç(P.OJ O and O Ç(O.Q) Q imply P Ç(P.Q) Q. 

From the definition above we conclude that in order to prove that a state P is simulated 
by a state Q, it is enough to find a simulation containing the pair (P, Q). ln fact, this 
is a very effective proof technique which makes proofs easier. ln order to find a candidate 
sirnulation relation it is necessary to have some knowledge about the behavior of expressions 
and tbe relation between different representations for object states. After a candidate is 
found , it remains to check the conditions from the definit ion of sirnulation; that is a routine 
task which requires only the application of the transition rules of the operational sernantics 
and checking whether the resulting states are related. Hereafter we let P Ç (P, Q) Q hold 
whenever (p, P ) Ç(P.Q) ( q, Q) holds for some p and q. 

3.3 Refinement of Expressions 

Based on the notion of refinernent of states, we can define refinernent of expressions. First 
recall that the initial database state associated to a program P is represented by 0p. Also, 
assume that states reached by performing ao arbitrary (possibly ernpty) sequence of exper
iments with an initial state are called reachable (database) states. 

For expressions p and q respectively related to specifications P and Q, we say that p 

is refined by q when t he evaluation of p in any reachable state P of P is sirnulated by the 
evaluation of q in a state Q reached frorn 00 by performing the sarne sequence of experirnents 
used to reach P. (By the definition of simulation , this already considers that the evaluation 
of the expressions might be interfered by experiments.) Hence, when P and Q are the sarne 
specification, p is refined by q if the evaluation of p in any reachable state is simulated by 
the evaluation of q in the sarne state. 

By analysing the definition of simulation of states, it is easy to check that an alternative 
way of expressing the ideas above is saying that p is refined by q if the evaluat ion of q in the 
initial state of Q sirnulates the evaluation of p in the initial state of P. So, for specifications 
P and Q, an expression q E 7Q simulates (or refines ) p E Íp , denoted p Ç(P,Q) q, if 

(p, 0p} Ç(P.OJ (q, 0o), 

The reflexive and transitive properties of refinement of states are also valid for this definition 
of refinement of expressions. 

4 Refinement Theory 

Now we develop a theory in order to show that the relation of refinement of expressions 
introduced in t he previous section is a congruençe with respect to rnost constructors intro
duced in Section 2; that is, choosing parallel composi tion as example, we are interested in 
proving that 

p Ç(P.Q) q irnplies p li o Ç(P,Q) q li o, 
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for any expression o formed by experiments of P and most of the programming language 
constructors introduced in Section 2. 

ln fact, the congruence property only holds for contexts formed by visible operations 
(experiments). This is what should be expected for any notion of refinement based on the 
observational behaviour of states with respect to a restricted group of visible operations. 
This is definitely the case of the notion of refinement introduced in the last section (see 
condition 3c of the definition of simulation). So there is no guarantee that the evaluation of 
a hidden operation in two states related by Ç will not have completely different observable 
effects. 

The congruence property of refinement of expressions is what supports the compositional 
verification and derivation of implementations; that is essential for formal development of 
large systems. But note that this only supports compositionality in the small (i.e., regarding 
expressions and their composition, as considered in [10)). Compositionality in the large (i.e., 
regarding modules and their composition [5]) should be supported by a congruence property 
of refinement of programs (see [3] for the details) with respect to module interconnection 
operations (such as module importation); however, this is out of the scope of this work which 
does not consider the semantics of module systems. 

ln order to derive the compositionality results we proceed as follows. First we formalize 
the constraints on experiments informally described at the end of Section 3.1. Those con
straints allow us to prove that Ç(P,QJ includes the identity on experiments whenever there 
is a (P, Q)-simulation relating initial states; that is, for any experiment exp, exp Ç(P,Q) exp 
whenever there is a (P, Q)-simulation relating initial states. We also extend this result for 
composition of experiments using some of the programming language constructors mentioned 
in Section 2. It then becomes easy to derive the desired congruence result; we consider each 
constructor separately. 

4 .1 Experiments 

As discussed in Section 3.1, experiments should be terminating and atomic. An expression 
e E 7P is terminating, denoted J_p e, if (e, V) is terminating for any database state V E 
Db(P), where a configuration is terminating ifthere is no infinite sequence of -+p-transitions 
from it . We drop the subscript from .! when it is not confusing. 

Atomicity is not only achieved by ensuring that an expression is fully evaluated in one 
-+-transition. ln fa.ct, we consider that the atomic evaluation of an expression ca.n take many 
transitions, as long as the only (if any) transition that depends on the sta.te or corresponds 
to a choice is the last one; also, such a. transition must yield a. fully evaluated expression. 
Note that this sti ll guarantees that any access to the database and any choices are made in 
only one -+-transition; no information is lost by the other tra.nsitions. ln order to formalize 
those ideas, we introduce the relation =1 . which indicates that an expression evalua.tes to 
another in one -+-transition without accessing the database state nor making choices. Here 
is the formal definition: 

p =tp q 

if, for any database state V E Db( P), 

(p, V) -t p (q, V) and (p, V) -+p O=> 0 _ (q, V), 
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where = is the identity on configurations. An obvious extension of ~ for states is defined 
as follows: 

p :::::;p Q 

if 
p ~P q and P -?p Q, 

assuming that p and q are respectively the expressions in P and Q. (Note that P ~P Q 
imply P:: Q, where P and Q are respectively the database states in P and Q, and = 
denotes the identity on database states.) We drop the subscripts from those relations when 
not confusing. Also, when P ~ Q does not hold, we write P ;4 Q. A similar notation is used 
for the associated relation on expressions. Lastly, the reflexive and t ransitive closure of :::::; 
is represented by ~·. 

We can then formalize the constraint on experiments, where :FCp(P) is an abbreviation 
for :FCp(p): exp E C(P) implies ,J.p exp and, for any V E Db(P), whenever (exp, V) -?f. O 
then either 

(exp, V) ~P 0 

o r for some Q, 
( exp , V) ~P Q -?p O and :FCp( 0). 

When reasoning about refinement involving two specifications, this property of experiments 
should be valid for experiments of both specifications. 

4.1.1 Transition lnduction 

The relation :::::;· can be formally defined by the following inference rules: 

p ~·o o ~ q 

p ~- p p ~· q 

Hence any transition p ~· q can be justified by a proof tree constructed using those rules. 
This allows us to prove properties of a ~·-transition by induction on the depth of proof 
trees. This is a well known proof technique extensively used in [10], where it is called proof 
by transition induction; it will be quite useful here too. The sarne technique can also be 
used to prove properties of -+-transitions. 

Using this proof technique, we now derive a property of ~· that will be useful for proving 
some results that will be presented )ater. Informally, if p ~· q then, for any database state 
V , there i~ a uni que sequence of transitions from (p, V) to ( q, V), since during the evaluation 
of p to q the database state cannot be modified and no choices can be made. So, whenever 
(p, V)-?" O then either O is one of the states in the sequence of transitions from (p, V ) to 
(q, V ), or O is a -?"-derivative of (q, V). This is formalized by the following lemma. 

Lemma 4.1 If p ~P q then, for any V E Db(P), whenever (p, V) -?p O then 

(q, V) -?p O orO ~P (q, V). 

o 
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4.1.2 Properties of Experiments 

Using Lemma 4.1, we can derive a direct consequente of the constraint on experiments: 
during the evaluation of an experiment, any transition that makes a choice or access the 
database leads to a fully evaluated state. Thls is formalized by the following lemma. 

Lemma 4.2 Let exp E t:(P). Whenever (exp, V) =ti> O -tp P and O ;4P P then 

P -/+P and FEp( P). 

o 

Motivated by condition 3c of the definition of simulation and the atomic nature of ex
periments, we now proceed to prove that, for any experiment e:rp E t:(P}, exp Ç(P,Q) ezp 
whenever there is a (P, Q)-simulation relating irutial states. ln fact , as essentially no infor
mation is Jost by ::t-transitions, we derive the more general result that any ::::fp-derivative 
of exp is simulated by any ::tQ-derivative of exp, where o is a ::::fp-derivative of exp if 
ezp =ti> o. ln order to accomplish that, we give a (P, Q)-simulation relating ::t-derivatives 
of e:rp , for any exp E E(P) . But first we derive two auxiliary Lemmas which will help us to 
prove the fust two conditions of this simulation relation (see the definition of simulation on 
Section 3.1). 

Lemma 4.3 Let exp E t:(P) and P Ç(P,Q) Q. For any ezpp and expq such that exp =ti> 
ezpp and exp ::::tQ expq, whenever (expq, Q) -+ (ezpq', Q') then, for some (expp', 'P'), 

o 

( expp , 'P) -+ • ( expp', 'P'), 

(p, 'P') Ç(P,Q) (q, Q'), 

ezpp' =(P,Q) expq' or exp ::tp ezpp' and exp ::::tQ expq'. 

Now we introduce the second lemma. 

Lemma 4.4 Let e:rp E E(P) and P Ç(P,Q) Q. For any ezpp and expq such that ezp =ti> 
ezpp and e:rp ::tQ expq, if (expq, Q}-/+ then, for some (expp', 'P'}, 

o 

(ezpp, 'P} -+" (ezpp', 'P') -/+ , 
(p, 'P') Ç(P,Q) (q, Q), 

FEp(ezpp') ~ FEQ(expq), 

FEp(expp') implies expp' =(P,Q) ezpq, and 

-.FEp( expp') implies ezp =ti> expp'. 

The following lemma introduces the simulation relating ::t-derivatives of an experiment e:rp. 
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Lemma 4.5 Let S be the relation consisting of Ç(P,QJ and ali pairs in the forro 

( ( ezpp, 'P) (expq, Q)), 

wbere 'P Ç(P,QI Q and there is an exp E t'(P) such that exp :::tf. expp and exp =tq ezpq. 
Then Sisa (P, Q)-simulation. O 

Now we can prove that any :::tp-derivative of an experiment exp is simulated by any :::tQ
derivative of ezp whenever there is a (P, Q)-simulation relating initial states. 

Theorem 4.6 Let ezp E t'(P), exp :::tf. expp, and exp =tq expq. Thus, if 0P Ç(P,Q) 0Q 
then expp Ç(P.Q) expq. O 

Then we can easily derive the expected result: Ç(P.Q) includes the identity on experiments 
whenever there is a (P, Q)-simulation relating initial states. 

Corollary 4. 7 Let ezp E t'(P). Thus, if 0p Ç(P,Q) 0Q then exp Ç(P,Q) exp. O 

4.2 Composition of Experiments 

Following the !ines of the presentation that Ç(P,Q) includes the identity on experiments 
whenever there is a (P, Q)-simulation relating initial states, now we prove the more general 
result that Ç(P,Q) includes the identity on composition of experiments whenever there is 
a (P, Q)-simulation relating initial states. By composition of experiments we mean a term 
formed by composing experiments and fully evaluated expressions with some of the construc
tors described in Section 2, except the atomic evaluation and (external) nondeterministic 
choice constructors which only preserve refinement when their arguments satisfy some spe
cific conditions, as we will discuss )ater. We use Ct'(P) to denote the set of composition 
of experiments of a specification P. 

As made explicit at the beginning of this section, we are interested in proving that 
cexp Ç(P,Q) cezp, for any cexp E Ct'(P), whenever there is a (P, Q)-simulation relating 
initial states. But, in fact , we prove the more general result that any :::tp-derivative of cezp 
is simulated by any :::tQ-derivative of cexp, where the set of :::tp-derivatives of a composition 
of experiments cexp, denoted cexp :::tf., is defined by equations such as the following: 

cexp :::tf, = {e I cezp :::tf. e}, if cexp E t'(P). 

cexp :::tf, = { cexp }, if :Ft'p( cezp ). 

( cezp1 li cexp2) =*P = 
( cexp1 ; cexp2) :::tf. = 

{c, li e2l c, E cezp1 :::tp and e2 E cezp2 =tf.} 

{ e1 ; cezp1 I c, E cezp 1 :::tf.} 

for any cezp1 andcezp2 E Ct'(P). Note that ccxp E ccxp :::tf.. 

4.2.1 Properties of Composition of Experiments 

ln order to prove the more general result , we givE' a (P, Q)-simulation relating :::t-derivatives 
of cexp for any cezp E Ct'(P). The first two conditions of this simulation relation can be 
easily proved by using two auxiliary Lemmas similar to the ones introduced in Section 4.1.2. 
For space reasons, we omit the lemmas here and introduce the simulation relation directly. 
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Lemma 4.8 Let S be the relation consisting of Ç(P,Q) and ali pairs in the form 

((cexpp, P), (cexpq, Q)), 

where P Ç(P,Q) Q and there is a cexp E C&(P) such that cezpp E ce:rp ~j, and cezpq E 
cexp ~Q· Then S is a (P, Q)-simulation. O 

This lemma can be proved similarly to Lemma 4.5. This allows us to prove that any =tp
derivative of a composition of experiments. cexp is simulated by any ~Q-derivative of cexp 
whenever there is a (P, Q)-simulation relating initial states. 

Theorem 4.9 Let cezp E C&(P), cexpp E cexp ~j, , and ce:rpq E cexp ~Q· Thus, if 
0p Ç(P.Q) 0Q then ce:rpp Ç(P,Q) cexpq. O 

This theorem can be proved similarly to Theorem 4.6. Then we can easily derive another 
result: Ç(P,Q) includes the identity on composition of experiments whenever there is a (P, Q)
simulation relating initial states. 

Corollary 4.10 Let cexp E C&(P). Thus, if 0P Ç(P,Q) 0Q then cexp Ç(P,Q) ce:rp. O 

4.3 Congruence Property of Refinement 

Using the results introduced so far, it becomes easy to derive the expected congruence result. 
Essentially, we verify that refinement is preserved by severa! of the constructors introduced 
in Section 2. This is realized by presenting specific simula.tion rela.tions. 

4.3.1 Parallel Composition 

First let us consider parallel composition. The following lemma is the essence of the proof 
that refinement is a. congruence with respect to pa.rallel composition. 

Lemma 4.11 Let S be the relation consisting of Ç(P,Q) and all pairs in the forro 

((p li cexpp, P), (q li cexpq, Q)), 

where (p, P ) Ç(P,Q) (q, Q) and there is a cexp E C&(P) such that cexpp E cexp ~P and 
cexpq E cexp ~Q · Then Sisa (P, Q)-simulation. O 

Using this lemma. we can easily verify that refinement is preserved by the pa.ra.llel composition 
of deriva.tives of the sarne composition of experiments. This is a. general compositionality 
result . 

Theorem 4.12 Let cexp E C&(P), cexpp E cr.:rp ~;. , and ce:rpq E uxp =tQ· 

If p Ç(P,Q) q then p li cexpp Ç(P.Q) q li ce:rpq. 

o 

Finally we obtain the promised compositiona.lity result, by specia.lizing the result a.bove. 

Corollary 4.13 Let cexp E C&(P). If p Ç(P,Q) q then p li ce:rp Ç(P,Q) q li ce:rp. O 
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There is also a symmetric result for parallel composition: 

Theorem 4.14 Let cup E CE(P). If p Ç(P.Q) q then cezp li p Ç(P,Q) cup li q. O 

It can be derived following exactly the sarne line sketched above. Similarly, we can prove 
that refinement of expressions is a congruence with respect to the constructors introduced 
in Section 2; we omit the details here. 

4.3.2 Atomic Evaluation 

Contrasting with the other constructors, atomic evaluation is unary. So the congruence 
property is expressed in the following way: p Ç(P.Q) q implies [ p] Ç(P,Q) [ q] . 

Note that, by Corollary 4.10, th.is property immediately implies that 

[ cup] Ç(P.Q) [ cup], 

for any cezp E CE(P), whenever 0p Ç(P,Q) 0Q. 
Indeed, the congruence property stated above does not hold because the behaviour of 

the atomic evaluation constructor depends on whether its argument always terminates and 
whether it can be fully evaluated, whereas those aspects are abstracted by our definition of 
refinement. ln fact, an expression [ q] onJy blocks (i.e., its evaluation does not lead to any 
state and the expression is not fully evaluated) in a state 1J if the evaluation of q in this state 
always terminates and never yields a fully evaluated expression. On the other hand, it is 
easy to check that a blocking state (q, 'D} may be a refinement of a state (p, 'D) that might 
either lead to ( q, 1J), yield a result , or diverge. ln this case, ( [ q], 1J) is not a refinement of 
( [ p], 1J}, since the first configuration blocks whereas the second does not. 

Naturally, a notion of refinement considering the aspects discussed above would be a 
congruence with respect to the atomic evaluation constructor. ln fact, such a more concrete 
notion of refinement can be obtained by extending our definition of refinement in a very 
simple and natural way. Using our definition of refinement, we can only establish a weaker 
compositionality result. Indeed, refinement is onJy preserved by the atomic evaluation con
structor if the arguments of this constructor satisfy some conditions, corresponding to the 
aspects discussed above. This is formalized by the following simulation, where we write 
N:FEp(P) to indicate that P never fully evaluates; formally, N:FEp(P) if 

whenever P -+f. P' f+p then -.:FEp(fY). 

Also, we write -l.P P to indicate that P is terminatiog. 

Lemma 4.15 Let S be the relation consisting of Ç(P,Q) and ali pairs in the form 

(([p], 'P}, ([q ] , Q}), 

where (p, P} Ç(P.Q) ( q, Q} and, for any 1J and 1Y such that 1J Ç(P,Q) TY , 

• -l.Q(q, TY} impliesJ,p(p, 'D),and 

• N:FEQ((q , TY)) implies N:FEp((p, 1J)). 
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Then Sisa {P, Q)-simulation. O 

Now we can easily establish the weaker compositionality result for the atomic evaluation 
constructor. 

Theorem 4.16 For any V and V' such that V Ç(P,QJ V', if 

N:F&Q((q, V')) implies N:F&p((p, V)), 

and .!.Q(q, V') implies J.p(p, V) then 

p Ç(P.Q) q implies [p] Ç(P.Q) [ q]. 

o 

4.3.3 Nondeterministic Choice 

The notion of refinement introduced in [3] and discussed in Section 3 abstracts from the 
power of expressions of making externa! choices; that is, an expression that cannot make 
an externa! choice (it always blocks) may be refined by an expression that can always make 
choices (it never blocks). lndeed, a blocked state P may be refined by a state Q that 
eventually reaches P, since by the definition of simulation -+transitions from Q may be 
matched by zero -+transitions from P. 

This suggests that the notion of refinement mentioned above is not preserved by externa! 
choice. ln fact, it is not. For example, let p and q be expressions such that p Ç q and q can 
make choices whereas p cannot. Also, assume that cexp is a non fully evaluated composition 
of experiments. So p O cezp can only lead to an expression cerp' derived from cexp, whereas 
q O cexp can either lead to cexp' or to an expression q' derived from q. Therefore, as there 
is a transition from q O cerp that cannot be matched by p O cezp, we must conclude that 
the first expression is not a refinement of the second. 

A notion of refinement that does not abstract from the power of expressions of making 
externa! choices can be easily derived from the notion of refinement presented in [3], by 
essentially requiring initial transitions from an expression to be matched by at least one 
transition (instead of zero or many) from a related expression. That would be preserved by 
the externa/ choice method combiner. 

Here we shall be content to show that the notion of refinement we are using in this article 
is preserved by the internal choice method combiner, which is defined in the following way: 

P Or Q = (skip ; P) O (skip ; Q) . 

where P and Q are variables and skip is any operation that does nothing and always ter
minate. This constructor preserves our notion of refinement because its behaviour does not 
depend on the behaviour of its arguments. This is a quite satisfactory result since inter
nal choice seems to be more useful tban externa! choice in the context of object-oriented 
languages [2]. The following simulation is the first step towards deriving this result. 
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Lemma 4.17 Let S be the relation consisting of ç;(P,Q) and ali pairs in the forms 

( (p Or cezpp, 'P) 

((skip ; p O skip ; cerpp, 'P} , 

( ( cerpp Or p, 'P) 

((skip ; cezpp O skip ; p, 'P) 

(q Or cezpq, Q)), 
(skip ; q O skip ; cerpq, Q} ), 
(cezpq Or q, Q}), and 

(skip ; cezpq O skip ; q, Q)), 

where (p, 'P} ç;(P,Q) (q, Q} and there is a cerp E CC(P) such that cerpp E cerp :::;p and 
cezpq E cerp ::::;Q. Then S is a (P, Q)-simulation. O 

We can then easily verify that the internal choice method combiner preserves refinement, 
following an approach similar to the one followed for parallel composition. First we derive a 
general compositionality result. 

Theorem 4.18 Let cerp E CC(P), cezpp E cezp :=;f., and cezpq E cerp ::::;Q. If p !;(P,Q) q 
then 

p Or cerpp ç;(P.Q) q Or cezpq 

o 

And finally, by a trivial specialization, the desired compositionality result. 

Corollary 4.19 Let cerp E CC(P). If p ç;1P,Q) q then p Or cezp ç;(P,Q) q Or cerp O 

Symmetric results ~ould be obtained in a similar way. 

5 Other Compositionality Properties 

The basic compositionality properties of standard programming language constructors were 
established in previous sections, by showing that refinement is preserved by them. ln this 
section we show how other compositionality properties can be derived from the basic prop
erties. We use the sequential composition constructor in the examples. Similar results can 
be derived for other constructors. 

First let us assume the basic compositionality properties of sequential composition: if 
p ç;(P,Q) q then, for any cerp E CC(P), 

p ; cezp ç;(P,Q) q ; cerp and cerp ; p ç;(P.Q) cezp ; q. 

As briefly discussed before, this result depends crucially on the condition cezp E CC(P), 
since our notion of refinement is based on the observational behaviour of states with respect 
to a restricted group of experiments. 

Now consider the following compositiouality property: 

p ç;(P,Q) q and p' ç;(P.Q) q' 

implies 
p ; p' !;(P,Q) q ; q'. 

ln geueral , this property is not valid because p' ç;(P.Q) q' esseutially indicates that p' is 
simulated by q' when they are evaluated in reachablc database states related by ç;(P,Q)l 
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whereas p Ç(P,Q) q just indicates that the evaluation of p and q in reachable states related 
by Ç(P,Q) leads to states related by Ç(P,Q)i but note that those resulting states are not 
necessarily reachable, since p and q rnight not be formed exclusively by experiments. So we 
cannot always expect p ; p' to be simulated by q ; q'. On the other hand, the congruence 
result is valid because cerp E Ct:(P) is simulated by ce:rp when they are evaluated in any 
states related by Ç(P,Q) (see Lemma 4.8), if reachable or not. 

Although the compositionality property stated above is not valid, the following weaker 
version of it is indeed valid: for q, p' E Ct:(P), 

p Ç(P,P) q and p' Ç(P,Q) q' 

implies 

P i p' Ç(P, Q) q ; q'. 

It follows from the general transitivity property of Ç(P,Q) ( discussed on Sections 3.2 and 
3.3) since, under the conditions stated above, by the basic compositionality properties of 
sequential composition, we have 

p ; p' Ç(P,P) q ; p' and q i p' Ç(P,Q) q ; q'. 

A similar property can be derived in the sarne way by assuming that q', p E Ct:(P) instead 
of q, p' E Ct:(P). ln fact, those properties would even be valid for ~-derivatives of the 
composition of experiments. 

Many other compositionality properties could be easily derived as well. It is important to 
note that a particular group of those properties can be used to suggest a specific methodology 
for formal development of object-oriented software. ln this article we limit ourselves to give 
the basis for deriving those properties. 

6 Conclusions 

We established severa! properties of the notion of refinement introduced in [3]. ln particular, 
we proved that the relation of refinement of expressions is a congruence with respect to 
severa) standard programming language constructors. We also explained how to derive nove! 
compositionality results from the basic congruence result. The congruence property justifies 
the compositional verification and derivation of implementations; this is essential for formal 
development of complex systems in practice. However, we only considered compositionality 
in the small; properties of compositionality in the large are related to the semantics of 
module systems, which was not discussed in this article. 

The proof of the congruence result justified and provided a deep insight into some of the 
technical decisions adopted in [3]. For instance, by analysing the proof we could conclude that 
the congruence result can only be obtained if experiments have an atomic and terminating 
nature. Moreover, we indicated that atomicity of experiments does not necessarily mean 
that experiments have to be evaluated in one state trausition. lnstead, the fully evaluation 
of an experiment may take many transitions, as long as the only (if any) transition that 
depends on the state or corresponds to a nondeterministic choice is the last one. That is the 
essence of atomicity. 

Anais do X-SBES, Outubro de 1996 53 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


REFINEMENT THEORY 

We could also conclude that the congruence property is only valid for contuts formed by 
visible operations ( experiments). ln fact, this should be expected for any notion of refinement 
based on the observational behaviour of states with respect to a restricted group of visible 
operations. ln particular, refinement is nota congruence with respect to contexts formed by 
user defined method combiners, since they might just be abbreviations for a combination of 
hidden operations. 

We explained why refinement is not a congruence with respect to the atomic evalua
tion and nondeterministic e:.ctemal choice constructors. Basically, the behaviour of those 
constructors depends on some aspects which are abstracted by the notion of refinement ex
plored in this article. However, we verified that nondeterministic internal choice preserves 
refinement, anda weaker compositionality result is valid for the atomic evaluation construc
tor. lndeed, this weaker result indicates how the atomic evaluation constructor should be 
used in practice. Lastly, we concluded that refinement is not in general a congruence with 
respect to visible operations (methods and attributes), since p Ç q does not necessarily 
imply that p and q have the sarne or related types; in fact , this depends on the type system 
of a particular language. So, for a visible operation op, op(p) might be a well formed term 
whereas op( q) is not. 

ln [1] , the general results presented in this article have been specialized to prove that 
FOOPS' (6, 2] notion of refinement is a congruence with respect to most constructors of that 
language. Those results are not proposed as the only tools that should be available for formal 
software development; instead, it is indeed a basis for the definition of refinement calculi (11] 
and methodologies for formal development of concurrent object-oriented software. 

ln fact, just a few notions of refinement of concurrent object-oriented prograrns have 
been proposed so far. We will comment on two of those notions, concluding that none of 
them provide a general definition of refinement with compositionality results such as the 
ones presented here. One of them (7], actually considers only refinement of object based 
concurrent programs, presenting many examples of formal development of programs. Most 
examples are simple and elegant, and use a few refinement preserving transformation rules. 
However, no general definition of refinement is proposed; although the semantics of the 
language presented in [7] is given in terrns of a process algebra, the notions of equivalence 
and refinement of the algebra cannot be directly used to define the notion of refinement of 
the language (8]. 

Another approach for refinement of object oriented concurrent programs is described 
in (9], which gives an overview of a general notiou of refinement for a concurrent object 
oriented specification language. This notiou of refinement is compositional in thc large. 
However, compositionality in the small, as considered here, and proof techniques are uot 
discussed. 
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