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Abstract 

VDM++ is a formal Object Oriented Specification language, derived from VDM. lt 
extends VDM by providing object-orientation, real-time as well as paraUel features. The 
use of the language is supported by design guidelines and a too! set. The latter offers 
graphical representations, syntactic and semantic checking, pretty printing and code gen
eration. ln this paper we address the handling of particular real-time issues a.s supported 
by the language. An outline specification case study is included. 
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1 Introduction 

Formal specifications are of growing importance. ln this paper we report on our work on the 
extensions of VDM++ in the area of real-time specifications. VDM++ is meant to be a notational 
vehicle for system development1

• 

To support the development process, data and operation reification techniques, as known in plain 
VDM, are extended with specific Object-Oriented refinement steps (termed "annealing" ). The 
development of a system from a high-level model consists of repeatedly applying these annealing 
steps. A large collection of more or less standardised reification steps is being developed. The 
language has been used for specification in a number of commercial projects. One of the major 
successes of the language was its use in the CombiCom project [13], which realised a distributed 
Intermodal Tracking and Tracing system for freight transport. 
ln this paper we discuss the features of the language for real-time specifications. 
ln section 3 we briefiy discuss the main characteristics of the language VDM++ , and in section 4 
the design method (see also [11, 14]). ln 5 we discuss the way action/event modelling is included 
in the language, and in section 6 we illustrate the typical real-time features of the language by an 
example. Finally, in section 7 we discuss some conclusions and future work. 

2 Related Work 

During the last years a number of formal specification notations and tools have been developed. 
Some of these notations are Petri Net based (e.g. (16]). Others are based on temporallogic (e.g. 
TLA [11]). Of course, state chart based notations are still in development (e.g. [18]) 

1The VDM++ work wu partially fundeei by the European Information Teehnology Research Programme, Esprit 
III no. 6500. 
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Astral, (19), is yet another formal notation aiming at supporting modelling of real-time systems. 
As the other notations, ASTRAL has ao underlying semantics mechanism that allows - at least 
partially - verification of consistency aod (safety) properties. Finally, we mention CCR [20] as 
representation of the process-algebraic approach. 
Some of these notations have been used quite succesafully in various applications. There is, however, 
intrinsic tension between the formality ofthe notation needed for formal proofs of system properties, 
specified in the notation and engineering capabilities, required for use in larger applications. 
ln VDM++ we deliberately have chosen for the support of engineer•, working on software devel
opment. ln this approach, the aim is to provide constructs that appeal to the engineers using it , 
where provability of properties in the resulting specüications is considered important. 
Therefore, the concepts of VDM++ have been selected to model physical concepts. It is generally 
accepted that object-orientation is a concept with which real-life situations and physical concepts 
cao be modelled easily. 
Our real-time extensions follow the same route of reaaoning. Time, as seen in the controlled world 
is continuous, faithful modelling of real-time systems should reflect that. Events model predicates 
becoming True, i.e. an event is only an event is someone is willing to interpret it as an event. Based 
on this observation, it becomes clear that the notation provides constructs to bind the occurrences 
of events to constructs that specify the reaction of the system on the occurrence of such events. 

3 VDM++ brief overview 

3.1 Language Cbaracteristics 

VDM++ [3, 1] is a formalspecüication language based on VDM-SL (5, VDM Standard] and extended 
in an object-oriented fashion with elements from Smalltalk (4], POOL (6] and Forest (7]. VDM++ 
provides a wide range of constructs such that a user can formally specify concurrent, real-time 
systems in an object-oriented fashion. 
The language was originally created by Eugene Dürr. lt has been developed into a full, mature 
language as as part of the ESPRIT-III project Afrodite (project number 6500). The Real Time 
features were developed in collaboration with I. Hayes (8, 9, 10]. During the Afrodite project, the 
language was established and a too! set known as the Venu tool •et was designed and implemented 
to provide commonly used object-oriented graphical representations (OMT) as representation of 
VDM++ specifications. 
Furthermore, code generators exists with which VDM++ specifications can be transformed into 
C++, Ada95 or Smalltalk code(prototype). (~ee also: www.iíad.dlc/ producta/ venua) 
An overall VDM++ specification consists of a collection of classes. A class specification in 
VDM++ has the following components : 

Class header Apart from the class name declaration an ' is subclass of' clause achieves multiple 
inheritance from other classes. lndexed inheritance (Clcumame[n, . . . , m]) , with severa! copies 
of the sarne ancestor class, is also available. 

Iostance Variables The •t4U of an object is comprised of the set of instance variables, i.e. vari
ables of simple types or VDM-SL type constructors such as sets, sequences and maps. Object 
references -providing client-6hip relation and denoted by OC!assname- can also be declared 
here. Values of instance variables may be constrained by invariant and initial expressions in a 
way similar to VDM-SL 

Methods The functionality provided for 
clients is offered by methocls which an object is willing to execute on behalf of a client. As 
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with VDM-SL operations, metbods can be specified implicitly as well as explicitly. Yet anotber 
form of specification is using tbe not yet specified declaration, indicating tbat the actual body 
will be given in a !ater stage ofthe development. With the declaration u nbcliUs responsibility 
the actual specification can be delegated. The invocation of a method of a client object has 
the form va.ri4bleName!mdhodName(parlist), where variableName is the name of (a reference 
to) an object of some class and methodN ame(parlist) is a call on a method of that class. 

Threads ln VDM++ objects are considered to model/ simulate active world entities. An object 
can be made active by the specific;ation of a thread through tbe lteyword thread followed 
by a threadspecifico.tion. A thread specification has either a procedural or a declarative 
specification. The declarative form specifies an action to be executed repeatedly with a given 
period. For example periodic(.aT)(methodname) . The procedural thread with statements is 
not used in this paper. lt is assumed that a virtual processor is available for each thread that 
occurs in a specification. 

Handling Time Time is considered to be an entity, global to the system. lt's value can be read 
by referring to the implied variable now. Time continuous functions, called time variables can 
be declared. Since, time is considered to be a continuous real variable witb infinite accuracy, 
references to time in a system cannot not use strict equality. 

Aúxiliary Reasoning Each class specification may have an optional Auiliary ReMoning port. 
Axioms, properties, and invariants concerning the correctness proofs of this class and con
st.raints for other dependent classes can be specified in sucb a part. The format is not con
strained, the contents of the auxiliary reasoning part are not yet processed by the tools. 
References to internal states of client objects through read-only access are allowed here. 

Example 
class Train 

instance variables 
.,eed : Real ; 
po111er : Real; 
direetion : < Forward > I < Baelwlard >; 
ino ol>jeetot4te -P(.,eed, po111er) 

methods 
•et.po111er(p : Real) ~ [post po111er = p] 

get~peed() ~ retum(•peed) 
end Train 

The example class defines objects of class Train. The state of the train consists of the power 
supplied to drive the traio, the transmitted speed and the direction. ln tbe invariant, the (Boolean) 
function P couples instance variable speed to power. 
A system specification is completed by the description of a worbpace. Usually, a worltspace has 
a special method called the 'initial-method'. The worltspace mecbanism has the role of the 'maio 
procedure' in other languages. lts role is to create the objects of whicb the system is initially 
composed, and to establish their topological relations. A worltspace object is implicitly created at 
the start of the pseudo execution of the specified system and its initial method is involted by Deus 
ez Machina. Furthermore, parallel executing objects are normally started from here. 

3.2 Semantics 

A complete formal semantics of VDM++ has been produced over time. The 00 structuring is 
defined in (23). The parallel and real time constructs are treated in (24) using RTL. The reasoning 
techniques are proven in (25). An overview of ali real time semantics can also be found in (26). 
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4 The Design Approach 

The Afrodite design approach i.s based on the obeervation that in each development process, the 
in-depth understanding of domain, system and environment behaviours improves gradually with 
time. It is of vital importance to provide means for recording these intermediate leveis of under
standing. ln our opinion, thi.s process of improved understanding can be described as the route from 
initially quite abstract descriptions of the system, into inc:reasingly concrete descriptions, taking 
implementation aspects in to account. 
We sometimes cal! this "d~ahstraction". The ~uccessive models can be viewed as shown in figure 1: 

Figure 1: Sequence of Models Paradigm 

Each model provides, in principie, a ful1 representation of the ultimate system. For such a system 
specification, an animation or simulation can be generated. With the addition of a simple user 
interface one can arrive at a full system representation, of substantial value in discussions with 
end-users. 
Clearly, this is support for the iterative spiral approach. The way in which each model is derived 
from a previous one i.s determined by a set of guidelines or rules. This relation between the two 
subsequent models is illustrated in figure 2: 

- ~ 
_, - S = Retrieve ( T ) ·-·-·- I 

. 

. 

. . 
. 

Figure 2: Relations between models : the rules 

The rules are characterised by formal relations between the states and by the methods of the 
classes. The retrieve function plays a central role in this mapping. So far, the retrieve function has 
been defined and proved correct in about ten development steps. For a comprehensive treatment 
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see [22]. We have írequently found that writing down the retrieve function for a development step 
is itse.lf a demonstration of the validity of the transformation involved. 
II the rules are applied properly, the design steps together constitute a derivation process scarcely 
in need of additional proofs. The final system, however, has a proven relation with the first model 
in its invariants and its method functionality. 
For the future, we envisage that this set of annealing steps will help to structure the design process 
itself. Perhaps this is the first step of an important new direction, comparable to the "goto"-less 
and structured programming (r)evolution in the 80's . At the time, the programming levei was 
concerned, this time it will be the design and specification levei. 
ln summary the use of design refinement rules: 
• limits the number of steps to be made 
• structures the design process itself 
• introduces a design based on refinement 

Figure 3: Annealing: The Basic Step and the Real Time Cycle 

ln the special case of real Time systems, we envisage a preliminary stage in the design using time 
continuous quantities. Through application of a sampling mechanism the discrete version of this 
requirements model is derived. Then the decomposition strategy outlined above is followed with 
additional real time expressions. This design route will be shown in the case study in chapter 6. 

5 Real Time Features iD Detail 

5.1 VDM++ Event handling 

ln reactive system designs often some form of an event driven mechanism is applied. Requirements 
for event handling in a specification notation are (i) the ability to specify events, (ü) the ability to 
specify the system's reaction upon an event, and (üi) the ability to specify temporal constraints on 
the occurrences of events and reactions. 
Generally speaking, an event is the marlter intime at which a predicate yields True. We distinguish: 

1. an observable transition of the state of system. Within an 00 specification this is typically 
a value change of one or more instance variables, possibly also a change in invariant or other 
expressions. 

2. the transition of the systems' state resulting from handing a method request or method invoc
ations. Here the changes are conceptually observable through hutory variables. 

VDM++ has the following built-in events which are described by the atomic updates of the history 
variables: 
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• On each request to execute a method "methodname" an eftllt occurs which is recorded by the 
system by atomically incrementing the implicit counter #f'eq(methodname) 

• the actual activation (start) of the method constitutes a BeCOnd evmt which is noted by incre
menting the implicit counter #act( methodname) 

• the event defining the completion of the method execution is implicitly recorded by increment-
ing #fin(methodname) 

The default available variables #req, #act and #fin record the transitions as counters. Two 
functions over hi.story variables have been defined to ease specification of common situations: 
#actin (mn) = #act(mn) - #fin(mn) and #waiW!c(mn) = #req(mn)- #-c:t(mn) . 
Although method invocation in a periodic thread is not by an explicit call, the same events apply 
here. 
VDM++ offers the capability of connecting an action to the occurrence of an event, using a state
ment of the form: 

whenever < predicatel > also [ from < delc.y > ] < pr~2 > 

Thi.s specification (to be a part of the time invariant part of an object) states that whenever 
predicatel becomes True, the object should reali.se prediCGte2 within dday time units. 
Conditions, occurring in such statements, are typically predicates over 
- time variable.r 
- hi.stcry variable.r 
- 1tate variable1. 
Examples 
A typical exa.mple of a specification then is: 
whenever #OGt(mcthocinom<~)> O also from 61 #<k:t(mcthocinomc) =O • 
Here, an upper-bound for the execution of methodname is given. As soon as methodname is 
di.spatched, the specification requires the implementation to ensure that the finali.sation of the 
invocation of methodname is not more than 61 units of time later. The language provides a 
shorthand notation for thi.s: duration(methodname) $ 61. 
Obviously, having the notion of time, one can raiae an alarm at a specified time 
whenever nouo > Thi•Timc also from 6 #OGt(olormMetMd) > #fin(olormMetMd) 
Thi.s states that after a certain calendar time is reached, the execution of the alarm-method should 
be started within 6 time units. -Altematively written: ... #OGtioe(olc.rmMetJaod >O. 
The next example shows a statement in which an unspecified predicate (indicated by ' ... ' e.g. a 
resource is in use), is to become True within 6 units of time from #act > #fin becoming True (the 
start of the method). 
whenever #oct(mcthocinomc) ~ #/in(mcthocinomc) also from 6 .• • 
To specify that execution of a method is urgent and must not be blocked for long one might write: 
whenever #waitin&(methodnamc) > O also from delta ••. 
It is assumed that the performance "consumption" for the evaluation process of the various con
ditions is taken into account when writing the specification. The existence of the "from delta" 
construct acknowledges that in the real world computations and reactions takes time and cannot 
be executed in zero time. Omitting such a restriction specifies a requirement that is impossible to 
fulfil: the predicate acting as consequent in the implication is to be made True in zero units of time. 
It will be clear that periodic obligations can be specified using an event style: 

periodic(t. T) (amethod) means : 
forall /c in Nat whenever now lO:$ /c • t. T 

<~lso from ó #=tive(amethod) >O 
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with du,.ation(amethod) + 6 S t.T as a precondition, this specification activates the method at least 
once in each interval < k • tiT, (k + 1) • liT > 

5.2 Time Variables 

If sensor based systems are involved, the interface between the controlled system and the controlling 
system may contain variables that can be assumed to change spontaneously with time. Such 
variables are considered to be Time continuous function&. Their use is confined to high levei models 
of the system and its environment which function as context for the high levei requirements. On 
these variables assumptions and effects can be defined. The effect clauses is the equivalent of an 
invariant for time variables: it is a timed property which should always hold. 

time v•ri.bles 
temp : rui; 
colou,. : RED-GREEN 

effect temp, colour ~ whenever temp ~ T J) •lso from 6 colour =RED 

ln a !ater refined model, a sensor object will probably be introduced and the temperature observa
t ion mechanism will be specified in more detail in a time discrete fashion. 

5.3 Safe Event Interaction 

The conditions, associated with events, become True at externally determined moments. lt is 
therefore not excluded that two or more conditions become True at the sarne time. If the actions, 
associated with the handling of these events, refer to the sarne state variables, formally speaking, 
the result is undefined. lt will depend upon the speed and the (arbitrary) order in the execution 
ofthe components; race conditions might occur. 
Safe specificatioru can therefore not use instance variables in an updating mode, unless extensive 
proofis delivered about non interference to these variables at ali times. Read only access is safe. We 
are considering a language extension which allows users to add their own sync variables (variables 
which can be updated atomically) similar to the currently built-in #req, #act and #fin. Passive 
classes may be protected against interference by concurrent method calls by the use of permission 
guards, defining the object states at which each method may be activated. These guards are mainly 
predicates over history variables. 
The semantics of having more than a single whenever clause within a single thread deserves some 
attention. Current semantics allow multiple whenever clauses within such an object. ln the event 
that two or more events become True at the sarne moment, unsafe situations show up when both 
events try to access/ update the sarne instance variable or require (confücting) method executions. 

6 The Design Case 

6.1 The problem description 

We give here the full design route of a typical real time problem from the literature. The early highly 
abstract models are kept (too) simple, because we want to highlight the derivation methodology 
which is typical for VDM++ . ln the Booch version ( See also Mary Shaw's article (27] in which 
severa! methods and their solutions to the "Cruise Control system" by G. Booch are presented.) 
the Cruise Control System (CCS) has the following properties: 
lt exists to maintain the speed of a car even over varying terrain, when tumed on by a driver. When 
the brake is applied the system must relinquish speed control until told to resume. The system 
must increase and decrease speed as directed by the driver. As a general condition we have system 
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system onlolf 

Figure 4: Block Diagram of the system 

ON/ OFF. ON denotes that the system should maintain the car speed. If OFF the system (function
ality) does not exist: the power is off. The inputs are: 

• Engine ON/OFF. 

• Brake oN. When the brake is pressed, the CCS temporarily reverts to manual control. 

• Pulse$ from Wheel . Pulses are sent each revolution of the wheel. 

• lncrease/ decrea8e speed. The setting of the desired speed. 

The Output : Throttle The Digital value for the engine throttle setting. 

Deflning the Speed 
Mary Shaw rightfully mentioned, that a car's speed is not determined by the rotation speed ( + 
size) of only one wheel. ln curves differential geara cause variations in rotationalspeed between the 
inner and outer wheels of the car. So we take here w(t) is the angular velocity of the drive shaft. 
The quantity w(t) is a time continu01U function and beeause we can safely assume that the tire 
radius is constant over the lifetime of our CCS, it is the representation of the actual speed of the 
car. The desired revolution speed is called WtJ . 

6.2 Goal description 

The Cruise Control Requirement when the system = ON can now be defined as if engine = ON 1\ 
brake= OFF then: 

whenever w(t) > W4 + al alsofrom d1 w(t) $ W4 + al 
.1\ wheneverw(t) < W4- a2 •lsofrom d2 w(t) 2: W4- a2 

ln a graphical representation is given in figure 5. 

(1) 

There can be good reasons to take different values for the constants in the figure, but for simplicity 
we use: ó1 = ó2 = ó and A 1 = A2 = A. This simplification allows use to combine the two deviations 
in one line using the absolute value. 
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Figure 5: Velocity as time continuous function 

6.3 The Abstract Controller: A Requirements Model 

We can give the following specification for the closed system : 

Class ControiledCar 
values 

.o., 6 
instance variables 

brake.1tc.U 

real 

engine.ataU 
active 

inv ob;ec.t•tat.e ~ 
W4 

time variables 

ONIOPl"; 
ONIOPl"; 

: boole.an 
engine..otaU • ON 1\ bralce..otate 

: Real; • • the deoireti 1peed 

w real •• the actual ~(t} 

effect obiect- 1tate ~ active ~ cite equation(l} 

•OPl" 

A not active ~ . . . - -.anual control 
end ControlledCar 

Remark 
The fact that the ControlledCar should operate even over varying terrain makes it in principie ao open 
system. To avoid very complicated formulas we will ignore thia aapect in the next section when we define 
the car+engine behaviour. We ux here the transfer function ?l(t) between apeed and throttle value in the 
time domain.( We might have uaed differential equations inatead.) We assume auch a relation exists. Such 
a relation may be complicated due to air-resiatance, externa! winds, surface resistance and up-hill/ down-hill 
roads. 
End of Remark 
We will now make a distinction between the Controller and the Controlled Sy11tem. 
I Controller 1-+ throttlevalue -+ 

+- speed +- I CarEngine I 
A CarEngine object hides the relatlon between the throttle-value and the speed. The controller 
observes continuously the deviation of the actual speed from the desired speed. It sets the throttle 
with a symbolic function :F. The splitting creates two classes. 
ln the workspace the following coupling is necessary between the time continuous variables in the 
created objects from both classes : 

topology [ post aCar Engine · car1peed • aControiler · •peed 
A aControiler · throttleoetting • aCarEngine · throttleualou] 

Through substitution we can show that these two objects in the given topology have equivalent 
behaviour as the previous ControlledCar object. This splitting is thus a real refinement. 
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Clau CarEngine 
time variables 

input throttle11altu : real 
"' : real • -the 1p«tl repr. 

effect .x.;echttJu ~ 
C4r1peed • 1l(t) • throttlevalu.. 

endCarEngine 

6.4 The Design Route 

Clau Ab.tradC ontrolli!T' 
values 

l,ll., c : real 
instance variables 

active . . . . - - '"" ControlledCar ; 
w.JJ : real; •• duma,-

init deftred - "'JJ : • ••• ; • • init cat creation time 
time vwiables 

output throttl•••tting : real 
input ... : real 

effect oõ;echttJU ~ active => 
whenever I "' - "'.d 1 > t1. e11o trorn.s 

throttUt•etting- F(w,w.JJ) 
enciAb•tractControUer 

We now focus on the design of the controller. It will be clear however that al.l reasoning ( = 
requirement tracing and satisfaction proof) will need the CarEngine behaviour to reach the levei 
of our initial requirements on the car speed. The above sketched AlnrtractController will be the 
start for the design process. ln one overview the derivation process can be given as follows: 

Figure 6: Design Process overview 

• First a slightly more detailed ContinuousController is designed. 
• Next the discrete version of this controller is specified. 
• Finally, through an annealing step, the throttle and the speed sensor are put into separate objects 
which are connected to the controller. 
Ali these versions of the Controller are subclasses of the abstract controller. 

6.5 Continuous-Controller 

The first Model of our Cruise Controller, operates conceptually in the time continuous domain, 
where the effect clause formalises the time dependent (dynarnic) parts of the system requirements. 
We introduce for the symbolic function a (too) simple linear algorithm. The engine and brake 
dependency and the &etDesiredSpeed() method are added here. This method will have to be 
implemented by each derived subclass in the implementation. 

clau Continuou1ControUer 
is subclass of Ab1 tractC ontroller 

time variables 
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- - "' and tlarottle•etting are inMntecl 

effect "'• tlarottluetting ~ active '* 
( whenever I"' - ..,Ji I > A alto from 6 

1\ whenever I ... (t) - ..,Ji I < A alto from 6 
methods 

•etDe•ireclSpeecl(• :re.al) ~ ..,Ji :•• 
end ContinwnuControUer 

tlarottluetting = tlarottluettíng - C • ("' - ..,Ji) 
tlarottluetting = tlarottle•etting 

ln VDM++ the variable means the old value, before the current method invocation. ln this version, 
the effect clause is an refinement (or implementation) ofthe one in the AbstractController a.nd must 
be consistent with it. 
The system itself now consists of One Cruise Controller Object, which is created and activated. 
Ali values from the externa! world are still incorporated into one monolithic object. The main role 
of this M odeio is to reveal the dependencies between the variables and to investigate ali invariants. 
Invaria.nts come in two versions: the well known static ones and the dynamic effect clauses con
straining the time variables. A continuous class may have both. 

6.6 Toward. a Discrete Solution 

Because the above stated requirements still operate in a time continuous domain, a transformation 
into a.n equivalent discrete object is necessary before we can apply 00 and discrete software actions 
like method invocations, periodic executions etc. For this simple set of relations the descretising 
is not too difficult. The first activity which is needed in the analysis is the definition of the time 
resolution required for this problem. 

6.1 Tizning analysis 

Suppose we use a sensor which generate a fixed number of pulses (e.g. 10) for each revolution of 
the wheel. The frequency of the pulses is then a linear function of the angular velocity a.nd thus 
of the car speed. We propose here to use an implementation which determines the frequency by 
counting the pulses in a fixed interval. 
Fault tolerance for errors such as wheels not rotating, or missed pulses would need other or addi
tional sensor equipment. 
With a tire sise of say 33 cm (11 in.) we get a perimeter :::: 2m. A crui.si.ng speed of 72 km/ h ( = 
20 m/s) -+ w:::: 60 rad/•:::: 10 revolution•f• gives a pulse frequency of 100Hz. 
A huma.n driver would have a response time of about 0.1 sec between the observation of a deviation 
and the action. The car could accelerate to a new speed in about 1 sec. If we consider this as 
targets for the responses of the automatic system, we need to detect a cha.nge of speed in about 
0.1 sec. lf we decide to take a pulse count ten times a second we shall have 100 pulses per interval 
at 72 km/ h. So the pulse resolution will yield about 1% measurement accuracy. This should be 
satisfactory. The accuracy decreases as the speed decreases, but at 36 km/ h it still would be 2% 
which could be set as the lowest speed at which the automatic system is to work. For the revolution 
speed the minimum tolerance is thus t::.. ~ 0.1 rev/ s(= 0.6rad/ s) 
The highest working speed is determined by the highest frequency at which the pulse counter ca.n 
work, which will be approximately the system clock pulse rate. A system clock of 1000 Hz will 
then fail above 720 km/ h. This is probably sufficient for a.ny car to be used in traffic. 

Control Loop Frequency 

If we accept a minimum speed of 36 km/ h with the 2% error the controlloop period is 0.1 s or 100 
ms, or a frequency of 10 Hz. The periodic obligation is thus set on 100 ms. 
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The discrete Model ca.n now be derived because we showed that the 100 ms repetition rate with a 
1 ms dock accuracy i.s acceptable under the currently stated requirements. An a.nalysi.s such as the 
one described above, i.s certainly one of tb.e many safety a.nalyses needed in a.ny real time system. 

6.8 Discretising 

Conceptually the next step i.s to sample the time continuous variables introduced in the first model 
and generate a sequence of observationsf samples approximating the time continuously variable. 
Our SW / HW system has to operate based on these series of samples. The following intermediate 
step shows in a tractable way that the design route is correct. We describe the transformation 
process here with a sampler object. This object createa from the time continuous variable w a 
time series of discrete observations stored in the sequence wdi1crete. Its behaviour is an abstract 
version of an A/ D converter. ln this problem the pulse generator on the wheel takes up part of 
this functionality. 

class Sompler 
instance varúobles 

wdi •eretc seq of rui --düeretc time unu 
time variables 
input w : real -- eontinuow time t1111'Íoble 
methods 
tokuomple() 

~ [ post let m11•omple : rui in 
3 t E [iiõW, now] · mJ1umple • w 1\ wduerctc • Ulêli;erctc • (mJI..amplc] ] 

timed post : duration(mJI•omple) • 6..p < 100 
ttorud 

pcriodic(100) ( tokuomple) 
end Somplcr 

The iiõW denotes the staring moment of the execution and now the end. The time resolution of the 
specification i.s defined as 1 milliSecond: this means that the periodic obligation fires here each 
100 ms. 

6 .9 Derivation of the Discrete Model 

This discrete model uses a series of samples on the rotational speed w over time. We have now 
to refine/ translate our efFec:t dauses from the AbltradCrui1eController into observations on this 
sequences of samples. Here again one i.s confronted with the trade-offs so common in engineering 
based on acceptable inaccuracies. One could state that formally that the Model1 to be developed 
now, as again a monolithic but discrete representation of our problem i.s an Appro%imation of the 
previous model. 
Given a sequence of samples : w1 , "'2, . .. , w1 in which w1 i.s the most recent sample the requirement 

whenevtr lw(t) - w.d I > t:. aho from 6 •.• 

has to be transformed into into a set of actions which should be taken each time when a new sample 
arrives. We assume here that the invariant i.s assured at the moment of w1_ 1 . This is done by the 
system initialisation. 
With the appearance of new sample w1 three possibilities show up : 

1114 - ll < 1111 < 1114 + ll =>no c:hange needed 
1111 > 1114 + t:. :::>apeed reduction needed 
1111 < 1114 - t:. :::>acceleration needed 
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Speed reduction and acceleration are achieved here by invoking a throttle control method with 
either a positive or a negative parameter. More intelligence can be built in by using higher order 
integration methods for the calculation of a new throttle value. Tbe sequence lengtb and tbe 
number of parameters has to be adopted accordingly of course. Here we limit ourselves to the 
simple case of two parameters: w and w,...u. Wbether one wants to transfer tbe desired speed also 
to the throttle controller or not (and let it lr.eep the old value) is a matter of taste and perhaps 
maybe of performance. 
The operotionalisation of tM effect claue now transforms for the action part into: 

whenever not w..d - l:J. < w.:t < w..d + l:J. also from 6 #active(throttleControl) = 1 

Here again it is clear that we can only send a control signal to the throttle. The first part of the 
whenever clause is made operational by periodically checlr.ing the condition. Here the used sample 
value sequence ( omega) contains always the last two samples of the previously defined unbounded 
sequence produced by the sampling wdiscrete. 
This yields the following discrete specification, which is baseei on the ideal set of samples wdiscrete, 
without specifying how they are obtained. omega[2] is here always the last sample. Form
ally the relation between these sequences is: omcgo(1) = wclúcretc(len(wclúcretc) - 1) ~go(2) = 
wcli•cretc( len( wclúcretc)) 

das Di1cretcM onolyth~CruúeControllcr 
is r.ub dau ofAb•tractCrvúeControUcr 

nlues 
de1IÍ4tion - o . 6 ; 

functions 
in.range R • R • R -+ Bool 
in.range(wt, wcl,clelta) - in.range • I wt - wcl I > delta 
instance vwbles 

methods 

omcga : seq of rui; 
111d : rui; 

inv omcga ~ len omcgo • 2 
rate : rui 

inv rate,omcgo - rate • omego(2) -omego(1) 

throttle..t:M>trol ( .,_1,111.2 :rui) is not yet sp«ified 
(timed post - duration {throttle.-ntrol) < 6 J3 ] 

honclleSample() 

"' if ...:tive then 
if in.range(omego(2), w.A,de.n..tion) then slcip 

else throttle~ol(omcgo(2) - ,,J..Jl, rate) 
( timed post : duration(honclleSample) • 6_4] 

thrud 
periodic{100) { honclleSample(}) 

Aux Rusoninc 
clvration(throttcl.A:ontrol) = 6J3 < 6-4 
clurotion(honclleSomple) 6_4 < 100 

end Di•creteCrui1eController 
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6.10 The Discrete Secood Model Model2 

We want to replace the sampling mechanism with an abstract representation of the real world 
sampler: the Sensor Object through "Annealing". The sensor will conceptually count continuously 
(e.g. using integration) the pulses and is interrogated by the controller each 100 ms. lt produces 
a new value for the speed through the method get•ample. The sec::ond step taken is to anneal the 
throttle controller via a separate object too. One could do the sarne thing with the other input 
variables like the engine and the brakes. For sake of simplicity we keep these values here internally 
inside our controller and assume that state changes on these variables are relayed through externally 
initiated methods calls of our controller: 
dau Di•creteC....UeContJ'oller2 
functions 
in..range R • R • R -+ Bool ... 
imtanc:e variables 

OSen.or 
OThrottleController 

engineJttste, brahJttste : ON I OP'P ; 

active : boolun 
inv oõject.ttste ~ acti11e • 
engineJttste • ON 1\ bralce. •tate • OP'P: 

omego : seql of rui; 

inv omego ~ len omego • 2 
>#A,rate : real; 

inv rate, omego ~ rate • omcga(2) -omcgo(1) 

~thods 

1etEngine() is not yet specified: 
•etBralce{) is not yet spec:ified; 

•etDuiredSpeed(w..n : real)~ (postwJI • w..n]: 

doSample() 
- def a1ample • aSen.or ! get.ample() in 
(if active then 
(omega :• omego • (a•amplc] : 
if in..range(a~ample, wJI,deviation) then sltip 
else aThrottJ.e ! •ctControl(a~ample-wJI,ratc))) 

timed post : duration(doSample)-.f..5 
thrud 

periodic:(100) (doSample{)) 
Aux Reasonin1 
duration(doSample) = 6..5 < 100 

end Duc:reteCr..UeContJ'oller 

The duration requirements for the &etControl method can be calculated if upperlimits for each of 
the statements in the doSample method are choosen. 
The workspace of the final system creates one Controller, one sensor and one throttle controller, 
establishes the topology between these objects and starts their periodic threads. 

6.11 Issues Uoder-specifled 

Overshoot As in any discrete control system, special attention should be payed to overshoot and 
undershoot situations. Here only the maximum interval length appears in the specification. 
Such a requirement depends on unknown parameters and properties. Suppose the car is 
driving up-hill and does not have power enough to maintain the desired speed. It may take an 
undefined long time, until e.g. the top of the hill is reached. Ali this time the speed will be 
too low. 
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Engine behaviour A second observation is the relation between throttle setting and speed. A 
more complete model (transíer functions from control engineering) is needed to ensure that 
the required behaviour of the car with cruise controller is satisfied. The requirement that the 
terrain may vary makes this extra complicated. 

Undefined behaviour The current solution will expose unexpected (=undefined) transient be
haviour, ü the desired speed levei is suddenly increased or decreased with large quantities. 
This is however outside the requirements scope. 

7 Conclusions 

We have shown, in the frame work of a well known (canonical) real time ex.ample, the nove! 
approach (8) oí using time continuous functions within a formal specification language as VDM++ . 
The derivation o! the discrete solution through intermediate development steps cle.arly highlights 
the trade-offs involved in each design step. The ideal time continuous specification plays the role 
of the exact but un-implementable model. The derivation oí the discrete models through common 
control and signal theory transformations, yields a correct approximation oí the ideal model. 
The high levei time constraints have been carried along through out the entire design path. ln the 
final model they end up as maximum processing time requirements oí simple elementary methods. 
For each implementation in a given environment (OS,RT kemel, HW, etc.) these upper limits can 
be mea.sured at unit levei of the code (procedures, methods etc.). 1í these upper limits can be 
satisfied (including the necessary system overhead because their end time is specified !) the entire 
system will meet the upper levei non-íunctional requirements (períormance criteria). 
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