Real Time Formal Specification using VDM*+

EuGkNE Diirr,!
STEPHEN GOLDSACK?
JAN vaN Karwnx?®

! Cap Gemini, The Netherlands
2 Imperial College, Great Britain
3 Delft University of Technology, The Netherlands

Abstract

VDM** is a formal Object Oriented Specification language, derived from VDM. It
extends VDM by providing object-orientation, real-time as well as parallel features. The
use of the language is supported by design guidelines and a tool set. The latter offers
graphical representations, syntactic and semantic checking, pretty printing and code gen-
eration. In this paper we address the handling of particular real-time issues as supported
by the language. An outline specification case study is included.

KEY WORDS: Software Engineering, Real-time Object-Oriented processing, Transportation

1 Introduction

Formal specifications are of growing importance. In this paper we report on our work on the
extensions of VDM™** in the area of real-time specifications. VDM** is meant to be a notational
vehicle for system development.

To support the development process, data and operation reification techniques, as known in plain
VDM, are extended with specific Object-Oriented refinement steps (termed "annealing”). The
development of a system from a high-level model consists of repeatedly applying these annealing
steps. A large collection of more or less standardised reification steps is being developed. The
language has been used for specification in a number of commercial projects. One of the major
successes of the language was its use in the CombiCom project [13], which realised a distributed
Intermodal Tracking and Tracing system for freight transport.

In this paper we discuss the features of the language for real-time specifications.

In section 3 we briefly discuss the main characteristics of the language VDM™* | and in section 4
the design method (see also [11, 14]). In 5 we discuss the way action/event modelling is included
in the language, and in section 6 we illustrate the typical real-time features of the language by an
example. Finally, in section 7 we discuss some conclusions and future work.

2 Related Work

During the last years a number of formal specification notations and tools have been developed.
Some of these notations are Petri Net based (e.g. [16]). Others are based on temporal logic (e.g.
TLA [17]). Of course, state chart based notations are still in development (e.g. [18])

!The VDM++ work was partially funded by the European Information Technology Research Programme, Esprit
11 no. 6500.

AL pamnsecilng D b Ao 2

http://www.cvisiontech.com

ReAL TIME SPECIFICATIONS WITH VDM*++

Astral, [19], is yet another formal notation aiming at supporting modelling of real-time systems.
As the other notations, ASTRAL has an underlying semantics mechanism that allows - at least
partially - verification of consistency and (safety) properties. Finally, we mention CCR [20] as
representation of the process-algebraic approach.

Some of these notations have been used quite successfully in various applications. There is, however,
intrinsic tension between the formality of the notation needed for formal proofs of system properties,
specified in the notation and engineering capabilities, required for use in larger applications.

In VDM*™* we deliberately have chosen for the support of engineers, working on software devel-
opment. In this approach, the aim is to provide constructs that appeal to the engineers using it,
where provability of properties in the resulting specifications is considered important.

Therefore, the concepts of VDM** have been selected to model physical concepts. It is generally
accepted that object-orientation is a concept with which real-life situations and physical concepts
can be modelled easily.

Our real-time extensions follow the same route of reasoning. Time, as seen in the controlled world
is continuous, faithful modelling of real-time systems should reflect that. Events model predicates
becoming True, i.e. an event is only an event is someone is willing to interpret it as an event. Based
on this observation, it becomes clear that the notation provides constructs to bind the occurrences
of events to constructs that specify the reaction of the system on the occurrence of such events.

3 VDM-++ brief overview
3.1 Language Characteristics

VDM*+ [3, 1] is a formal specification language based on VDM-SL [5, VDM Standard] and extended
in an object-oriented fashion with elements from Smalltalk (4], POOL (6] and Forest (7). VDM*+
provides a wide range of constructs such that a user can formally specify concurrent, real-time
systems in an object-oriented fashion.

The language was originally created by Eugéne Diirr. It has been developed into a full, mature
language as as part of the ESPRIT-III project Afrodite (project number 6500). The Real Time
features were developed in collaboration with I. Hayes [8, 9, 10]. During the Afrodite project, the
language was established and a tool set known as the Venus tool set was designed and implemented
to provide commonly used object-oriented graphical representations (OMT) as representation of
VDM** specifications.

Furthermore, code generators exists with which VDM specifications can be transformed into
C++, Ada95 or Smalltalk code(prototype). (see also: www.ifad.dk/products/venus)

An overall VDM™* specification consists of a collection of classes. A class specification in
VDM™** has the following components :

Class header Apart from the class name declaration an 'is subclass of’ clause achieves multiple
inheritance from other classes. Indexed inheritance (Classname[n, ..., m]), with several copies
of the same ancestor class, is also available.

Instance Variables The state of an object is comprised of the set of instance variables, i.e. vari-
ables of simple types or VDM-SL type constructors such as sets, sequences and maps. Object
references -providing client-ship relation and denoted by @Classname- can also be declared
here. Values of instance variables may be constrained by invariant and initial expressions in a
way similar to VDM-SL

Methods The functionality provided for
clients is offered by methods which an object is willing to execute on behalf of a client. As

SR Voo ind PANGION DDECamsrace

http://www.cvisiontech.com

Eugeéne Diirr, Stephen Goldsack and Jan van Katwijk

with VDM-SL operations, methods can be specified implicitly as well as explicitly. Yet another
form of specification is using the not yet specified declaration, indicating that the actual body
will be given in a later stage of the development. With the declaration is subclass responsibility
the actual specification can be delegated. The invocation of a method of a client object has
the form variableName!methodName(parlist), where variableName is the name of (a reference
to) an object of some class and method N ame(parlist) is a call on a method of that class.

Threads In VDM™** objects are considered to model/simulate active world entities. An object
can be made active by the specification of a thread through the keyword thread followed
by a threadspecification. A thread specification has either a procedural or a declarative
specification. The declarative form specifies an action to be executed repeatedly with a given
period. For example periodic(AT)(methodname). The procedural thread with statements is
not used in this paper. It is assumed that a virtual processor is available for each thread that
occurs in a specification.

Handling Time Time is considered to be an entity, global to the system. It’s value can be read
by referring to the implied variable now. Time continuous functions, called time variables can
be declared. Since, time is considered to be a continuous real variable with infinite accuracy,
references to time in a system cannot not use strict equality.

Auxiliary Reasoning Each class specification may have an optional Auziliary Reasoning part.
Axioms, properties, and invariants concerning the correctness proofs of this class and con-
straints for other dependent classes can be specified in such a part. The format is not con-
strained, the contents of the auxiliary reasoning part are not yet processed by the tools.
References to internal states of client objects through read-only access are allowed here.

Example
class Train
instance variables
speed : Real;
power : Real;

direction : < Forward > | < Backward >;
inv objectstate ==P(speed, power)
methods
set_power(p : Real) :[putm=p];
getspeed() = retum(speed)
end Train
The example class defines objects of class Train. The state of the train consists of the power
supplied to drive the train, the transmitted speed and the direction. In the invariant, the (Boolean)
function P couples instance variable speed to power.
A system specification is completed by the description of a workspace. Usually, a workspace has
a special method called the ’initial-method’. The workspace mechanism has the role of the 'main
procedure’ in other languages. Its role is to create the objects of which the system is initially
composed, and to establish their topological relations. A workspace object is implicitly created at
the start of the pseudo execution of the specified system and its initial method is invoked by Deus
ez Machina. Furthermore, parallel executing objects are normally started from here.

3.2 Semantics

A complete formal semantics of VDM™** has been produced over time. The OO structuring is
defined in [23]. The parallel and real time constructs are treated in [24] using RTL. The reasoning
techniques are proven in [25]. An overview of all real time semantics can also be found in [26].

= - 5 &
Aerta A CORED Sy b A 1007 =l

http://www.cvisiontech.com

Rear TiMe SpeECIFICATIONS WITHE VDM*++

4 The Design Approach

The Afrodite design approach is based on the observation that in each development process, the
in-depth understanding of domain, system and environment behaviours improves gradually with
time. It is of vital importance to provide means for recording these intermediate levels of under-
standing. In our opinion, this process of improved understanding can be described as the route from
initially quite abstract descriptions of the system, into increasingly concrete descriptions, taking
implementation aspects in to account.

We sometimes call this "de-abstraction”. The successive models can be viewed as shown in figure 1:

Figure 1: Sequence of Models Paradigm

Each model provides, in principle, a full representation of the ultimate system. For such a system
specification, an animation or simulation can be generated. With the addition of a simple user
interface one can arrive at a full system representation, of substantial value in discussions with
end-users.

Clearly, this is support for the iterative spiral approach. The way in which each model is derived
from a previous one is determined by a set of guidelines or rules. This relation between the two
subsequent models is illustrated in figure 2:

S =Retrieve (T)

Ll

T

Figure 2: Relations between models : the rules

The rules are characterised by formal relations between the states and by the methods of the
classes. The retrieve function plays a central role in this mapping. So far, the retrieve function has
been defined and proved correct in about ten development steps. For a comprehensive treatment

http://www.cvisiontech.com

Eugéne Diirr, Stephen Goldsack and Jan van Katwijk

see [22]. We have frequently found that writing down the retrieve function for a development step
is itself a demonstration of the validity of the transformation involved.

If the rules are applied properly, the design steps together constitute a derivation process scarcely
in need of additional proofs. The final system, however, has a proven relation with the first model
in its invariants and its method functionality.

For the future, we envisage that this set of annealing steps will help to structure the design process
itself. Perhaps this is the first step of an important new direction, comparable to the ”"goto”-less
and structured programming (r)evolution in the 80’s. At the time, the programming level was
concerned, this time it will be the design and specification level.

In summary the use of design refinement rules:

o limits the number of steps to be made

e structures the design process itself

introduces a design based on refinement

This is a bijection - a ial case of the adequacy condition.
The retneve function has an inverse.

Figure 3: Annealing: The Basic Step and the Real Time Cycle

In the special case of real Time systems, we envisage a preliminary stage in the design using time
continuous quantities. Through application of a sampling mechanism the discrete version of this
requirements model is derived. Then the decomposition strategy outlined above is followed with
additional real time expressions. This design route will be shown in the case study in chapter 6.

5 Real Time Features in Detail
5.1 VDM*+ Event handling
In reactive system designs often some form of an event driven mechanism is applied. Requirements
for event handling in a specification notation are (i) the ability to specify events, (ii) the ability to
specify the system’s reaction upon an event, and (iii) the ability to specify temporal constraints on
the occurrences of events and reactions.
Generally speaking, an event is the marker in time at which a predicate yields True. We distinguish:
1. an observable transition of the state of system. Within an OO specification this is typically
a value change of one or more instance variables, possibly also a change in invariant or other
expressions.
2. the transition of the systems’ state resulting from handing a method request or method invoc-
ations. Here the changes are conceptually observable through history variables.
VDM™** has the following built-in events which are described by the atomic updates of the history
variables:

cmpression: OCOR:. web opiinitzat

http://www.cvisiontech.com

Rear Time SpecirFicaTioNs wiTE VDM

® On each request to execute a method "methodname” an event occurs which is recorded by the
system by atomically incrementing the implicit counter #req(methodname)

e the actual activation (start) of the method constitutes a second event which is noted by incre-
menting the implicit counter #act(methodname)

o the event defining the completion of the method execution is implicitly recorded by increment-
ing # fin(methodname)

The default available variables #req, #act and #fin record the transitions as counters. Two
functions over history variables have been defined to ease specification of common situations:
#active(mn) = #act(mn) - #fin(mn) and #waiting(mn) = #req(mn) - #act(mn) .

Although method invocation in a periodic thread is not by an explicit call, the same events apply
here.

VDM** offers the capability of connecting an action to the occurrence of an event, using a state-
ment of the form:

whenever < predicatel > also [from < delay>] < predicate2 >

This specification (to be a part of the time invariant part of an object) states that whenever
predicatel becomes True, the object should realise predicate2 within delay time units.
Conditions, occurring in such statements, are typically predicates over
- time variables
- history variables
- state variables.
Examples
A typical example of a specification then is:
whenever #act(methodname)> 0 also from §; #act(methodname) =0 .
Here, an upper-bound for the execution of methodname is given. As soon as methodname is
dispatched, the specification requires the implementation to ensure that the finalisation of the
invocation of methodname is not more than §; units of time later. The language provides a
shorthand notation for this: duration(methodname) < §;.
Obviously, having the notion of time, one can raise an alarm at a specified time
whenever now > ThisTime also from & #act(alarmMethod) > # fin(alarmMethod)
This states that after a certain calendar time is reached, the execution of the alarm-method should
be started within 4 time units. Alternatively written: ... #active(alarmMethod > 0.
The next example shows a statement in which an unspecified predicate (indicated by ‘..." e.g. a
resource is in use), is to become True within 4 units of time from #act > #fin becoming True (the
start of the method).
whenever #act(methodname) > # fin(methodname) also from § ...
To specify that execution of a method is urgent and must not be blocked for long one might write:
whenever #waiting(methodname) > 0 also from delta ...

It is assumed that the performance "consumption” for the evaluation process of the various con-
ditions is taken into account when writing the specification. The existence of the "from delta”
construct acknowledges that in the real world computations and reactions takes time and cannot
be executed in zero time. Omitting such a restriction specifies a requirement that is impossible to
fulfil: the predicate acting as consequent in the implication is to be made True in zero units of time.
It will be clear that periodic obligations can be specified using an event style:

periodic(A T) (amethod) means :
forall k in Nat whenever now =~ k « AT

also from & #active(amethod) > 0

62 Anais de V- SPES (Quribra da 1906

http://www.cvisiontech.com

Eugéne Diirr, Stephen Goldsack and Jan van Katwijk

with dufntion(nm:ethod} +46 < AT as a precondition, this specification activates the method at least
once in each interval < k* AT, (k+1)* AT >

5.2 Time Variables

If sensor based systems are involved, the interface between the controlled system and the controlling
system may contain variables that can be assumed to change spontaneously with time. Such
variables are considered to be Time continuous functions. Their use is confined to high level models
of the system and its environment which function as context for the high level requirements. On
these variables assumptions and effects can be defined. The effect clauses is the equivalent of an
invariant for time variables: it is a timed property which should always hold.

time variables
temp : real;
colour : RED—GREEN
eﬁutump.cdauré whenever temp > T.0 also from § colour =RED

In a later refined model, a sensor object will probably be introduced and the temperature observa-
tion mechanism will be specified in more detail in a time discrete fashion.

5.3 Safe Event Interaction

The conditions, associated with events, become True at externally determined moments. It is
therefore not excluded that two or more conditions become True at the same time. If the actions,
associated with the handling of these events, refer to the same state variables, formally speaking,
the result is undefined. It will depend upon the speed and the (arbitrary) order in the execution
of the components; race conditions might occur.

Safe specifications can therefore not use instance variables in an updating mode, unless extensive
proof is delivered about non interference to these variables at all times. Read only access is safe. We
are considering a language extension which allows users to add their own sync variables (variables
which can be updated atomically) similar to the currently built-in #req, #act and #fin. Passive
classes may be protected against interference by concurrent method calls by the use of permission
guards, defining the object states at which each method may be activated. These guards are mainly
predicates over history variables.

The semantics of having more than a single whenever clause within a single thread deserves some
attention. Current semantics allow multiple whenever clauses within such an object. In the event
that two or more events become True at the same moment, unsafe situations show up when both
events try to access/update the same instance variable or require (conflicting) method executions.

6 The Design Case
6.1 The problem description

We give here the full design route of a typical real time problem from the literature. The early highly
abstract models are kept (too) simple, because we want to highlight the derivation methodology
which is typical for VDM** . In the Booch version (See also Mary Shaw’s article [27] in which
several methods and their solutions to the “Cruise Control system” by G. Booch are presented.)
the Cruise Control System (CCS) has the following properties:

It exists to maintain the speed of a car even over varying terrain, when turned on by a driver. When
the brake is applied the system must relinquish speed control until told to resume. The system
must increase and decrease speed as directed by the driver. As a general condition we have system

Benis da V.ORES Dopuhme g 1905 A3

Bin o

http://www.cvisiontech.com

REAL TIME SPECIFICATIONS WITE VDM*++

Figure 4: Block Diagram of the system

ON/OFF. ON denotes that the system should maintain the car speed. If OFF the system (function-
ality) does not exist: the power is off. The inputs are:

e Engine ON/OFF.
e Brake oN. When the brake is pressed, the CCS temporarily reverts to manual control.
e Pulses from Wheel. Pulses are sent each revolution of the wheel.
e Increase/decrease speed. The setting of the desired speed.
The Output : Throttle The Digital value for the engine throttle setting.

Defining the Speed

Mary Shaw rightfully mentioned, that a car‘s speed is not determined by the rotation speed (+
size) of only one wheel. In curves differential gears cause variations in rotational speed between the
inner and outer wheels of the car. So we take here w(t) is the angular velocity of the drive shaft.
The quantity w(t) is a time continuous function and because we can safely assume that the tire
radius is constant over the lifetime of our CCS, it is the representation of the actual speed of the
car. The desired revolution speed is called wy.

6.2 Goal description

The Cruise Control Requirement when the system = ON can now be defined as if engine = oN A
brake= OFF then:

whenever w(t) > wq + A alsofrom d; w(t) < wqg + A,
‘A wheneverw(t) < wg — A; alsofrom 6; w(t) > wq — Az (1)

In a graphical representation is given in figure 5.

There can be good reasons to take different values for the constants in the figure, but for simplicity
we use: §; = d; = d and Ay = Az = A. This simplification allows use to combine the two deviations
in one line using the absolute value.

[Anajs do X-SRES, Outubro de 1996

http://www.cvisiontech.com

Eugéne Diirr, Stephen Goldsack and Jan van Katwijk

Figure 5: Velocity as time continuous function

6.3 The Abstract Controller: A Requirements Model
‘We can give the following specification for the closed system :

Class ControlledCar

values
A, § : real
instance variables
brake_state : ON|OFF;
engine_state : ON|OFF;
active : boolean
inv objectstate £ engine_state = ON A brake_state = OFF

wa : Real; - - the desired speed
time variables
w : real -ﬂuuhullcpd(‘)
effect object — state = tive = cite equation(1)
A not active = ... - -manual comtrol
end ControlledCar

Remark
The fact that the ControlledCar should operate even over varying terrain makes it in principle an open
system. To avoid very complicated formulas we will ignore this aspect in the next section when we define
the car+engine behaviour. We use here the transfer function #(2) between speed and throttle value in the
time domain.(We might have used differential equations instead.) We assume such a relation exists. Such
a relation may be complicated due to air-resistance, external winds, surface resistance and up-hill/down-hill
roads.
End of Remark
We will now make a distinction between the Controller and the Controlled System.
— throttlevalue —+

+ speed %
A CarEngine object hides th ation between the throttle-value and the speed. The controller
observes continuously the deviation of the actual speed from the desired speed. It sets the throttle

with a symbolic function F. The splitting creates two classes.
In the workspace the following couphng is necessary between the time continuous variables in the
created objects from both classes

topology [post aCarEngine - carspeed = aController - speed
A aController - throttlesetting = aCarEngine - throttlevalue]

Through substitution we can show that these two objects in the given topology have equivalent
behaviour as the previous ControlledCar object. This splitting is thus a real refinement.

“sonracalan | (WD ek oniimlza A&

http://www.cvisiontech.com

ReaL TIME SPECIFICATIONS WITH VDM*+

Class AbstractController

values
é§,A, C : real
I . instance vanables
timevs:bﬁu’ active : ... = =— see ControlledCar ;
Siih Phnattianalon s il wd : real; - - desired speed
Vi ; init desired == w.d := ,..; - - init at creation time
mmd‘;muuA e Wosvat
il - output throttlesetting : real
carspeed = H(t) « throttlevalue wput w ¢ reel
endCar Engine i bi S o

whenever | w — wd | > A also fromé
throttlesetting= F(w,w.d)
end AbstractController

6.4 The Design Route

We now focus on the design of the controller. It will be clear however that all reasoning (=
requirement tracing and satisfaction proof) will need the CarEngine behaviour to reach the level
of our initial requirements on the car speed. The above sketched AbstractController will be the
start for the design process. In one overview the derivation process can be given as follows:

o First a slightly more detailed ContinuousController is designed.

e Next the discrete version of this controller is specified.

o Finally, through an annealing step, the throttle and the speed sensor are put into separate objects
which are connected to the controller.

All these versions of the Controller are subclasses of the abstract controller.

6.5 Continuous-Controller

The first Model of our Cruise Controller, operates conceptually in the time continuous domain,
where the effect clause formalises the time dependent (dynamic) parts of the system requirements.
We introduce for the symbolic function a (too) simple linear algorithm. The engine and brake
dependency and the setDesiredSpeed() method are added here. This method will have to be
implemented by each derived subclass in the implementation.

class ContinuousController
is subclass of AbastractController
time variables

aim. A=ppe Pc V) SRES, Tix2bmn de 1006

http://www.cvisiontech.com

Eugéne Diirr, Stephen Goldsack and Jan van Katwijk

- = w and throttlesetting are inherited
Mu.ﬁm}tﬂcnﬂ&ug active =

(whenever w — wd| > A also fromé§ Mum-%—c-{w—wﬂ
A whenever | w(t) — wd | < A also from§ throttlesetting = setting
methods
setDesiredSpeed(s :real) 2 wd =
end ContinuousController

In VDM** the variable means the old value, before the current method invocation. In this version,
the effect clause is an refinement (or implementation) of the one in the AbstractController and must
be consistent with it.

The system itself now consists of One Cruise Controller Object, which is created and activated.
All values from the external world are still incorporated into one monolithic object. The main role
of this Modelp is to reveal the dependencies between the variables and to investigate all invariants.
Invariants come in two versions: the well known static ones and the dynamic effect clauses con-
straining the time variables. A continuous class may have both.

6.6 Towards a Discrete Solution

Because the above stated requirements still operate in a time continuous domain, a transformation
into an equivalent discrete object is necessary before we can apply OO and discrete software actions
like method invocations, periodic executions etc. For this simple set of relations the descretising
is not too difficult. The first activity which is needed in the analysis is the definition of the time
resolution required for this problem.

6.7 Timing analysis

Suppose we use a sensor which generate a fixed number of pulses (e.g. 10) for each revolution of
the wheel. The frequency of the pulses is then a linear function of the angular velocity and thus
of the car speed. We propose here to use an implementation which determines the frequency by
counting the pulses in a fixed interval.

Fault tolerance for errors such as wheels not rotating, or missed pulses would need other or addi-
tional sensor equipment.

With a tire size of say 33 cm (11 in.) we get a perimeter &~ 2m. A cruising speed of 72 km/h (=
20 m/s) = w =~ 60 rad/s 2 10 revolutions/s gives a pulse frequency of 100 Hz.

A human driver would have a response time of about 0.1 sec between the observation of a deviation
and the action. The car could accelerate to a new speed in about 1 sec. If we consider this as
targets for the responses of the automatic system, we need to detect a change of speed in about
0.1 sec. If we decide to take a pulse count ten times a second we shall have 100 pulses per interval
at 72 km/h. So the pulse resolution will yield about 1% measurement accuracy. This should be
satisfactory. The accuracy decreases as the speed decreases, but at 36 km/h it still would be 2%
which could be set as the lowest speed at which the automatic system is to work. For the revolution
speed the minimum tolerance is thus A > 0.1 rev/s(= 0.6 rad/s)

The highest working speed is determined by the highest frequency at which the pulse counter can
work, which will be approximately the system clock pulse rate. A system clock of 1000 Hz will
then fail above 720 km/h. This is probably sufficient for any car to be used in traffic.

Control Loop Frequency

If we accept a minimum speed of 36 km/h with the 2% error the control loop period is 0.1 s or 100
ms, or a frequency of 10 Hz. The periodic obligation is thus set on 100 ms.

Anaic do X-SBES Outubrn de 1996 67

http://www.cvisiontech.com

ReaL TIME SPECIFICATIONS WiTHE VDM*+

The discrete Model can now be derived because we showed that the 100 ms repetition rate with a
1 ms clock accuracy is acceptable under the currently stated requirements. An analysis such as the
one described above, is certainly one of the many safety analyses needed in any real time system.

6.8 Discretising

Conceptually the next step is to sample the time continuous variables introduced in the first model
and generate a sequence of observations/samples approximating the time continuously variable.
Our SW/HW system has to operate based on these series of samples. The following intermediate
step shows in a tractable way that the design route is correct. We describe the transformation
process here with a sampler object. This object creates from the time continuous variable w a
time series of discrete observations stored in the sequence wdiscrete. Its behaviour is an abstract
version of an A/D converter. In this problem the pulse generator on the wheel takes up part of
this functionality.

class Sampler
instance variables
wdiscrete : seq of real --discrete time series

time variables
input w : real -- continuous time varighle
methods
= [post let mysample:real in
3t € [Aow,now] - mysample = w A wdiscrete = wdiscrete - [mysample]]
timed post : duration(mysample) = ép <« 100
thread
periodic(100) (takesample)
end Sampler

The 6w denotes the staring moment of the execution and now the end. The time resolution of the
specification is defined as 1 milliSecond: this means that the periodic obligation fires here each
100 ms.

6.9 Derivation of the Discrete Model

This discrete model uses a series of samples on the rotational speed w over time. We have now
to refine/translate our effect clauses from the AbstractCruiseController into observations on this
sequences of samples. Here again one is confronted with the trade-offs so common in engineering
based on acceptable inaccuracies. One could state that formally that the Model, to be developed
now, as again a monolithic but discrete representation of our problem is an Approzimation of the
previous model.

Given a sequence of samples : wy,wy,...,w; in which w; is the most recent sample the requirement

whenever |w(t) — wd | > A also from §
has to be transformed into into a set of actions which should be taken each time when a new sample
arrives. We assume here that the invariant is assured at the moment of w;_,. This is done by the
system initialisation.
With the appearance of new sample w; three possibilities show up :

wg=O <w <wg+A =>no change needed

we>wg+ A =>speed reduction needed
we<wg—4A =sacceleration needed

68 Anais do ¥-SRES, (htspra de 1996

http://www.cvisiontech.com

Eugéne Diirr, Stephen Goldsack and Jan van Katwijk

Speed reduction and acceleration are achieved here by invoking a throttle control method with
either a positive or a negative parameter. More intelligence can be built in by using higher order
integration methods for the calculation of a new throttle value. The sequence length and the
number of parameters has to be adopted accordingly of course. Here we limit ourselves to the
simple case of two parameters: w and wyq.. Whether one wants to transfer the desired speed also
to the throttle controller or not (and let it keep the old value) is a matter of taste and perhaps
maybe of performance.

The operationalisation of the effect clause now transforms for the action part into:

whenever not wd - A < wt < wd + A also from & Factive(throttleControl) =

Here again it is clear that we can only send a control signal to the throttle. The first part of the
whenever clause is made operational by periodically checking the condition. Here the used sample
value sequence (omega) contains always the last two samples of the previously defined unbounded
sequence produced by the sampling wdiscrete.

This yields the following discrete specification, which is based on the ideal set of samples wdiscrete,
without specifying how they are obtained. omega(2] is here always the last sample. Form-
ally the relation between these sequences is: ga(1) = wdiscrete(len(wdiscrete) — 1) Aomega(2) =

ete(len(wdiscrete))

class Discrete M ondyﬂnqunleﬂ)ucr

is sub class of AbstractCr troller
values
dewviation = 0.6 ;
functions

inrange R » R » R - Bool
in_range(wt ,wd,delta) == inrange = | wt — wd | > delta
variables

instance

omega : seq of real;

wd : real;

immgn: len omega = 2
rate : real
inv rate,omega == rate = omega(2) -omega(1)

methods
thmtﬂcmwd(w.lw.z :real) is not yet specified
[timed post == d (throttle control) < 63]
handleSample()
2 if active then

if in_range(omega(2), w.d,deviation) then skip
else throttle control(omega(2) - w.d, rate)
[timed post : duration(handleSample) = §.4]
thread
periodic(100) (handleSample())
Aux Reasoning
duration(throttel control) = 63 < §.4
duration(handleSample) = §4 < 100
end DucnuCrmnC:mtmum-

Arnic An MOBES, Dygivhng de 100K «a

http://www.cvisiontech.com

REAL TIME SPECIFICATIONS WITH VDM*+

6.10 The Discrete Second Model Model,;

We want to replace the ummhmechm with an abstract representation of the real world
sampler: the Sensor Object t . The sensor will conceptually count continuously
(e.g. using mtegnzmn)thepu]sumdum the controller each 100 ms. It produces
unewvﬂueforthenpeedthmughthemethod e. The second step taken is to anneal the
throttle controller via a separate object do the same t.lung with the other input

variables like the engine and the hnkes Fonake of simplicity we keep these values here internally
inside our controller and assume that state changes on these variables are relayed through externally
initiated methods calls of our controller:
class DiscreteCruiseController2
functions
tnrange R « R +» R = Bool ...
instance variables
aSensor : @Sensor
aThrottle : @ThrottleController

engine_state brake_state : ON|OFF;
active : boolean
inv objectstate £ active =
engine._state = ON A brake.state = OFF;

omega : seql of real;
lmomqn len omega = 2
w.d, rate .r-l.

inv rate,omega £ rate = omega(2) -omega(1)

methods
setEngine() is not yet specified;
setBrake() is not yet specified;
setDesiredSpeed(w.n :real)2 [postw.d = w.nl;

doSample()

== def asample = aSensor ! getsample() in
(if active then

(. ™ 9 ar rl\,

if in_range(pl uJ.‘ tion) then skip

else aThrottle ! setControl(asample-w.d,rate)))
timed post : duration(doSample)=§_5
thread
periodic (100) (doSample())

Aux Reasoning

duration(doSample) = §.5 < 100

end DiscreteCruiseControlier

The duration requirements for the setControl method can be calculated if upperlimits for each of
the statements in the doSample method are choosen.

The workspace of the final system creates one Controller, one sensor and one throttle controller,
establishes the topology between these objects and starts their periodic threads.

6.11 Issues Under-specified

Overshoot As in any discrete control system, special attention should be payed to overshoot and
undershoot situations. Here only the maximum interval length appears in the specification.
Such a requirement depends on unknown parameters and properties. Suppose the car is
driving up-hill and does not have power enough to maintain the desired speed. It may take an
undefined long time, until e.g. the top of the hill is reached. All this time the speed will be
too low.

70 Anpig An Y SPES (Fi5tra da 1006

http://www.cvisiontech.com

Eugéne Diirr, Stephen Goldsack and Jan van Katwijk

Engine behaviour A second observation is the relation between throttle setting and speed. A
more complete model (transfer functions from control engineering) is needed to ensure that
the required behaviour of the car with cruise controller is satisfied. The requirement that the
terrain may vary makes this extra complicated.

Undefined behaviour The current solution will expose unexpected (=undefined) transient be-
haviour, if the desired speed level is suddenly increased or decreased with large quantities.
This is however outside the requirements scope.

7 Conclusions

We have shown, in the frame work of a well known (canonical) real time example, the novel
approach [8] of using time continuous functions within a formal specification language as VDM*+ .
The derivation of the discrete solution through intermediate development steps clearly highlights
the trade-offs involved in each design step. The ideal time continuous specification plays the role
of the exact but un-implementable model. The derivation of the discrete models through common
control and signal theory transformations, yields a correct approximation of the ideal model.

The high level time constraints have been carried along through out the entire design path. In the
final model they end up as maximum processing time requirements of simple elementary methods.
For each implementation in a given environment (OS,RT kernel, HW, etc.) these upper limits can
be measured at unit level of the code (procedures, methods etc.). If these upper limits can be
satisfied (including the necessary system overhead because their end time is specified !) the entire
system will meet the upper level non-functional requirements (performance criteria).

References

[1) Diirr, E (1994), The use of Object-Oriented Specifications in Physics. PhD Thesis, Utrecht University, Utrecht,
The Netherlands, 1994, ISBN 90-393-0684-2.

[2] E.Dirr, and N. Plat Editors (1995). VDM** Language Reference Manual, Afrodite (ESPRIT-I1I project number
6500) document AFRO/CG/ED.LRM/V10, Cap Volmac, see: www.ifad.dk/projects/afrodite

[3] Diirr, E and J. van Katwijk, (1992), VDM** . A formal Specification Language for Object-Oriented Designs.
In: Georg Heeg, Boris Magnusson, Editors technology of Object-Oriented Languages and Systema, pp 63 - T8.
Prentice hall International, Proceedings of Tools Europe *92.

[4] Goldberg, A., Editor, (1984) Smalitalk-80, The Interactive Programming Environment. Addison Wesley Pub-

[S]JM.C(IM}" tematic Soft Devel t using VDM (2nd edition). Prentice Hall International.

[6] America, P. (1986) DMo!hwaOOL-T Esprit 415 document 0091, Philips Research
Laboratories, Eindhoven

(7] Goldsack, S. (1991) Distributed Object Orientation, Journal of Object Oriented Programming, Volume 4, no.1

y March/April 1991.
[8] Mahoney, B. and Hayes, I. Umcoaﬁnuukulﬁmhmlolddm.ﬂ'mh&h.? Editor, Pro-
ceedings of the 6th A I f Engineering Conf (ASWECS1), pp 257-270, Australian Computer
Sodiety.

[9] B.Mahoney and 1.J.Hayes, A case-study in Timed Refinement: A mine Pump, [EEE transactions on Software
Engineering, Sept. 1992, pp 817-826

[10] C.Millerchip, B. Mahoney, 1.J. Hayes, A Whole System Specification of the Boiler System, in D.Bel Belluz and
BC Ratz(eds.), "Software Safety: Everybody's business- proc 1993 Int. Workshop on Design and Review of

{‘A“Jﬂ'n RI_ Js,m.‘lm

[11] Eugéne Diirr, Stephen Goldsack and Nico Plat. Rigorous Development of Concurrent Object Oriented Systema.
Tutorial(MMS5) at the Tools Europe '94 Conference, March 7-10,Versailles France. In : Technology of Object
Oriented Languages and Systems, Editors. B Magnusson,B.Meyer, J.Nerson, J.F. Perrot TOOLS 13, ISBN
0-13-350539-1, Prentice Hall, UK, (page 515)

dnaic dn Y-SBES, Outubro de 1996 n

http://www.cvisiontech.com

ReaL TiME SPECIFICATIONS WITH VDM*+

[12] Ton Biegstraaten, Klaas Brink, Jan van katwijk, Hans Toetenel. A simple railroad controller: A case study in
real-time specification. Technical Report 94-86. Reparts of the Faculty of Technical Mathematies and Informatics.
Delft University of Technology, Delft 1994.

[VDM Standard] ——. VDM Specification Language: Proto-Standard(Draft). Document N-246(1-9), BSI IST/5/-/19
and ISO/IEC JTC1/5C22/WG19, December 1992.

[13] Eugéne Diirr, N.Plat and Michiel de Boer , Tracking and Tracing Rail Traffic using VDM** : In M.G.Hinchey
and J.P. Bowen Editors : Applications of Formal Methods, Chapter 9, Prentice Hall, September 1995 ISBN
0-13-366949-1.

[14] Concurrent and Real Specifications in VDM** in : S.Goldsack and S. Kent Editors: Formal Methods in Object
Technology Prentice Hall, March 96, ISBN 3-540-19977-2.

(18] J. van Katwijk, W.J. Toetenel. Comparing formal specifications by measuring. Proceedings of the second Inter-
national Workshop on Real-Time Computing Systems and Applications. IEEE 1995, ISBN 0-8186-7106-8, pp
184 - 190.

[16] G. Bruno et al. A New Petri Net based Formalism for specification, Design and Analysis of Real-Time Systema.
In: Proceedings [EEE Real-Time Systems Symposium, [EEE 1993 pp 294-301.

[17) L. Lamport. The Temporal Logic Of Actions. ACM Toplas, 16 (3) 872-923 1995

[18] Y. Kesten, A. Pnueli. Time and hybrid State charts and their textual representation. In: Proceedings 2-nd In-
ternational Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems. Vol 571 LNCS, pp
591-620 Springer Verlag 1992.

[19] Ghezzi G. , R. Kemmerer. Astral: an Assertion language for Specifying Real-Time Systems. Proceedings of the
3-d European Software Engineering Conference 1991, pp 122-146 1991.

[20] R. Gerber, Insup Lee. 4 MJMhAMﬂu Verification of Real-Time Systems. IEEE Trans-
actions on Software Engineering. Vol 18 no 9, september 1992, pp 768 - 784.

[21] Goldsack, K.Lano, E.H.Diirr, Annealing and Datadecomposition VDM** ACM Sigplan Notices, Vol 31, No 7,
July 1996

[22] S.Goldsack, K.Lano, E.H.Diirr, Refinement of Object Structures in VDM** | from fip://theory.doc.ic.ac.uk, get
file at papers/Goldsack/annealing.ps

[23] 5. Kent and R. Moore, An Aziomatic Semantics for VDM** : 0O aspects, Afrodite Document July ,1993 ,
Arro/IC/SK/SEM-00/V2

[24] K.Lano Ezpressing the S tics of VDM** in RTL, November 1994, AFRO/IC/KL/SEM2/V2

[25] K.Lano Reasoning techniques in VDM™** A November 1994, AFRO /IC/KL/RT/V2

[26] K.Lano, S.Goldsack, J. Bicarregui, S. Kent Real-time Action Logic and Applications, ECOOP 96, Linz Austria,
The Proofs workshop, June 6 1996 to appear

[27) Mary Shaw, Comparing Architectural Design Styles in [EEE Software Nov. 1995

All AFRODITE documents can be retrieved electronically via www.ifad.dk/projects/afrodite.

About the authors

® Dr Ir E.H.Diirr is Technical Manager at Cap Gemini, Assistant Professor at Utrecht University -both in
the Netherlands- and visiting Professor at the Ecole Nationale Superieure des Techniques Industrielles
et des Mines de Nantes, France.(http://www.fys.ruu.nl/ durr)

o Prof. J.van Katwijk, is Professor at the Faculty of Mathematics and Informatics of the Technical
University of Delft, The Netherlands

« Prof S. Goldsack is Emeritus Professor at the Department of Computing, at Imperial College in London
U.K.

- Awciy An ¥ SPRS Deoiirs da |00K

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382

