Task Allocation Strategies: A Study with a Multi-Agents System in Fully
Distributed Information Systems

FELIX F. RAMOS CORCHADO!
LIMING CHEN!
MARC Bur!
DIDIER DONSEZ!
PASCAL FAUDEMAY?

1Université de Technologie de Compiégne
Heudiasyc, URA CNRS 817 Genie Inforrmatique
Centre de Recherches de Royallieu.
BP 529 60205 Compiegne CEDEX
{ramos, chen, bui,donsez}@hds.utc. fr

2Université de Paris VI
Laboratoire MASI / IBP
4 Place Jussieu
75 252 PARIS cedex 05
faudemay@masi.ibp.fr

Abstract

In this paper we present some task allocation technics useful on Internet or other Wide Area
Network (WAN). These technics are based on the cooperation of multi-agents organized in one
community of Reactive agents and another of Allocator agents. Reactive agents represent ser-
vices availables on the WAN such as Internet search engines. Allocator agents’ task is allocate the
queries that they receive from users. To take such a decision, Allocator agents cooperate sharing
theirs informations about the state of Reactive agents. An Allocator agent is able to characterize
the behaviour of Reactive agents by means of a knowledge model we developed. In order to fa-
cilitate the composition of complex services such as retrieval of multiple language documents, we
also define another agent type we call Sub-contractor agent.

KEY WORDS: Load balancing, Agents, cooperation, document query

1 Introduction

Recently, software applications such as the World Wide Web have allowed people from all walks of life to
have access to the internet. This has caused massive development in information server technology offering
all sorts of multimedia data. Problems such as the reliability of transactions, the searching of specific doc-
uments, selection of information servers and improvement of the access time, etc. have to be studied in the
context of this new technology.

Improving response times implies improving such parameters as bandwidth mainly on backbones, the
use of mirrors, the optimization of routing between the user and the information server etc. Also, the use of
software techniques such as document filtering, cooperative retrieval, optimized document placement and
task allocation become relevant. Within the U-Doc project, [15] a French project currently under way whose

- -

FUTPDTBSSRAR, LIGIX, ' WoU DDRIHZS 8880

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

objective is the implementation of a collection of assistance tools for hyper-document retrieval on the Inter-
net, we are studying optimized query placement in order to reduce the response times.

Task allocation and load balancing have been widely studied in the literature [3, 19, 17, 4, 21] in the
context of distributed systems. The purpose is to optimize the use of resources and improve the performance
of application processing. There exist static and dynamic techniques to implement load sharing in distributed
systems. In the Internet context, static solutions [3, 16] based mainly on results from operational research, are
not applicable, as they rely on previous knowledge of both the system and the application. Dynamic solutions
[19,9, 4, 12] try to remove this constraint. An estimate of the availability of several parameters such as the
number of processors, the task processing time etc. is made in order to determine the system state. When
accessing a document or submitting a query on the Internet, the geographical location of the target site may
result in poor precision in the values of these parameters. The only information available are the response
time and transfer throughput, so that other approaches are needed.

In this paper we propose several strategies for dynamic query placement. The objective of these strate-
gies is to optimize the use of information servers in order to reduce the response time of services on the
Internet. They are based on the use of multi-agents [13, 11, 14], organized into a community of Reactive
agents and a community of Allocator agents. Reactive agents are merely the final servers (available services
in the system such as indexing engines, bibliographic databases, movie databases, etc.). Allocator agents
are able to cooperate and to leamn about the state of Reactive agents. Their objective is to place the queries
which they receive while trying to optimize the use of information servers. A knowledge-based model is also
developed which enables our Allocator agents to characterize the quality of service of the Reactive agents
on the Internet, and to gather information about the system state through learning and experience. When a
query is submitted to an Agent, it uses its knowledge of the system state to place the query. If it's knowledge
is insufficient to take this decision, it interrogates a particular group of Allocator agents to try and complete
its knowledge. If the knowledge obtained does not enable it to decide on the allocation, it initiates a negoti-
ation process [19]. Finally, in order to enable composition of complex services with large added value to be
achieved, a new type of sub-contractor agent is defined.

The paper is organized as follows: in Section 2 the context of this work is discussed. In Section 3, we
introduce the agent model and the way in which the Allocaror agents represent their knowledge and learn.
Strategies for dynamic query placement are described in Section 4. Sub-contractor agents are introduced in
Section 5 and in the conclusions, we compare our approach with other agent-based approaches.

2 Context and Problems

The problem was studied in the context of the U-Doc project, whose objective is the implementation of a
collection of assistance tools to facilitate document access on the Internet, as well as the implementation of
their administration. We first briefly describe the U-Doc architecture [8] followed by a description of our
framework.

2.1 The U-Doc Architecture

The U-Doc architecture is depicted in Figure 1. The client access request arrives at the external interface of
U-Doc (mailer or DQBE). After formatting, the request is delivered sequentially to:

1. the Concepts Manager and thesaurus module which divides the request in more precise and domain-
dependent ones (e.g requests about colours, sounds, geography, etc.)

2. the Indexer module which searches through documents in the local documents database
3. the profiler which extracts the long term profile from the immediate request

3Ud AN G0 A~SBES, DUlore ue 1 330

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...

4. the Examiner which delivers the clients’ immediate and permanent requests produced by the Profiler to
external Searchers (lycos, Yaoo, etc.) and evaluates the abstracts and titles obtained

5. the Gatherer to search the selected documents. These documents are then delivered to the Storage sys-
tem and finally to the client.

The Storage system keeps the documents, abstracts and annotations in a cache memory and in the tertiary
memory. The Thesaurus manages a corpus of the reference documents (for instance, articles of a review
previously chosen to describe the area concerned), and leamns the correlation between the concepts in that
corpus.

Figure 1: Architecture of U-Doc.

22 The Framework

A document retrieval query relies on localization, format modification, translation and document selection
operators, which can be based on indices, and on information extraction on normalized documents such as
SGML documents. In our architecture, a retrieval query is decomposed by the DBQE module into a set of
document retrieval operators, represented by a data flow graph such as the one in Figure 2. We assume query
decomposition techniques are known, as they are not the subject of this paper. Based on a placement strategy
aiming at response time optimization, these operators are placed on specialized servers such as those which
propose services for document searching.

On the Internet, there are many such search services (indexing engines), such as AltaVista, Lycos, Yahoo,
etc. A document can also be replicated on several sites, such as proxies or mirrors. Presently, dynamic query
placement in U-Doc takes place in two places: firstly at the Examiner level choosing a search server on a
previously defined list, when the query comes from a user of the profiler. Secondly, at the Gatherer module
level, for the choice of a document when this document exists in several servers.

In both cases, measuring the classical parameters may not help the allocation problem. Therefore, we
do not have a classical task allocation problem in the usual sense, as we cannot determine process allocation
in the remote sites.

One solution in our Internet framework of added value services, is to submit the same query to all servers
and choose the one which delivers the answer in the shortest time. This is a simple but an expensive solution.
The problem is, therefore, to define dynamic placement strategies on the various subtasks of a document re-
trieval query, in order to reduce the response time. We propose an heuristic solution, based on past experience
in terms of response times, and possibly on the experience of other sites.

-~

Ariddd o AmadTo, Shilbhe b 2 I &

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

Figure 2: Decomposition of a request by the DQBE/Mailer.

23 The Problem

Our main objective in the U-Deoc project is the minimization of response time. To meet this objective, we
must solve the problem of how to choose the searcher and the document server (if the choice exists) to get
the shortest response time. In the previous explanation of the U-Doc architecture’s behaviour, the alloca-
tion techniques are necessitated by the Examiner to select a searcher from a set previously established. The
Gatherer selects one document server from the list obtained by the selected Examiner.

The parameters our system have are the actual ones, that is, Internet available searchers (Lycos, Yaoo,
etc.) do not give information about its states useful to calculate the response time of a request (e.g. number
of tasks waiting for processing, processing power of the server, size of the waiting tasks. etc.). To make this
problem transparent to the user, two solutions are possible. The first is to choose the servers (to search and
to retrieve the document) randomly. The second is to select the servers, taking into account the experience
obtained about previous relationships. Because we are using Allocator agents having a leamning capability,
we choose the second solution. One of the strategies proposed is a combination of both, however.

3 Model

Though our approach was developed for the U-Doc distributed information system, the proposed mecha-
nisms are general ones and can also be applied in other contexts. Figure 3 depicts the distributed system
that we take as the framework used to simulate the performance of the algorithms. The system consists
of three sets distributed throughout a set of sites (computers) connected by a network: a set of allocator
agents denoted by C4 = {Cay, Caz, Cas, ..., Caa}. Another of Reactive agents denoted by the set

= {Ra1, Raz, Ras, ..., Rap}, and a set of users, denoted by U = {Uy, Us, ...}. A site lodge
zero or one user, zero or one Allocator agent and zero or more Reactive agent .

The set of Reactive agent represent the available services in the system. The same service can be deliv-

shu Anais do X-S5ES, Quruoro ae 19v0

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...

ered by different Reactive agents. Allocator agents receive the tasks delivered by users, are able to commu-
nicate with each other by sending messages over the communication network, learn about the system state
and have the skill to allocate a task based on their knowledge about the system (servers). Finally, users or
clients deliver theirs tasks T, = {t;, ¢y, ..., tx} to the Allocator agents via an interface.

In the U-Doc architecture, the set of Reactive agents represent the set of searchers available (Lycos,
Yaoo, etc.). A delivered task is either a search request that should be addressed to one of the searchers or a
request of access to get an specific document that must be delivered to one of the document servers.

o5e| [eEB

b g

Figure 3: The system is organized in two communities: one of Reactive Agents delivering the services avail-
able over the system and the other consists of Allocator agents storing the global state of the system. The
major objective of Allocator agents’ community is collaborate to distribute in a fair way the load among the
first community.

As depicted in Figure 3 the structure of a Allocator agent contains a knowledge and a control elements.
Control element implement the location policy. The transfer policy is every time a task is received, decide
about its transfer, and the selection policy is allocation of the tasks arriving). To decide about the allocation
of a task, the Allocator agent requires information about the state of the servers offering the required service.
As established in Section 2.2 of our framework, even if Reactive agents are able to deliver useful information
to decide about an allocation, communication delays render them useless. We are using the leaming capabil-
ity of our Allocator agents to alleviate this problem. Figure 4 shows the information learned by Allocator
agents.

3.1 Learning and Knowledge

The Allocator agents are able to learn about the evolution of Reactive agents’ states. For this purpose, they
memorize for each Agent, the next piece of information that will be helpful to “predict” their service quality.
We denote g, as the the quality of service z on the Reactive agent i.

. S | LUl g Fa.at S
GITPRGSSION;. UNIX, WOD O ical Fad

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

Allocator agent’s Knowledge about e the System

with it had and have

relationships
Nameof the Serveur % Iﬁ Vddly
@ Tiakc Hweek day, tme,..) 110
T o tmkdyim.) 00 ®
TextProcessing kukican f(week day, me, ...) 3n 100
Text Processing zous fiweek day, time, ...) 440 150

Figure 4: Knowledge an Agent has about the system’s state.

e g:;: quality of service.
e Th: throughput of a query on the network.
e T': response time of a reactive agent to a query.
o z: the service proposed by the reactive agent.
D: an array containing the days of the week.

e H': an array containing Allocator agent local time.

e V: validity duration of the knowledge.

e u: acoefficient between 0 and 1, which represents the Agent’s ability to remember the past
In the Internet context, the quality of a service of a Reactive agent is a function of the response time, the
throughput, the Reactive agent local time (a server is more heavily loaded during the working hours than at
night) and day of the week (weekends are less heavily loaded than other days) [5]. Thus a Allocator agent
learns the behaviour of a Reactive agent for each hour of the day and for each day of the week. To do this,
it uses the g-; = Th/T formula to measure this quality when it sends it a task. The response time is an
indicator of the Reacrive agent’s load, while the throughput is an indicator of the network's load.

It is necessary to take into account the changes of behaviour of a Reactive agent , however. In our case,

every time an answer from a Reactive agent is received, its quality service for that day and time is modified
as follows:

ge=prqz+(1—p)g

where u represents the Agent’s ability to remember the past and lies between 0 and 1. The choice of the best
value of is determined by the simulation results.

However, if the information has not been updated before some delay V/, it is considered to be out of date.
In this case, the Agent must start a new learning phase on all the relevant knowledge.

4 Dynamic Request Placement Strategies

Two criteria appear to be essential in the dynamic request placement. Firstly, work distribution implies that
an application must be widely distributed in order to use the available services in the best possible way. The
locality criterion aims at reducing the overheads due to communication tasks by dispatching the applica-
tion only over a neighborhood. These two criteria are easily expressed by an economic equation [7, 21], but

A Lo ! Ahac o X-3dES, Diior0 ae | y3o

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...

one can see in a straightforward way that these requirements conflict. The strategies presented are dynamic
and non pre-emptive. They are based on the behaviour of Allocator agents which collaborate to achieve a
common goal; Reactive agent which execute a task; a bidding protocol [19] used by Allocator agent to get
information about the system state and finally on the leaming capacity of the Allocator agent. The use of a
multi-agent approach allows us to deal with the trade-off problem in a dynamic way.

4.1 Su-:tegyofl‘heenulhedol&rﬂuhlm

Initially, the Allocator agents have no knowledge of the state of the system due to lack of experience. To
determine which Reactive agent to choose and at the same time to enrich its knowledge, it starts a process
of negotiation similar to that of bidding, found in free markets. Three phases in such a process are identi-
fied. Firstly, a request-for-bidding is launched beside all Reactive agents proposing the service. Secondly, an
evaluation of the Reactive agents’ replies is executed; and thirdly, the contract attribution phase determines
the reactive agent on which the request is placed. If this negotiation mechanism is general and simple, it ne-
cessitates a large number of messages. In a context of a large system such as the Internet, the cost associated
with such a communication can be prohibitive. Most importantly, the servers are currently unable to reply
to a request for a bid. (There is presently a great deal of effort to establish the actual minimal information
needed in current distributed systems, some formalisms like KQML [18] and kif [10] have been studied).
capacity of Allocator agent and different organizations of the communities of Reactive agent and Allocator
agent to minimize the number of times it must be executed.

Strategy 1: when the Allocator agents have an individual organization

‘We present here the behaviour of the system when the Allocator agents use the simplest organization, that
is they work individually. In this organization, when an Allocator agent receives a task, its knowledge of
the system’s state should be used for the task allocation. If the knowledge is insufficient, the Allocator agent
start a process we call also RFB consisting of broadcasting a test request to learn about the system state, and
allocate the task.

Procedure 1 Allocator agent’s allocation mechanism

Case event of {
TaskT:
For each subtask t € T do

If local information is enough to allocate t
allocate(t);

Else { * start the negotiation to get the service *
RFB(service);
evaluate(offers);
allocate(t);
update knowledge;

-~y

Caniyes _';":\RL"J‘. HC TWED DRI 1GIS

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

Example 1.

To demonstrate the behaviour of the algorithm, we consider the next example having two services S =
{s1, 52} offered by Reactive agents placed on sites A, B, C and D. The service s, is offered by Reac-
tive agents of the sites A and B while the service s; by sites C and D. Submitted requests are R1, R2, R3
and R4 that make calls to services {s1, 52}, {s1}, {s1, s2} and {s1}, respectively.

Table 1 illustrates the execution of these sequence of requests using this strategy. Initially, sites do not
work. Similarly, Allocator agents have no knowledge of the state of the system. When an Allocator agent
has to place the request R, that makes a call to services s1 and s;, the former makes a RFB. All four sites
A, B, C and D propose the same quality of service, the Allocatoragent places without preference the request
R, on A and C'. The Allocator agent also correspondingly modifies its knowledge of the quality of service of
the two sites. During the arrival of request R;, the Allocator agent, consulting its knowledge base, allocates
this request to the site B that has become the site proposing the best quality of service for s;. The execution
of all requests necessitates six broadcast and 24 point-to-point communications.

Table 1: Execution of the sequence R,, Ry, R3, Ry, Ry and Rs

Site/Req. | :1/A | #1/B | s/C | 92/D X’ B s ol 7
tl Xfﬁl 1r, 1gr, nfA=5/B=0
#92/C=r2/D=0
2 Yfﬁa lgr, lr, 1r, Valid Inf. J;,\"A =1
n/B=0
[£] X/Rs | 2a.8y | 1m, 1R, 1R, Valid inf. Valid inf.
W | X/Ri¥ | 1, 0 0 1, not valid inf. not valid inf.
Y/R;
[5] ZJR, 1R, 1R, not valid mf. notvalidinf. | s,/A=1
5/B=0
6 X/R: | 2r,.Rs | 2R0Rs | 2R4.Re njA=a/B=1
X/Rs 83/C =0;8/D =1
Cooperative placement strategies

Cooperative placement strategies are based on the organization of the elements of a system in groups that
collaborate to get a common objective. In our case the objective is to carry out global load sharing by means
of the load sharing among the groups of Reactive agent . This organization has the advantage of have the
possibility of reducing:

the number of messages exchanged between Allocator agents

o the quantity of information to manage at the level of each Allocator agents

» the overhead associated with the placement algorithm.
The idea of organizing processes in groups has been implemented on different systems such as Amoeba [20],
PVM [1], etc. and has proved to be a powerful mechanism for reducing the complexity in distribution costs.
Arranging the Allocator agents in groups can be done as a function of the geographical distribution of the
Allocator agents, in which case it is termed geographical clustering. If they are organized as functions of
the characteristics of Allocator agents, for example, in terms of the services they offer, their homogeneity,
etc. then the term virtual clustering is used. Each of these methods of organizing the Agent’s communities
have their advantages and disadvantages. The problem is that for each type of application, there is a different
organization.

ArGis do A-SorS, Uutubro av) yyo

L
.-
e

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...

Strategy when AR are organized in groups of collaborators

Our objective of grouping Reactive agent is carry out global load sharing by means of the load sharing among
the groups of Reactive agent formed. We organize Reactive agent in virtual groups by service type. The re-
sults we look for are the three described before and the establishment of a boundary which assists the satis-
faction of the locality criterion described before.

Organizing the Reactive agent community in this way, necessitates a management apparatus for each
group. In this case, our approach associates an administrator to each group (type) of Reactive agents. The
Allocator agents can address it to obtain useful data for the allocation of information. The administrator
updates its information about the elements of the group by periodically sending them “probe” requests.

The algorithm an Allocator agent executes when it receives a task is illustrated in Procedure 2. Firstly,
the Allocator agent tries to allocate the task with the information it has. If it’s information is not enough, it
ask the manager of the group fulfilling the service necessitated the information it requires. If ever it doesn’t
knows the group manager, it obtain this information by means of a bidding process. The drawback of this
algorithm is that managers' information is necessitated. ;

Procedure 2 Allocator agent’s allocation mechanism

Case event of {
Task T :
For each subtaskt € T do
If local information is useful to allocate the subtask
allocate(t);
Else
If the manager of the required service is known
allocate(t);

update knowledge;
Else { * start the negotiation to get the service *
RFB(service);
evaluate(offers);
allocate(t);
update knowledge; * about the manager and services *
}
Load: ---

}

Example 2.
We resume the same series of requests R,, Rz, Rs, R4 and Rs uwullumal and s; used in Example
1. There exist 5 sites A, B, C, D,and E. The service s, is offered by Reactive agents on sites A and B while
service s; is offered by Reactive agents on sites C, D and E. Reactive agents are regrouped according to
their type of service and therefore there exists managers for service s, and for service s;. We also add another
aspect concerning the duration of validity of the information that is comprised of two units of time. Request
Ry, Rjand Ags are launched by the Agent on the site X, the request R, by the Agent on the site Y and the
request 24 by Agenton Z.

An execution of the different requests is illustrated in Table 2. To simplify our example, the quality for
each service is represented by a simple value. At timet = 1, the Allocator agent of site X starts request
R, that calls services s; and s;. By asking service managers Ms, and Ms;, it learns that sites A and B

COIMpression, OGiK, " Web DDUINIZE Jres:

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

propose the same quality of service for s; while C and D propose the same for s;. Without preference, R,
is placed on sites A and C. Attime ¢t = 4, the duration of the validity of knowledge being fixed at two units,
the knowledge acquired of site X by the Allocator agent is expired. At time ¢ = 5, request R that simply
uses service s; is started by Z. At this stage, the knowledge of the Allocator agent of site Z has allowed
the favorable placement of the request on site B. The placement of these requests on the different Reacrive
agents necessitates four broadcasts, three multicasts and 29 point-to-point communications.

Table 2: Execution of the sequence R, R, R3, Ry, R; and R;

Site/Req. | #1/A | #1/B | 82/C | :2/D n/E b o X 4
temp Knowledge Kmhd; Knowledge
tl X/ R 1m, 1r, 5 /A=5/B=0
8/C=ra/D=0
2 | YR 1R, 8 | 1m, Valid Inf. njA=1
ﬁa . 51/B=0
[£] X/ 2R,.R 1 1r 1gr, Valid inf. Valid inf.
I P 7 % R e e 1 O Svald | stvald il
Y/R: ®
5 ZI R, 1R, 1r, T not valid nf. not valid mf. | s1/A =1
n/B=0
6 | X/Ri | 2r.Ry | 2RiRs | 2R, 1R, sijA=a/B=1
X/Rs /C=0
52/D=1

Allocation Strategy using Virtual Groups
To allow knowledge sharing between Allocator agents, we organize them in groups. Each Allocatoragent knows
the elements of its group. Thus, when an Allocator agent does not know how to place a request due to lack
of knowledge, it addresses a request to other Allocator agents in the same group to enrich its knowledge. If,
after such knowledge enrichment, it still does not know how to place the request, it initiates a negotiation
process.

Procedure 3Allocator agent’s allocation mechanism

Case event of {
Task T : “task allocation request*
For each subtask t € T do

If local information is useful to place the subtask
allocate(t);

Else { “the agent tries to obtain information from its friend*
enrich-knowledge(t, Friends);
l!tbeenndedmﬁrmﬂmmuufdwdlomt

allocate(t);
Else { "start the negotiation to get the service *
RFB(service);
evaluate(offers);
allocate(t);
update knowledge; * about the manager and services *

}
Load : * a reply containing information about a reactive agent*

Slo Anats do X-SBES, Outubro de 1796

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...

5 Sub-contractor Agents

In multi-media information systems, to be able to offer complex added value services, it is necessary to allow
the composition of services, that is, allow the possibility of building a service from other less complex ones
offered by Reactive agents. An instance of a compleéx service is the bibliographical search that is derived
from a translator, a localization server, a gatherer and a format translator. We introduce a new type of agent
we call Sub-contractoragents which offer complex services. Sub-contractoragents have the same behaviour
as Reactive agent because they offer a service (even which, although complex, are still services). Also, the
behaviour of an Allocator agent because it negotiate the services it necessitate to offer it's service. (Figure
5 shows some of the information a Sub-contractor keeps about the system.

Sharing the knowledge among Sub-contractors is useful, because not all the Reactive agent they use
have the same information validity time. Thus a communication amid Sub-contractors can be enough to
obtain missing information about the behaviour of Reactive agent , when an allocation decision is necessary
to be taken. The results obtained in this way have the following characteristics:

o the time of response of a Sub-contractor is lower because the communication is at the group level, not
at the system level (a multicast communication replaces a broadcast communication).

e the quality computed may not be the best on the system.

System and Own Knowledge of a Sub-contractor

w:w Own information
rsc Sy i e Inormationshus
Name of the Load of the “The of the service

h-r U'=.Iy -m“ e
W . 10 ~The ioad of the service
T - = = | "
Transtasion Service ddcan o 100
Transiason Servce ms 12 150 w

Figure 5: A Sub-contractor agent keeps information allowing the delivery of a service planning a complex
task. In this illustration, the name of the service is bibliographical search, necessitating the services of a
bibliographic database and text processing.

Interactions between the different agents are illustrated by the Figure 6. The algorithm used by Sub-
contractor agents to place requests is briefly developed below. The algorithm implemented is shown in Pro-
cedure 4.

Procedure 4 Sub-contractor’s allocation mechanism

Case event of {
RFB :
For each subtaskt € T do
If own information is useful to allocate or subcontract the subtask
compute bid;
return(bid);

Y compression. OCR, weh optimiz

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

Figure 6: Interactions among the three agents communities.

Else {
ask for useful information to its collaborators

delivers a diagnostic message
)

}
Task : allocate(task)

Example 3

We consider three services s;, 52, 53 and s, offered by the Reactive agents of five sites A, B, C, Dand E,
s; by A and B, s; by C and E and s3 by F. We also consider three Sub-contractor agent types 55,, SS>
and S5 S3, each one proposing an added value service composed from s, s; and s3. The Sub-contractor type
55, using s; and s, is available on sites A, B and E'; The Sub-contractor type S5, using s, is available
on sites C and D, while the Sub-contractor type SS; using s, and s; is available on site C. The validity
duration of the information is a function of the service and is one for services s, and s, and three for service
7. Three complex requests R, S and T are considered, R accessing Sub-contractors types SS; and §5,,
§ accessing S5, and 555 while T accesses 55,.

An execution of these requests is illustrated in Table 3 which shows the evolution of knowledge obtained

sls Anais wo X-SHES, Outuoro de 1796

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...

from the different sites. At time ¢ = 1, the request R making a call to Sub-contractor types SS; and SS; is
launched by an Agent on site X . The former, having no knowledge, makes a request-for-bids (RFB) beside
Sub-contractortypes SS, and SS; on all sites. Sub-contractors, due to lack of knowledge, also start a (RFB)
beside their Reactive agents so as to complete their knowledge. Knowledge obtained by the Allocator agent
on site X allows it to place the request on sites A and C without preference. Sites A and C allocate the work
on services sy, 52. At time t=2, request S launched by an Allocator agent on site Y also executes a RFB
beside Sub-contractors types S5, and SS;. These Sub-contractor types, having acquired knowledge, no
longer need to get information beside their service suppliers. Request S is placed on sites C and D. At time
t = 3, request R is ended while T is launched by an Agent on site Z. Not having knowledge, the Allocator
agent of site Z makes a RFB beside Sub-contractors serving 5S5. In our example Sub-contractors serving
S5, have knowledge partial about the Reactive agent necessitated. Thus firstly they share their information
trying to take a decision, but finally they get information beside the Reactive agent , and the request Z is
placed on site D.

Table 3: Execution of the sequence R, , Ry, R, Ry, R and Rg

[tme | Weguesvsie | 53174 ¥ IE WWW_E‘F"_E‘;H_'_ET:‘;"_
T L1 4 NIAZ0 | 1 /Am0 | 1/A=0 | /A=l | /A=D S5/A=0
emred'X n/B=o0 .:;l-o ®n/B=o0 a:finﬂ ®n/B=o0 §5,/B=0
2/Cmo | s2/Cm0 | s2/Cm0 r 55,/BEm0
@22fD=0 | s23fDmo | 3/D=0 55,/C =0
L3 55;/C=0
C] Lo e =) e =] A=l 8 S5IC=1
n/B=0 553/D=0
s SS[Am2
I} L1 WiAmD | /A= | /A= C11] C 11 A=l TH/C=1
Tz n/Bmo | 93/Bm0 | 03 /Bm0 | syfAm]) | sfAml | 0y/Bm) §5/Dm 1
23/Cmt | s3/Cm0 | 03/Cm0 | sy/Bmi | ay/Bmi | sxfBmD
D=0 D=0 | s3/Dmo T
" L HniA= niA= L1 =1 . il
n/B=) n/B=) after RFE
55 /Am2
§5;/Bwm2
nd fhom D
555/C = 0
§5;/D=)
6 Conclusion

The agent has recently take as a subject of research in distributed systems, distributed artificial intelligence,
information retrieval, among others. This paper tries to contribute to the research of information retrieval,
studying the agent approach to improve the response by means of a dynamic allocation of requests. This
agent approach is quite recent. Schaerf er al [2] have studied the interaction of various parameters and their
effect on the system efficiency. In Arcadia [6], dynamic placement is mainly based on the cooperation of two
agent types, “system agents”, and “application agents”. Both approaches usually assume some control over
the system, in the sense that it is possible to move a process to another site to balance the load. They also
rely on several indicators such as the number of messages received on a site. This makes them inapplicable
in the context of the Internet. The strategies for dynamic query placement which we have developed in this
paper are part of the U-Doc project and assume a worldwide distribution of the information system at Inter-
net scale. They rely on the approach of multiple agents organized in a community of Allocator agents and a
community of Reactive agents. In order to optimize dynamic query placement, we mainly use the knowledge
an Allocator agent obtains during its experiences and also allow their cooperation to share information. The
response time and the throughput are the only parameters that the Allocator agents use to build their knowl-
edge through their experiences. In order to enable complex services with large added value, Sub-contractor
agents are also proposed. We have developed these strategies of allocation taking into account the actual
conditions of our project. Today algorithms are being tested by means of a simulation. The results of our
simulations will undergo actual validation in our U-Doc project.

A L e I, s
compression. OCKR, WeD Oplimize es:

-

http://www.cvisiontech.com

Félix Ramos., L. Chen. M. Bui, P. Faudemay and D. Donsez

References

[1] Geist (A.), elin (A.), and Dongarra (J.) et al. PVM: Parallel Virtual Machine: A Users guide and
tutorial for Networked Parallel Computing. MIT press, 1994.

[2] A. Shaerfadm Y. Shoham and M. Tennenholtz. Adaptive load balancing: A study in multi-agent learn-
ing. Artificial Intelligence Research, pages 475-500, February 1995.

[3] BILLIONNET Alain, COSTA Marie-Christine, and SUTTER Alain. Les problémes de placement dans
les systemes distribués. T.S.1., 8(4):307-337, 89.

[4] B.Folliot. Gatos distributed task manager. Convention Unix in Paris, 89.

[5] Andy Bond. Load sharing in a distributed environment. Technical Report CS-TR-92/1, Victoria Uni-
versity of Wellington, Wellington New Zeland PO Box 600, October 1992.

[6] Bemon Carole. Conception et Evaluation d'une Plate-forme pur le Placement Dynamique de proces-
sus Communicants. PhD thesis, Université Paul Sabatier, IRIT Université Paul Sabatier 118 Route de
Narbonne 31062 Toulouse Cedex, september 1995.

[7] KM. Chandy and J.E. Hewes. File allocation in distributed systéms. In Jnt. Symposium on Computers
Performance, Modeling, Measurement and Evaluation, pages 10-13, Cambridge Mass, march 1976.

[8] L. Chen, Didier Donsez, and P. Faudemay. U-doc: a research vehicle for hyper document retrieval on
the internet. Technical report, Heudiasyc Université de Technologie de Compiégne, 1996.

[9] K. Efe and B. Groseli. Minimizing control overheads in adaptive load sharing. In Proc. 9th Int. Conf.
on Distributed Computing Systems, 89.

[10] Michael R Genesereth and Richard E. Fikes. Knowledge Interchange Format Version 3.0. Computer
Science Department of Stanford University, Stanford, California 94305, 1992.

[11] Ferber. J and Jacopin. The framework of eco-problem solving. Decentraized Artificial Intelligence,
pages 181-193, august 1991.

[12] Ju Jiubin, XU Gaochao, and Yang Kun. An intelligent load balancer for workstation clusters. Operating
System Review, 29(1):7-16, Janvier 1995.

[13] Dag Johansen, Robert van Renesse, and Fred B. Sneider. An introduction to the tacoma distributed
system. Technical Report 95-23, Institut of Mathematical and Physical Sciences if the University of
Tromso, University of Tromso, n-9037 Tromso, Norway, June 1995.

[14] Demazeau Y. Muller J.P. from reactive to intentional agents. Decentralized Artificial Intelligence, 2:3—
10, juin 91. i

[15] L.Chen, D. Donsez, P. Faudemay, L. Sonké, and P. Maillé. U-doc: Serveurs distribués d’hyper-
documents normalisés en environnements ouvers. projet 617 retenue et labellisé par le ministére de
I'industrie a la suite de I"appel & proposition pour les autoroutes de I'information. Technical report,
Université de Technologie de Compiégne, Universite de Paris VI, 1996.

[16] Traian MUTEAN and El-Ghazali TALBI. Métodes de placement statique des processus sur architec-
tures paralléles. Technique et Science Informatiques, pages 355373, mai 1991.

[17] Andrea Shaerf, Yoav Shoham, and Moshe Tennenholz. Adaptive load balancing: A study in multi-agent
leamning. Journal of Artificial Intelligence Research, 2, mai 1995.

DG OGOy UIL VIO DGOl DN

http://www.cvisiontech.com

TASK ALLOCATION STRATEGIES: ...
[18] Narinder Singh. A common lisp api and facilitator for absi. Technical Report Logic-93-4, Computer
Science Department of Stanford University, Stanford, California 94305, march 1994,

[19] J. A. Stankovik. Stability and distributed scheduling algorithms. JEEE Trans. On Software Engineering,
11, 85.

[20] Andrew S. Tannenbaum, M. Frans Kaashoek, Robert Van Renesse, and Henri E. BAL. The amoeba
distributed operating system. Computer Communication, 1991.

[21] Salvatore T.March and Sangkyu. Allocating data and operations to nodes in distributed database design.
IEEE Transactions on Knowledge and Data Engineering, 7(3):305-317, april 1995.

PAITIEN GNP, VWOR O IEe 1053

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382

