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Abstract

Notwithstanding the promises it provides for the future of software engineering, the object para-
digm suffers from a lack of development methods focusing on the coordination between objects.
The distinction of coordination and computation mechanisms is an important separation principle
for increasing the management and understanding of the interactions among objects and the con-
figurations of objects on the target systems. This paper shows that contextual coordination must be
introduced during the object oriented analysis in order to early take into account the inevitable con-
straints of the concrete implementation. This contextual coordination leads to a hierarchical model
composed of imbricated execution contexts of objects.

KEY WORDS: Coordination, Object-Oriented Systems, Software Engineering, Formal Methods, Distribut-
ed Systems.

1 Introduction

From a software engineering point of view, general purpose software development can be divided
into three main phases, namely analysis, design and implementation. Object-oriented methodolo-
gies influence these three phases, leading to so-called object-oriented analysis or specification, ob-
Jject-oriented design and object-oriented implementation [1]. Moreover, in such a framework, the
essence of the design phase is continuous transformation or refinement [9]. The problem of imple-
menting the abstract specification is then to find a correct sequence of design steps that brings the
specification more and more close to the constraint of the target system. This is made by the devel-
opment of a global architecture of the system [10], by means of a refinement of the relationships
between the specification’s objects.

* This work has been sponsored partially by the Esprit Long Term Research Project 20072 «Design for Va-
lidations (DeVa) with the financial support of the OFES (Office Fédéral de I'Education et de la Science), and
by the Swiss National Science Foundation project 2000.40583.94 «Formal Methods for Concurrency».
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The relationships between objects are know under the name of coordination in computer science.
More precisely, the coordination is the process of managing dependencies among activities [13].
An interesting property of the coordination is that it can be view as an orthogonal concept to the
computation; computational features and coordination features should be described independently
each other [8]. The separation of computation and coordination is often concretized in the choice
of different languages and in the choice of different levels of description. Moreover, it should be
possible to split programs in pure computational software entities and in pure coordination entities,
with the same properties of reuse, inheritance, substitution and dynamicity as the traditional objects
(generally encompassing both computation and coordination) [2]. As an illustration, imagine a
process farm, managed by a controller, as shown in figure 1. The workers are pure computational
software entities, and the controller is a pure coordination entity. In this situation there is a natural
separation between the coordination and computation principles. It must be noted that it is not al-
ways the case, and that considerable efforts can be needed in certain situations in order to clearly
perform this separation. Moreover, the workers as well as the controller should be reusable in a
well designed analysis method.

Figure 1 : a process farm

Coordination consist in interactions and configurations. Interactions, also called synchronizations,
are the links between the entities composing a coordinated system. Configurations are the structur-
al relations between the entities. For instance, consider the figure 1 again. The configuration re-
sides in the fact that a process farm is composed of one controller and many workers, encapsulated
into the farm. The interactions are the links between the components of the farm and between the
farm and the external world.

From a technical point of view, general coordination models can be generally divided into three
classes.

*  The mathematical models describe coordination by means of abstract terms, as CCS [14], the
n-calculus [15] or the so-called chemical machines (like CAM [4]). These models are gen-
erally used as an undmiyinghycrby:heopeuﬁomlandsummlmodds for the formal
definition of their semantics.

* The operational models are focusing on the operations required by the coordination, like Lin-
da or PVM. These models are often used for implementing concurrent activities in sequential
programming languages.

*  Structural models, as ToolBus [3] and Darwin [12], focus on the relationships between the
components taking part to the coordination. A coordinated system is depicted as a set of ab-
stract entities and by some relations between these entities. As a result, a coordination struc-
ture is mapped on the system.

Thus, from a software engineering point of view, structural coordination models seem to be well
adapted for describing relationships between objects in a software system.
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Unfortunately, from a software engineering point of view, current structural object coordination
suffers from some weaknesses. In particular, the use of traditional object coordination leads to the
followmgproblun.s
objects reuse is hard to achieve as objects are charged of information about their actual exe-
cution context,

+ formal framework for object composition and grouping is missing, preventing the structuring
of the problem into sub-problems,

» synthetic genesis of software systems promoted by usual object-oriented techniques are fa-
voured with respect to analytic decompositions, despite of the fact that analytic approaches
are close to the natural way of thinking.

This paper shows that an adequate coordination model, based on a hierarchically structured coor-
dination, allows to solve these problems in a simple and elegant way.

The next section describe structured coordination using contexts, and shows how such kind of co-
ordination solves the traditional object coordination weaknesses. Then section 3 present a coordi-
nation language based on hierarchical coordination using contexts, namely COIL, implementing
the concepts introduced in the previous section. Related works are discussed in section 4. Finally,
section 5 concludes this paper.

2 Contextual Coordination

Contextual coordination leads to natural models with structured coordination. In such models,
computation entities are modelled using active objects, while coordination entities are structured
according to the notion of context.

2.1 What is a context

Following the Webster's New Encyclopedic Dictionary [17], a context is the circumstances sur-
rounding an act or event. From a computer scientist point of view, a context is an execution envi-
ronment encompassing a computing unit.

Modelling using contexts and objects tends to encompass the computing units, namely the active
objects, of a software system into their execution context. Therefore, this technique provides con-
text-abstraction to the object, making them pure computational units, and likewise it provides com-
putation-abstraction to the contexts, making them pure coordination units.

2.2 Contexts and objects

The main difference between contexts and objects is that a context is a complex software entity
that encaspulates actions while an object is a basic software entity which models actions.

Objects are able to perform actions and computations as they are active entities. Objects can ma-
nipulate other entities belonging to the software system, as well as they can be manipulated by oth-
er entities. Objects can establish dynamic interaction links to other entities, by means of traditional
message sending. Therefore, objects are bound with dynamic and reflexive elements of a software
system.
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components and connections are drawn using dotted lines.

Figure 3 : chocolate factory with a chocolate in the production unit

An interesting fact is that static components and static connections can be considered as forming
the basic structure of the context hierarchy, while dynamic components and links-are evolving in-
side this structure.

2.5 Contexts modifications

It was mentioned in section 2.2 that contexts are passive entities not manipulating other entities.
Hence contexts can not manipulate their contents. Nevertheless, contexts can be manipulated by
dynamic entities as objects. This leads to the notion of context modifications.

Contexts modifications consist of the moving of the dynamic components from one context to an-
other one. For instance, keeping the same example, it is reasonable to think that the component
"choc" will move to the context "packing unit" in order to be packed, as shown in figure 4.

Figure 4 : chocolate factory with a chocolate in the packing unit

2.6 Contexts encapsulation

Contexts do not only coordinate their components, they also hide them from the external world.
Indeed, contexts are encaspulated entities, and their components are protected from the outside
world. In other words, dynamic components and links are local to their context, and external inter-
actions can only take place through static connections.

For instance, consider the object "choc” in figure 3. This object cannot be reached by the object
"pack”, because both objects are not statically linked and they are not belonging to the same con-
text. Therefore, "choc" must migrate to the packing unit in order to be handled by "pack", as shown
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Conversely, contexts are passive entities. Contexts are not modelling actions, but are modelling the
coordination of their encompassed actions. Thus, objects can be manipulated, but can not manip-
ulate other software entities, being totally passive. Contexts hold static interaction links, linking
static encompassed entities.

In fact, objects and context are complementary to each other. Using contexts, the external world is
encapsulated for objects, just as -following a traditional point of view- objects are encapsulated for
the external world.

2.3 Contexts hierarchy

Contexts are encompassing actions, and an action can be described by an active object. However,
an action can also be expressed as a context encapsulating sub-actions. Thus, contexts contain ob-
jects and sub-contexts, and this leads to the notion of contexts hierarchy. Moreover, a context must
contain the connections between its components and itself.

In other words, contexts are composed of components and connections. Components are either ob-
jects or contexts. Connections are linking components and their context. Finally, a software system
is a hierarchy of contexts.

Figure 2 shows a system modelling a chocolate factory. The factory consists in two contexts, each
of them modelling a sub-factory. The first context is the producing unit, which care about the pro-
duction of both covers and pralines, and which merge them together to produce a chocolate. The
second context is the packing unit, which packs the chocolates into suitable boxes. This example
illustrates the hierarchy of the contexts; "factory” encompass "production unit” and "packing unit",
both of them encompassing some objects. Moreover, one can see that connections are respecting
the hierarchy.

Figure 2 : chocolate factory

2.4 Static and dynamic components

Both components and connections can be static or dynamic. Static elements are described as a
property of their encompassing context, and they exist as long as the context exists. For example,
in figure 2, "prod. praline” and "merge" are static components. On the contrary, dynamic elements
are created and manipulated by the objects of the context; dynamic elements are described as prop-
erties of the encompassed objects, using standard object-oriented techniques.

For instance, a chocolate can be viewed as an object dynamically created and managed by the com-
ponent "merge”, as shown in figure 3. In this case, the context "production unit" contains three stat-
ic components and one dynamic component (namely the object "choc"). By convention, dynamic
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in figure 4. During the moving, the chocolate pass through the super-context, actually through the
factory. It is remarkable to notice how this process corresponds to a natural intuition of the func-
tioning of a real chocolate factory.

2.7 Modelling using contextual coordination

To summarize the above stated facts, modelling using contextual coordination is a general model-
ling technique, merging the paradigm of objects and the structural coordination. Objects are active
fully dynamic computing entities, preserved from external world by means of encapsulation, while
contexts are hierarchical coordination entities. Thus, contexts can be viewed as hierarchical inter-
faces around the computing entities.

From a software engineering point of view, this modelling technique brings many advantages in
addition to its simplicity. In particular, the facilities for object reuse, object composition and sys-
tem analysis.

*  Objects reuse.
Actually, the major obstacle in object reuse reside in the fact that traditional objects are
interconnections laden. Despite of the fact that traditional objects are reached only
through well-defined entry-points, namely the methods, which can be considered as in-
put ports abstractions, there is a lack of symmetric output ports abstractions. Therefore
objects usually code the synchronizations they require into their core, which obviously
prevent object reuse [16]. Conversely, using contexts, objects are able perform abstract
synchronizations through output ports, whose connections are depicted by the context;
object reuse is facilitated and in many cases just consists in changing the context.
For instance, consider again the controller in figure 1. It is bound to the workers by its
context. Placing it into another context will allow it to be reused without modifications.

*  Object composition and grouping.
Using contexts, objects and sub-contexts are logically grouped according to their struc-
tural relationships. In addition, as interactions are described as properties of the con-
texts, composition and re-composition of software entities arise naturally. As an
example, suppose we want to insert a quality tester between the objects "prod. cover”
and "merge", as shown in figure 5. Using traditional objects, it implies a rewriting of
the core of the object "merge”. Using contexts, on the contrary, this adding just implies
a modification of the context "production unit"

Figure 5 : chocolate factory with quality test
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+ System analysis.

Contexts allow to decompose problems in loosely-coupled sub-problems. Moreover,
sub-problems are encapsulated entities. It follows that contextual coordination provide
a natural framework for system analysis.

For instance, one can think about the global problem of modelling a chocolate factory,
as shown on the left part of figure 6. A simple analysis shows that a factory is com-
posed of a production unit and of a packing unit, as shown on the right part of figure 6.
Then, following this way, the production unit and the packing unit are analysed, and
the result is shown in figure 2.

Figure 6 : different points of view on the chocolate factory

Last but not least, from a methodological point of view, this technique allows to unify the concepts
of object-oriented system and distributed system. Indeed, the nature of object-oriented systems is
similar to that of distributed systems; objects can be viewed as loosely coupled software entities
similar to distributed processes, but object granularity is different from process granularity. This
prevent a direct mapping between objects and processes. The use of contexts helps to find granu-
larity and localization concepts close both to the nature of the problem and to the target system.
But this is out of the scope of this paper [7].

3 COIL (Contexts and Objects Interface Language)

COIL is a coordination language, based on structural models; using COIL, a software system is
described by means of it's computing units and their execution contexts. Thus, around computa-
tional entities programmed in a suitable object-oriented host language, coordination layers are de-
scribed by means of COIL.

3.1 The object model used by COIL

COIL was developed around the SANDS system [5] [6]; its syntax is coming from the syntax of
the CO-OPN, (Concurrent Object Oriented Petri Nets) specification language used in SANDS and
its semantics is given by translation to CO-OPN ;. Despite of this fact, COIL is general enough to
be used in many different situations, provided the use of suitable object-oriented host language and
model.
Actually, COIL assumes the following requirements about the object model :

* Data are defined by means of abstract data types.

*  Objects are typed active computing entities.

*  Objects have input ports (usually called methods) and output ports (usually called gates).

* Message passing is realized using parametrized synchronous method calls. Despite of the

fact that method calls are directional, parameters are exchanged in both direction, through
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the use of an unification mechanism. Moreover, methods can refuse calls; in this case, the
synchronization fails.
This semantics is operationally more complex than usual object oriented models (it is based
on nested transaction models) but it seems that we increase considerably the generality of
concurrency management that can be found in usual object oriented languages.
Any language which can fulfil these requirements should be able to be a host language for COIL.
In particular, the following notions are compatible with COIL:
* active objects (i.e. spontaneous actions of objects),
+ dynamic objects (i.e. dynamic creation and management of objects),
* sub-typing and the substitution principle, for both objects and data,
» full concurrency (i.e. at any time, any number of methods can be called any number of time).
Moreover, the current version of COIL does not allow objects (written in the host language) to ma-
nipulate contexts (and COIL elements). In other words, there is no notion of typed "classes” of
components, dynamically instantiable by the objects of the host language. This comes from the fact
that COIL is really a layer encompassing the host language, while the contrary is not true.

3.2 COIL language

The COIL language with it’s static semantics is introduced below through the formal modelling of
the chocolate factory shown in figure 2. Objects and classes used by this example will be sketched
using the CO-OPN, specification language. The reader is supposed to be familiar with the notion
of signature and with the differences between classes and types [5]. Source code of COIL is frag-
mented into modules, each module corresponding to a context.

Although COIL specifications are written in plain text, an equivalent graphical notation is provided
for the convenience of the user.

3.2.1 Basic concepts

Using COIL, a context is described by a module. The module starts with the keyword "Context"
followed by its name, and ends with the keyword "End" followed by its name too. Inside the mod-
ule, two parts are defined, namely the interface part and the body part. The interface part contains
actually the interface of the context, and the body part encapsulates the private components of the
context. The content of the interface part defines the exported signature of the context. The content
of both interface and body are defining the internal signature of the context. Of course, the inter-
face part must be correctly typed with respect to the exported signature, and the body part must be
correctly typed with respect to the internal signature.

As an example, figure 7 sketches the context "PackingUnit". The left part contains the textual no-
tation while the right part depicts the graphical form. Graphically, contexts are represented by
smooth rectangles, while objects are represented by ellipses.

Context PackingUnit;
Interface

= [ )

End PackingUnit;

Figure 7 : sketch of the packing unit
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32.2 The imports

COIL contexts can import the definitions made in another component, through the use sections. A
use section in composed of the keyword "Use", followed by the name of the modules to import.
Actually, an import is a signature increment. Therefore, there is two types of use sections: the use
section of the interface and the use section of the body. The interface’s use section augment both
exported and internal signatures of the context, by adding the exported signature of the used mod-
ules. Likewise, the use section of the body increment the internal signature by the exported signa-
ture of the used modules. Imports of contexts are allowed only in the body use section.

For instance, figure 8 sketches the packing unit with its imports. This context uses in its interface
the modules "Chocolate" and "Box", supposed to define chocolates and chocolate boxes. Thus eve-
ry items exported by "Box" are not only accessible inside the context "PackingUnit", but also ex-
ported by the context. On the contrary, the classes "ProdBox" and "Pack” are imported in the body
part. As a consequence, their exported items are accessible only to the body part of the context
"PackingUnit"; they are neither accessible to its interface part, nor exported by the context.

Context PackingUnit;
Interfacs
Use
Chocolate, Box;
Body
Use -
ProdBox, Pack; PR
End PackingUnit;

Figure 8 : sketch of the packing unit with the imports
Graphically, imports are usually omitted for sake of clarity.

L B B T

3.2.3 Ports definitions

The next step in the specification of a context is the definition of its ports. The ports are used by
the context to access the external world. Therefore, ports definitions are part of the interface. There
is two kinds of port sections; the input ports are defined in a method section and the output ports
are defined in a gate section.

Going on with the packing unit, figure 9 adds the ports definitions

1 Context PackingUnit;

2 Interface EB= E
3 Use e

4 Chocolate, Box; receive _ : chocolate deliver _ : box
5 Method

L] receive _ : chocolate;

T Gate

8 deliver _ : box; PackingUnit

9 Body

10 Use

1 ProdBox, Pack;

12 End PackingUnit;

Figure 9 : sketch of the packing unit with the ports
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For the packing unit, one method is defined for the input of chocolates, and one for the output of
the boxes supposed to contain the chocolates. Reader can remark that the interface is correct with
respect to the static semantics, as the two types exploited (namely "chocolate” and "box") are
known through imports. Graphically, context ports are described as squares, with one half col-
oured; for gates, the coloured half is the internal one, and the reverse is true for methods. On the
contrary, object ports are described with plain squares; for gates, the colour is white and for meth-
ods the colour is black.

Graphically, typing information are usually omitted for sake of clarity.

3.2.4 Sub-components

As mentioned in the previous section, sub-components are either objects or sub-context. COIL
handles differently these two kind of sub-components.

Objects are defined in the object section. This section starts with the keyword "Object” (or "Ob-
jects"), followed by so-called object blocs terminated by semicolons. An object bloc is a list of
names followed by a type. For each name in the list, an object with this name is instantiated, ac-
cording to the class referred by the type.

For instance, figure 10 shows the packing units with it’s components, actually two objects. The
first object, called "prod box", is typed by "prodbox" and is an instantiation of the class "ProdBox".
Likewise, the second object is named "pack” and comes from the class "Pack".

i Context PackingUnit;

2 Interface /"_‘E i E 2
3 Use . receive deliver
4 Chocolate, Box: receive 3

g SR s chocolate deliver

6

7 box

8

w

receive _ : chocolate; . 3
Gats receive
deliver _ : box;
Use
ProdBox, Pack; - ?
\_ PackingUnit .

o
- o

12 Objects
13 prod box : prodbox;
14 pack : pack;

[
w

End PackingUnit;
Figure 10 : sketch of the packing unit with its components

Sub-contexts are defined in a slightly different way. Actually, contexts are considered as sub-com-
ponents when they are used in the body section of the encompassing context.
Indeed, on the contrary of objects which are defined by classes and must be instantiated, the notion
of "classes” of context is not existing and, as a consequence, contexts are statically instantiated
when they are defined. Thus, while objects must be explicitly instantiated once the import of their
classes made, the import of contexts is not followed by any instantiation mechanism and no other
syntactic mechanisms are required to define sub-contexts.

As an example of sub-contexts, we can consider a sketch of the context "factory” depicted in figure
2. The body of "factory” imports two modules, namely the context "ProducingUnit" and the con-
text "PackingUnit", as shown in figure 11. Therefore, both modules are sub-components of the fac-
tory.
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Figure 11 : sketch of the factory

3.2.5 Connections and variables

Once sub-components defined, connections between their ports and with the ports of the context
must be described. This is the role of the connection section. Connections are static links between
a output and input ports. However, it should be noticed that from the body of a context, the gates
of the context are obviously seen as input ports and the methods are seen as output ports.

Each connection is defined as an output expression, followed by the keyword "With" and by a syn-
chronization expression. An output expression is an output port with -perhaps- parameters. The
most simple form of a synchronization expression is an input port with -perhaps- parameters. Pa-
rameters are in fact typed variables or constants and are used by the unification mechanism of the
method calls of the host language. Of course, as well output expressions as synchronization expres-
sions must be correctly typed.

Free variables are declared in an apposite section, immediately following the connection section,
and is composed by the keyword "Where" followed by so-called variable blocs. A variable bloc,
terminated by a semicolon, is composed by a list of names followed by a type. Each names define
a variable with the declared type.

As an example, consider again the packing unit, as shown in listing 1 and figure 12. Two variables
are defined, namely "c" with type "chocolate” and b with type "box". Three connections are de-
fined. The first one links the gate "deliver” from the sub-component "prod box" with the method
"receive box" of the sub-component "pack"”; this connection means that every method calls issued
by "deliver” must be sent to "receive box". The second connection links the method "receive” of
the context (this method is considered as an output port) with the method "receive chocolate" of
the sub-component "pack”; this connection means that every method calls issued through "receive"
must be forwarded to "receive chocolate”. The third connection link the gate "deliver” of the object
"pack” with the gate "deliver” of the context (this gate is considered as an input port); thus every
methods calls issued by "deliver” is forwarded to the gate "deliver” of the context.

T Context Puﬂn—qm;r. H
Interface
Use

Chocolate, Box;

lol=a I I RN T N

receive _ : chocolate;
Gate
deliver _ : box;
Body
0 Use
1 ProdBox, Pack;

Listing 1 : the PackingUnit module
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12 OEjects

13 prod box : prodbox;

14 k : pack;

15 E“mﬂ

16 prod box.deliver b With pack.receive box b;

17 PackingUnit.receive ¢ With pack.receive chocolate c;
18 pack.deliver b With PackingUnit.deliver b;

19 Whars

20
21
22

Figure 12 : the PackingUnit module

Synchronization expression can be built using three 2-arguments operations, namely "//", ".." and
"+". The operation "//" is the simultaneous operation; the synchronization must occurs simultane-
ously on two input ports. Likewise, the operation ".." is the sequential operation, and "+" is the al-
ternative operation.

For example, consider a modification of the context “PackingUnit" as shown in listing 2, where we
want to count every boxes output by the unit. With respect to the original module, a static sub-com-
ponent is added (the counter) and the synchronization of the line 19 is modified. As a result, every
time the object "pack” issues a method call on its gate "deliver”, this message is forwarded to gate
"deliver” of the context and, simultaneously, a method call without parameters is issued to the
method "notify” of the object "counter”.

'r_'_ﬁmit.

2

3 'Ubl

; Chocolate, Box;

6 receive _ : chocolate;

7 Gate

; deliver _ : box;

10 Use

11 ProdBox, Pack;

12 Objects

11 prod box : prodbox;

14 pack : pack;

15 counter : counter;

16 Connections

17 prod box.deliver b With pack.receive box b;

18 PackingUnit.receive ¢ With pack.receive chocolate c;
19 pack.deliver b With counter.notify // PackingUnit.deliver b;

Listing 2 : packing unit with counter
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20 Whaze

- | c : chocolate;
22 b : box;

23 End PackingUnit;

Listing 2 : packing unit with counter

3.2.6 Genericity and reuse

COIL allows genericity and reuse through a syntactic mechanism, as CO-OPN. Moreover, generic
modules can have parameters.

A generic context is distinguished form normal modules by the keyword "Generic" placed before
the keyword "Context". Apnmcommxtmastunplmforoth:rmodnhsmdlsnmm
instantiated.

Any normal context can instantiate at most one context. The resulting context is then the syntactic
merge of the instantiated module and of the normal module. The instantiated module is either a ge-
neric module or another normal module (in which case the instantiation is actually a copy).
Parametrized instantiation is instantiation with replacement of the formal parameters (which are
parameters modules) by effective parameters (which are normal modules). Finally, parameter
modules are automatically imported.
LlslmgSahowagmmcpnchngumuandmmmnmmnuapwhngumforchomm The
contents of "GenericPackingUnit" is instantiated into the core of "PackingUnit", with "pack item"
renamed in "pack”. "Chocolate” replace "Item" thus the interface of "PackingUnit" imports actu-
ally "Chocolate".

[T Parameter Object Item;

2 Interface

3 m- item;

4 End Item

S

6 Context GenericPackUnit (Item);

7 Interface

8 Use

9 Box;

10 Method

1 receive _ : item;

12 Gate

13 deliver _ : box;

14 Body

15 Use

16 ProdBox, Pack(Item);

17 Objects

18 prod box : prodbox;

19 pack item : pack;

20 Connections

21 prod box.deliver b With pack item.receive box b;
22 PackingUnit.receive i With pack item.receive item i;
23 pack item.deliver b With PackingUnit.deliver b;
24 Where

a5 i : item;

26 b : box;

27 End GenericPackUnit;

28

29 Context PackingUnit As GenericPackUnit(Chocolate);
30 Rename

3 pack item -> pack;

32 End PackingUnit

Listing 3 : generic packing unit and its instantiation

- e
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4 Related Works

Many researches are conducted in the domain of structured coordination since few years. Among
other, COIL is inspired by the Kristensen’s complex associations, by the Bergstra’s ToolBus and
by the Kramer’s coordination language Darwin. With regard to these researches, COIL is clearly
focusing on concurrent object-oriented software engineering.

4.1 Complex associations

Complex associations [11] come from object-oriented software engineering and are structured as-
sociations between objects. Like the contexts in COIL, complex associations describe a hierarchi-
cal coordination structure. But while contexts can be viewed as boxes encompassing components,
complex associations are elaborated links connecting objects and encompassing objects. In other
words, COIL’s contexts are structures containing links, and complex associations are links con-
taining structures. Thus if seems to be difficult to adapt complex associations to contextual mod-
elling techniques.

Additionally, because of the fact that complex associations are described by means of standard ob-
jects, computation is not really separated from coordination, but in the other hand reuse, inherit-
ance and dynamicity of associations are enabled through the standard object oriented techniques.

4.2 ToolBus

The ToolBus [3] is a coordination model for describing the coordination of open distributed sys-
tems. A ToolBus architecture is composed of a communication structure, namely the bus, linking
loosely-coupled software systems.

The main difference between ToolBus and COIL is that while COIL promotes pure hierarchical
coordination, the bus of ToolBus forms a linear structure. For this reason, it is not possible to de-
scribe layered coordination, as used for instance in the chocolate factory.

Moreover, the bus of ToolBus is described by means of a collections of so-called scripts, taking
care about the routing of the messages. Thus coordination is not fully separated from coordination,
as the coordination structure comports computational parts. However, the use of scripts allows full
dynamicity of the architecture, by simply adding a new software system to the bus and connecting
them by new routing scripts.

Finally, from an implementation point of view, an interesting feature of ToolBus is the develop-
ment of a syntactic representation for message exchange. This allows to distribute the bus among
different architectures, without data compatibility problems.

4.3 Darwin

Darwin is a coordination language for distributed system [12]. COIL is very similar to Darwin, but
as Darwin is adapted for the description of software systems composed of distributed processes,
COIL is primarily suited for the description of object-oriented systems composed of loosely-cou-
pled objects.

Darwin model software systems by means of a hierarchical coordination using contexts, composed
of processes and components (similar to the objects and contexts in COIL). However, Darwin was
not primarily designed as an object-oriented language and seems poorly evolved with features as
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reuse, inheritance and sub-typing.
Moreover, it seems that for historical reasons, dynamicity of configuration are made in Darwin at
the expense of merging computations and coordination, on the contrary of COIL.

5 Conclusions

Management of complex systems, and consequently coordination of activities, are becoming one
of the major research domain in computer science. Structured coordination models using contexts
are the most promising of coordination models, as they allow a natural description of the coordi-
nation problems.

COIL is a new general language for coordination of concurrent active objects with structured co-
ordination using contexts. COIL is based on the formal language CO-OPN, and exploit its homo-
geneous ability to manage concurrent modelling.

From a software engineering point of view, COIL offers a natural model, close both to the user and
to the computer. This model, with the usual encapsulation of its computing units, is well-suited for
bottom-up synthetic constructions of software systems. Moreover, thanks to the reverse encapsu-
lation provided by contexts, this model is also particularly adapted for top-down analytic approach-
es. Thus, software systems specified using COIL are both decomposable and re-composable.
Moreover, on the contrary of standard object techniques, COIL promotes full reusability of its
components, reusability of computing entities as well as reusability of coordination entities.

The main part of our current research is focusing on the application of COIL to distributed systems.
Finally, development of COIL having fully dynamic features, i.e. allowing objects of the host lan-
guage to instantiate and manipulate contexts, would be of great interest.
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