
Contextuai Coordination between Objects •

MA THIEU BUFFO I

DIDIER BUCHS 2

1 CUI, Université de Geneve
24, rue du Général Dufour

1211 Geneve 4, SWITZERLAND
buffo@cui.unige.ch

2 EPFL-LGL-01
Swiss Federal Institute of Techno1ogy

1015 Lausanne, SWITZERLAND
buchs@di.epfl.ch

Abstract

Notwithstanding the promises it provides for the furure of software englneering, the object para­
digm suffers from a Jack of development methods focusing on the coordination between objects.
1lle distinction of coordination and computation mechanisms is an important separation principie
for ioaeasing the management and understanding of the interactions among objects and the con­
figurations of objects on the target systems. This paper shows that contextuai coordination must be
introduced during the object oriented analysis in order to early take into account the inevitable con­
straints of the concrete implementation. This contextuai coordination leads to a hierarchical model
composed of imbricated execution contexts of objects.

KEY WORDS: Coordination, Object-Oriented Systems, SoftwareEngineering, Formal Melhods, Distribut­
ed Systems.

1 Introduction

From a software engineering point of view, general purpose software development can be divided
into three main phases, namely analysis, design and implementation. Object-oriented methodolo­
gies influence these three phases, leading to so-called object-oriented analysis o r specification, ob­
ject-oriented design and object-oriented implementation [I). Moreover, in such a framework, the
essence of the design phase is continuous transformation or rejinement [9). The problem of imple­
menting the abstract specification is then to find a correct sequence of design steps that brings the
specification more and more close to the constraint of the target system. This is made by the devel­
opment of a global architecture of the system [10), by means of a refinement of the relationships
between the specification 's objects.

• This worlc has been sponsored partially by lhe Esprit Long Term Resean:h Project 20072 «Design for Va­
lidation .. (DeVa) with lhe financial suppon ofthe OFES (Office Fédéral de I'Educaúon et de la Science), and
by the Swiss Naúonal Science Foundallon project 2000.40583.94 «Formal Melhods for Concurrency ...

Anais do X-SBES. Outubro de 1996 341 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

CmnEXruAL COOJU>INATION BETWEENOIIJECTS

The relationships between objects are know under tbe name of coordination in computer science.
More precisely, the coordination is tbe process of managing dependencies among activities [13].
An interesting property of tbe coonlination is that it can be view as an orthogonal concept to the
computation; computational f~ and coordination features should be described independendy
each other [8]. The separation of computation and coordination is often concretized in the choice
of different languages and in the cboice of different leveis of description. Moreover, it should be
possible to split programs in pure computational software entities and in pure coordination entities,
with the sarne properties of reuse, illberitance, substitution and dynamicity as the traditional objects
(generally encompassing both computation and coordination) [2]. As an illustration, imagine a
process farm, managed by a controller, as shown in figure L lbe workers are pure computational
software entities, and the controller is apure coordination entity. ln this situation there is a natural
separation between the coordinatioo and computation principies. It must be noted that it is not al­
ways the case, and that coosiderable effons can be needed in certain situations in order to clearly
perform this separation. Moreover, the workers as well as the controller should be reusable in a
well designed analysis method.

externa! wald

Figure 1 : a process farm

Coordination consist in interactions and configurations. Interactions, also called synchronizations,
are the links between the entities composing a coordinated system. Configurations are the structur­
al relations between the entities. For instance, consider the figure 1 again. lbe configuration re­
sides in the fact that a process farm is composed of one controller and many workers, encapsulated
into the farm. The interactioos are tbe links between the components of the farm and between the
farm and the externa! world
From a technical point of view, general coordination models can be generally divided into three
classes.

The mathematical models describe coordination by means of absttact terms, as CCS [14], the
1t-calculus [15] or the so-callt:d chemical machines (like CAM [4]). These models are gen­
erally used as an underlying layer by the operational and structural models, for the formal
defmition of their semantics.

• The operational models are focusing on the operations required by the coordination, like Lin­
da o r PVM. These models are often used for implementing concurrent activities in sequential
programming languages.

• Structural models, as ToolBus [3) and Darwin [12), focus on the relationships between the
components taking pan to the coordination. A coordinated system is depicted as a set of ab­
sttact entities and by some relations between these entities. As a result, a coordination struc­
ture is mapped on the system.

lbus, from a software engineering point of view, structural coordination models seem to be well
adapted for describing relationships between objects in a software system.

342 Anais do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Malbicu Buffo ud Didier Bucbs

Unfortunately, from a software eogineering point of view, current sttuctural object coordination
suffers from some weaknesses. ln particular, tbe use of traditional object coordination leads to the
following problems:

objects reuse is hard to achieve as objects are charged of information about their actual exe­
cution context,
formal framework forobjectcomposition and grouping is missing, preveoting the structuring
of the problem into sub-problems,
synthetic genesis of software systems promoted by usual object-oriented techniques are fa­
voured with respect to analytic decompositions, despite of the fact that analytic approaches
are close to the natural way of thinking.

This paper shows that an adequale coordination model, based on a hierarchically structured coor­
dination, allows to solve tbese problems in a simple and elegant way.

The next section describe structured coordination using contexts, and shows how such kind of co­
ordination solves the traditiooal object coordination we-aJcnesses. 1ben section 3 presenta coordi­
nation language based on bierarchical coordination using contexts, namely con.., implemeoting
the concepts introduced in the previous section. Related works are discussed in section 4. Fmally,
secti.on 5 concludes this paper.

2 Contextuai Coordination

Contextuai coordination leads to natural models with structured coordination. ln such models,
computation entities are modelled using active objects, while coordination entities are structured
according to the notion of context

2.1 Wbat is a context

Following the Webster's New Encyclopedic Dictionary [17], a context is tM circwnstances sur­
rounding an actor everú. From a computer scientist point of view, a context is an execution envi­
ronment encompassing a computing unit
Modelling using contexts aod objects tends to encompass the computing units, oamely tbe active
objects, of a software system into their execution context Therefore., this technique provides con­
text-abstraction to tbe object, making them pore computational units, and likewise it provides com­
putation-abstraction to the contexts, making them pure coordination units.

2.2 Contexts and objects

The main difference between contexts and objects is that a context is a complex software entity
that encaspulates actions wbile an object is a basic software entity which models actions.
Objects are able to perform actions and computations as they are active entities. Objects can ma­
nipulate other entities belonging to the software system, as well as they can be manipulated by oth­
er entities. Objects can establish dynamic interaction l.inks to other entities, by means of traditional
message sending. Therefore, objects are bound with dynamic and reflexive elements of a software
system.

Ana1s doX-SBES, Outubro de 1996 343 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Malbieu Buffo ud Didier Bucbs

components and connectioos are drawn using dotted lines.

Figure 3 : cbocolate factory witb a c::bocolate io tbe produdioo uoit

An interesting fact is tha1 static components and static connections can be considered as forming
the basic sttucture of the cootext hierarchy, while dynamic components and links·are evolving in­
side this structure.

2.5 Contexts modifications

It was mentioned in section 2.2 tbat contexts are passive entities not manipulating otber entities.
Hence contexts can not manipulale their contents. Nevertheless, contexts can be manipulated by
dynamic entities as objects. 1bis leads to the notion of context modifications.
Contexts modifications consist of tbe moving of the dynamic components from one context to an­
other one. For instance, keeping tbe sarne example, it is reasonable to think tha1 the component
"cboc" will move to the context "packing unit" in order to be packed, as sbown in figure 4.

Figure 4 : c:bocolate factory witb a cbocolate io tbe pac:kiog uoit

2.6 Contexts encapsulation

Contexts do not only coordinare their components, tbey also bide them from the extemal world.
lndeed, contexts are encaspulated entities, and tbeir components are protected from the outside
world. ln other words, dynamic components and links are local to tbeir context, and extemal inter­
actions can only take place lhrougb static connections.
For instance, consider the object "cboc" in figure 3. 1bis object cannot be reacbcd by tbe object
"pack", because both objects are not statically linked and they are not belonging to tbe sarne con­
text Therefore, "cboc" must mi grau: to the packing unit in order to be bandled by "pack", as shown

Anais do X-SBES, Ouhlbro dt! 1996 345 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

CONTEXlUAL COORDINATION BElWEEN 0BJEcTs

Conversely, contexts are passive eatities. Contexts are not modelling actions, but are modelling the
coordination of their encompassed actions. Thus, objects can be manipu.Lated. bot can not manip­
ulate other software entities, being totally passive. Contexts bold static interaction links, link:ing
st.atic encompassed entities.
ln fact. objec:ts and context are complement.ary to each other. Using contexts, the extemal world is
encapsulated for objec:ts, justas -following a traditional point of view- objec:ts are encapsulated for
the externa! world.

2.3 Contexts hierarchy

Contexts are encompassing actions, and an action can be described by an active objecL However,
an action can also be expresscd as a context encapsulating sub-actions. Thus, contexts contain ob­
jec:ts and sub-contexts, and this leads to lhe notion of contexts hierarchy. Moreover, acontext must
contain the connections between its components and itself.
ln other words, contexts are composed of components and connec:tions. ComporJDUS are either ob­
jec:ts or contexts. Co~JMctions are linking components and their contexL Fmally, a software system
is a hierarchy of contexts.
Figure 2 shows a system modelling a chocolate factory. The factory consists in two contexts, each
of them modelling a sub-factory. 1be first context is lhe producing unit. which care about lhe pro­
duction of both covers and pralines, and which merge them together to produce a chocolate. The
second context is the packing unit. which packs the chocolates into suitable boxes. This example
illustrates the hierarchy of the contexts; "factory" encompass "production unit" and "packing unit",
both of them encompassing some objec:ts. Moreover, one can see that connections are respecting
the hierarchy.

Figure 2 : chocolate factory

2.4 Static and dynamic components

Both components and connections can be static or dynamic. Static elements are described as a
property of lheir encompassing context. and they exist as long as the context exists. For example,
in figure 2, "prod. praline" and "merge" are st.atic components. On the contrary, dynamic elements
are created and manipulated by the objects of the context; dynamic elements are described as prop­
erties of the encompassed objects, using standard objec:t-oriented techniques.
For instance, a chocolate can be viewed as an object dynamically created and managed by the com­
ponent "merge", as shown in figure 3. ln tbis case, lhe context "production unit" contains three st.at­
ic components and one dynamic component (narnely the object "choc"). By convention, dynarnic

344 Anais do X·SBES. Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

CoN'IElm/AL COOilOINATION IIETftEN OBJECIS

in figure 4. During the moving, the chocolate pass througb tbe super-context, actually througb the
factory. It is remarkable to notice bow this process corresponds to a natural intuition of tbe func­
tioning of a real chocolate factory.

2. 7 Modelling using contextuai coordination

To summarize the above stat.ed facts, modelling using contextuai coordinarion is a general model­
ling technique, merging tbe paradigm of objects and tbe structural coordination. Objects are active
fully dynamic computing Clllities, preserved from extemal world by means of encapsulation, wbile
contexts are hierarchical coordi.nation entities. Thus, contexts can be viewed as hierarchical inter­
faces around the compufinl entities.

From a software engineeriag point of view, this modelling tecbnique brings many advantages in
addition to its simplicity. Ia particular, the facilities for object reuse, object composition and sys­
tem analysis.

346

Objects reuse.
Actually, the major obstacle in object reuse reside in the fact that traditional objects are
interconnectioos laden. Despite of tbe fact that traditional objects are reacbed only
througb well-defined entry-points, namely the methods, whicb can be considered as in­
put pons abstrxlions, tbere is a lack of symmetric output ports abstractions. 'Iberefore
objects usually code tbe synchronizations tbey require into tbeir core, wbicb obviously
prevent object l'alSe [16]. Conversely, using contexts, objects are able perform abstract
synchronizatioas througb output ports, wbose cotmections are depicted by tbe context;
object reuse is facilitated and in many cases just consists in cbanging the context
For instance, coasider again the controller in figure 1. It is bound to the workers by its
context Placin& it into another context will allow it to be reused without modifications.

Object composition ai grouping.
Using contexts, objects and sub-contexts are logically grouped according to their struc­
tural relationsbips. ln addition, as interactions are described as properties of the con­
texts, composilion and re-composition of software entities arise naturally. As an
example, suppose we want to insert a quality tester between tbe objects "prod. cover"
and "merge", as sbown in figure S. Using traditional objects, it implies a rewriting of
the core ofthe object "merge". Using contexts, on tbe conttary, tbis addingjust implies
a modification of the context "production unit"

Fipare S : dlooolate factory with quality test

Anais doX-SBES. Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Malhieu Buffo ud Didier Buchs

Syst.em analysis.
Contexts allow to decompose problems in loosely-coupled sub-problems. Moreover,
sub-problems are encapsulated entities. It follows that contextuai coordination pro vide
a natural frameworlc for system analysis.
For instance, ooe can think about tbe global problem of modelling a chocolate factory,
as shown on tbe left part of figure 6. A simple analysis shows tbal a factory is com­
posed of a prodoction unit and of a paclcing unit. as shown on tbe rigbt part of figure 6.
Tben, following tbis way, tbe production unit and tbe packing unit are analysed, and
tbe result is sbown in figure 2.

Figure 6 : clifrerent points ot view oo tbe cbocolate fadory

Last but not least. from a medlodological point of view, tbis tecbnique allows to unify the concepts
of object-oriented system and disttibuted syst.em. Indeed, tbe natwe of object-oriented syst.ems is
similar to tbat of disttibutt:d systems; objects can be viewed as loosely coupled software entities
similar to disttibuted processes, but object granularity is different from process granularity. This
prevent a direct mapping between objects and processes. 1be use of contexts belps to find granu­
larity and localization concepts close botb to tbe nature of tbe problem and to tbe target syst.em.
But tbis is out of tbe scope of tbis paper (7].

3 COIL (Contexts and Objects Interface Language)

COIL is a coordination language, based on structural models; using COIL, a software system is
described by means of it's computing units and lheir execution contexts. Thus, around computa­
tional entities programmed in a suitable object-oriented host language, coordination layers are de­
scribed by means of con...

3.1 The object model used by con.
COIL was developed aroUDd tbe SANDS system [5] [6]; its syntax is coming from tbe syntax of
the CO-OPN12 (Concurrent Object Oriented Petti Nets) specification language used in SANDS and
its semantics is given by translation to CO-OPN12• Despite of tbis fact. COIL is general enougb to
be used in many different simations, provided lhe use of suitable object-oriented host language and
model.
Actually, COIL assumes tbe following requirements about tbe object model :

Data are defined by means of abstract data types.
• Objects are typed active computing entities.

Objects have input ports (usually called methods) and output ports (usually called gates).
Message passing is realized using parfJn'letrized synchronous metbod calls. Despite of lhe
fact tbat metbod calls are directional, parameters are exchanged in bolh direction, tbrough

Anais do X-SBES, Outubro de 1996 347 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

CONTEX'IUAL COORDINA"OON BETWEEN 0BJECrs

the use of an unijication mcchanism. Moreover, methods can refuse calls; in this case, the
synchronization fails.
1bis semantics is operationally more complex than usual object oriented models (it is based
on nested transaction models) but it seems that we increase considerably the generality of
concurre.ncy management that can be found in usual object oriented languages.

Any language which can fulfil tbese requirements should be able to be a host language for COIL.
ln particular, the following notions are compatible with COIL:

active objects (i.e. spontaneous actions of objects),
• dynamic objects (i.e. dynamic creation and management of objects),

sub-typing and the suhsti.tution principie, for both objects and data,
full concurrency (i.e. at any time, any number of methods can be caDed any number of time).

Moreover, the current version of COIL does not allow objects (written in tbe host language) to ma­
nipulate contexts (and COR.. elements). ln other words, there is no notion of typed "classes" of
components, dynamically instantiable by the objects of the host language. 1bis comes from the fact
that COIL is really a layer eocompassing the host language, while the contrary is not troe.

3.2 COIL Ianguage

The COIL language with it's static semantics is introduced below through tbe formal modelling of
the chocolate factory sbown in figure 2. Objects and classes used by this example will be sketcbed
using the CO-OPNn specificalion language. The reader is supposed to be familiar with the notion
of signature and with the differences between classes and types [5]. Soun::e code of con.. is frag­
mented into modules, each module corresponding to a context
Although COR.. specifications are written in plain text, an equivalent graphi<:al notation is provided
for the convenience of the user.

3.2.1 Basic coocepts

Using COIL, a context is described by a module. The module starts with the keyword "Context"
followed by its name, and ends with the keyword "End" followed by its name too. lnside the mod­
ule, two parts are defined, namely the interface part and the body part Tbe interface part contains
actually the interface of the context, and the body part encapsulates the privare components of the
context The content of the interface part defmes the exported signature of tbe context 1be content
of both interface and body are defming the inteT'IUÚ signature of the context Of cowse, the inter­
face part must be correctly typed with respect to the exported signature, and the body part must be
correctly typed with respect to the internal signature.
As an example, figure 7 sketches the context "PackingUnit". The left part contains the textual no­
tation while the right part depicts the graphical form. Graphically, contexts are represented by
smooth rectangles, while objects are represented by ellipses.

1
2
3

4

348

Colatext. PacltingtJni.t;
lJlte~•-

~
Da4 Pa ck.ingO!út ;

(PackingUnit)
Figure 7 : sketch or tbe priing unit

Anais do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

M.úbieu Butro llld Didier Bucbs

3.2.2 The imports

COIL contexts can i.mport tbe definitions made in anotber component, tbrough the use sections. A
use section in composed of tbe keyword "Use", followed by tbe name of tbe modules to import.
Actually, an import is a signanu:e incremenL Therefore, tbere is two types ofuse sections: tbe use
section of the interface and tbe use section of the body. Tbe interface's use section augment both
exported and internal signanu:es of the context, by adding tbe exported signature of the used mod­
ules. Likewise, the use section of the body increment the intemal signature by the exported signa­
ture of the used modules. Imports of contexts are allowed only in the body use section.
For instance, figure 8 sketcbes the packing unit with its imports. 1bis context uses in its interface
the modules "Chocolate" and "Box", supposed to define chocolates and chocolate boxes. Thus eve­
ry items exponed by "Box" are not only accessible inside the context "PackingUnit", but also ex­
ported by the contexL On lhe conttary, the classes "ProdBox" and "Pack" are imponed in the body
part. As a consequence, tbeir exponed items are accessible only to the body part of the context
"PackingUnit"; they are neitber accessible to its interface part, nor exponed by ~e contexl

1 ~~ Pac:JtingOili.t ;

r-~·
2 %late~-

3 U.e

• Cbocolate, Box;
5 ~

' U.e
7 Prod.Box, Pack;
8 -..s Pac:JtingOnit ;

Figure 8 : sketch of tbe pacláng uoit witb tbe imports

Graphically, imports are osually omitted for sake of clarity.

3.2.3 Ports definitiom

l
The next step in the specification of a context is the definition of its ports. The ports are used by
the context to access the extemal world. Therefore, ports definitions are part of the interface. There
is two kinds of pon sections; the input ports are defined in a method section and the output ports
are defined in a gate section.
Going on with the packing unit, figure 9 adds the ports definitions

1 Coat..t Pacld.ngUnit;
2 Xlate~ace - 11
3 v •• L....J -• Chocolate, Box; receive _ : àlocolate deli ver _: box
5 .. tlaoct

' receive - : chocolate;
7 Gata
8 de li ver - : box; PaclàngUnit

' ~
10 U.e
11 Prod.Box, Pack;
12 .:.4 PackingUnit;

Figure 9 : sketch or tbe packing uoit witb tbe ports

Anars doX-SBES, Outubro de 1996 349 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

ComEXnJAL CooRDINATION BE'JWEEN OBJECTS

For the packing unit, one method is defined for the input of chocolates, and one for the output of
the boxes supposed to contain the chocolates. Reader can renwk that the interface is correct with
respect to the static semantics, as the two types exploited (namely "chocolate" and "box") are
known through impons. Graphically, context pons are described as squares, with one half col­
oured; for gates, the coloured half is the internal one, and the reverse is troe for methods. On the
contrary, object pons are described with plain squares; for gat.es, the colour is whi~ and for meth­
ods the colour is black.
Graphically, typing information are usually omitted for sake of clarity.

3.2.4 Sub-components

As mentioned in the previous section, sub-components are eitber objects or sub-context COIL
handles differently these two kind of sub-components.
Objects are defined in the object section. This section starts with the keyword "Object" (or "Ob­
jects"), followed by so-called object blocs terminated by semicolons. An object bloc is a list of
names followed by a type. For each name in the list, an object with this name is instantiated, ac­
cording to the class referred by the type.
For instance, figure 10 shows the packing units with it's components, actual.ly two objects. The
first object, called "prod box", is typed by "prodbox" and is an instantiation ofthe class "ProdBox".
Likewise, the second object is named "pack" and comes from the class "Pack".

1 Colltext: Paclti.ngtJni t; - 11 2 :blte~&ce

- deli.ver 3 v •• receive

' Chocolate, Box; rec:eive
5 .. tlao4 chocolate deli ver
6 receive _ : chocolate; ~ =d~OD 7 Oate
8 deliver _ : box;

' Boq
10 v •• delivercG;) 11 ProdBox, Pack;
12 Object• PackingUDit
13 prod box : prodbox;
14 pack : pack;
15 JI:D4 PackingUni t;

Figure 10 : sketdl of the packing unit witb its components

Sub-contexts are defmed in a slightly different way. Actually, contexts are considered as sub-com­
ponents when they are used in the body section of the encompassing context
Indeed, on the contrary of objects which are defined by claSses and must be instantiated, the notion
of "classes" of context is not existing and, as a consequence, contexts are statically instantiated
when they are defined. Thus, while objects must be explicitly instantiated once the import of their
classes made, the import of contexts is not followed by any instantiation mechanism and no other
syntactic mechanisms are required to defme sub-contexts.
As an example of sub-contexts, we can considera sketch of the context "factory" depicted in figure
2. The body of "factory" impons two modules, namely the context "ProducingUnit" and the con­
text "PackingUnit", as shown in figure 11. Therefore, both modules are sub-components of the fac­
tory.

350 Anais do X-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

1 Coat- Factory;

2 n.t·~-·
3 v ••
4 Box;
S Gate
6 deliver _ : box;
7 llo4r
a V••
' Productiononit ,

Pac:ltiJ:Igtlhi t;
10 la4 Factory;

Figure 11 : sketcb or tbe Cactory

3.2.5 Conoections anel ftliables

Malhieu Buffo ud Didier Buchs

Once sub-components defi.oed. connections between tbeir ports and with the ports of tbe context
must be described. This is lbe role of tbe connection section. Connections are sw:ic links between
a output anel input ports. However, it sbould be noticed tbat from tbe body of a context, tbe gates
of the context are obviously seen as input ports and tbe methods are seen as output ports.
Eacb connection is defined as an output expression, followcd by the keyword "With" and by a syn­
cbroni.zation expression. Ao output expression is an output port wilh -perbaps- parameters. 1be
most simple fonn of a synchronization expression is an input port with -perbaps- parameters. Pa­
rameters are in fact typed variables or constants and are used by the unification mecbanism of the
method calls of the host language. Of course, as weU output expressions as synchronization expres­
sions must be correctly typed.
Free variables are declared in an apposite section, immediately following the connection section,
and is composed by tbe keyword "Where" foUowed by so-<:alled variable blocs. A variable bloc,
tenninated by a semicolon, is composed by a list of names followed by a type. Each names define
a variable with tbe declared type.
As an example, consider apin tbe packing unit, as sbown in listing 1 and figure 12. Two variables
are defmed, namely "c" wilh type "chocolate" and b with type "box". 1bree connections are de­
fmed. The first one links tbe gate "detiver" from the sutKomponent "prod box" with the melhod
"receive box" of the sutKomponent "pack"; this connection means that every method calls issued
by "detiver" must be sent to "receive box". Tbe second connection links the method "receive" of
the context (tbis method is considered as an output port) with the method "receive chocolate" of
tbe sub-component "pack"; this connection means tbat every method calls issued through "receive"
mustbeforwarded to "receivecbocolate". The tbirdconnection link tbe gale "detiver" ofthe object
"pack" with the gale "detiver" of the context (tbis gale is considered as an input port); thus every
methods calls issued by "deliver" is forwarded to tbe gale "deliver" of tbe context

~
3
4
5
6
7
a
9
10
11

COD~-- PACIUlJ'Ij'UD:>.~ ;
lJat.erface

v ••
Chocolate. Box;

.. tbo4
recaive chocolate;

Gata
dali var box;

Jlo4y
v ••

ProdBox, Pack;

Listing 1 : tbe PackingUnit module

Ana1s do X-SBES. Outubro de 1996 351 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

CoNTEXTUAL COORDINA T10N 1.EtWEEN 0BJEcrs

i~
u
15
16
17
18
u
20
21
22

u~~•
prod box : prodbox;
pack : pack;

c-c:ti-
prod box.deliver b Wltb pack.receive box b ;
PackiogOnit . receive c Witb pack.racaive chocolate c;
pack.daliver b Wltb PackingUD1t .deliver b ;

W!aere
c : chocolate;
b : box;

b4 Paclc1ngt1nit;

ListiDg 1 : the PaddogUnit module

PactiDgUoit

~~12 : thePaddogUnitmodule

Synchronization expression can be built using three 2-arguments operations, namely "Ir," .. " and
"+". The operation "Ir is tbe simult.aneous operation; tbe synchronization must occurs simultane­
ously on two input ports. Likewise, lhe operation " .. " is the sequential operation, and "+" is lhe al­
temative operation.
For example, considera modification of lhe context "PackingUnit" as shown in listing 2, where we
want to count every boxes output by the unit With respect to the original module, astatic sub-com­
ponent is added (the countec) and the synchronization of the line 19 is modified. As a result, every
time the object "pack" issues a method call on its gate "deliver", this message is forwarded to gate
"deliver" of the context and, simultaneously, a method call without parameters is issued to lhe
method "notify" of the objec:t "counter".

~
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

352

Chocolate. Box;
llet:loo4

receive
Gata

deli ver

chocolate;

box;

ProdBox, Pack;
Objec:t:a

prod box : prodbox;
pack : pack;
counter : counter;

c-c:tiOIUJ
prod box.deliver b Witb pack . recaive box b ;
PackiDQOnit.receive c With pack . receiva chocol ate c;
pack.daliver b Wltb countar .notify 11 Paclc1ngtlnit .del1ver b;

Listiog 2 : paddng unit with counter

Anais do X-SBES. Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Malbicu Butro aDd Didier Buchs

ttaiz:e
e : cboeol.ate;
b : box;

2D4 PaekingOnit ;

Listing 2 : paddng unit witb counter

3.2.6 Geoeriàty aad reuse

COU.. allows genericity and reuse through a syntactic mechanism. as CO-OPN. Moreover, generic
modules can have parameters.
A generic context is distinguished fonn normal modules by tbe keyword "Generic" placed before
tbe keyword "Context". A generic context serves as template for other modules and is not auto­
instantiated.
Any normal context can instantiate at most one context 1be resulting context is then the syntactic
merge of the instantiated module and of the normal module. The instantialed module is eitber a ge­
neric module or another normal module (in which case tbe instantiation is actually a copy).
Parametrized instantiation is instantiation with replacement of tbe formal paratneters (which are
parameters modules) by effective paramet.ers (which are normal modules). Fmally, parameter
modules are automatically imported. ·
Listing 3 shows a generic paclcing unit, and its instantiation as a packing unit for chocolates. The
contents of •GenericPackingUnit" is instantialed into lhe core of "PackingUnit". with "pack item"
renamed in "pack". "Chocolate" replace "Item" thus lhe interface of "PackingUnit" imports actu­
ally "Chocolate" .

..
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2 6
27
28
2 9
30
31
32

= wr.J- ~t:-;

tYPe it-;
2D4 Item;

CoDt..t GeneriePackODit (Item) ;
x=~-

v-
Box;

lletbo4
reeeive : item;

Gata
deliver _ : box;

ProdBox, Pack (Item) ;
Objecta

prod box : prodbox;
paek it- : paek;

~1--
prod box.dali ver b Witb paek it-.reeaive box b;
PaekiDgOnit.reeeive i With paek it ... reeeive item i;
paek it ... deliver b Witk PaekingUnit . deliver b;

W!aez:e .
i : item;
b : box;

2D4 GeneriePaelCOnit;

CoDt..t PaekiDgOnit A8 GeneriePaekonit(Choeol.ate); --paek it- -> paek;
2D4 Paekinqonit

ListiDg 3 : generic packing unit aad its iastantiation

Anais do X-SBES, Outubro de 1996 353 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

4 Related Works

Many researcbes are conducted in lhe domain of structured coordination since few years. Among
otber, COll.. is inspired by tbe Kristensen's complex associations, by tbe Bergstra's ToolBus and
by lhe Kramer' s coordination language Darwin. With regard to tbese researcbes, COIL is clearly
focusing on concurrent object-oriented software engineering.

4.1 Complex assodations

Complex associations [11] come from object-oriented software engineering andare structured as­
sociations between objects. Lik.e tbe contexts in COIL, complex associations describe a hierarcbi­
cal coordination structure. But wbile contexts can be viewed as boxes encompassing components,
complex associations are elaborated links connecting objects and encompassing objects. ln otber
words, COll..'s contexts are structures containing links, and complex associations are links con­
taining structwes. Thus if seems to be difficult to adapt complex associations to contextuai mod-
elling techniques. .
Additionally, because of tbe fact tbat complex associations are described by means of standard ob­
jects, computation is not really separated from coordination, but in lhe olher baDd reuse. inherit­
ance and dynamicity of associations are enabled through tbe standard object oriented tecbniques.

4.2 ToolBus

The ToolBus [3] is a coordination model for describing the coord.ination of open distributed sys­
tems. A ToolBus archit.ectme is composed of a communication structure, namely tbe bus, linking
loosely-coupled software systems.
The main difference between ToolBus and COIL is tba1 while COll.. promotes pure hierarcbical
coordination, tbe bus of ToolBus fonns a linear structure. For this reason, it is not possible to de­
scribe layered coordination. as used for instance in tbe chocolate factory.
Moreover, lhe bus of ToolBus is described by means of a collections of so-<:alled scripts, taking
care about the routing of the messages. Thus coordination is not fully separated from coordination,
as tbe coordination structure comports computational parts. However, lhe use of scripts allows full
dynamicity of tbe architecture, by simply adding a new software system to tbe bus and connecting
tbem by new routing scripts.
Finally, from an implementation point of view, an interesting feature of ToolBus is lhe develop­
ment of a syntactic represeotation for message excbange. This allows to distribute tbe bus among
different arcbitectures, witbout data compatibility problems.

4.3 Darwin

Darwin is a coordination language for distributed system [12]. COll.. is very similar to Darwin, but
as Darwin is adapted for tbe description of software systems composed of distributed processes,
COIL is primarily suited for the description of object-oriented systems composed of loosely-cou­
pled objects.
Darwin model software systems by means of a hierarcbical coordination using contexts, composed
of processes and components (similar to tbe objects and contexts in COll..). However, Darwin was
not primarily designed as an object-oriented language and seems poorly evolved with featwes as

354 Anais doX-SBES, Ourubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Matbieu Butfo aDd Didier Bucbs

reuse, inheritance and sub-typing.
Moreover, it seems that f!X bistorical reasons, dynamicity of configuration are made in Darwin at
the expense of merging computations and coordination, on the contrary of COR..

5 Conclusions

Management of complex systems, and consequently coordination of activities, are becoming one
of the major research domam in computer science. Structured coordination models using contexts
are the most promising of c:oordination models, as they allow a natural description of the coordi­
nation problems.
con. is a new generallanguage for coordination of concurrent active objects with structured co­
ordination using contexts. COll. is based on the formallanguage CO-OPN n and exploit its homo­
geneous ability to manage coocurrent modelling.

From a software engineering point of view, con. offers a natural model. close both to the user and
to the computer. This modcl. with the usual encapsulation of its computing units, is well-suited for
bottom-up synthetic constmctions of software systems. Moreover, thanks to the reverse encapsu­
lation provided by contexts. tbis model is also particulady adapted for top-down analytic approach­
es. Thus, software systems specified using con. are both decomposobk and re-composabk.
Moreover, on the contrary of standard object techniques, COll. promotes full reusability of its
components, reusability of computing entities as well as reusability of coordination entities.

The main pan of our correm research is focusing on the application of COll. to distributed systems.
Finally, development of COll. having fully dynamic fearures, i.e. allowing objects of the host lan­
guage to instantiate and mmipulate contexts, would be of great interest

Acknowledgments

We would like to thank Erik Udand for bis helpful comments on earlier drafts of this paper.

Bibliography

[1] M. Aksit and L Berpw15. Obstacles in object oriented software development ln Procee­
dings of OOPSI.A '92, 1992.

[2] F. Arbab. The iwim model for the coordination of concurrent activities. ln P. Ciancarini and
C. Hankin, editors, Coordination Languages andModels, volume 1061 of LNCS, pages 34-
56. Springer-Verlag, 1996.

[3] J. Bergstra and P. Klint The toolbus coordination architecture. ln P. Ciancarini and
C. Hankin, editors, Coordination Languages andModels, volume 1061 of LNCS, pages 75-
88. Springer-Verlag, 1996.

[4] G. Beny and G. Boodol The chemical abstract machine. Theoretical Computer Science,
96:217-248, 1992.

Anais doX-SBES, Outubro de 1996 355 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

[5] O. Biberstein and D. Bacbs. Structured Algebraic Nets witb Object-Orientation. ln Procee­
dings of tJu "AppüCIIIioft and 17uory of Petri Nets 1995" worlahop on "Object-Oriented
Programming and Motúls ofConcurrmcy", Torino, ltaly, June 1995.

[6] D. Buchs, P. Racloz, M_ Buffo, I. flumet. and E. Udand. Deriving parallel programs using
sands tools. TransputerCofffii'UUiications, 3(1):23-32, Jan. 1996.

[7] M. Buffo and D. Bucàs. From object-oriented specifications to distributed systems using
hierarchical contexts. Sabmitted for tbe fDCSS-30 conference, 1997.

(8] P. Ciancarini, K. K. Jcasen. and D. Yankelevich. On tbe operational semantics of a coordi­
nation language. ln O. Nierstrasz, P. Ciancarini. andA Yonezawa. editors, Object-Based
Models and Languages for Concurrent Systems, Proceedings of tJu ECOOP '94 Worlcshop
on Models and longllllJes for Coordination of Parallelism and Distribution, LNCS 924, pa­
ges 77-106. Springer-Verlag, 1995.

[9] D. de Champeaux, D. Lea. aad P. Faure. The process of object-oriented design. ln Procee­
dings of OOPSLA '92, 1992.

[10] D. Garlan and D. Peny. Software architecture: Practice, potential and pitfalls. ln Procee­
dings of the 16th lntemational Conference on Software Engineering. IEEE Computer So­
ciety Press, May 1994.

[11] B. B. Kristensen. Complex associations: Abstractions in object-oriented modeling. ln Pro­
ceedings of OOPSLA '94, pages 272-283, Portland, Oregon, USA, 1994.

[12] J. Magee, N. Dulay, 11111 J. Kramer. Structuring parallel and disttibuted programs. Software
Engineering JouTIJIJl, pileS 73-82, Mar. 1993.

[13] T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM Compu­
ting Surveys, 26(1):87- 119, Mar. 1994.

[14] R. Milner. A Calcubls of Communicaling Systems, volume 92 of LNCS. Springer-Verlag,
1980.

[15] R. Milner. The polyadic pi-calculus: a tutorial. Technical Report ECs-LFCS-91- 180, La­
boratory for Foundatica of Compu ter Science, Department of Computer Science, Universi­
ty of Edinburgh, UI(, Oct. 1991. Proceedings of the Intemational Summer School on Logic
and Algebra of Specification, Marktoberdorf, August 1991. Reprinted in Logic andAlgebra
of Specijication, ed. F. L. Bauer, W. Brauer, and H. Scbwichtenberg, Springer-Verlag, 1993.

[16] J. M. Purtilo. The polilidl software bus. ACM Transcalions on Programming Longuages and
Systems, 16(1):151- 174, Jan. 1994.

[17] Webster. Webster's New Encyc/opedic Dictionary. Black Dog & Leventbal, New York,
1994 edition, 1994.

356 Anais doX-SBES, Outubro de 1996 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382

