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Abstract

This paper proposes a method for allocating an appropriate reliability
requirement to each module of a modular software system, using Markov
analysis. A formula to calculate an estimate of the overall system reliability
is established. From that formula, a procedure to allocate the reliability re-
quirement for each module is derived using an optimization process, taking
into account the known overall required level of reliability.

Key-words: Markov Analysis, Optimization, System Reliability, Relia-
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1 Introduction

To avoid the problems of complexity which the design of a single monolithic soft-
ware system creates, it is usual to divide software into separate components called
modules, which are subsequently integrated to satisfy problem requirements [10].
Modular software systems consist of a set of modules which carry out a range of
different tasks. Among these modules there exists a pre-defined structure of “who-
calls-who”, which is known from a detailed requirement specification. This report
considers a particular form of module interaction, where after a module has com-
pleted its execution, the control of the system is passed to another module, on either
a deterministic or stochastic basis (as exemplified in fig. 1). The pattern of inter-
connection among the modules, i.e.. the sequence in which modules are executed, is
assumed to follow a Markov' process.
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In a Markov process the transitions between states do not depend on past history, nor on the
current time, but only on the current state, So the probability of calling a given module is only a
function of the module currently being executed and the given module.
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Figure 1: Processing in a Modular Structure

The assumption of a Markov process is a good representation of the actual control
exchange process in many applications, and is frequently used in soft ware engineering
practice [3]. An example can be seen in [7], where it is assumed that transitions
between modules follow a Markov process.

When a software system has a modular structure it is apparent that the overall
level of system reliability that will be experienced by the user depends on the se-
quence of modules to be executed and, naturally, on the reliability of each individual
module [3, 8]. The reliability of any software system also depends, of course, on
the profile of use, that is, the dynamic characteristics of a typical execution of the
system in a particular user environment—a system operating in two distinct envi-
ronments will exhibit different levels of reliability, depending on the utilization of
the modules in each of the environments.

A transition matrix can be defined that expresses the pattern of interaction
between the modules; this matrix can be used to represent (some aspects of) the
behaviour of the modular structure. This matrix underlies the relationship between
the overall system reliability and the reliability of each module.

The following definitions are employed in defining the transition matrix:

o M; represents a generic module i and forms a “state 5;" of a system with n
modules (n = 4 in the example to follow);

¢ R; is the reliability of module M;. There are two ways of dealing with software
reliability [1):

— failure rate over time—reliability is: the probability that a module M;
operates according to specifications for a given period of time before a
failure;

— failure rate per demand for service—reliability is: the probability that

module Af; will operate according to its specification when called and
will transfer control correctly when finished.

The latter approach is utilized in this work;

o Pj; is the probability that the transition between modules M; and M; will be
taken, given that control is at module M; and execution is completed according
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to its specification. The values P;; have to be obtained from the requirement
specification of the system (0 < P,; < 1), as, for example, suggested in [15];
o R;Py thus represents the probability that the execution of module M; com-

pletes according to its specification and control of the system is transferred
then to module M;;

e M; is the start module, that is, S, is the initial state of the system;

o F is an absorbing (terminal) state that is reached when a module produces a
result not conforming to its specification, that is, when a failure of that module
occurs. This state is reached from module M; with the probability (1 — R;);

¢ T is an absorbing (terminal) state which is reached when the system of software
modules completes its overall task successfully. More precisely, a module M;
will make a transition to state T, with probability R;P:r, if the execution of
M; completes according to its specification and M; should not then make a
transition to any other module M;. So T}, Pij + Pr = 1;

¢ Ryeq is the overall reliability of the system that the user needs to achieve. The
value for this reliability is known in advance of the design stage;

o Realc is the reliability of the system obtained from the transition matrix using
Markov analysis. It is the probability of reaching the terminal state T from
the initial state M. This represents the probability that the system completes
its execution without failing.

As an example, the following matrix describes a modular structure having four
modules:

M My My M, F T
My [ 0 RiPiy RaPis RiPuy (1= Ri) RiPir ]
My [RaPn 0  RaPs RaPa (1= Ry) RoPor
Ms | RsPw RsPya 0 RaPsy (1= Rs) RaPsr
My |R4Pq RiPa RePia 0 (1= Ry) RiPur

F 0 0 0 0 1 0

B ST IR B S 1

An iterative process can be used to refine estimates of R,,...,R, such that
Markov analysis would vield a result R 2 R,ep With R as close to R,., as
possible (since this will keep software development costs down).

It is well known that to achieve a higher figure for system reliability than R..,
would entail spending more time and cost during development; aiming at a minimum
acceptable reliability R..i. indicates that we seek to keep the development cost of
the software to a minimum also.

The values obtained for each of the R; from this iterative process constitute the
proposed reliability allocation for the modules M;.

This problem may be stated in the following form.

Find a value for | such that R... is minimized

subject to

39
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(i) 0< Ri <1, wherei=1,...,n
(i1) Reate(R) = Rreq 20

Any set of values < Ry,..., R, > that satisfies the conditions above would be an
acceptable set. The problem is to find an acceptable set which allows a compromise
between the reliabilities R; and other contraints of the system; a case in point would
be cost. The result obtained here addresses this problem.

In the following sections this problem is elaborated and a proposed solution is
presented. The paper has the following structure: section 2 derives a formula for
calculating the overall reliability Rcaic, section 3 explains how to find the values R;,
and section 4 is the conclusion.

2 Determination of the Reliability of a System

The transition matrix defined in section 1 describes a finite Markov process with
two absorbing states T and F, and a set of n transient states S, ..., S.. The matrix
can be depicted in the following form:

S A
P= .8 1Q R
A T §

Here A represents the absorbing states and S represents the transient states.
The matrix @ contains the probabilities of transitions between the transient states.
The matrix R contains the transition probabilities from the transient states to the
absorbing states.

The transition probabilities matrix that represents the transformation of the
system after k steps is given by forming powers of the single step matrix P, that is,
P* [14). This k-step transition probability matrix P* has the following form

~[3 1)

The Qf; entry of the matrix Q* denotes the probability of arriving in transient
state S; after exactly k steps starting from transient state S;.
Hence the probability of arriving in transient state S; after (exactly 0, or exactly

1, or ..., or exactly k) steps, starting the system from transient state S, is then
W;; where

W = Q%rQ'orQ%r...orQ"

W=f+0+0’+-—-+0*=f__‘0‘

It is shown in [6] that if Q* — 0, when k — oo (which the case here since Q is 2
matrix of probabilities), then

14Q+Q +- - +Q'=(I=Q)"

Hence the limiting value of W as k increases is very close to the matrix inverse
(I = @)™: this is called the fundamental matrix of the Markov chain (14].
"
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The matrix (/ = Q). which we will now refer to as W, enables us to calculate
the transition probabilities we need. The probability of the system reaching state j
after some number of steps, starting in state 1, is W;.

Now we can calculate the probability of reaching state T, after starting the
system in state S; (corresponding to module AM;).

Given that

o W;; is the probability of reaching state i from state 1 (after an unspecified
number of steps);

o R;P;r is the probability of reaching state T from state { in one step;

Let Ps; be the probability that starting from state 1 the system reaches state S;
after an arbitrary number z of steps and then in one further step reaches T directly

from S; (fig. 2), then
G
Wi RiPr
I |

Ps,

Figure 2: Probability of reaching state T from state 1

Psi = Wyin RiPir
As the probability R;F;r does not depend on W);, then
Psi = Wy RiPr

The overall reliability of a system Reqie will then be the probability that starting
in state 1 the system enters the absorbing state T, from any state S; (fig. 3).

K

nT

@ Win @

Figure 3: Overall probability of reaching state T from state 1

Reate = PsyorPszor . ..orPsy
Py
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n
Regie = Psi + Psz+ -+ Psa = 3_ Ps;

=1

Reie = Y WiiRiPr (1)
=1
Formula (1) allows us to determine the overall reliability of a system R.q. from
the reliability of each module R;, and the transitions probabilities P;; and Pr. In
section 3 this formula is utilized to find the values of R; corresponding to Reae, P;;
and P, which are known in advance.
Formula (1) is a generalization of that given in (3], where here there are no
restrictions on the number of states that can reach state T. In [12] this formula is
briefly cited.

3 Allocation of the Reliability

In this section we describe a method for allocating the values R; such that if the
modules M; attain reliability R; then the desired overall software system reliability
R, will be achieved. (see section 1).

This problem can be summarized as follows.

We seek values of < Ry,..., R, > which will give a value of R, close or equal
to R, but we can only use values of R; with 0 < R; < 1, and such that we obtain
Reate 2 Rreq-

We know:

a. the required reliability R,.,, which is given in advance;

b. the transition probabilities P,; and Py, which are obtained from the require-
ment specification;

To accomplish this task we have the following formulae, which are described in
section 2: '
Reaie = 2?-; WiiR: Pir
e A 1 i=j

= 1 TR 3 f
where W = X! with Xj; { “RP; i
We can summarize this problem description as follows:
Find values of R such that R is minimized, subject to
Reatc(B) = Reeg 2 0; 0 < Ri < 1, wherei=1,...,n

The resulting solution of this minimization problem will be the allocation of the
reliabilities Ry, ..., ..

Framework of the Solution

To deal with the problem stated above, the published NAG routines E04VDF and
FO4AAF [9] were used as shown in the framework of figure 4. The routine E04VDF
is a routine to minimize an arbitrary function subject to constraints, which may
include simple bounds on the variables, linear constraints and non-linear constraints.
FO4AAF solves a system of equations with multiple right-hand sides and thereby
allows us to calculate W),.

e
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Begin Program

Supply Limit on maximum number of iterations in routine EO4VDF;

Supply Accuracy required from the solution;

Supply e

Supply Upper bounds on module reliabilities, as constraints for routine EO4VDF;
Supply Transition matrix (values P;; and Fi1);

Begin E0O4VDF *optimization routine®
Count-of-iterations= 0;
Repeat
Generate Ry,...,JRa; *see Note 1*
Call Routine to calculate W)y, *using routine FO4AAF*
Call Routine to eval the sq residual

- 2; . L]
¥ R, .ffﬂi‘m.%::& ot saitn . Sus o 3
then R,,..., R, are the results needed;
Return-code= 0;
Exit E04VDF;
Endif;
If  E04VDF considers pointless to progress *see Note 4*
then Return-codes 0
Exit E04VDF;
Endif;
Return-code= 3; *see Note 5*
Increment Count-of-iterations;
Until Limit maximum of iterations has been reached;
End EOAVDF;
If Return-codes 0
then an alternative R, may be suggested *see Note 6*
else the values R;,..., Ry produced by ED4VDF are the results required;
Endif;
End Program.

Figure 4: Framework of the solution

Notes about fig.4:

1. The routine generates new set of values R,,..., R, derived from the values
used in the previous iteration—the first estimates are based on the upper
bounds for the module reliabilities, as supplied;

2. The function (Regte = Rreq)? was utilized instead of Ry — Reeq. Using the
square term proved, in practice, to be mathematically convenient and easier
to handle;

3. An optimal solution is found when:

a. The partial derivative of the function R, with respect to R; is suffi-
ciently small, considering the accuracy required; and

b. The residuals of constraints (upper bounds on reliabilities and objective
function (R = Reeq)’) are sufficiently small, again considering the ac-
curacy required; and

a
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c. The values for Ry,.... R. do not change significantly between iterations.

4. No feasible values for R,,..., 1, could be found; the routine terminates. In
this case one of a number of return codes is generated to indicate the likely
cause of this abnormal end.

5. If the program concludes with Return-code equal to 3 then the limit on the
maximum of iterations has been reached without any solution being found. If
it is thought that the the routine needs to perform more iterations, then the
value of that limit should be set higher;

6. In this case the user should re-run the program with new values for A,., and/or
upper bounds on the reliabilities for each module.

The program that executes the procedures outlined in figure 4 is shown elsewhere
(2).
To find the first row of X', that is, Wy;, we have

XT(X) =1

o

will give us r7 as the required answer W);. Putting the problem in this form
means we can take advantage of standard procedures, as provided by NAG routine
FO4AAF. This routine solves the equation Az = B, where, in this case, A = XT,
z=rand B=(l,...,0).

The initial estimates for R,,..., R, have a significant effect on the outcome of
the program, since the function Re.(R) has several local minima. By experiment
it was found that taking initial estimates slightly lower than an upper bound on the
acceptable limit produced satisfactory results (see examples). These limits must be
chosen less than 1.0. Although the maximum theoretical value for reliability is 1.0,
it is not achieved in practical software systems.

and so solving

Examples

We now give some examples using the program that was developed (see Appendix
A). Examples 1 to 3 use a structure with 3 modules, while examples 4 and 5 use a
structure with 6 modules (figure 3).

Through variation of the upper bounds, an adjustment of reliabilities is shown in
the following examples. In example 2 the required reliability is not feasible, because
the upper bounds are too low.

EXAMPLE 1
Reliability required ... 0.900
Upper Bound for each module Transition Matrix
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Note: an === means that the module can reach the terminal state T

Figure 5: Example of a system with 3 and 6 modules

Module 1..0.980 0.00 0.60 0.40 0.00
Module 2..0.950 0.00 0.00 0.00 1.00
Module 3..0.890 0.00 0.00 0.00 1.00
Reliability calculated ... 0.9000
Reliability of each module
R1...0.9800; R 2...0.9412: R 3...0.8841

EXAMPLE 2
Reliability required ... 0.900
Upper Bound for each module Transition Matrix
Module 1..0.970 0.00 0.60 0.40 0.00
Module 2..0.950 0.00 0.00 0.00 1.00
Module 3..0.890 0.00 0.00 0.00 1.00
BESRENRARERTEARRRIEN BRI IR N NS ERERARENNES
. T ERROR ........ *

* Bounds for reliability of each module and reliabilitys
* required seem to be too tight. The reliability

* required cannot be achieved.

*Suggestions:

* 1- Use as required reliability AT MOST 0.898

* This is the highest reliability that can be achieved
# with the upper bounds supplied; or

* 2- Use upper bounds slightly higher and keep the

* required reliability 0.800

PSR ISR RN R AR NN E R RPN RN RN RN R RN RN R R RN R R

* % B & B B =B

Comment: the following example adopls suggestion 2,

1<
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EXAMPLE 3

Reliability required ... 0.900

Upper Bound for each module Transition Matrix
Module 1..0.970 0.00 0.60 0.40 0.00
Module 2..0.955 0.00 0.00 0.00 1.00
Module 3..0.895 0.00 0.00 0.00 1.00

Reliability calculated ... 0.9031
Reliability of each module

R 1...0.9T00; R 2...0.9550: R 3...0.8950

EXAMPLE 4
Reliability required ... 0.900
Upper Bound for each module Transition Matrix
Module 1..0.990 0.00 0.15 0.40 0.20 0.10 0.056 0.10
Module 2..0.990 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Module 3..0.990 0.00 0.00 0.00 0.00 0.30 0.00 0.70
Module 4..0.990 0.00 0.00 0.00 0.00 0.00 0.80 0.20
Module 5..0.990 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Module 6..0.990 0.00 0.00 0.00 0.00 0.10 0.00 0.90
Reliability calculated ... 0.8000

Reliability of each module

R1...0.9658; R 2...0.9543; R 3...0.9233; R 4...0.9805; R 5... 0.9334
R 6...0.9454

Comment: in ezample {, all upper bounds were set eztremely high. In the fol-
lowing ezample, the upper bounds were reduced.

EXAMPLE 5
Reliability required ... 0.900
Upper Bound for each module Transition Matrix
Module 1..0.970 0.00 0.15 0.40 0.20 0.10 0.05 0.10
Module 2..0.980 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Module 3..0.970 0.00 0.00 0.00 0.00 0.30 0.00 0.70
Module 4..0.870 0.00 0.00 0.00 0.00 0.00 0.80 0.20
Module 5..0.980 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Module 6..0.980 0.00 0.00 0.00 0.00 0.10 0.00 0.90
Reliability calculated ... 0.9084

Reliability of each module

'\
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R1...0.9656; R 2...0.9736; R 3...0.9580; R 4...0.8683; R 5... 0.9700
R 6...0.9727

It should be observed that in examples 1 and 4 the required and calculated relia-
bilities are identical. If it was known in advance that such a result could be achieved,
then a more direct method could be used to solve the problem. An appropriate root-
finding technique, such as Newton's method, could be employed to find values of R
which satisfied

S(B) = Reate(B) = Rreg =0

However, the problem of constraining the permitted values for R; would compli-
cate this approach. In general, we cannot expect a value of R, equal to R,,, to be
attainable (see examples) and hence the minimization approach adopted here has
wider applicability. %

4 Conclusion

This paper elaborates a proposal for allocating reliability levels to modules of a
software system, when a desired overall reliability is known in advance. A formula
was obtained that allows us to calculate the overall system reliability using Markov
analysis. From that formula and using a minimization approach a reliability level
for each module can be selected to ensure that the difference between the overall
calculated reliability and the required reliability is a minimum.

It is well known that in software systems a high reliability requirement means
that the system will need more time and cost for development. For this reason it is
assumed that the minimum acceptable value for the overall reliability of the system
is known in advance.

The outcome of this work will be utilized in a tradeoff model between cost and
reliability currently being developed. For this purpose, the function that defines the
cost constraint must be included in the procedure. Depending on the cost function
to be used, the framework of this solution may require some adjustment.
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