A Formal Description of an Incremental Type-Checker for Z
Alexandre M. L. de Vasconcelos (amlv@di.ufpe.br)

de Informdtica. Universidade Federal de Pemambuco
Caixa Postal 7851, 50732-970. Recife. PE. Brasil.

Abstract

In this paper, we describe some of the difficulties that must be tackled when rype-checking Z [1] specifications on an
incremental basis. We formalise. in Z itself, the possible d'epm&m relationships for each kind of Z definition.
Then, we present an extensive list of issues that an incr | type-checking algorithm for Z must deal with, as
well as an outline specification of an incremental type-checking nlgondmw&mkdmhm:ﬁ these issues.
Keywords: Incremental Type-Checking. Formal Specification. Z Notation.

1. INTRODUCTION

Re-typechecking mechanisms are desirable in order to re-evaluate the type environment and the type con-
mncyof:hcspedﬂuﬂonwhwaddunmuedmdinﬁdu ificanon.
In specification/programming environments which use batch rype-checking algorithms, the amount of re-
typechechng (A,)uwopmmalmﬂnm(n)ddnspmﬁmmnfpmm(u A,a n), because the
is processed from scratch. For simplicity, weunsnythnA is given by the
mﬂlohhmnﬂmkmpcmpﬁdw!hetindthewﬁmm(u.A =Ret}p¢fn))
Theoreticall themmofre«ypechechu:mmmmulmmuwmomlwmemor
tluchance(iye. Reopemog(c) where ¢ is the size of the change). The actual cost Retype(c) will be deter

mined by the complexi es etc. In some cases. Refype(c) = Rerype(n) (e.g. redefining a glo-
wvn?lymemnhue?bymdnwdunmmw unaere-typechech:g -
scratch).

'l'hemnclnk:sl issue. in incremental environments. is identifying what sub-set of the
needs to be re-checked after a change. In practice, the computational costs of the

medunisms or incremental checking (e.g. raversing a dependency graph) may outweigh the benefits.

2. ASTRATEGY FOR INCREMENTAL TYPE-CHECKING IN Z

Incremental type-checking algonithms are based on the "observation that if a definition does not use a

modified defimition, either directly or indirectly, then its type cannot be affected by changes in the type of

the modified definition” (2]. Consequently, afwmodifyimaddﬁdmmlylhede&ﬁumwhmhm(m

depend on) it need to be re-typechecked. In fact. the dependent definitions do not meed to be re-

lehmddyiqwddnmﬁﬂdddﬁﬁmmhnﬂnmmmmwm

not be introduced in these dependent definitions. The incremental type-checking strategy which we pro-

pose is more flexible. However, before we present the strategy, we need to introduce some terminology.

2.1 Terminology

We introduce the concepts of "signature” and “sub-signatre”, which will be used in sub-section 2.2, when

explaining our incremental type-checking strategy.

2.1.1 Signature

The signarure of a Z definition is the set of identifiers that it introduces. each with its type [1]. Unlike other

descriptions of Z, all our Z definitions have signature. not just schema definitions.

2.1.2 Sub-Signature

Asi;nmn!..:snmb-n;nmof:n;werqifmmﬁmolemﬂaolnfq ‘and the type of

each corresponding identifier in both signamres is the same [3]. This notion of “sameness” of types needs

to be defined y when dealing with generic type parameters. because two generic type parameters

mmm the same type even if they have different names. For instance. in the following example: if

the Sch on the left-hand side to give the version on the right-hand side
:schm: :mm:

o 2 T

X and Y should be considered to be the same generic type. Hence, a generic type G is the same as
another generic type G ,. if there is a substitution S from identifiers to identifiers. so that G, = G, (i.e.
whennpplylngSwG,mmG,equalloG,)

1z

http://www.cvisiontech.com

2.2 The Strategy
Our incremental type-checking algorithm is based on the observation that when a definition is modified.
ypemmuenmunodmedlnawﬁcmon|fth=smofthedeﬂnnousemnedmthm

mmﬁenmdmeundnilyl typesonhctdennﬁmmmeptmmmgmnnlresuumeme For
instance. if a given =$

[A. 8]
which has signature {A —F A, B —¥ B} is replaced by another given-set definition:

[A,B,C]
which has signature (A —P A, B =P B, C —P C}, type ervors are not introduced into the specification
(although there may be scope errors — ¢.g.. if C is already defined later in the specification). because A
and B are still in scope after the definition is modified and they have the same underlying types as before,
The relationship berween those two given-set definitions is very similar 1o the subtype relationship
between structure (or record) in object-oriented systems as presented in [4] (i.e. "a subtype structure
can have more, but not fewer than the supertype”). Similarly. the signatre of the first given-set
definition is a sul of the signature of the second given-set definition. Bmdonthuobmmon
we can define a similar relationship between definitions which we will refer to as
AdMAaaWdaddnﬁonBiﬁfmmidemﬁuhkmmmﬁnmmsmmn

anaqnvdom (wmmesametypo)hrmodh
o :efﬁnmou A, B], and [A'B o the first
0
ldeﬂm’ '“:czpd;numedmgmmww“ [:u mMmWMymc ey

3. AFORMAL MODEL OF INCREMENTAL TYPE-CHECKINGIN Z

In this section, we describe the most important issues that an incremental type-checking algorithm for Z
must deal with. First we present some preliminary concepts and their formal specification in Z itself.
Mwm»m:&wrﬁmm Finally, we specify the dependencies between definitions of a

specification in terms of affected definitions due to the editing (i.e. insertion, modification, deletion, or
wansference) of a specific definition inside a specification.

Only the related to the internal dependencies of a specification are specified here, as the treatment
of external wmhimplymuawlendmwﬁudmdmmmmfww-
smncmolandconﬁpmmmm

‘We do not specify details of the oh n;leduﬁﬁum.mﬂuudaltwnhbynmflike
algonithm similar to the one described in interested in a Z specification of such an algorithm
for type-checking Z definitions should referwlﬁ.?]

3.1 Preliminaries

Wammeenmdmfwdmmn;mmmumdmmwof
identifiers, definitions given inside a specificanon and logical predicates

[Name, Exp, Def, Pred]
In our model we use the standard decorations for identifiers [1].
Decor = ? | 1]

Hence, an identifier has a name and one or more optional decorations.
Id
r
| name : Name
| decors : seq Decor

3.1.1 The Representation of Types

The type of each identifier may be any of the types described in [1) and defined below. It is interesting to
discuss the representation of the types related to polymorphism in Z. A type parameter (parT) corresponds
1o each occurrence of a generic identifier in a generic type (genT). As the instantiation of the parameters

1 A given-set definition introduces types defined in a non-constructive way (also called “parachuted” types).

http://www.cvisiontech.com

of a generic depends on the order in which the instantiated are given. we represent a generic

type by unngt{p;équelﬂ of identifiers (the generic parameters) l.n?w the generic type itself. It is also neces-

sary 1o represent 'ﬁ variables (varT) which are used for anonymous (implicit) instantiations (i.e. they

tlgeu‘m a type substituted for the formal generic parameters when a generic type is implicitly instantiated
).

Type =
givenT «Id» | powerT «Type» | tupleT «seq Type» | schemaT «ld +> Type» |
parT «id» | genT «=(seq Id x Type)» | varT «ld»

3.1.2 Signature

As explained in sub-section 2.1.1, ulpmulmappingfmmndemﬁmwthurmmgewaltypes
Notice that a schema type as specified above is built from the signature of the corresponding schema.

Sig == Id — Type

3.1.3 Sub-Signature

Inorduto concept of sub-si expmminsubmmzlz we first specify an
mmwﬂchlsamwuw

Subst == Id > Id

Notice that Subst is partial injection to ensure that an "abnormal” genenctypeu
(((wwl').powT eT(parTprTw}) not considered the same as the generic

Y)), powerT(tupleT{ parT X, parT Y]}thwghmclpplkmonohmbmmm(eg S= wan'
ghﬁmqp) Weusospemfyminmmcofﬂletdemtyrdmmwmchmbupplwdw

Ident == id [Id]

Aﬁmaiontypo_ mﬁnmmwawm«umﬁdtypemmmm:mm
of type replaced by their corresponding identifiers in the substitution. The applica-
nr.nonypo Mwawgmemumm parameter itself or another type parameter
which is associated with arl;mal.gpa gh the substiution. The application of
type_subst to a generic type dnry%e parameters occurring in the generic by their
corresponding qpapumsmﬂnnbﬁmﬁ other cases are defined recursively on the structure
of the other types. except the given-set types and the type variables which are not affected by the substim-
tion.

type_subst : Subst — Type — Type

| Wsubst : Subst; i : Id; t : Type; ids : seq |d; ts : seq Type; sig : Sig *

tsub : Type —* Type | Isub = type_subst subst +
type_subst subst (parT i) = parT ((Ident & subst) i) A
type_subst subst (genT (ids, 1)) = genT ((ldent & subst) o ids, tsub 1) A
type_subst subst (givenT i) = givenT i A type_subst subst (varT i) = varT i A
type_subst subst (powerT t) = powerT (subt) A

: type_subst subst (tupleT ts) = tupleT (isub o ts) A

! type_subst subst (schemaT sig) = schemaT (tsub o sig)

Now the sub-signarure relation (which we denote by &) can be specified as follows.

2 We use this notation for a substitution by analogy with renaming of schema components in Z [1].

«
=g

http://www.cvisiontech.com

=, - : Sig «» Sig

| VE,L,:Sig "L, 5, I, & (3subst : Subst * L, type_subst subst o I)

3.1.4 The System State
Loﬂrfy the system state. we need to inroduce a given-set representing unique identifiers for
ions.

[Defid]

These identifiers can distinguish definitions which have the same "soructure” (e.g. two schema definitions
which have the same name and one is a re-definition of the other).

The environment for checking definitions is specified as follows. There is a store which maps each
definitions’ identifier to the corresponding definition. A ification (spec) in our model corresponds to a
“root file" (i.e. a sequence of identifiers for definitions which are in store). The relation visible_ids records
all the visible identifiers of each definition (i.e. the global identifiers inroduced by a definition and the
local identifiers introduced in the declaration part of schemas). The relation uses records the visible
identifiers of other definitions which each definition uses. A definition d, uses a definition d, if any of
the visible identifiers of d, is used ind . A dependency graph, represented by the relation depends_on, is
used to keep rack of dependencies between definitions. An auxiliary relanion called before is wue if a
definition d, comes before a definition d . Hence. a definition d depends_on a definition d, if d | uses
d,, and d, comes before d | in the sequence of definitions.

r.Em_Spic
{ store : Defid +» Det

{
[spec : seq Delid

| wvisible_ids : Defid «* Id
!

|

' _ uses _ : Defid «* (Defid x Id)
! _ before _ : Defid « Defid
_ depends_on _ : Defid +» Defid

ran spec < dom store
| ran (_ uses _) < visible_ids
! wd1,d2 : ran spec *
(d2 before d1 &= (3i,j: N, *speci = d2 A specj = dl A i <) A

(d1 depends_on d2 < (3i : Id * d1 uses (d2,) A d2 before d1))

3.2 The Subtype Relationship
Due to the lack of space. we only specify the subtype relationship i and schema definitions.
For both kinds of definition we "enrich” mdbd.mafam-mmmmb-

section 3.1. Then we extend the schema” representing the environment according to the properties of the
wimzmmMymmmmdeMMwm
specified definiton. mwwmdwmuwunmﬁmisﬂmbymbmimm
:ﬁguecwﬁmﬁanmﬁhcmbwmlmm' hip for each kind of Z definition. The reader is referred to (9] for a

3.2.1 Given-Set Definitions
A given-set definition introduces a sequence of identfiers for given-sets (gsels). We specify gsets as a
of identifiers because we admit that these identifiers may be instantiated positionally if the
nitions of a specificanion are imported into another specification.
3 Schema extension is a feature which was present in the early versions of Z [8). It has been preserved in our model
as it is often useful for introducing a concept incrementally.
4 We admit that definitions of different kinds cannot be in the same subrype relation.

http://www.cvisiontech.com

~ GSel_Det
| gsels : seq, id
Y ———

' ran gsets S dom givenT

The structure of Def may be enriched as:
Del = gset «GSet_Det» | ...
Notice that we use ... to mean that the definition of Def is not complete yet.

The signature of a gi definition is built by mapping each given-set identifier onto the powerset of
iup‘veu-seuype[ﬁi.

} migivdef_sig : GSet_Del — Sig

v g : GSel_Del * mkgivdel_sigg = (i : ran g.gsets * i — powerT (givenT)}

The visible identifiers of each given-set definition in a specification are all the identifiers which the
definition introduces.

~ Env_Spec
i Env_Spec

;Vm:mmg:GSd_Ddlgulg-mm-

- visible_idsi{defid)) = ran g.gsets

A given-set definition g_new is a subrype of g_old. if the signature of g_old is a sub-signamure of the sig-
mneofg;nw. The order in which declarations are introduced in bab;iven-setdemﬁnmisn%t
important for internal dependencies.

| — Sub_gset _ : GSet_Def «+ GSel_Def

| ¥g_new,g_old : GSet_Def *

i 3 new_sig, old_sig : Sig |

i new_sig = mkgivdel_sig g_new A old_sig = mkgivdel_sig g_old *
g_new sub_gset g_old < old_sig &, new_sig

In fact it would be sufficient only to verify that the set of visible identifiers introduced by g_old is a subset
of the set of visible identifiers introduced by g_new. because if two given-set declaranons have the same
identifier they will consequently have the same type (which is the powerset of the given-set type).

3.2.2 Schema Definitions

Before we define the subrype relationship for schemas. we need to introduce some other concepts. First we
introduce the concept of declaration as being a list of identifiers and an expression to define their type.

— Dec!
! id_list : seq, Id
. exp : Exp

We assume the existence of the function typeol which is a ML-like type-checking algorithm. It is

131

http://www.cvisiontech.com

assumed that typeof has access 10 all the definiuons up to (and including) the definition in which the
expression to be rype-checked is found. Examples of specificauons of this function may be found in
[6.3.7].

iwzlmerwl—'Tm

The function defs belorowmbnusedhmwgenemeasequmofde&muomwmchmubeusedsm
argument to the functon typeof.

| dets_betore : (Defid x seq Defid) + seq Defid
—_—
¥ defid : Defid; sd : seq Delid *
3, defs_after : seq Defid *

defs_before (defid, sd) ~ dels_after = sd
last (dels_before (delid, sd)) = defid

The function typeval strips off the P from a powerT* and it is used :xgmﬂn of sﬁna
introduced by dﬂumm?whmif.mmhihlmm: 2 s -
typeP(PZ)mdthetypeoflueqm\er? ®P2)

typeval == powerT ~ o typeof
Each declaration maw“mﬂwdﬂmupﬁummmwdm

expression the types introduced in the current definition and on the types inroduced in its pre-
vmdeﬁﬁum[Snmemﬂcmoﬂvadmﬁw

E mkdeci_sig : (seq Def x Dec) — Sig

v sd : seq Def; dec : Decl *
mkdecl_sig (sd, dec) = (i : ran dec.id_list » i — typeval (sd, dec.exp))

Schemas and axiomatic definitions (not specified here) have a basic structure in common, which we call
Basic_Schema. A basic schema has a set of identifiers for generic arguments (gens). and it introduces
oncormedeclsmomdvmablu(dac list) as well as a (pred). Non-generic schemas are
special cases where gens = i}. An exra ammibute (ids_in_sch) is a derived variable representing all the
visible identifiers introduced by the signature of a basic schema.

_in_sch = iJ (dec : dec_list * ran dec.id_list)
ids_in_sch ri ran gens = &

The function which creates the signature of a basic schema is based on its list of vanable declaratons.

spowerTiutypemfruanypnmP Type. Therefore. it is a total injection with a functional inverse.

132

http://www.cvisiontech.com

|
| mikbasic_sch_sig : (seq Def x , Decl) — Sig

| ¥ sd : seq Def; declist : ¥, Decl *
' mkbasic_sch_sig (sd, declist) = 1J {dec : declist * mkded!_sig (sd, dec) }

A schema definition is a basic schema which also introduces an identifier for the schema (sch_id). The
schema identifier is different from any of the identifiers introduced in the declaration part and the ones
used as type parameters. An extra attribute (visible_ids_in_pred) records the visible identifiers of the
schema which are used in its predicate part. In Section 3.3 we will explain the use of this atribute.

~ Schema_Def

sch_id : Id
Basic_Schema
visible_ids_in_pred : P Id

sch_id ¢ ids_in_sch u ran gens
visible_ids_in_pred < ids_in_sch

1

The structure of Def may be enriched as:
Def = gset «GSet_Del» | scheama « Schema_Det» | ...

We now extend Env_| with the relations uses_in_pred and depends_on_pred in order to record
the dependencies of 'ﬁuumdnpmmmofmwwumrmﬁmuus_in_pnd
records, for each definition. all the visible identifiers of other definitions which the definition uses in its
predicate part. The relation depends_on is defined similarly to the relation depends_on.
r;mi.msu A definition mmmmmw«ammd' if
md ininmdimpmnﬂd,mbﬂomd, in the sequence of definitions. Theuseufme
_predinmjnndmmum in_pred will be explained in sub-section 3.3. The

muammaam on correspond to the schema's identifier and all the other visible
identifiers introduced by the commesponding basic schema.

— Env_Spec .

Env_Spec

. uses_in_pred _ : Defid + (Defid x Id)
. depends_on_pred _ : Delid «» Defid

(- uses_in_pred _) < (_ uses _)
(_ depends_on_pred _) < (_ depends_on _)
¥d1,d2 : ran spec | store d2 € ran schema *
d1 depends_on_pred d2 <
(3i: 1d; s : Schema_Def | schema s = store d2 A i = s.sch_id *
d1 uses_in_pred (d2,1) A d2 before d1)
; V¥defid : ran spec; s : Schema_Def | schema s = store defid *
. visible_idsl(defid)} = {s.sch_id) u s.ids_in_sch

A schema s_new is a subrype of its old version s_old. if s_new has the same identifier as s_old and
thu.r mammmmmmm_pmmdd_pmmmdwm:qum

up to §_new and s_old respectively. These sequences are necessary in order to calculate the
ﬂpmoﬂhoseséﬁﬂms

133

http://www.cvisiontech.com

T ——

_ sub_schema _ : (Schema_Del x seq Def) ~ (Schema_Def x seq Def)

W s_new, s_old : Schema_Def; new_pre, old_pre : seq Del *
(s_new, new_pre) sub_schema (s_old, old_pre) <=
s_old.sch_id = s_new.sch_id A
(3 new_sig, old_sig : Sig; new_genT, old_genT : Type; subst : Subst |
I new_sig = mkbasic_sch_sig (new_pre, s_new .dec_list) A
old_sig = mkbasic_sch_sig (old_pre, s_old.dec_list) A
new_genT = genT (s_new.gens, schemaT new_sig) A
! old_genT = genT (s_old.gens, schemaT old_sig) *
! old_genT = type_subs! subst new_genT)

1

The subtype relationship for schemas does not allow a replacement definition to extend its previous
definition with other identifiers. because the introduction of new identifiers in the signawre of a replace-
ment schema may or may not introduce type errors. On the one hand. :ype-cunhngmmwou.ldbeimo-
duced in definitions which referred to the whole previous definition of a schema. because the signature of
the schema would be different from the signature of its previous definition (e.g. type emors
w be introduced in definitions which use a schema as a type). On the other hand. type-checking errors

would not be introduced in definiions which referred 1o identifiers which have not changed their
wﬂmwmmﬂwd&w:mhw@dwmo{mm
SC! types was adopted.

Another problem of defining subrype based on the signatures of the schemas is that even if the new ver-
sion of a schema has the same signature as its old version, it is possible that type-errors are introduced in
the specification. For instance, the schema

S Y) —

a:PXxY)
b:P(Y xX .

with generic type genT ((X, Y), schemaT (a— powerT (X, Y), b~ powerT (Y, X))) and the schema
= SchY, X] —
o ey |

a:PXxY)
b:P(Y xX)

with generic type genT ({ Y, X), schemaT (a~— P (X, Y), b= P (Y, X))) are not subrypes of each
other. because the former cannot the larer without introducing instanbation errors in definitions
which instantiate the first version of Sch since the order of the generic parameters has been changed.
Instantiation errors would also occur if the number of generic parameters was not the same in both sche-
mas. Strictly speaking the equivalence of the generic types of both schemas is sufficient. not necessary.
However, any other approach would require very complex analysis of uses of definitions.

Finally, the general subrype relationship combines the specification of subrype for each kind of definition.

. _ subtype _ : (Def x seq Def) > (Del x seq Def)

. Wg_new,g_old : GSet_Def; s_new, s_old : Schema_Del; new_pre, old_pre : seq Del *
: ((gset g_new, new_pre) subtype (gset g_oid, old_pre) <=
H g_new sub_gset g_old) »
((schema s_new, new_pre) sublype (schema s_old, old_pre) &=
(s_new, new_pre) sub_schema (s_old, old_pre)) A ...

134

http://www.cvisiontech.com

3.3 Theoretical Issues of Editing Operations

In this sub-section, we specify the issues that a type-checking algorithm must deal with when checking Z
specifications incrementally. First we give some auxiliary defimtions. Given a relation recording depen-
dencies between definitions (i.e. a “subset” of the dependency graph of a specificanon) and a set of
identifiers of definitions. the function dependents gives the identifiers of all the definitions which
(directly or indirectly) on the definitions comresponding to the given identifiers of definitions. The
definitions’ identifiers remrned by dependents are the ones which will be re-checked as a consequence of
an editing operation.

dependents : (Defid «» Defid x Defid) — ¥ Defid

v depends_on : Delid «» Defid; defids : ¥ Defid -
dependents (depends_on, defids) = depends_on' Idefids)

Given a set of identifiers of definitions to be checked (check?), the operation schema Check specifies an
order (check!) for checking the corresponding definitions after an editing operation is executed.

_ Check
| zEnv_Spec

| check? : ¥ Defid
| check! : seq Defid

checkl = spec [check?

For the sake of simplicity. when specifying the insertion and the modification of a definition in a
specification, we assume that the edited definition was already checked before the system found out which
definitions must also be re-typechecked. We also assume that during the check of the edited
definition neither syntactic errors nor errors are found. In practice, definitions with errors should be
mmmm errors be corrected as a consequence of editing other
ions. It is also assumed that dependent definitions directly, and indirectly affected by an editing
operation are re-typechecked immediately after the editing operation is executed.
3.3.1 Insertion
® When a definition Def , is inserted into a specification after another definition Def |, and Def ,
becomes a multiple definition (or & schema extension) of Def ;. or any visible identifier of Def 5
becomes a multiple declaration of an identifier introduced in Def |, the definitions which depend on
Def | and are subsequent to Def , must be re-typechecked in order to rebind the references to the
identifiers (or definitions) which have become multiply declared (or defined/extended):
» When a definition Def , is inserted before another definition Def |, and Def ; becomes a multiple
definition (or a schema extension) of Def .otmyvisibleidendﬂuorb | becomes a multiple declara-
tion of an identifier introduced in Def 5, Def , and the definitions which depend on Def | must be re-

typechecked.
For instance. if we have the sequence of axiomatic definitions

irl:Z i b2 y il :;d:! i_.:l

Y b= a | cma yes=d

which can be represented as (.....) (where each capital letter from A to E corresponds to one of the above
dcﬁnﬁmmmomadudimoducﬂm).mmmmedeﬂﬁﬁm

135

http://www.cvisiontech.com

l ad:2

after the definition A and before the definition B, the definitions B and C need 1o be re-checked because a
became multiply declared in the inserted definition. and the definitions D and E need to be re-checked
because d became multiply declared in D. We can specify the above issues in the following steps:
The schema Pure_AddDef specifies the insertion of a definition def? identified by defid? at the position
pos? of a specification. The variable used? corresponds to the identifiers used by the definition. The vari-
able used_in_pred? mwmmmmwmmmmmmmmﬁm
without predicate part have used_in_pred? = @). The values of used? used_in_pred? can be
discovered by the type-checker when the definition is checked. The update of visible_ids is guaranteed by
the invariant in Env_Spec that says what are the visible identifiers of each kind of Z definiton and by the
invariant ran (_ uses _) & visible_ids. The update of depends_on is guaranteed by the invariant which
relates uses to depends_on in Env_Spec. m::pdaeofdsperm on_pred is guaranteed by the invariant
in Env_Spec which relates uses_in_pred to depends_on_pred.

_ Pure_AddDet
AEnv_Spec
defid? : Defid
def? : Del
pos? : N,
used? : P (Defid x Id)
used_in_pred? : I (Defid x Id)

defid? € ran spec

pos? < Hspec + 1

def? € ran gset =» used_in_pred? = @

slore’ = store U {defid? —

spec’ = (1 .. pos? - 1) d spec ~ (defid? ~ (pos? .. Wspec) 4 spec

(_ uses' _) = (_ uses _)u {use : used? * (delid?, use))

(- uses_in_pred’ _) =

(_ uses_in_pred _)u {usepred : used_in_pred? * (defid?, usepred)) ;

Identfiers multiply defined/declared or schema extensions mmﬂdplemof
identifiers in scope. Given an identifier of a definition (defid), a set of * identifiers (defids) and a
relation recording the visible identifiers of all the definitions in a specification (visible_ids). the function
defs_with_mult_ids returns a subset of defids corresponding to the identifiers of definitions (if any) which
introduce in scope multiple occurrences of any of the visible identifiers (def_visible_ids) of defid.

defs_with_mult_ids : (Defid x ¥ Defid x Defid < Id) + ¥ Defid

¥ defid : Defid; defids : ¥ Defid; visible_ids : Defid « Id *
3def_visible_ids : P Id | def_visible_ids = visible_idsi(defid}) *
defs_with_mult_ids (defid, defids, visible_ids) =

i (visible_ids "{del_visible_ids}) 11 defids

mluxmnryschumTuul_Mndsmxn check_mult the identifiers of definitions (if any) which
need to be re-checked due to the inseruon of mult, mcmmdmywaueMﬂamacope.ms
scbenndounmmodwmemonhesym owever. the state before the execution of an

operation (in particular, insernons and modifications as we will see later). as well as the modified state are
used in Test_if_muit_ids.

136

http://www.cvisiontech.com

- Test_ii_mult_ids
AEnv_Spec
detid? : Defid

| pos? : N,

| check_mutt : ¥ Defid

| spec’ pos? = defid?
l Icheck_bt, check_af : P Defid +
! (defs_mult_bl = {} = check bl = {}) A
(defs_mult_bf = {} =
check_bl =
dependents ((_ depends_on _), defs_mult_bf) ri
ran ((pos? + 1 .. Wspec') 4 spec’)) A
((defs_muit_af = [} = check_af = {}) A
(dets_munt_af = {} =
check_al =
dependents ((_ depends_on _), defs_mult_af) U dels_mult_af)) A
check_mult = check_bf U check_al
where

| dels_mult_bf, defs_muit_af : I Defid

defs_mult_bl = defs_with_muh_ids (defid?, ran ({1 .. pos? - 1) 4 spec’), visible_ids")
defs_mult_al = defs_with_mul_ids (defid?, ran ((pos? + 1 .. #spec’) 4 spec’), visible_ids")

This schema that if there are definitions (defs_mult_bf) the edited definition (defid?) which
also introduce in scope any of the visible identifiers of (i.e rwodmesmlﬁp identifiers
in scope), all the definitions which depended on the definitions in defs_muit_bf (before the editing of
defid?) andhmmhqmmduﬁd? (after the editing of defid?) must be re-checked. If there are

definitions subsequent (defs_mult_af) to defid? which also introduce any of its visible identifiers, the
definitions in defs_mult_af and their dependent definitions must be re-checked.
lnmmm_numwnmmudmnmmmmeymmm
identifiers or a schema extension in scope. In this schema and in subsequent schemas, the variable check
records the identifiers of the definitions which need to be checked as a consequence of an editing opera-
tion.

Add_Def & Pure_AddDe! A Test_il_mull_ids e yenack mu
Finally, the schema AddCheck specifies the insertion operation in full.
AddCheck & Add_Def » Chack

3.3.2 Deletion

* When a definition is removed from the scope of a specification, all the definitions which depend directly
or indirectly on the removed definition must be re-typechecked. We specify this in two steps:

The schema Pure_DelDef corresponds to the deletion of a definition from the specification. A deleted
definition is removed from the specificanon. and all the records of its use are also removed. The update of
depends_on is guaranteed by the invariant which relates uses to depends_on, and the of
mmwhmwmeinvmwmlﬂmmianm_m

137

http://www.cvisiontech.com

_ Pure_DelDel
+ AEnv_Spec
| delid? : Defid
| dpos? : N,

defid? = spec dpos?

: store’ = {defid?} 4 store

spec’ = (1 .. dpos? - 1) 4 spec ~ (dpos? + 1 .. Hspec) 4 spec
-vhhlous {defid?} 4 visible_ids

(. uses' _) = {defid?) 4 (_ uses

.{ uses_in_pred’) = (defid?) 4 (_ umm_pud =)

Finally, we can specify the consequential effect of deleting a definition as follows.
~ Del_Det

'| Pure_DelDef
| checkl : ¥ Defid

1

| checkl = dependents ((_ depends_on _), (defid?))
S Al

Any definitions which depend on the deleted definition must be checked.

DelChack & Del_Del » Check \ (defid?)

3.3.3 Modification

* When a definition is replaced mhudeﬁntﬁonﬂd‘wmuummdiumﬁmmmm
definitions which depended on pm-iuuvmiono!w not need to be because
typemsmnmimnd\wﬂmemmm w a schema i:ismy
re-mcw:!an y definition that used the previous version of Def lpradnmif set of visible
identi dwmunmdmmmwdﬂq'muh the visible identifiers used
in the predicate part of its previous version. For instance, if § ; is a schema meduapmdimium

schema § , m:umewnbludadm:nlhadechmlmpmofs, and referred to in the predicate
mas,mmummwmsluuwnam

—sl 1 l—sz 1
C vzl ix.l':l
— —

x> S

! y . |.
Hmmﬁfymeuwmpmofslwuuzmmptwcm and re-check § ,, a scope error will be
introduced in § , because z is not declared in S ,. Notice that this rule is not valid for the Z standard Ver-
sion 1.0 {10} which insists that il vasiables deciared in the schema § , have boen declased in the current
environment, even if some of them are not referenced by the current predicate;
-Whmndeﬁmﬁonbcfl|staplwedbymhﬂ'deﬂ,muon0ef,wh|chunuan¢wof0ef..anme
definitions which depend on Def | must be re-typechecked:
«In both cases, it is possible that Def , m-mmmmm; or introduces
multiple declarations in scope. In this case, it is necessary w«xﬂ&mmmm
mboeqmwoefzmddependoumydeﬂmnonﬂmbme defined (or extended). or depend
on any definition that introduced the identifiers which became multiply declared

i38

http://www.cvisiontech.com

These issues can be specified in the following steps: The schema Pure_ChangeDel specifies the
modification of a definition in the specification. This schema can be specified as a deletion of an old
definition followed by an insertion of a new definition in its place.

Pure_ChangeDef & Pure_DelDel 3 Pure_AddDefy opeen

The schema Change_test_mult_ids specifies the modification of a definition followed by a test to dis-
cover if multiple identifiers were introduced in scope. As described above. this test is whether
or not the definition is a subrype of its old version.

Change_test_mult_ids = Pure_ChangeDef A Test_il_mult_ids,qcrpeen

The schema Change_is_not_SubType specifies the case when the new version of a modified definition is
nota of its old version. The definitions which depend on the old version of the modified definition
and affected by the insertion of multiple identifiers in scope need to be re-checked.

_ Change_is_not_SubType

Change_test_mull_ids
check! : P Defid

| = (new_del, new_pre) subtype (old_def, old_pre) A
checkl = dependents ((_ depends_on _), (defid?)) u check_mult
where

new_def, old_de! : Del
new_pre, old_pre : seq Def

new_del = store’ defid?

new_pre = store’ © defs_before (defid?, spec’)
old_del = store defid?

old_pre = store © defs_before (defid?, spec)

1

Similarly, the schema Change_is_SubType specifies the type-checking issues when the new version of a
modified definition is a of its old version. As explained if the modified definition is a
schema definition (s_new) and the visible identifiers used in the predicate part of the modified definition
(s_new.visible_ids_in_pred) are not the same as the visible identifiers used in the predicate part of its old
version (s_old.visible_ids_in_pred), the definitions which depend on the predicate part (dep_on_pred) of
its old version (s_old) must be re-checked. It is also possible that some definitions (check_mult) need 1o
be re-checked due to the insertion of multiple identifiers in scope.

139

http://www.cvisiontech.com

- Change_is_SubType

| Change_test_mult_ids
check! : I Defid

(new_def, new_pre) subtype (old_def, old_pre) A
(3dep_on_pred : ¥ Defid *
{(new_del € ran schema A old_del € ran schema =
! (3s_new, s_old : Schema_Def |
| schema s_new = new_del A schema s_old = old_def *
(s_naw . visible_ids_in_pred = s_old.visible_ids_in_pred =
dep_on_pred =
dependents ((_ depends_on_pred _), (delid?})) A
{s_new . visible_ids_in_pred = s_old.visible_ids_in_pred =
dep_on_pred = {}))) ~
(new_del € ran schema A old_del ¢ ran schema = dep_on_pred = (}) A
checkl = dep_on_pred u check_mult)
whare

new_del, old_def : Def
new_pre, old_pre : seq Del

new_del = store’ defid?

new_pre = store’ o defs_belore (defid?, spec’)
old_de! = store defid?

old_pre = store o defs_before (defid?, spec)

Finally, we can specify the effect of modifying a definition in the specification.

ChangeCheck 2
{Change_is_SubType V Change_is_not_SubType) » Check \ (defid?, check_mult)

3.3.4 Transference
« The transference of a definition from one position to another can be achieved by ing it as a deletion
from the old positon followed by an insertion into the new position. This is specified in the following two

Transter_Def & Del_Dolgynpcncnoces b A99_DOlsquneccnack

TransterCheck 2

[Teanster_Def; check! : P Defid | check! = delcheck u addcheck] » Check \
(defid?, delcheck, addcheck)

4, CONCLUSION

The ion of incremental type-checking mechanisms to specification languages, and particularly to
ndmmuuaﬂdmmhm&mswmh‘:bmmmmemofmgld
hedung (mn’ ng) apphecl to imperative functional programming languages
[121 3.14,15). However, the same techniques used when checking these languages cannot be
applied to Z. due to differences in its type system and scope rules. Moreover. none of those exist-
nngwmmdsmm“awmmmfuduhummmofm In those algorithms, an
extension of a definition is either reated as a scope error or it overwrites the previous definition.
We believe that the formalisation of the possible dependencies between Z definitions, the extensive dis-
cussion of the incremental rype-checking issues. and the ion of our incremental type-checking
algorithm represent a novel piece of research work towards ing theoretical problems related to the

http://www.cvisiontech.com

incremental processing of Z specifications.
5. REFERENCES

B W P

Ve 2 o @

10.
1L

12,

13;

15.

Spivey, J. M., The Z Notation: A Reference Manual — 1st edition, Premwl-hlllnﬂ (1989).
Toyn, L., oratory Environments for Functional Programming'’, D.Phil. Thesis. Department of
C?uy:‘pmugg:meﬂmmkyoﬂork(m 1987). e
ivey, J. M.. Understanding Z: A Specification Language and its Formal Semantics. Cambridge
iversity Press (Jan. 1988). s
Atkins, M. C.. lementation Techniques Object-Oriented Systems'’, D.Phil. s,
Department chanph:’ﬁ'Sdme. University of York (Jun. 1989). i i
Milner, R.. ** A Theory WE:MWmlnhogmm; . Journal of Computer and System
Scimlm) PP- 348-375
Sennett. C., 'Review of Checking and Scope Rules of the fication Language Z"*, Report
No. 87017, Royal smmem?aﬂsm Malvern, Ulrnov 1987).
Reed, J. N. and Sinclair. J. E.. **An Algorithm for Type-Checking Z: A Z Specification™", PRG-81,
Programming Research Group, University of Oxford (Mar. 1990).
Hayes, L. (ediwr),&ncﬁmﬁonmea Prentice-Hall Intl. (1987).
de Vasconcelos, A. M. L., *'Incremental Processing of Z Specifications'', D.Phil. Thesis. Depart-
ment of Computer Science, University of York (Oct. 1993).
ZSMMWCW"ZMM(VMID) . BSI Panel IST/5-/52 (1993).
Nikhil, R. S., **Practical Polymorphism'', Lecture Notes in Computer Science. Nancy. France 201.
?;19-333 Spnnua Verlag, Functional Programming Languages and Computer Architecture

Toyn, 1. and Runciman, C., *‘Performance Polymorphism'’. Lecture Notes in Computer Science,
Proceedings of the Third Internanional Conference on Functonal onal Programming Languages and
Computer Architecture (Sep. 1987).

R. Medina-Mora and P. H. Feiler, ' An Incremental ing Environment'’, IEEE Transac-
tion on Software Engineering SE-7(5), pp. 471-481 (Sep. 1981).

Nicol, C., Crowe. M. K.. Comr. M. E., Oram, J. W, and Jenkins. D. G.. *'IDEA — An Incremental
T Environment for ADA'", Software Engineering Journal 2(6), pp. 194-198 (Nov.

Schwartz, M. D., Delisle. N. M. and Begwani. V. S.. *‘Incremental Compilation in Magpie”, §IG-
PLAN Notices 19(6), pp. 122-131, wmamsnm SywanumonCmp:hCm-
m(lun.lm).w

i

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396
	z0397
	z0398
	z0399
	z0400
	z0401
	z0402
	z0403
	z0404
	z0405
	z0406
	z0407
	z0408
	z0409
	z0410
	z0411
	z0412
	z0413
	z0414
	z0415
	z0416
	z0417
	z0418
	z0419
	z0420
	z0421
	z0422
	z0423
	z0424
	z0425
	z0426
	z0427
	z0428
	z0429
	z0430
	z0431
	z0432
	z0433
	z0434
	z0435
	z0436
	z0437
	z0438
	z0439
	z0440
	z0441
	z0442
	z0443
	z0444
	z0445
	z0446
	z0447
	z0448
	z0449
	z0450
	z0451
	z0452
	z0453
	z0454
	z0455
	z0456
	z0457
	z0458
	z0459
	z0460
	z0461
	z0462
	z0463
	z0464
	z0465
	z0466
	z0467
	z0468
	z0469
	z0470
	z0471
	z0472
	z0473
	z0474
	z0475
	z0476
	z0477
	z0478
	z0479
	z0480
	z0481
	z0482
	z0483
	z0484
	z0485
	z0486
	z0487
	z0488
	z0489
	z0490
	z0491
	z0492
	z0493
	z0494
	z0495
	z0496
	z0497
	z0498
	z0499
	z0500
	z0501
	z0502
	z0503
	z0505

