
A Formal Description of an Incremental Type-Checker for Z
Alexandre M. L. de Vasconcelos (amlv@di.ufpe.br)

Depuwnento de Informática. Urúversidade Federal de Pernambuco
Caixa Postal78Sl. S0732-970. Recife. PE. Brasil.

Abstract
/nthis pape r. we descri ln some of IM difficulliesthat must bt tackltd when fY/H·Checting z r 1 I specifrcatiOfll Ofl an
ifiCrtmtfllal btuls. Wt forma/ise. in Z ltstlf, tht possiblt dtptndency rtlatloruhips for each kind of Z definition .
Then, wc prcscfll an txrensivt list of lssuts that an Íllcremefllal type·checking algorlthm for Z must dto/ with. as
wt/1 as an outlitw specifrcation of an ÍfiCrtmentol typc·chtclcing olgorithm whlch dtols with thtse issuts.

Keywords: Incremental Type-Checking. Formal Specificatíon. Z Nowion.

1. lNTRODUCTION
Re-typechecting mechanisms are desirable in order to re·evalulle the tyt>e environment and the type con­
sisteocy of the specification when a definition Is edited inside a specificanon.
ln specification/prograrnrrúng environrnents whicb use buch type-checlàng algorithms. the arnount of re­

typechecldng (A,) is proportional to the size (n) of the specificltion/program (i. e. A, ex n). because the
whole specificltionlprograrn is processed from scrucb. For simplicity. we can say that A, is given by tbe
result of a function Rttypt applied to the size of the specificationlprograrn (i.e. A, = Rttypr(n)).
Tbeoretically. the arnount of re-typecbecking in incremental environments is proportional to the size of

the change (i.e. Rttype mil1(c). where c is the size ofthe change). The actual cost Rttypt(c) wUJ be deter­
mined by the complexity of dependeocies etc. ln some cases. Rttypt(c) = Retypr(n) (e.g. redefirúng a glo­
bal variable that is used by all the segmeDIS of the specificltion/prograrn will cause re-rypechecking from
scruch).
The maio technical issue. in incremental environrnents. is idemifying what sub-set of the

speciflcltion/prograrn needs to be re-cbecked alter a cbange. ln practice. lhe computational costs of tbe
mecbanisms for incremental checking (e.g. traversing a dependeocy graph) may outweigb lhe benefits.
2. A STRA TEGY FOR INCREMENTAL TYPE-CHECKING lN Z
Incremental type-cbecldng algorithms are baseei on tbe "observalion that if a definition does not use a
modifted definition. eitber directly or lndirectly. then its type cannot be affected by changes in the type of
the modifted deftnition" [2]. Consequently. alter modifying a definition. only the definitions whicb use (i.e.
depeod on) it need to be re-typechecked. ln f~et. the depeodenl deftnitions do not neecl to be re­
typecbecked if the underlying type of the modified definiàon remains the sarne. because type errors wiU
not be introduced in these dependent definiàons. The incrememal type-checlàng Strllegy whicb we pro­
pose is more ftexible. However. before we present lhe su11egy. we need to inuoduce some terrrúnology.
2.1 TermlnoiOCY
We inuoduce the concepts of "signature" and "sub-signarure". which wiU be used in sub-section 2.2. when
explaining our incremental type·checking mategy.
2.1.1 Slgnature
The signarure of a Z definiàon is the set ofidentifiers that it introduces. each with its type [I). Unlike otber
descriptions ofZ. ali ourZ definitions have siparure. notjust schemadeftnitions.
2.1.2 Sub-Signature
A slgnarure 1:1 is a sub-signarure of a signaiUie ~ if the idemifiers of 1:1 are also in ~. and the type of
each corresponding identifier in both sigoarures is the same [3]. This noàon of "sameness" of typeS needs
to be defined carefully when dealing with generic type pararneters. because two generic type pararneters
may express the sarne type even if they have different narnes. For instante. in the followtng example: if
we modify tbe Sch on the left-band side to give the version on the right-hand side

_ Sch(X) _
~ .,
. x: X
1

= Sch(Y) =
X : y

X and Y should be considered to be lhe sarne generic type. Hence. a generic type G 1 is the sarne as
another generic type G 2• lf there ts a subsutution S from identifiers to identifiers. so that G 1 • SG 2 (i.e.
when applylng S to G 2 malces G 1 equal to G 2) .

127
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

2.2 The Strategy
Our incremental tyJ»<:beclcing algorithm is bascd on the observadon lhat when a definition is modificd.
type errors are not iruroduccd 1n a specificauon if lhe signarure of lhe definition is extendcd wilh new
identifiers and lhe un~lying types of lhe ideotifiers in lhe previous signature are still lhe same. For
instaoce. if a given -set definition:

(A, B)

which has signature {AP A, 8 -4> 8} is replaccd by anolher given-sct definition:

(A,B,C)

which has signazure {A -i> A, 8 -of> 8, C p C}, type errors are not introduccd into lhe specification
(allhougb lhere may be scope errors - e.g .• if C is already defined !ater in lhe specification), because A
and 8 are still in scope after lhe definition is modificd 1nd lhey h ave lhe same underlying typeS as before.
lbe relatiooship between lhose two given-sct definitioos is very similar to lhe sublype relationsbip

between struaure (or record) types in objcct-orientcd systerns as presentcd in [4) (i.e. "a subtype structure
can have more. but not fewer fields lhan the supertype"). Simllarly. lhe signazure of the tirst given-set
definitioo is a sub-sigoawre of lhe signature of the sccond given-sct definition. Based on thls observatioo.
we can define 1 similar relaúonship between definiáoos which we will refer to as subtype:
A definition A is a subtyf" of a definition B iff for every identif~er introduced in definition B there is
an equivalent identifier (with the sarne type) introduced in definition A.

Hence. according to our definition of subrype. the second given-set definiáon (A, 8, C]. imroduccd 1bove,
is 1 subrype of lhe first given-sct definitlon (A, B]. and so subsequent definitions ~nding on lhe first
definition do not nced to be rc-typecheckcd. But I ater deflnitions lhat already define C do.
3. A FORMAL MODEL OF INCREMENTAL TYPE·CHECKING lN Z
ln thls section. we describe lhe most impOIWU issues tbat an incremental type-cbecking algorithm for Z
must deal witb. Pirst we present some prelirninuy concepts and lheir formal spccification in Z itself.
lben, we formalise tbe subrype relationshlp. Pinally. we spccify the dependeocies between definitions of a
spccificatioo in tenns of affectcd deflnitioos due to the editing (i.e. iosertion. modification. deletion. or
transference) of 1 specific definition iosidc 1 spccificatlon.
Only tbe aspects related to the inu:mal dependencies of 1 spccificaúon are spccificd here. as the treaanent

of externa! dcpendencies woukl imply that 1 large and complex specification of the mechanisms for ver·
sion cootrol and configuratioo maDiiemtnt sbould be given.
We do not specify dcW1s of lhe cype-chcc:king of 1 siiJ&)e dcfinition. since this is dcalt with by 1 MlAilce

algorithm similar to the one desaibed in [,). Readcrs inu:resu:d in a Z speciftcatioo of such an algorithm
for type-chccking Z dcfinitlons should refer to [6, 7).
3.1 Prellminarles
We assume tbe" existence of names for distinguishing identifiers. expressions uscd in dcclarations of
identifiers. dcfinitlons given insidc a specification and logical predieates.

(Name, Exp, Oef, Pred)

ln our modcl we use the standard dccorations for identifiers [1).

Oeoor ::• ? I I I '

Hence. ao identifier has 1 name and one or more aptional dccorations.
r •d ____ _
1 name : Name
1 deoors : seq Oeoor

3.1.1 The Representation or Types
lbe type of eacb ídentlfier may be any of lhe types describcd in [1) and defined below. lt is interesting to
discuss the representatlon of the typeS relatcd to polymorphism ln Z. A type parameu:r (parn correspoods
tO each occwrence of a generic identifier in I generic cype (gen n. AS lhe instantiation of the parameu:rs

I A given-set definition introduces 1ypes defined 111 a non-consuucuve way (also called "parachutcd" types).

128 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

of a generic type depends on the order in which the instantiated types are given. we represem a generic
type by using a sequence of identifters (the generic parameters) and the generic type itself. lt is also ncces­
sary to represem type variables (varl) which are used for anonymous (impUcit) instantiations (i.e. lhey
appear in a type substiruted for the formal generic parameters when a genenc type is implicitly inswuiated
[6)).

Type ::.
givanT « ld » 1 powarT '<Type» I tupleT « seq Typa» I schamaT -< ld-+ Type» 1
parT -x ld » 1 genT « (seq ld x Typa) » I varT « ld»

3.1.2 Sicnature
As explained in sub-scction 2.1.1 . a signiiiW'e is a mapping from identifiers to their most general types.
Notice that a schema rype as spccifted above is built from lhe signiiiW'e of the corresponding schema.

Sig •• ld -+ Type

3.1.3 Sub-Signature
ln order to specify the concept of sub-signarure explained in sub-scction 2.1.2. we ftrst spccify an
identifiers' substirution. whicb is a mapping from identifiers to icleotifiers.

Subst •• ld >+-+ ld

Notice that Subst is represent.ed as a partia! injccdon to ensure that an "abnonnal" generic rype as genT
(((W, W)), powerT(tupleT (parT W, parT W))) is not consiclered tbe sarne as tbe generic type genT ((~X,
Y)), powerT(t~eTI parT X, parT Y))) througb tbe application ofa subsdiUtion (e.g. S • (W {X.W /Y] to
the sccond generic rype). We also spccify an instance of the identity relation which must be applied to
ideoti fiers.

ldent •• id [ld)

A funcdon type_subst applies a substiiUtion to a rype reruming a modified type in which all tbe identifiers
of rype parameters have beeo replaced by tbeir ccnesponding identiliers in the substirution. The appUca·
tion of type_subst to a rype parameu:r either rerurns tbe rype parameter itself or another type paramerer
which is associated witb the original rype paramerer tbrougb the substillltion. lbe application of
type_subst to a generic type repliCCS all the rype parameters occurring in the geoeric rype by their
correspooding rype paramerers in the substiiUdon. lbe olher cases are defined recursively on lhe struC1Ure
of the Otber rypes. except tbe given-ser rypes and the type variables whicb are not affcct.ed by the substiiU·
tion.

typa_subsl : Subst -+ Typa -+ Type

V subst : Subst; I : ld; t : Typa; lds : seq ld; Is : seq Typa; sig : Sig •
3 lsub : Type -+ Type 1 tsub • lype_subat subsl •

type_aubst subst (parT q • parT ((ldent III subst) Q 11

type_subst aubst (genT (ida, I)) • ganT ((ldent III subsl) o ida, lsub I) 11

typa_subst aubst (glvenT ~ • glvanT I 11 type_subal aubsl (varT ~ • varT i 11

type_aubsl aubsl (powerT I) • powarT (lsub I) 11

type_subst aubsl (lupteT Is) • luplaT (lsub o Is) 11

type_subsl subsl (schamaT sig) • schemaT (lsub o sig)

Now the sub-signarure relalion (which we denote by Ç.,) can be spccilied as follows.

2 We. use. this notation for a subsorution by analogy wilh rensming of schema components in Z (1).

129 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

- ,;;. - : Sig H Sig

v r.1, 17 : Sig • r.1 ::;. ~ ~ (3 subst : Subst • r., ,;; type_subst subst o ~)

3.1.4 The System State
To specify the system swe. we need to mtroduce a given-set representing unique identifiers for
definitions.

(Delid)

These identifiers can distinguish definitions which have lhe same "strucrure" (e.g. two schema definitions
which bave lhe same name and one ts a re-definítion of the other).
The environment for checking definitions is specified as foUows. There is a store which rnaps each

definitions • identifier to the cooesponding definition. A SJII:Cification (spec) in our model corresponds to a
"root file" (í.e. a sequence of identifiers for detinitions which are in store). The relation visible_ids records
aU lhe visible identifiers of eacb detinition (i.e. tt1e global identifiers inD'oducccl by a definition and lhe
local identifiers inD'oducccl in lhe declaration put of scbemas). 1be relation uses records the visible
idemifiers of otber definítions which eacb definition uses. A definition d 1 uses a definition d 2 if any of
the visible identifiers of d2 is used in d 1• A dependency graph. reprcsentcd by lhe relation depends_on, is
used to keep track of dependencies berween definitions. An auxiliary relaaon caUed before is true if a
definition d2 comes before a definítion d 1• Hence. a definítion d 1 depends_on a definition d2 if d 1 uses
d 2• and d 2 comes before d 1 in lhesequence ofdetinitions.

l Env_Spec ---------------------,
store : Delid -t-t Dei
spec : seq Delid
visible_ids : Delid H ld
_ uses _ : Oefid H (Oelid x ld)
_ before _ : Oelid H Delid
_ dependa_on _ : Delid .-. Defid

ran spec s;; dom store
ren (_ uses _) s;; visibte_ids
Vdl,d2: ranll)ec •

(d2 belore di ~ (3 i, j : ~~ • spec i • d2 " spec j • di 11 I < j)) 11

(d1 depends_on d2 ~ (31 : ld • d1 us11 (d2, ~ " d2 b81ore di))

3.2 The Subtype Relationship
Due to tt1e Jack of space. we only specify the subrype relationship for given-seu and scberna definitions.
For bodllcinds of detinition we "eorich" \"e SD'Ucture of Dei. inD'oducccl as a given-sa declaration in sub­
section 3.1. lben we extend lhe schema rcpresenting lhe environment accordingto lhe properties of lhe
specified Z definition. and finaUy we specify lhe meaning of lhe subtypt relatiooship related to the
specified definition. 4 1be specification of subtypt for a general deftnition is given by combining the
specifications of the subrype relationship for each kind of Z defini doo. The reader is referred to [9) for a
fuU specification.
3.2.1 Given·Set Deftnllions
A given-set definition mD'oduces a sequence of identifiers for given-sets (gsets). We specify gsets as a
sequence of idemifiers because we admit lhll these identifiers may be illSWltiar.ed positionaUy if lhe
definitions of a specification are amported into another specification.

3 Schema extension is a fe11ure which was present m lhe early versaons ofZ (8). h has been preserved 111 our model
as u is often useful for inuoducmg a concept ancremental ly.

4 We adnút that definitions of differentlunds cannot be 111 lhe same subrype relation.

130

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

í GSaLDef -----

r osets : seq 1 ld

• ran osets s; dom olvenT

The structure of Dei may be eruiched as:

Dei ::• oset «GSet_Oaf» I ...

Notice that we use .. . to mean that the definition of Dei is not complete yet
The signature of a given-set definition is built by mapping each given-set identifier orno the powerset of

its given-set type (6].

mkgilldet_sig : GSeLDef ~ Sig

v o : GSet_Def • mkoilldef_sig o • (I : ran o . osets • I - powerT (OivenT q I

The visible ideotifters of each given-set definition in a specilication are ali the identiliers which tbe
detinition introduces .

... Env_Spec --------------­

Env_Spec

v dafld : ran spec; o : GSeLDaf I oset o • stora defld •
visble_ld~(deficm • ran o .osets

A given-set definidoo g_new is a subtypt of g_old. ifthe signarure of g_old is a sub-signature ofthe sig­
nature of g_new. The order ln which declarations are introduced ln both given-set deftnitions is not
important for internal dependencies.

_ sub_gset _ : GSat_Oet +-+ GSet_Oef

v o_new, o_old : GSet_Oef •
3 new_alg, old_sig : Sig I

new_slg • mkoivdef_sig o_new 1\ old_sig • mkolvdef_sig o_old •
o_new sub_gset g_old ~ old_aig :;;. new_sig

lo fact it would be sufftcient only to verify that the set of visible idenúfiers introduced by g_old is a subset
of the set of visible ideotitiers introduced by g_new. because if two given-set declarations have the sarne
identitier they will consequently have the sarne type (which is the powerset of the given-set type).
3.2.2 Schema Deftnltlons
Before we define the subtypt relationship for schemas. we need to introduce some other concepts. Fim we
introduce the concept of declaration as being a list of identifiers and an expression to define their type.

_ Oecl ___ _

ld_list : seq1 td

: exp : Exp

We assume the eltistence of the function typeof which is a MlAilce type-checking algorithm. lt is

131
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

assumed lhat typeof has access 10 a1l lhe definiuons up 10 Cand mcludmg) lhe definition m whích lhe
expression 10 be rype-checked is found. Examples of specifications of lhís function may be found m
[6.3,7).

typeof : (seq Dei x Exp) ~ Type

The function defs_before will be uscd later 10 generate a sequence of delinitions whích wiU be uscd as an
argument to lhe function typeof.

defs_before : (Defid x seq Defid) seq Defid

v defld : Defid; &d : seq Defid •
31 dets_after : seq Defid •

dels_before (dafid, sd) ' · defa_alter • &d "
lasl (dels_balore (defid, &d)) • dalld

The function typeval slrips off lhe lP from a powerTs and i1 is used 10 emaa lhe cype of an ideotifier
inttoduced by a declaration. For insWice. if an tgeotifier i is declarcd as i: P l . lhe expression P l has
type P (.f l) and lhe type of iis equivalent 10 P (P (f l)).

typeval •• powerr· o typeot

Each declaration generares a signll\lre baseei on lhe type of lhe corresponding expression. The type of an
expressioo depends oo lhe typCS introduced io lhe cwrent clefinition and on lhe types introduccd in its pre­
vious definitioos [See lhe specification of typeval and typeof].

mkdecl_&ig : (seq Dei x DICI) ~ Sig

v &d : aeq Dei; dac : Dacf •
mkdld_siQ (&d, dac) • (i : ran dec. id_list • i - lypeval (sd, dac. exp) I

Scbemas and axiomatic definitions (not specified bere) bave a basic suucture in common. whícb we call
Basic_Schema. A basic scherna bas a set of identifiers for generic arguments (gens). and it introduces
one or more declarations of variables (dec_list) as weU as a predieate (pred). Non-generic scbernas are
special cases whcte gens • (). An extra atttibute (ids_in_sch) is a clerived variable represeoting ali lhe
visible identifiers introduced by lhe signarure of a basic schemL

í Basic_Schema -------------,

j gens : seq ld
1 dec_lísl : I' 1 Dacl

I prad : Prad
ids_in_sch : I' 1 ld

ids_•n_&eh • t) (dec : dec.J~JI • ran dec .id_llst)
ids_in_sch r o ran gens • ca

The function whích creates lhe signarw-e of a basic schema is bascd on lts list of variable declarations.

5 powerT is atype constructor from a Type to iP Type. Therefore, 111s a total in)ection wilh a funcuonal inverse.

132
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

mkbasic_sch_sig : (seq Oef >< f' 1 Oec~ -+ Sig

V sd : seq Dei; dectist : !' 1 Decl •

mkbasic_sch_aig (sd. decllst) • U (dec : declist • mkdecl_sig (sd, dec)}

A schema clelinltion is a basic schema which also introduces an identilier for lhe schema (sch_id). The
schema idcntilier is different from any of lhe identifiers introduced in the declaralion part and lhe ones
used as eype parameters. An extra amibute (visible_ids_inJ)red) records lhe visible identiliers of the
schema which are used in its predicate part. ln Section 3.3 we will explain the use of this amibute.

Schema_Def ------~

sch_fd : ld
Basic_Schema
visiblt_ids_ln_pred : I' ld

sch_ld • ids_ln_sch u ran oens
visiblt_ids_in_prtd s; lda_ln_sch

The structure of Oef may be enriched as:

Dei ::• gaet « GSeLDet » 1 schema « Schema_Oef» I ..•

We now extend Env_Spec wilh lhe relations uses_in_pred and depends_on_pred in order to record
the dependeocies of definitions on the predicate pans of schema delinitions. The relalion uses_in_pred
records. for eacb definltion. ali the visíble ideutifiers of otber definitions whicb lhe definition uses in its
preclicate part. 1be relalion depends_on__pred is de6ned similarly to lhe relalion depeneis on.
specified in sub-section 3.1.4. A definition ti"; depends on the predicate part of a schema clefinltion J;. if
d 1 uses d, in lts prcdicate part. and d 2 comes before d 1 ln the sequence of definitions. The use of the
relalions Clepends_on_pred in conjunction witb uses_in_pred will be explained in sub-sectioo3.3. The
visible ideutifien of a scbema definition com:spond to lhe scbema's idcntifier and ali the other visible
identiliers introcluced by the corresponding basic scbema.

r Env_Spec ----------------------.,

I Env_Sptc

I
_ ustl_ln_pred _ : Defid, (Defid >< ld)
_ deptnds_on_pred _ : Oefid <-+ Defld

L uses_ln_pred _) s; L uses _)
(_ dtpends_on_pred _) s; L dtpends_on _)
v d1, d2 : ran aptc 1 store d2 E ran schema •

dt dtptnds_on_prtd d2 ~
(31 : ld; s : Schema_Del 1 schema 1 • store d2 " i • s. sch_ld •

d1 uses_in_pred (d2, O " d2 before d1)
v delid : ran spec; s : Schema_Del 1 schema s • store defid •

viaible_idsf(delid)~ • (a . sch_id) u s . ids_in_sch

A schema s_new is a subrype of its old version s_old. if s_new has the same identifier as s_old and
their generic schema types are the same. The variables new_pre and old_pre correspond to the sequence
of deftnltions up to s_new and s_old respectively. These sequences are necessary in order to ca.lculate lhe
signatures of those schemas.

133
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

1 _ sub_schama _ : (Schema_Del x seq Dei) +-+ (Schama_Del x seq Dei)

V s_new, s_old : Schema_Del; ntw_pra, old_pre : seq Dai •
(s_naw, new_pre) sub_scttama (s_old, old_pra) =

s_old. sch_id • s_new. sch_id "
(3 new_sig, old_siQ : Sig; new_genT, old_genT : Type; subsl : SubSI I

new_sig • mkbasic_sch_sig (new_pre, s_new. dtc_list) "
old_sig • mkbasic_sch_sog (old_prt, s_old. dtc_Nsl) "
new_genT • genT (s_new. gens, schtmaT new_s,g) "
old_genT • genT (s_old . gens, schemaT old_sig) •

old_genT • type_subsl subst naw_genT)

The subtype relaàonship for scbemas does not allow a replacement definition to extend its previous
detinition with other identifiers. because tbe introduction of new identifiers in tbe signature of a replace­
ment scbema may or may not iruroduce rype errors. On tbe one band. rype~beclcing errors would be iruro­
duccd in delinitions wbicb referred to tbe whole previous delinition of a schema. because tbe signarure of
tbe replacement scbema would be different from tbe signarure of its previous definition (e.g. rype errors
would be imroduced in definitions wbich use a schema as a rype). On the otber band. rype~becldng errors
would not be iruroduced in definitions wbicb referred to qualified identifiers wbicb have not chauged tbeir
types. Hence. to guarantte tbe safety of tbe rype system. the approach of requiring equality of both generic
scbema rypes was adoptcd.
Another problem of definíng subtype based oo tbe signarures of tbe schemas is tbat even if tbe new ver­

sioo of a scbema has the same signlDICe as its old version. it is possible tbat rype-errors are iruroduced io
tbe specilication. For instance. tbe scbema

Sch[X,Y] ~

a : I'(XxY)
b : f'(YxX)

witbgenericrypegenT ((X, Y), schemaT (a powerT (X, Y), b powerT (Y, X))) andtbescbcma

r
Sch(Y,X) ~

a:f'(XxY)
b : f'(Y xX)

witb generic rype genT ((Y, X), schemaT (a P (X, Y), b P (Y, X))) are oot subrypes of eacb
other. because tbe former cannot replace tbe laaer witbout imroducing insuotiuioo errors in deftnitions
wbich instaotiate tbe first version of Sch since tbe order of tbe generic parameters has beco cbanged.
lostantiation errors would also occur lf tbe number of generic parameters was ooc tbe sarne in both sebe­
mas. Saictly spealàog tbe equivalence of tbe geoeric rypes of both scbemas is sufficienL not necessary.
However, any otber approac:h would require very complex aoalysis of uses of definítions.
Finally, tbe general subtype relationsbip combines tbe specification of subtype for eacb ldnd of definitioo.

_ subtypa _ : (Dei x seq Dei) +-+ (Dei x nq Dei)

v g_new, g_old : GSaL Det; s_new, a_okl : Schama_Dal; new_pra, old_pre : seq Dei •
((gset g_naw, new_pre) subtype (gset g_old, old_pre) =

g_new sub_gsel g_old) "
((schama s_new, new_pre) sub!ype (schema s_old, old_pre) =

(s_new, new_pre) sub_schema (s_old, old_pra)) " ...

134

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

3.3 Theoreticallssues of Editinc Operatlons
ln thls sub-section. we specify lhe issues lhu a type-checking algorithm must deal with when check.mg Z
specificalions incrementally. First we cive some auxillary definitions. Given a rela11on recording depen­
dencies between definitions (i.e. a --subsel"' of the dependency graph of a specificaoon) and a set of
identifiers of definitions. lhe function dependents gives lhe identifiers of all lhe definitions which depend
(directly or indirectly) on the definitions corresponding to lhe given identifiers of definitions. The
definitions· identifiers rewmed by dependents ate lhe ones which will be re-check.ed as a consequence of
an editing operalion.

dependents : (Detld, Detld >< F' Oetld) - " Detld

v depends_on : Oetld ..._, Detid; delids : ? Oetid •
dependents (depands_on, delids) • depends_on' .. l defids)

Given a set of identifiers of definitions to be checked (check?), the operation schema Check specifies an
order (checkl) for cbecking the corresponding definitions after an editing operalion is executed.

- Check ----~
I !Env_Spec
I check? : !' Defid
1 checkt : seq Detid

checkt • spec r check?

For tbe sake of simplicity. when specifying lhe insertion and tbe modificalion of a definition in a
specificarion. we assume thll the edited definition was already checked before the system found out which
dependem definitions must also be re-typechecked. We also assume that during the check of the edited
definitioa neitber syntactic errors nor type errors are found. ln practice. definitions witb errors should be
llaged for lllt.r re-check. because the errors may be corrccted as a consequence of editing otber
definitions. lt is also assumed thll dependem definitions directly, and indirectly affected by an editing
operation are re-typechecked immedi11ely after tbe editing operalion is executed.
3.3.llnsertlon
• Wben a definition Def 2 is insened into a specificalion after anocher definition Def 1• and De! 2
becornes a multiple definition (or a scbema extension) of Def 1• or any visible identifier of Def 2
becomes a multiple declar11ion of an idemifier imroduced in Def 1• the definitions which depend on
Def 1 and are subsequent to Def 2 must be re-cypechecked in order to rebind tbe references to the
ídentifiers (or deftnilions) which have become multiply declared Cor defined/exteoded):

• Wben a deftnilion Def 2 is inserted before anotber definition Def 1:. aod Def 1 becomes a multiple
definilion (ora schema extension) of Def 2• or any visible ídentifier of Uef 1 becomes a multiple declara­
tion of ao identifier lntroduced in Def 2• Def 1 and the definitions which depend on Def 1 must be re­
typecbeclted.

For instance. if we have lhe sequence of axiomllic definitions

I

a : Z : b : l : c : l d :Z ~:Z
: b • a i •• d

which can be represemed as I) (where each capitalleuer from A to E corresponds to one of lhe above
definitíons in the sarne order of imroduction). and we insert the definition

13S
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

a,d : l

alter the definition A and before the definition B. the definitions B and C need to be re-clleclced bccause a
became multiply declared in the insened definition. and the definitions O and E need to be re-<:heclced
because d became multiply declared in O. We can specify the above issues in the foUowing steps:
The schema Pure_AddOel specifies the insenion of a definition dei? identified by delid? at the position

pos? of 1 specification. The variable used? corresponds to the identifiers used by the definition. 1be vari­
able used_in_pred? corresponds to the identifiers used by the definition in its predicate part (definitions
without predicate part h1ve used_in_pred? • 0). The values of used? and used_in_pred? can be
discovered by the type-cbecker when the definition is cbecked. The updale of visíble_íds is guaranrced by
the anvariant in Env _Spec that says whll are the visible ideotifiers of each lcind of Z definition and by the
invariant ran L uses _) !:;:;; visible_ids. The updaJe of depends_on is guaranrced by the invariant which
relates uses to depends_on in Env_Spec. 1be updlte of depends_on_pred is guaranteed by the invariant
in Env_Spec which relates uses_in_pred to depends_on_pred.

r :::~=·· defod? : Defid
dei? : Dei
pos? : N1

used? : f' (Oefid x ld)
used_ln_pred? : f' (Oelid x ld)

delid? • ran spec
pos? (llspec + 1
dei? E r1n gset ~ used_in_pred? • "
&tore' • store u (delid? - def?l
spec' • (1 .• pos?- 1) <l spec ' <delid?l • (pOs? .. llapec) <lspeo
L uses' _) • L uses _)uI use : used? • (defld?, use) I
L uses_in_pred' _) •
L uses_in_pred _) u I UHPfed : used_lnJ)(ed? • (delld?, usepred)}

Identifiers multiply defioed/declared or schem1 exteosions correspond to multiple occurrences of
ideotifiers in scope. Giveo an identifier of 1 definitioo (defid). 1 set of definitions' identiflers (defíds) IDd 1
relation recording the visible identifiers of ali the definitions in 1 speciflcation (visible_íds). the functlon
dels_with_mult_ids reouns a subset of delíds correspoodingto the idelltifiers of definitions (if any) which
imroduce in scope multiple occurreDCC3 of any of the visible ideotifiers (del_visíble_ids) of delid.

defs_whh_mult_ids : (Defid x f' Delid x Defid, ld) ..-t i' Delld

v delid : Defid; defids : f' Oelld; vis~le_ids : Oelid, ld •
3del_vis~le_ids : f' ld 1 del_visible_ids • vlsible_idlt(delid}) •

defs_whh_mult_ids (defod, detida, vis~le_ids) •
(vlsible_lds .. (det_vls~le_ldsl) r, delids

The auxiliary schema TesUI_mutUds returDS 10 check_mult the ideotifiers of deflnitions (if any) which
need to be re-checlced due to the insertion of multi pie occurrences of any visible identifier in scope. This
scbem1 does not modify the swe of the system. However. tbe state before the execution of an cditing
operation (in particular. inseruons and modificauons IS we wiU see later). IS welliS the modificd swe are
uscd in Test_il_mu!Lids.

136
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

r TesUt_mult_lds ----------------------

4Env_Spec:
detid? : Datld
pos? : N1

cheek_muM : f' Oetld

spec' pos? • dafid?
3 cheek_bt, check_at : f' Detld •

(dets_muh_bt • (} ~ check_bt • ()) fi

(dels_mult_bf - () ~
cheçk_bf.
dependents ((_ dtpends_on _), defs_muft_bf) ' '
ran ((pos? + 1 .. llspec1 <l spec1) fi

((dets_mu•_at • !I ~ chedt_at • ()) fi

(defs_muM_at - ll ~
cheek_at •
dependents ((_ depends_on _), defs_muM_al) u dels_mult_af)) fi

cheek_muM • check_bl u chedt_at
where

dels_mult_bl, defs_mult_af : f' Dtfld

dets_mult_bf • defs_wíth_mu._ids (dalid?, ran ((1 .. pos?- 1) <lspec'), vislble_ids1
defs_mult_af • dels_w~h_mult_ids (delld?, ran ((pos? + 1 .. llspec1 <l spec'), vísible_lds1

This schema says tlW ifthere are definitions (defs_mult_bf) preceding the ediled definition (defid?) wbicb
also imroduc.e in scope any of tbe visible ldeatiflers of defid? (i.e. defid? imroduces multiple identifiers
in scope). all tbe definitions whlcb depended on tbe dellnitions in defs_mut_bf (bef<n tbe editing of
delld?) llld becamc su~ent to defid? (after tbe edílin& of defld?) must be re-cbecked. lf therc are
deflnitions subsequeat (defs_muiLaf) to defid? wbicb also imroduce any of its visible identiflers. tbe
deflnitions ln defs_muiLaf and their dependem definitions must be re-<:hecked.
ln tbe scbema Add_Def we speclfy tbe effec:t of insening a definition which may imroduce multiple

idelllifiers or a scbema extcnsion ln scope. ln this schema and in subsequent schemas. tbe variable check
records tbe identiflers of tbe definitions which noed to be cbecked as a consequence of an editing opera­
doo.

Add_Del Q Pure_AddDel 1\ TesUf_mult_lds~-JI'UIII

Finally. tbe scbema AddCheck spccifies tbe insertion operation ln full.

AddChedt a Add_Oet » Check

3.3.2 Deletlon
• When a definition is removed from the scope of a spec:ification. ali the definitions which depend direclly
or indirectly on tbe removed delinidon must be re-typechecked. We specify this ln two steps:

The schema Pure_DelDef corresponds to tbe deletion of a deflnidon from the spec:ilication. A deleled
definidon is removed from tbe specilicaoon. llld ali the rccords of its use are also removed. The updare of
depends_on is guarant.ecd by the invariant which relates uses to depends_on, and the updare of
depends_on_pred is guararuccd by lhe invariant which relates uses_in_pred to depends_on_pred.

137
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

_ Pure_DeiDef --------------­

, t.Env_Spac
defid? : Defid
dpos? : ~,

defid? • spec dpos?
store' • {defid?) ~ slore
spec' • {1 .. dpos?- 11 <l spec ' (dpos? + 1 .. llspec) <l spec

, visible_ids' • {defid?) ~ visible_ids
(_ uses' _) • {defid?) ~ (_ uses _)
(_ uses_in_pred' _) • {defid?) 'l L uses_in_pred _)

Finally, we can specify the consequential effcct of delet.ing a defirútion as follows.

! DeLDef ---------------,

Pure_DeiDef
check 1 : fi Defid

checkl • dependents ((_ depends_on _), (defid?))

Any defirútions which depend on lhe dei~ defioition must be cbccked.

DeiCheck ; DeLDef » Check \ (delld?)

3.3.3 Modlftcation
• Wben a defiDilion is replaced by another defiDilion Def whicb is a subtype of its previous version. lhe
defirúlions whicb dependcd on the previous version of De/ do not need to be re-typeebccked. because
type errors are not introduced in the specification. However, if Def is 1 schema defioition. it is necessary
to re-typeebcck any definition thal used the previous version of Def as a pred.ica~e. if the set of visible
ideotifiers of Defthal are used ín the pred.ica~e pan of Def are not tbe sarne as lhe visible iclenlifiers used
in lhe precl.ica~e pan of its prcvious version. For instancc. if S 1 is a schcma used as a predica in another
schema S 2, tbcn ali lhe variablcs declared in lhe dcclaraáon pan of S 1 and rcferred to in lhe predicaae
pan of S 1 must liso be in scope when S 1 is used as a predici!C.

_s,---,
: X, y, Z : l

I X> y

lf wc modify the predicalC pan of S 1 to use z in its predica~e part and re-chcck S l· a scope error wiU be
introduced in S 2 bccause z is not dcclared in S 2. Notíce that this rule is not valid for lhe Z standard Ver­
sion 1.0 [lO) which ínsistS that ali variables dcclared in lhe scbema S 1 have bcen dcclared ln lhe current
cnvironmenL even if some of them are not referenced by lhe current predicaae:

• When 1 defiDition Def 1 is rcplaced by another defirútion Def 2 which is not a subrype of Def 1, ali the
defirúlions whicb depend on Def 1 must be re-cypecbccked:

• ln botb cases. it is possiblc that Def 2 bccomes a multiple definition Cor schema extension). or introduces
multiple declarations in scope. ln this case. it is nccessary 10 re-typechcck all lhe defirútions which are
subsequent to Def 2 and depend on any defirútion that bccame mulliply dcfined (or extended). or depend
on any dell.rútion tha1 introduced lhe identifiers which bccame multiply declared.

138
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

These issues can be specified ln the following steps: The schema Pure_ChangeOel specifies the
modificaàon of a deftnition in t.he specificauon. lbis schema can be specified as a deletion of an old
deftnition followed by an inseruon of a new deftnition in its place.

Pure_ChangeDel a Pure_DeiOel ' Pure_AddDel""""?.t>oo?l

lbe scbema Change_test_mult_ids specifies lhe modification of a definition followed by a test to dis­
cover if multiple identiflers were introduced in scope. As described above. this test is perfonned whether
or not lhe modified deftnition is a subrype of its old version.

Change_test_mull.lds ~ Pure_ChangeDel 1\ Test_il_mul_id't~?.t>oo'l

lbe scbema Change_is_not_SubType specifies t.he case wben tbe new version of a modified definition is
nota sublJPe of its old version. lbe definitions wlúcb depend on t.he old version of lhe modifted definition
aod defininons affected by t.he insertion of multiple identifiers in scope need to be re-cbecked.

Í
Change_is_noLSubType

Change_test_mull.ids
checkl : f' Delid

~ (new_del, new_pre) subtype (old_del, old_pre) "
checkl • dependtnts ((_ depends_on _), (delid?)) u check_mu~
where

new_del, old_del : Dei
new_pre, old_pre : seq Dei

new_del • atore' delid?
new_pre • store' o dels_belore (delid?, spec')
old_del • store delid?
old_pre • store o dels_belore (delid?, apec)

Similarly, the scbema Change_is_SlbType specifies the type-cbecking issues wben lhe new version of a
modified definition is a subrype of its old version. As explained above. if lhe modified definition is a
scbema deftDition (s_new) and lhe visible identifiers used ln lhe pn:dlca~e pan of lhe moclllled definition
(s_new.vislble_lds_in_pred) are not lhe sarne as tbe visible identillers used in lhe predic81C pllt of its old
version (s_old.visible_ids_in_pred), tbe definitions wlúch depend on the predicate pan (dep_on_pred) of
its old version (s_old) must be re-cbecked. lt is also possible tlw some definitions (check_mult) need to
be re-cbecked dueto lhe insertion of multiple idemifiers in scope.

139
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

; Change_is_SubType ---- -----------------:

I Change_tesLmul_ids
chackl : f' Dafid

(new_del, new_pre) subtype (old_del, old_pre) "
(3dep_oCUKed : f' Oetid •

(new_del E ran schema " old_del E ran schama ~
(3 s_new, s_old : Schema_Oel I

schema s_new • new_def " schema s_old • ofd_def •
(s_new. visible_ids_in_pred • s_old . visible_ids_in_pred ~

dep_on_pred •
dependents (L depends_on_pred _), (detid?})) "

(s_new . visibla_ids_in_pred • s_old . visib4a_ids_in_pred =*
dep_on_pred • ()))) A

(new_def • ran schema " old_def • ran schema =* dap_on_pred • {}) "
checkl • dep_on_pred u check_muH)

where

new_del, old_del : Oef
new_pre, old_pre : seq Oef

new_def • store' defid?
new_pre • store' o defs_~fore (delid?, spac')
oid_del • store dafid?
old_pre • store o defs_~fore (delid?, spec)

Finally. we can spccify lhe effect of modifying a definition in lhe spccification.

Chang.Check a
(Change_is_SubType V Change_is_noLSubType) » Chack \ (detid?, chack_muH)

3.3.4 Transference
• The ttansference of a definition from one position to IJlOCher can be acbievcd by lrCiling it as a delction
from lhe old posttion foUowcd by an inseraon into lhe ncw position. TIIis is spccificd in lhe foUowina two
schemas.

TransferCheck a
[Transler_Def; checkl : I' Delid 1 checkl • delcheck u addcheck] » Chack \
(dafid?, dalchack, addcheck)

4. CONCLUSION
The applicalion of incremental type-check.ing mecbanisms to specification languagcs. anel panicularly to
lhe Z language. is almost an umouchcd rcsearch arca. Some work has been done in tbe arca of incremental
checking (parsing ard/or type-checking) applicd to impcrativc and functional prograrnrning languqcs
[11.2.12.13.14, 1~). However. lhe sarne tecbniqucs uscd when checldng lhesc languagcs cannot be
directly applicd to Z. dueto differenccs in its type system anel scope rulcs. Moreover. none of lhose exist·
ing incremental algorithms are appropria~e for dcaling wilh extenstons of schemas. ln those algorithms. an
extcnsion of a definition is eilher tteatcd as a scope error or it overwritcs the previous definition.
We believe that the formalisanon of the possible dependencics between Z definitions. lhe extensivc dis­

cussion of lhe incremental rype.checking issucs. and the dcscription of our incremental type-cbeclcing
algorithm reprcsent a nove! piece of rcsearch work towards clarifying theoretical problems related to lhe

140
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

incremental processing of Z specifications.
5. REFERENCES
1.
2.

3.

4.

~.

6.

7.

8.
9.

10.
11.

12.

13.

14.

1~.

Spivey, J. M .. The Z Notatlon: A Reftrenct Marwal- 1st tdltlon. Preotice-Halllntl. (1989).
Toyn. I.. "ExploratOry Environrnents for Functional Prograrnming". O.Phil. Thesis. Deparunent of
Computer Science. University ofYork (Apr. 1987).
Spivey. J. M .. Undtrstanding Z: A Sptcijication I.Anguagt and its Formal St montics. Cambridge
University Press (Jan. 1988).
Adcins. M. C .. " lmplementation Tecbniques for Object-Orieoted Systems" , O.Phil. Thesis.
Deparunent of Computer Science. University of York (Juo. 1989).
Milner. R .. " A lbeory ofType Polymapbism in Programming", Journa/ ofComputt r and Systtm
Sc/ences 17(3). pp. 348-37~ (Dec. 1978).
Seonett. C .. " Review of Type Checldng and Scope Rules of the Specilicalioo Language Z". Repon
No. 87017. Royal Signals and Radar Establishment. Malvem. UK (Nov. 1987).
Reed. J. N. and Sinclair. J. E .. "An Algorithm for Type.Checking Z: A Z Specification". PRG·81.
Programming Research Group, University of Oxford (Mar. 1990).
Hayes. 1. (editor). Sptcijication Case Studits. Prentice-Halllntl. (1987).
de Vasconcelos. A. M. L .. "Incremental Processiog of Z Specificalioos". O.Phil. Thesis. Depan­
ment of Computer Science. University of Y ork (Oct. 1993).
Z Standard$ Review Commíttee. "Z Base Standard (Versioo 1.0)" . BSI PaneiiST~-~2 (1993).
Nikhíl. R. S .. "PriCtical Polymorphism". Ltcture Notes in Computtr Scienct. Nancy. France 201.
pp. 319-333. Springer-Verlag. Functiooal Programmíng Languages and Computer Arcbitecture
(Sep. 198~).
Toyn. I. llld Runciman. C .• " Perfonnance Polymorpbism". Ltcturt Notes in Computer Scienct ,
Proceedings of the Third lntenwional Conference on Functiooal Prograrnrning Languages and
Computer Atchitecture (Sep. 1987).
R. Medina-Mora and P. H. Feiler. " An Incremental Programming Eovironment". IEEE Transac­
tton on Software Enginttrlng SE-7(~). pp. 471-481 (Sep. 1981).
Nicol. C .. Crowe. M. K.. Corr. M. E .. Oram. J. W. and Jeoldns. O. G .. " 10EA - An Incremental
Development Envirooment for ADA" , Software Englnttring Joumal 2(6), pp. 194-198 (Nov.
1987).
Schwartt. M. O .. Delisle. N. M. and Begwani. V. S .• " Incremental Compilanon in Magpie". SIG·
PUN Notices 19(6). pp. 122-131 . Proceedings of tbe S1GPLAN Symposium on Cornpiler Con­
struction (Jun. 1984).

141 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396
	z0397
	z0398
	z0399
	z0400
	z0401
	z0402
	z0403
	z0404
	z0405
	z0406
	z0407
	z0408
	z0409
	z0410
	z0411
	z0412
	z0413
	z0414
	z0415
	z0416
	z0417
	z0418
	z0419
	z0420
	z0421
	z0422
	z0423
	z0424
	z0425
	z0426
	z0427
	z0428
	z0429
	z0430
	z0431
	z0432
	z0433
	z0434
	z0435
	z0436
	z0437
	z0438
	z0439
	z0440
	z0441
	z0442
	z0443
	z0444
	z0445
	z0446
	z0447
	z0448
	z0449
	z0450
	z0451
	z0452
	z0453
	z0454
	z0455
	z0456
	z0457
	z0458
	z0459
	z0460
	z0461
	z0462
	z0463
	z0464
	z0465
	z0466
	z0467
	z0468
	z0469
	z0470
	z0471
	z0472
	z0473
	z0474
	z0475
	z0476
	z0477
	z0478
	z0479
	z0480
	z0481
	z0482
	z0483
	z0484
	z0485
	z0486
	z0487
	z0488
	z0489
	z0490
	z0491
	z0492
	z0493
	z0494
	z0495
	z0496
	z0497
	z0498
	z0499
	z0500
	z0501
	z0502
	z0503
	z0505

