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Abstract 
/nthis pape r. we descri ln some of IM difficulliesthat must bt tackltd when fY/H·Checting z r 1 I specifrcatiOfll Ofl an 
ifiCrtmtfllal btuls. Wt forma/ise. in Z ltstlf, tht possiblt dtptndency rtlatloruhips for each kind of Z definition . 
Then, wc prcscfll an txrensivt list of lssuts that an Íllcremefllal type·checking algorlthm for Z must dto/ with. as 
wt/1 as an outlitw specifrcation of an ÍfiCrtmentol typc·chtclcing olgorithm whlch dtols with thtse issuts. 
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1. lNTRODUCTION 
Re-typechecting mechanisms are desirable in order to re·evalulle the tyt>e environment and the type con­
sisteocy of the specification when a definition Is edited inside a specificanon. 
ln specification/prograrnrrúng environrnents whicb use buch type-checlàng algorithms. the arnount of re­

typechecldng (A,) is proportional to the size (n) of the specificltion/program (i. e. A, ex n). because the 
whole specificltionlprograrn is processed from scrucb. For simplicity. we can say that A, is given by tbe 
result of a function Rttypt applied to the size of the specificationlprograrn (i.e. A, = Rttypr(n)). 
Tbeoretically. the arnount of re-typecbecking in incremental environments is proportional to the size of 

the change (i.e. Rttype mil1(c ). where c is the size ofthe change). The actual cost Rttypt(c) wUJ be deter­
mined by the complexity of dependeocies etc. ln some cases. Rttypt(c) = Retypr(n) (e.g. redefirúng a glo­
bal variable that is used by all the segmeDIS of the specificltion/prograrn will cause re-rypechecking from 
scruch). 
The maio technical issue. in incremental environrnents. is idemifying what sub-set of the 

speciflcltion/prograrn needs to be re-cbecked alter a cbange. ln practice. lhe computational costs of tbe 
mecbanisms for incremental checking (e.g. traversing a dependeocy graph) may outweigb lhe benefits. 
2. A STRA TEGY FOR INCREMENTAL TYPE-CHECKING lN Z 
Incremental type-cbecldng algorithms are baseei on tbe "observalion that if a definition does not use a 
modifted definition. eitber directly or lndirectly. then its type cannot be affected by changes in the type of 
the modifted deftnition" [2]. Consequently. alter modifying a definition. only the definitions whicb use (i.e. 
depeod on) it need to be re-typechecked. ln f~et. the depeodenl deftnitions do not neecl to be re­
typecbecked if the underlying type of the modified definiàon remains the sarne. because type errors wiU 
not be introduced in these dependent definiàons. The incrememal type-checlàng Strllegy whicb we pro­
pose is more ftexible. However. before we present lhe su11egy. we need to inuoduce some terrrúnology. 
2.1 TermlnoiOCY 
We inuoduce the concepts of "signature" and "sub-signarure". which wiU be used in sub-section 2.2. when 
explaining our incremental type·checking mategy. 
2.1.1 Slgnature 
The signarure of a Z definiàon is the set ofidentifiers that it introduces. each with its type [I). Unlike otber 
descriptions ofZ. ali ourZ definitions have siparure. notjust schemadeftnitions. 
2.1.2 Sub-Signature 
A slgnarure 1:1 is a sub-signarure of a signaiUie ~ if the idemifiers of 1:1 are also in ~. and the type of 
each corresponding identifier in both sigoarures is the same [3]. This noàon of "sameness" of typeS needs 
to be defined carefully when dealing with generic type pararneters. because two generic type pararneters 
may express the sarne type even if they have different narnes. For instante. in the followtng example: if 
we modify tbe Sch on the left-band side to give the version on the right-hand side 

_ Sch(X) _ 
~ ., 
. x: X 
1 

= Sch(Y) = 
X : y 

X and Y should be considered to be lhe sarne generic type. Hence. a generic type G 1 is the sarne as 
another generic type G 2• lf there ts a subsutution S from identifiers to identifiers. so that G 1 • SG 2 (i.e. 
when applylng S to G 2 malces G 1 equal to G 2) . 
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2.2 The Strategy 
Our incremental tyJ»<:beclcing algorithm is bascd on the observadon lhat when a definition is modificd. 
type errors are not iruroduccd 1n a specificauon if lhe signarure of lhe definition is extendcd wilh new 
identifiers and lhe un~lying types of lhe ideotifiers in lhe previous signature are still lhe same. For 
instaoce. if a given -set definition: 

(A, B) 

which has signature {A .....P A, 8 -4> 8} is replaccd by anolher given-sct definition: 

(A,B,C) 

which has signazure {A -i> A, 8 -of> 8, C ...... p C}, type errors are not introduccd into lhe specification 
(allhougb lhere may be scope errors - e.g .• if C is already defined !ater in lhe specification), because A 
and 8 are still in scope after lhe definition is modificd 1nd lhey h ave lhe same underlying typeS as before. 
lbe relatiooship between lhose two given-sct definitioos is very similar to lhe sublype relationsbip 

between struaure (or record) types in objcct-orientcd systerns as presentcd in [4) (i.e. "a subtype structure 
can have more. but not fewer fields lhan the supertype"). Simllarly. lhe signazure of the tirst given-set 
definitioo is a sub-sigoawre of lhe signature of the sccond given-sct definition. Based on thls observatioo. 
we can define 1 similar relaúonship between definiáoos which we will refer to as subtype: 
A definition A is a subtyf" of a definition B iff for every identif~er introduced in definition B there is 
an equivalent identifier (with the sarne type) introduced in definition A. 

Hence. according to our definition of subrype. the second given-set definiáon (A, 8, C]. imroduccd 1bove, 
is 1 subrype of lhe first given-sct definitlon (A, B]. and so subsequent definitions ~nding on lhe first 
definition do not nced to be rc-typecheckcd. But I ater deflnitions lhat already define C do. 
3. A FORMAL MODEL OF INCREMENTAL TYPE·CHECKING lN Z 
ln thls section. we describe lhe most impOIWU issues tbat an incremental type-cbecking algorithm for Z 
must deal witb. Pirst we present some prelirninuy concepts and lheir formal spccification in Z itself. 
lben, we formalise tbe subrype relationshlp. Pinally. we spccify the dependeocies between definitions of a 
spccificatioo in tenns of affectcd deflnitioos due to the editing (i.e. iosertion. modification. deletion. or 
transference) of 1 specific definition iosidc 1 spccificatlon. 
Only tbe aspects related to the inu:mal dependencies of 1 spccificaúon are spccificd here. as the treaanent 

of externa! dcpendencies woukl imply that 1 large and complex specification of the mechanisms for ver· 
sion cootrol and configuratioo maDiiemtnt sbould be given. 
We do not specify dcW1s of lhe cype-chcc:king of 1 siiJ&)e dcfinition. since this is dcalt with by 1 MlAilce 

algorithm similar to the one desaibed in [,). Readcrs inu:resu:d in a Z speciftcatioo of such an algorithm 
for type-chccking Z dcfinitlons should refer to [6, 7). 
3.1 Prellminarles 
We assume tbe" existence of names for distinguishing identifiers. expressions uscd in dcclarations of 
identifiers. dcfinitlons given insidc a specification and logical predieates. 

(Name, Exp, Oef, Pred) 

ln our modcl we use the standard dccorations for identifiers [1). 

Oeoor ::• ? I I I ' 

Hence. ao identifier has 1 name and one or more aptional dccorations. 
r •d ____ _ 
1 name : Name 
1 deoors : seq Oeoor 

3.1.1 The Representation or Types 
lbe type of eacb ídentlfier may be any of lhe types describcd in [1) and defined below. lt is interesting to 
discuss the representatlon of the typeS relatcd to polymorphism ln Z. A type parameu:r (parn correspoods 
tO each occwrence of a generic identifier in I generic cype (gen n. AS lhe instantiation of the parameu:rs 

I A given-set definition introduces 1ypes defined 111 a non-consuucuve way (also called "parachutcd" types). 
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of a generic type depends on the order in which the instantiated types are given. we represem a generic 
type by using a sequence of identifters (the generic parameters) and the generic type itself. lt is also ncces­
sary to represem type variables (varl) which are used for anonymous (impUcit) instantiations (i.e. lhey 
appear in a type substiruted for the formal generic parameters when a genenc type is implicitly inswuiated 
[6)). 

Type ::. 
givanT « ld » 1 powarT '<Type» I tupleT « seq Typa» I schamaT -< ld-+ Type» 1 
parT -x ld » 1 genT « (seq ld x Typa) » I varT « ld» 

3.1.2 Sicnature 
As explained in sub-scction 2.1.1 . a signiiiW'e is a mapping from identifiers to their most general types. 
Notice that a schema rype as spccifted above is built from lhe signiiiW'e of the corresponding schema. 

Sig •• ld -+ Type 

3.1.3 Sub-Signature 
ln order to specify the concept of sub-signarure explained in sub-scction 2.1.2. we ftrst spccify an 
identifiers' substirution. whicb is a mapping from identifiers to icleotifiers. 

Subst •• ld >+-+ ld 

Notice that Subst is represent.ed as a partia! injccdon to ensure that an "abnonnal" generic rype as genT 
((( W, W )), powerT(tupleT ( parT W, parT W ))) is not consiclered tbe sarne as tbe generic type genT ((~X, 
Y)), powerT(t~eTI parT X, parT Y ))) througb tbe application ofa subsdiUtion (e.g. S • (W {X.W /Y] to 
the sccond generic rype). We also spccify an instance of the identity relation which must be applied to 
ideoti fiers. 

ldent •• id [ld) 

A funcdon type_subst applies a substiiUtion to a rype reruming a modified type in which all tbe identifiers 
of rype parameters have beeo replaced by tbeir ccnesponding identiliers in the substirution. The appUca· 
tion of type_subst to a rype parameu:r either rerurns tbe rype parameter itself or another type paramerer 
which is associated witb the original rype paramerer tbrougb the substillltion. lbe application of 
type_subst to a generic type repliCCS all the rype parameters occurring in the geoeric rype by their 
correspooding rype paramerers in the substiiUdon. lbe olher cases are defined recursively on lhe struC1Ure 
of the Otber rypes. except tbe given-ser rypes and the type variables whicb are not affcct.ed by the substiiU· 
tion. 

typa_subsl : Subst -+ Typa -+ Type 

V subst : Subst; I : ld; t : Typa; lds : seq ld; Is : seq Typa; sig : Sig • 
3 lsub : Type -+ Type 1 tsub • lype_subat subsl • 

type_aubst subst (parT q • parT ((ldent III subst) Q 11 

type_subst aubst (genT (ida, I)) • ganT ((ldent III subsl) o ida, lsub I) 11 

typa_subst aubst (glvenT ~ • glvanT I 11 type_subal aubsl (varT ~ • varT i 11 

type_aubsl aubsl (powerT I) • powarT (lsub I) 11 

type_subst aubsl (lupteT Is) • luplaT (lsub o Is) 11 

type_subsl subsl (schamaT sig) • schemaT (lsub o sig) 

Now the sub-signarure relalion (which we denote by Ç.,) can be spccilied as follows. 

2 We. use. this notation for a subsorution by analogy wilh rensming of schema components in Z ( 1). 
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- ,;;. - : Sig H Sig 

v r.1, 17 : Sig • r.1 ::;. ~ ~ (3 subst : Subst • r., ,;; type_subst subst o ~) 

3.1.4 The System State 
To specify the system swe. we need to mtroduce a given-set representing unique identifiers for 
definitions. 

(Delid) 

These identifiers can distinguish definitions which have lhe same "strucrure" (e.g. two schema definitions 
which bave lhe same name and one ts a re-definítion of the other). 
The environment for checking definitions is specified as foUows. There is a store which rnaps each 

definitions • identifier to the cooesponding definition. A SJII:Cification (spec) in our model corresponds to a 
"root file" (í.e. a sequence of identifiers for detinitions which are in store). The relation visible_ids records 
aU lhe visible identifiers of eacb detinition (i.e. tt1e global identifiers inD'oducccl by a definition and lhe 
local identifiers inD'oducccl in lhe declaration put of scbemas). 1be relation uses records the visible 
idemifiers of otber definítions which eacb definition uses. A definition d 1 uses a definition d 2 if any of 
the visible identifiers of d2 is used in d 1• A dependency graph. reprcsentcd by lhe relation depends_on, is 
used to keep track of dependencies berween definitions. An auxiliary relaaon caUed before is true if a 
definition d2 comes before a definítion d 1• Hence. a definítion d 1 depends_on a definition d2 if d 1 uses 
d 2• and d 2 comes before d 1 in lhesequence ofdetinitions. 

l Env_Spec ---------------------, 
store : Delid -t-t Dei 
spec : seq Delid 
visible_ids : Delid H ld 
_ uses _ : Oefid H (Oelid x ld) 
_ before _ : Oelid H Delid 
_ dependa_on _ : Delid .-. Defid 

ran spec s;; dom store 
ren (_ uses _) s;; visibte_ids 
Vdl,d2: ranll)ec • 

(d2 belore di ~ (3 i, j : ~~ • spec i • d2 " spec j • di 11 I < j)) 11 

(d1 depends_on d2 ~ (31 : ld • d1 us11 (d2, ~ " d2 b81ore di)) 

3.2 The Subtype Relationship 
Due to tt1e Jack of space. we only specify the subrype relationship for given-seu and scberna definitions. 
For bodllcinds of detinition we "eorich" \"e SD'Ucture of Dei. inD'oducccl as a given-sa declaration in sub­
section 3.1. lben we extend lhe schema rcpresenting lhe environment accordingto lhe properties of lhe 
specified Z definition. and finaUy we specify lhe meaning of lhe subtypt relatiooship related to the 
specified definition. 4 1be specification of subtypt for a general deftnition is given by combining the 
specifications of the subrype relationship for each kind of Z defini doo. The reader is referred to [9) for a 
fuU specification. 
3.2.1 Given·Set Deftnllions 
A given-set definition mD'oduces a sequence of identifiers for given-sets (gsets). We specify gsets as a 
sequence of idemifiers because we admit lhll these identifiers may be illSWltiar.ed positionaUy if lhe 
definitions of a specification are amported into another specification. 

3 Schema extension is a fe11ure which was present m lhe early versaons ofZ (8). h has been preserved 111 our model 
as u is often useful for inuoducmg a concept ancremental ly. 

4 We adnút that definitions of differentlunds cannot be 111 lhe same subrype relation. 
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í GSaLDef -----

r osets : seq 1 ld 

• ran osets s; dom olvenT 

The structure of Dei may be eruiched as: 

Dei ::• oset «GSet_Oaf» I ... 

Notice that we use .. . to mean that the definition of Dei is not complete yet 
The signature of a given-set definition is built by mapping each given-set identifier orno the powerset of 

its given-set type (6]. 

mkgilldet_sig : GSeLDef ~ Sig 

v o : GSet_Def • mkoilldef_sig o • (I : ran o . osets • I - powerT (OivenT q I 

The visible ideotifters of each given-set definition in a specilication are ali the identiliers which tbe 
detinition introduces . 

... Env_Spec --------------­

Env_Spec 

v dafld : ran spec; o : GSeLDaf I oset o • stora defld • 
visble_ld~(deficm • ran o .osets 

A given-set definidoo g_new is a subtypt of g_old. ifthe signarure of g_old is a sub-signature ofthe sig­
nature of g_new. The order ln which declarations are introduced ln both given-set deftnitions is not 
important for internal dependencies. 

_ sub_gset _ : GSat_Oet +-+ GSet_Oef 

v o_new, o_old : GSet_Oef • 
3 new_alg, old_sig : Sig I 

new_slg • mkoivdef_sig o_new 1\ old_sig • mkolvdef_sig o_old • 
o_new sub_gset g_old ~ old_aig :;;. new_sig 

lo fact it would be sufftcient only to verify that the set of visible idenúfiers introduced by g_old is a subset 
of the set of visible ideotitiers introduced by g_new. because if two given-set declarations have the sarne 
identitier they will consequently have the sarne type (which is the powerset of the given-set type). 
3.2.2 Schema Deftnltlons 
Before we define the subtypt relationship for schemas. we need to introduce some other concepts. Fim we 
introduce the concept of declaration as being a list of identifiers and an expression to define their type. 

_ Oecl ___ _ 

ld_list : seq1 td 

: exp : Exp 

We assume the eltistence of the function typeof which is a MlAilce type-checking algorithm. lt is 
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assumed lhat typeof has access 10 a1l lhe definiuons up 10 Cand mcludmg) lhe definition m whích lhe 
expression 10 be rype-checked is found. Examples of specifications of lhís function may be found m 
[6.3,7). 

typeof : (seq Dei x Exp) ~ Type 

The function defs_before will be uscd later 10 generate a sequence of delinitions whích wiU be uscd as an 
argument to lhe function typeof. 

defs_before : (Defid x seq Defid) ...... seq Defid 

v defld : Defid; &d : seq Defid • 
31 dets_after : seq Defid • 

dels_before (dafid, sd) ' · defa_alter • &d " 
lasl (dels_balore (defid, &d)) • dalld 

The function typeval slrips off lhe lP from a powerTs and i1 is used 10 emaa lhe cype of an ideotifier 
inttoduced by a declaration. For insWice. if an tgeotifier i is declarcd as i: P l . lhe expression P l has 
type P (.f l) and lhe type of iis equivalent 10 P (P (f l )). 

typeval •• powerr· o typeot 

Each declaration generares a signll\lre baseei on lhe type of lhe corresponding expression. The type of an 
expressioo depends oo lhe typCS introduced io lhe cwrent clefinition and on lhe types introduccd in its pre­
vious definitioos [See lhe specification of typeval and typeof]. 

mkdecl_&ig : (seq Dei x DICI) ~ Sig 

v &d : aeq Dei; dac : Dacf • 
mkdld_siQ (&d, dac) • ( i : ran dec. id_list • i - lypeval (sd, dac. exp) I 

Scbemas and axiomatic definitions (not specified bere) bave a basic suucture in common. whícb we call 
Basic_Schema. A basic scherna bas a set of identifiers for generic arguments (gens). and it introduces 
one or more declarations of variables (dec_list) as weU as a predieate (pred). Non-generic scbernas are 
special cases whcte gens • (). An extra atttibute (ids_in_sch) is a clerived variable represeoting ali lhe 
visible identifiers introduced by lhe signarure of a basic schemL 

í Basic_Schema -------------, 

j gens : seq ld 
1 dec_lísl : I' 1 Dacl 

I prad : Prad 
ids_in_sch : I' 1 ld 

ids_•n_&eh • t) (dec : dec.J~JI • ran dec .id_llst) 
ids_in_sch r o ran gens • ca 

The function whích creates lhe signarw-e of a basic schema is bascd on lts list of variable declarations. 

5 powerT is atype constructor from a Type to iP Type. Therefore, 111s a total in)ection wilh a funcuonal inverse. 
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mkbasic_sch_sig : (seq Oef >< f' 1 Oec~ -+ Sig 

V sd : seq Dei; dectist : !' 1 Decl • 

mkbasic_sch_aig (sd. decllst) • U ( dec : declist • mkdecl_sig (sd, dec)} 

A schema clelinltion is a basic schema which also introduces an identilier for lhe schema (sch_id). The 
schema idcntilier is different from any of lhe identifiers introduced in the declaralion part and lhe ones 
used as eype parameters. An extra amibute (visible_ids_inJ)red) records lhe visible identiliers of the 
schema which are used in its predicate part. ln Section 3.3 we will explain the use of this amibute. 

Schema_Def ------~ 

sch_fd : ld 
Basic_Schema 
visiblt_ids_ln_pred : I' ld 

sch_ld • ids_ln_sch u ran oens 
visiblt_ids_in_prtd s; lda_ln_sch 

The structure of Oef may be enriched as: 

Dei ::• gaet « GSeLDet » 1 schema « Schema_Oef» I ..• 

We now extend Env_Spec wilh lhe relations uses_in_pred and depends_on_pred in order to record 
the dependeocies of definitions on the predicate pans of schema delinitions. The relalion uses_in_pred 
records. for eacb definltion. ali the visíble ideutifiers of otber definitions whicb lhe definition uses in its 
preclicate part. 1be relalion depends_on__pred is de6ned similarly to lhe relalion depeneis on. 
specified in sub-section 3.1.4. A definition ti"; depends on the predicate part of a schema clefinltion J;. if 
d 1 uses d, in lts prcdicate part. and d 2 comes before d 1 ln the sequence of definitions. The use of the 
relalions Clepends_on_pred in conjunction witb uses_in_pred will be explained in sub-sectioo3.3. The 
visible ideutifien of a scbema definition com:spond to lhe scbema's idcntifier and ali the other visible 
identiliers introcluced by the corresponding basic scbema. 

r Env_Spec ----------------------., 

I Env_Sptc 

I 
_ ustl_ln_pred _ : Defid ...., (Defid >< ld) 
_ deptnds_on_pred _ : Oefid <-+ Defld 

L uses_ln_pred _) s; L uses _) 
(_ dtpends_on_pred _ ) s; L dtpends_on _ ) 
v d1, d2 : ran aptc 1 store d2 E ran schema • 

dt dtptnds_on_prtd d2 ~ 
(31 : ld; s : Schema_Del 1 schema 1 • store d2 " i • s. sch_ld • 

d1 uses_in_pred (d2, O " d2 before d1) 
v delid : ran spec; s : Schema_Del 1 schema s • store defid • 

viaible_idsf(delid)~ • (a . sch_id) u s . ids_in_sch 

A schema s_new is a subrype of its old version s_old. if s_new has the same identifier as s_old and 
their generic schema types are the same. The variables new_pre and old_pre correspond to the sequence 
of deftnltions up to s_new and s_old respectively. These sequences are necessary in order to ca.lculate lhe 
signatures of those schemas. 
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1 _ sub_schama _ : (Schema_Del x seq Dei) +-+ (Schama_Del x seq Dei) 

V s_new, s_old : Schema_Del; ntw_pra, old_pre : seq Dai • 
(s_naw, new_pre) sub_scttama (s_old, old_pra) = 

s_old. sch_id • s_new. sch_id " 
(3 new_sig, old_siQ : Sig; new_genT, old_genT : Type; subsl : SubSI I 

new_sig • mkbasic_sch_sig (new_pre, s_new. dtc_list) " 
old_sig • mkbasic_sch_sog (old_prt, s_old. dtc_Nsl) " 
new_genT • genT (s_new. gens, schtmaT new_s,g) " 
old_genT • genT (s_old . gens, schemaT old_sig) • 

old_genT • type_subsl subst naw_genT) 

The subtype relaàonship for scbemas does not allow a replacement definition to extend its previous 
detinition with other identifiers. because tbe introduction of new identifiers in tbe signature of a replace­
ment scbema may or may not iruroduce rype errors. On tbe one band. rype~beclcing errors would be iruro­
duccd in delinitions wbicb referred to tbe whole previous delinition of a schema. because tbe signarure of 
tbe replacement scbema would be different from tbe signarure of its previous definition (e.g. rype errors 
would be imroduced in definitions wbich use a schema as a rype). On the otber band. rype~becldng errors 
would not be iruroduced in definitions wbicb referred to qualified identifiers wbicb have not chauged tbeir 
types. Hence. to guarantte tbe safety of tbe rype system. the approach of requiring equality of both generic 
scbema rypes was adoptcd. 
Another problem of definíng subtype based oo tbe signarures of tbe schemas is tbat even if tbe new ver­

sioo of a scbema has the same signlDICe as its old version. it is possible tbat rype-errors are iruroduced io 
tbe specilication. For instance. tbe scbema 

Sch[X,Y] ~ 

a : I'(XxY) 
b : f'(YxX) 

witbgenericrypegenT ((X, Y ), schemaT (a .... powerT (X, Y), b .... powerT (Y, X))) andtbescbcma 

r 
Sch(Y,X) ~ 

a:f'(XxY) 
b : f'(Y xX) 

witb generic rype genT (( Y, X), schemaT (a .... P (X, Y), b .... P (Y, X))) are oot subrypes of eacb 
other. because tbe former cannot replace tbe laaer witbout imroducing insuotiuioo errors in deftnitions 
wbich instaotiate tbe first version of Sch since tbe order of tbe generic parameters has beco cbanged. 
lostantiation errors would also occur lf tbe number of generic parameters was ooc tbe sarne in both sebe­
mas. Saictly spealàog tbe equivalence of tbe geoeric rypes of both scbemas is sufficienL not necessary. 
However, any otber approac:h would require very complex aoalysis of uses of definítions. 
Finally, tbe general subtype relationsbip combines tbe specification of subtype for eacb ldnd of definitioo. 

_ subtypa _ : (Dei x seq Dei) +-+ (Dei x nq Dei) 

v g_new, g_old : GSaL Det; s_new, a_okl : Schama_Dal; new_pra, old_pre : seq Dei • 
((gset g_naw, new_pre) subtype (gset g_old, old_pre) = 

g_new sub_gsel g_old) " 
((schama s_new, new_pre) sub!ype (schema s_old, old_pre) = 

(s_new, new_pre) sub_schema (s_old, old_pra)) " ... 
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3.3 Theoreticallssues of Editinc Operatlons 
ln thls sub-section. we specify lhe issues lhu a type-checking algorithm must deal with when check.mg Z 
specificalions incrementally. First we cive some auxillary definitions. Given a rela11on recording depen­
dencies between definitions (i.e. a --subsel"' of the dependency graph of a specificaoon) and a set of 
identifiers of definitions. lhe function dependents gives lhe identifiers of all lhe definitions which depend 
(directly or indirectly) on the definitions corresponding to lhe given identifiers of definitions. The 
definitions· identifiers rewmed by dependents ate lhe ones which will be re-check.ed as a consequence of 
an editing operalion. 

dependents : (Detld ...., Detld >< F' Oetld) - " Detld 

v depends_on : Oetld ..._, Detid; delids : ? Oetid • 
dependents (depands_on, delids) • depends_on' .. l defids) 

Given a set of identifiers of definitions to be checked (check?), the operation schema Check specifies an 
order (checkl) for cbecking the corresponding definitions after an editing operalion is executed. 

- Check ----~ 
I !Env_Spec 
I check? : !' Defid 
1 checkt : seq Detid 

checkt • spec r check? 

For tbe sake of simplicity. when specifying lhe insertion and tbe modificalion of a definition in a 
specificarion. we assume thll the edited definition was already checked before the system found out which 
dependem definitions must also be re-typechecked. We also assume that during the check of the edited 
definitioa neitber syntactic errors nor type errors are found. ln practice. definitions witb errors should be 
llaged for lllt.r re-check. because the errors may be corrccted as a consequence of editing otber 
definitions. lt is also assumed thll dependem definitions directly, and indirectly affected by an editing 
operation are re-typechecked immedi11ely after tbe editing operalion is executed. 
3.3.llnsertlon 
• Wben a definition Def 2 is insened into a specificalion after anocher definition Def 1• and De! 2 
becornes a multiple definition (or a scbema extension) of Def 1• or any visible identifier of Def 2 
becomes a multiple declar11ion of an idemifier imroduced in Def 1• the definitions which depend on 
Def 1 and are subsequent to Def 2 must be re-cypechecked in order to rebind tbe references to the 
ídentifiers (or deftnilions) which have become multiply declared Cor defined/exteoded): 

• Wben a deftnilion Def 2 is inserted before anotber definition Def 1:. aod Def 1 becomes a multiple 
definilion (ora schema extension) of Def 2• or any visible ídentifier of Uef 1 becomes a multiple declara­
tion of ao identifier lntroduced in Def 2• Def 1 and the definitions which depend on Def 1 must be re­
typecbeclted. 

For instance. if we have lhe sequence of axiomllic definitions 

I 

a : Z : b : l : c : l d :Z ~:Z 
: b • a i •• d 

which can be represemed as I ..... ) (where each capitalleuer from A to E corresponds to one of lhe above 
definitíons in the sarne order of imroduction). and we insert the definition 
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a,d : l 

alter the definition A and before the definition B. the definitions B and C need to be re-clleclced bccause a 
became multiply declared in the insened definition. and the definitions O and E need to be re-<:heclced 
because d became multiply declared in O. We can specify the above issues in the foUowing steps: 
The schema Pure_AddOel specifies the insenion of a definition dei? identified by delid? at the position 

pos? of 1 specification. The variable used? corresponds to the identifiers used by the definition. 1be vari­
able used_in_pred? corresponds to the identifiers used by the definition in its predicate part (definitions 
without predicate part h1ve used_in_pred? • 0). The values of used? and used_in_pred? can be 
discovered by the type-cbecker when the definition is cbecked. The updale of visíble_íds is guaranrced by 
the anvariant in Env _Spec that says whll are the visible ideotifiers of each lcind of Z definition and by the 
invariant ran L uses _) !:;:;; visible_ids. The updaJe of depends_on is guaranrced by the invariant which 
relates uses to depends_on in Env_Spec. 1be updlte of depends_on_pred is guaranteed by the invariant 
in Env_Spec which relates uses_in_pred to depends_on_pred. 

r :::~=·· defod? : Defid 
dei? : Dei 
pos? : N1 

used? : f' (Oefid x ld) 
used_ln_pred? : f' (Oelid x ld) 

delid? • ran spec 
pos? ( llspec + 1 
dei? E r1n gset ~ used_in_pred? • " 
&tore' • store u (delid? - def?l 
spec' • (1 .• pos?- 1) <l spec ' <delid?l • (pOs? .. llapec) <lspeo 
L uses' _) • L uses _)uI use : used? • (defld?, use) I 
L uses_in_pred' _) • 
L uses_in_pred _) u I UHPfed : used_lnJ)(ed? • (delld?, usepred)} 

Identifiers multiply defioed/declared or schem1 exteosions correspond to multiple occurrences of 
ideotifiers in scope. Giveo an identifier of 1 definitioo (defid). 1 set of definitions' identiflers (defíds) IDd 1 
relation recording the visible identifiers of ali the definitions in 1 speciflcation (visible_íds). the functlon 
dels_with_mult_ids reouns a subset of delíds correspoodingto the idelltifiers of definitions (if any) which 
imroduce in scope multiple occurreDCC3 of any of the visible ideotifiers (del_visíble_ids) of delid. 

defs_whh_mult_ids : (Defid x f' Delid x Defid ....., ld) ..-t i' Delld 

v delid : Defid; defids : f' Oelld; vis~le_ids : Oelid ....., ld • 
3del_vis~le_ids : f' ld 1 del_visible_ids • vlsible_idlt(delid}) • 

defs_whh_mult_ids (defod, detida, vis~le_ids) • 
(vlsible_lds .. (det_vls~le_ldsl) r, delids 

The auxiliary schema TesUI_mutUds returDS 10 check_mult the ideotifiers of deflnitions (if any) which 
need to be re-checlced due to the insertion of multi pie occurrences of any visible identifier in scope. This 
scbem1 does not modify the swe of the system. However. tbe state before the execution of an cditing 
operation (in particular. inseruons and modificauons IS we wiU see later). IS welliS the modificd swe are 
uscd in Test_il_mu!Lids. 
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r TesUt_mult_lds ----------------------

4Env_Spec: 
detid? : Datld 
pos? : N1 

cheek_muM : f' Oetld 

spec' pos? • dafid? 
3 cheek_bt, check_at : f' Detld • 

(dets_muh_bt • (} ~ check_bt • ()) fi 

(dels_mult_bf - () ~ 
cheçk_bf. 
dependents ((_ dtpends_on _), defs_muft_bf) ' ' 
ran ((pos? + 1 .. llspec1 <l spec1) fi 

((dets_mu•_at • !I ~ chedt_at • ()) fi 

(defs_muM_at - ll ~ 
cheek_at • 
dependents ((_ depends_on _ ), defs_muM_al) u dels_mult_af)) fi 

cheek_muM • check_bl u chedt_at 
where 

dels_mult_bl, defs_mult_af : f' Dtfld 

dets_mult_bf • defs_wíth_mu._ids (dalid?, ran ((1 .. pos?- 1) <lspec'), vislble_ids1 
defs_mult_af • dels_w~h_mult_ids (delld?, ran ((pos? + 1 .. llspec1 <l spec'), vísible_lds1 

This schema says tlW ifthere are definitions (defs_mult_bf) preceding the ediled definition (defid?) wbicb 
also imroduc.e in scope any of tbe visible ldeatiflers of defid? (i.e. defid? imroduces multiple identifiers 
in scope). all tbe definitions whlcb depended on tbe dellnitions in defs_mut_bf (bef<n tbe editing of 
delld?) llld becamc su~ent to defid? (after tbe edílin& of defld?) must be re-cbecked. lf therc are 
deflnitions subsequeat (defs_muiLaf) to defid? wbicb also imroduce any of its visible identiflers. tbe 
deflnitions ln defs_muiLaf and their dependem definitions must be re-<:hecked. 
ln tbe scbema Add_Def we speclfy tbe effec:t of insening a definition which may imroduce multiple 

idelllifiers or a scbema extcnsion ln scope. ln this schema and in subsequent schemas. tbe variable check 
records tbe identiflers of tbe definitions which noed to be cbecked as a consequence of an editing opera­
doo. 

Add_Del Q Pure_AddDel 1\ TesUf_mult_lds~-JI'UIII 

Finally. tbe scbema AddCheck spccifies tbe insertion operation ln full. 

AddChedt a Add_Oet » Check 

3.3.2 Deletlon 
• When a definition is removed from the scope of a spec:ification. ali the definitions which depend direclly 
or indirectly on tbe removed delinidon must be re-typechecked. We specify this ln two steps: 

The schema Pure_DelDef corresponds to tbe deletion of a deflnidon from the spec:ilication. A deleled 
definidon is removed from tbe specilicaoon. llld ali the rccords of its use are also removed. The updare of 
depends_on is guarant.ecd by the invariant which relates uses to depends_on, and the updare of 
depends_on_pred is guararuccd by lhe invariant which relates uses_in_pred to depends_on_pred. 
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_ Pure_DeiDef --------------­

, t.Env_Spac 
defid? : Defid 
dpos? : ~, 

defid? • spec dpos? 
store' • {defid?) ~ slore 
spec' • {1 .. dpos?- 11 <l spec ' (dpos? + 1 .. llspec) <l spec 

, visible_ids' • {defid?) ~ visible_ids 
(_ uses' _) • {defid?) ~ (_ uses _) 
(_ uses_in_pred' _) • {defid?) 'l L uses_in_pred _) 

Finally, we can specify the consequential effcct of delet.ing a defirútion as follows. 

! DeLDef ---------------, 

Pure_DeiDef 
check 1 : fi Defid 

checkl • dependents ((_ depends_on _), (defid?)) 

Any defirútions which depend on lhe dei~ defioition must be cbccked. 

DeiCheck ; DeLDef » Check \ (delld?) 

3.3.3 Modlftcation 
• Wben a defiDilion is replaced by another defiDilion Def whicb is a subtype of its previous version. lhe 
defirúlions whicb dependcd on the previous version of De/ do not need to be re-typeebccked. because 
type errors are not introduced in the specification. However, if Def is 1 schema defioition. it is necessary 
to re-typeebcck any definition thal used the previous version of Def as a pred.ica~e. if the set of visible 
ideotifiers of Defthal are used ín the pred.ica~e pan of Def are not tbe sarne as lhe visible iclenlifiers used 
in lhe precl.ica~e pan of its prcvious version. For instancc. if S 1 is a schcma used as a predica in another 
schema S 2, tbcn ali lhe variablcs declared in lhe dcclaraáon pan of S 1 and rcferred to in lhe predicaae 
pan of S 1 must liso be in scope when S 1 is used as a predici!C. 

_s,---, 
: X, y, Z : l 

I X> y 

lf wc modify the predicalC pan of S 1 to use z in its predica~e part and re-chcck S l· a scope error wiU be 
introduced in S 2 bccause z is not dcclared in S 2. Notíce that this rule is not valid for lhe Z standard Ver­
sion 1.0 [lO) which ínsistS that ali variables dcclared in lhe scbema S 1 have bcen dcclared ln lhe current 
cnvironmenL even if some of them are not referenced by lhe current predicaae: 

• When 1 defiDition Def 1 is rcplaced by another defirútion Def 2 which is not a subrype of Def 1, ali the 
defirúlions whicb depend on Def 1 must be re-cypecbccked: 

• ln botb cases. it is possiblc that Def 2 bccomes a multiple definition Cor schema extension). or introduces 
multiple declarations in scope. ln this case. it is nccessary 10 re-typechcck all lhe defirútions which are 
subsequent to Def 2 and depend on any defirútion that bccame mulliply dcfined (or extended). or depend 
on any dell.rútion tha1 introduced lhe identifiers which bccame multiply declared. 
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These issues can be specified ln the following steps: The schema Pure_ChangeOel specifies the 
modificaàon of a deftnition in t.he specificauon. lbis schema can be specified as a deletion of an old 
deftnition followed by an inseruon of a new deftnition in its place. 

Pure_ChangeDel a Pure_DeiOel ' Pure_AddDel""""?.t>oo?l 

lbe scbema Change_test_mult_ids specifies lhe modification of a definition followed by a test to dis­
cover if multiple identiflers were introduced in scope. As described above. this test is perfonned whether 
or not lhe modified deftnition is a subrype of its old version. 

Change_test_mull.lds ~ Pure_ChangeDel 1\ Test_il_mul_id't~?.t>oo'l 

lbe scbema Change_is_not_SubType specifies t.he case wben tbe new version of a modified definition is 
nota sublJPe of its old version. lbe definitions wlúcb depend on t.he old version of lhe modifted definition 
aod defininons affected by t.he insertion of multiple identifiers in scope need to be re-cbecked. 

Í 
Change_is_noLSubType 

Change_test_mull.ids 
checkl : f' Delid 

~ (new_del, new_pre) subtype (old_del, old_pre) " 
checkl • dependtnts ((_ depends_on _), (delid?)) u check_mu~ 
where 

new_del, old_del : Dei 
new_pre, old_pre : seq Dei 

new_del • atore' delid? 
new_pre • store' o dels_belore (delid?, spec') 
old_del • store delid? 
old_pre • store o dels_belore (delid?, apec) 

Similarly, the scbema Change_is_SlbType specifies the type-cbecking issues wben lhe new version of a 
modified definition is a subrype of its old version. As explained above. if lhe modified definition is a 
scbema deftDition (s_new) and lhe visible identifiers used ln lhe pn:dlca~e pan of lhe moclllled definition 
(s_new.vislble_lds_in_pred) are not lhe sarne as tbe visible identillers used in lhe predic81C pllt of its old 
version (s_old.visible_ids_in_pred), tbe definitions wlúch depend on the predicate pan (dep_on_pred) of 
its old version (s_old) must be re-cbecked. lt is also possible tlw some definitions (check_mult) need to 
be re-cbecked dueto lhe insertion of multiple idemifiers in scope. 
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; Change_is_SubType ---- -----------------: 

I Change_tesLmul_ids 
chackl : f' Dafid 

(new_del, new_pre) subtype (old_del, old_pre) " 
(3dep_oCUKed : f' Oetid • 

(new_del E ran schema " old_del E ran schama ~ 
(3 s_new, s_old : Schema_Oel I 

schema s_new • new_def " schema s_old • ofd_def • 
(s_new. visible_ids_in_pred • s_old . visible_ids_in_pred ~ 

dep_on_pred • 
dependents (L depends_on_pred _), (detid?})) " 

(s_new . visibla_ids_in_pred • s_old . visib4a_ids_in_pred =* 
dep_on_pred • ()))) A 

(new_def • ran schema " old_def • ran schema =* dap_on_pred • {}) " 
checkl • dep_on_pred u check_muH) 

where 

new_del, old_del : Oef 
new_pre, old_pre : seq Oef 

new_def • store' defid? 
new_pre • store' o defs_~fore (delid?, spac') 
oid_del • store dafid? 
old_pre • store o defs_~fore (delid?, spec) 

Finally. we can spccify lhe effect of modifying a definition in lhe spccification. 

Chang.Check a 
(Change_is_SubType V Change_is_noLSubType) » Chack \ (detid?, chack_muH) 

3.3.4 Transference 
• The ttansference of a definition from one position to IJlOCher can be acbievcd by lrCiling it as a delction 
from lhe old posttion foUowcd by an inseraon into lhe ncw position. TIIis is spccificd in lhe foUowina two 
schemas. 

TransferCheck a 
[Transler_Def; checkl : I' Delid 1 checkl • delcheck u addcheck] » Chack \ 
(dafid?, dalchack, addcheck) 

4. CONCLUSION 
The applicalion of incremental type-check.ing mecbanisms to specification languagcs. anel panicularly to 
lhe Z language. is almost an umouchcd rcsearch arca. Some work has been done in tbe arca of incremental 
checking (parsing ard/or type-checking) applicd to impcrativc and functional prograrnrning languqcs 
[11.2.12.13.14, 1~). However. lhe sarne tecbniqucs uscd when checldng lhesc languagcs cannot be 
directly applicd to Z. dueto differenccs in its type system anel scope rulcs. Moreover. none of lhose exist· 
ing incremental algorithms are appropria~e for dcaling wilh extenstons of schemas. ln those algorithms. an 
extcnsion of a definition is eilher tteatcd as a scope error or it overwritcs the previous definition. 
We believe that the formalisanon of the possible dependencics between Z definitions. lhe extensivc dis­

cussion of lhe incremental rype.checking issucs. and the dcscription of our incremental type-cbeclcing 
algorithm reprcsent a nove! piece of rcsearch work towards clarifying theoretical problems related to lhe 
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incremental processing of Z specifications. 
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