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Abstract

In this paper we describe a design methodology for the development of (potentially multi-
processor) real-time system. Our proposed methodology differs fundamentally from current
methodology and serves to help manage the complexity of massive-intensive systems. One of
the distinguishing aspects of this methodology is in its ability to express timing constraints
and verify to what extent such constraints are met. A second distinguishing aspect of this
methodology is to develop a system according to five views of systems. In particular, the
problems concerned with the transformation of the specifications into the parallel programs
are addressed.

The proposed methodology is applied to develop an onboard generator for generating
transfer frames, complyannt to the CCSDS Recommendations [34], [35]. This onboard gen-
erator is implemented on a transputer network (1], [2].

Indez Terms Real-time systems, specification, performance evaluation, parallel process-
ing, CCSDS. transputer.

1 INTRODUCTION

Many tasks performed in systems, such as those found in nuclear power plants. process con-
trol and spacecraft applications have stringent timing constraints. The real-time contraints are
hard. failure to meet them might cause a catastrophe. Although computer speed has increased
by several orders of magnitude in recent decades, the demand for computing capacity increases
at an even faster speed. Consequently. the required processing power for many real-time appli-
cations still cannot be achieved with a single processor system and these applications need to
be implemented on multiptocessor systems.

On the other hand. advances in VLSI technology have made it possible to construct high-
performance parallel computers with large numbers of processing elements. This is especially
true with the appearance of transputer systems [1], [2], where each transputer is constructed as
a single device with private memory, processor, and communication links. Due to their regular
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structure, transputers can be linked together to give high performance systems with arbitary
topologies. Transputer networks therefore provide a favourable target environment for designers
of complex real-time systems.

A real-time system distinguishes itself from other systems by the explicit involvement of
the dimension time and the dependability of the correctness of results as a function of time.
According to many authors,[3], [63]. [67], [69). [72], [73]. [87), real time systems are subject 1o
fundamental user requirements, such as correctness of the svstem, taking into account timeliness
and simultaneity, a high degree of predictability, of robustness.

Distributed and parallel target environments, in which timing behavior depends on many
factors including task allocation, scheduling, and communication, complicate the analysis of
timing requirements. Thus, approaches to cope with the analysis of time during all phases of
real-time development are needed.

It seems fair to say that current methods that aid in the development of (multi-processor)
real-time systems are still underdeveloped (3], [65], [69], citekn:gnu64. Numerous methods have
been proposed for the design of such systems, however, none of these methods correxctly ad-
dresses all kinds of user requirements.

In our research we did not find a single method that covers all phases in the development
cycle. As an example, consider Jackson System Design [24], [63], MASCOT3[?], RTSA[26],
Statecharts [27] and HOOD[29], well known methods for the development of real-time systems.
JSD does not provide means to express the decomposition of the system until the process level,
MASCOT3's graphical notation for process decomposition does not show control low. HOOD
and other object models have problems with the poor execution time performance [38], which by
the way is not a problem with the object abstract abstraction itself, but ususally follows from an
inefficient implementation of access to objects. Statecharts are appropriate for behavior analy-
sis. but the underlying method fails to address performance analysis. Finally, RTSA, a variant
on Structured Design[26], deals with decomposing a system into modules, but has limitations in
its ability to support design of concurrent system.DARTS (73] is a software design method for
distributed real-time application, however, it not concerns with the schedulability analysis.

Therefore, the objective of our works is to develop a single design methodology that covers
all phases of the life cycle while ensuring that the specific real-time system requirements of
the software will be met, even on parallel architectures as target. A major difference between
current methodologies and our methodology is that we freely use a number of different methods
in the process of systems development. For each stage (or view as we will see later), one or
several specific methods are candidate for use. These methods are selected according to the
characteristics of real-time svstems and the requirements of each particular stage. \Vhenever
required. we extend particular methods in order to satisfy the needs for the particular view we
are dealing with.

Another major difference between current methodologies and our methodology is that we
emphasize an integration between informal methods and formal techniques, exploiting the ad-
vantages of informal methods and formal methods.


http://www.cvisiontech.com

This paper is organized as follows. In section Il we outline the main aspects and character-
istics of the proposed methodology and compare it to other methodologies. In section III we
discuss issues concerning the application of multiple views within phase oriented development.
In section IV we present a case study, the detailed development of a simulator for generating
the transfer frame of CCSDS Recommandations. In that section we furthermore describe how
dynamic allocation and reconfiguration requirements are met in an implementation on a network
of transputers. Finally. in section V we summarize the features of our methodology and discuss
future work.

2 CHARACTERISTICS OF OUR METHODOLOGY

2.1 Different views on a system

An acceptable real-time design methodology must synthesize the different views that may
exist on a system, and must ensure that an orderly series of steps covers all aspects of the re-
quirements and the design aspects. Hence, we propose a methodology that explicitly emphasizes
the use of (five) complementary views on the system as a starting point for modeling and design.
The views are: the environmental view, the functional view, the behavioral view, the performance
view and the material view. Each of these views will be discussed in detail below.

The environmental view: Embedded computer systems have to react quickly and correctly to
complex sequences of external events. The entities that produce these (external) events are
collectively named “environment”. Since the behaviour of the system is strongly coupled to
the behaviour of the environment, an accurate analysis and description of the behaviour
of the environment is important in this application domain. We propose a view of the

environment of system as part of the development of the system. In building this view,
we are concerned with:

¢ the identification of objects in the environment of system;

¢ the determination of operations and events related to these objects;
 the description of the behaviour of each object;

¢ the specification of the timing constraints of the output of each object.

There is common agreement that object-oriented models closely match our model of reality.
Typical object-oriented notations, such as provided by HOOD, and notations belonging
to a variety of formal techniques (e.g. RT-ASLAN (58], Real-Time Logic (RTL)[59), ES-
TEREL[29], LDS[30], LOTOS) are suitable for describing the environment of the system.
HOOD is typically used for the identification (and informal description) of objects in the
environment, subsequently, formal techniques are suitable for the behavioural description
of each of the elementary objects. The choice of the particular formal technique depends
on the application.

Specification of timing constraints on output signals can be given in a variety of notations,
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we prefer a simple specification notation that. in a later stage, can be embedded within
other notations. In this notation. two kinds of constraint are identified. periodic and spo-
radic ones. A periodic constraint requires some action to be executed at fixed intervals
while some state predicates are true. A sporadic timing constraint requires some action
to he executed before a specified deadline elapses after the occurrence of a certain event,

Timing constraint of < output signal > on system implementation is
While < event >

demand to ezecute < action > and finish to execute < action >
WITH period = < time >, deadline = <time>

The proposed syntax of a sporadic timing constraint is:

Timing constraint of < output signal > on system implementation is
Wiile < event >

demand to ezecute < action > and finish to execute < action >
WITH deadline = <time >, separation=< time >

The separation parameter in a sporadic timing constraint specifies a lower bound on the
length of an interval separating two successive occurrences of the triggering event. The

purpose of the separation parameter is to prevent any source of sporadic requests for
computation to hog the system.

The functional view: The functional view captures the static structure of the system, it ad-
dresses questions on functionality of the system, i.e. the input and output, what the
subfunctions are, and how these functions are combined.

We propose a decomposition to be performed by using an extension of SADT. SADT [36],
[50] is a graphical language used for explicitly expressing hierarchical and functional rela-
tionships among any objects and activities, and has been successfully applied to functional
system decomposition, Unfortunately, SADT is not particularly suited to express the types
of communication and synchronization between different functions. Therefore, we propose
an extension that allows three types of relations between functions, to be expressed by
lines of specific types in the diagrams [64):

e Synchronization by event, represented by the line of figure 2.1.

sasssssmssane

¢ Transfer of information by state variable. represented by the line of figure 2.1.
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o Transfer of information through ports. represented by the line given in figure 2.1.

Apart from the so-called structured methods. a wealth of formal specification notations
exist, we mention VDM and Z[R6). In (B8] the integration of formal methods ans structured
methods in software development is addressed in detail.

The behavioral view: The behavioral view captures the dynamics of the system. i.e. it cap-
tures under which conditions the functionality is performed.

On each level of the activity hierachy, the control activities must be presented. controlling
that particular level. These controllers are responsible for specifying when, how and why
things happen as the system reacts over time.

We propose a combination of Statecharts/Real-Time Logic[59] to specify the behavior of
a system. Statecharts, extensions to conventional Finite State Machine (FSM), make it
even easier to model complex system behavior unambiguously. Conventional state dia-
grams are inappropriate for the behavioral description of complex control, since they are
flat and unstructured. are inherently sequential in nature and give rise to an exponential
blow-up in the number states. Statecharts do overcome these problems by supporting a
repeated decomposition of states into substates in an AND/OR fashion, combined with
an instantaneous broadcast communication mechanism. A rather important facet of these
extensions is the ability to have transitions leave and enter states at an any level of de-
composition.

A major drawback of statecharts is their underlying assumption that a transition between
two states does not take any time. Statecharts are therefore less suited for expressing
internal timing constraints of a system. As a remedy, Real-time Logic is used for the
specification of the condition that guards the transition.

The performance view: Performance refers to system responsiveness: the time required to
respond to specific events, or to the number of the events processed in a given time interval.
Other than for e.g. information systems. and even for soft real-time systems, in hard real-
time systems, performance issues are correctness issues.

In today's embedded computer systems, performance requirements are a major concern.
Due to the time criticalness of such an application, performance analysis and optimization
becomes prominent. Hence, we propose a performance view. in which the performance
of the artefacts under construction is critically inspected, and where the performance of
the resulting system is kept under control within the development process. In building
this view on the system. analysis and simulation models of the system are developed. The
function of these models is to help to determine performance bottlenecks in the system
and to assist in the selection of the final hardware configuration. The basic technology
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is simple, rough estimates of processing times and communication times for elementary
functions are computed. These estimates are tallied to verify wether the complete system
fits within user defined multi-processors or on (hypothetical) multi-processors and can
meet time constraints. An analytical model can be constructed. which is based on this
data. Such a model provides possibilities for a computer-based simulation, gauging the
effects of alteration or extension to system design. In order either to simplify the model and
make it more usable, we use a precedence graph (40}, (6], model omitting needless details.
These graphs for the basis for performing analysis through queueing networks [10], [39],
[48] and simnulation can be performed. Transformation from a functional diagram to a
precedence graph (software partition [43]) deals with the process of defining tasks from
given functional diagrams. Within distributed systems of the kind we are looking at, each
processor has only limited local memory space and a restricted CPU throughput capability.
If local memory space is not large enough to accommodate a particular task, that task
needs to be broken down into smaller pieces. Also, given the throughput capability of
a processor, if the arrival rate of an input type exceeds its service rate. its processing
requirements need to be partitioned into multiple tasks and more than one node must
share the processing responsibility.

The material view: The material view aims at supporting the process of fitting the speci-
fication onto a particular target hardware environment. A developer must decide what
hardware should be used and how it is used to implement the specification. The material
view provides means for evaluating particular configurations with respect to a particular
application. Such a view can be represented by a pictorial representation of the system
showing how the hardware is configured and how the tasks are implemented.

The number of processors is almost always smaller than the number of tasks, processors
have to be shared among processes. Rules must be established for allocation and scheduling
of tasks (or functions). while these scheduling policies themselves also should be imple-
mented. Since task allocation and scheduling is part of the overall software engineering
methodology, it should support the system objectives. One of the most critical system
performance goals of a real-time application is to satisfy the response time requirement.

Another important aspect is the communication and synchronisation between tasks. Real-
time communication must be predictable in satisfying message-level timing requirement.

The implementation not only ensures the logical correctness of a communication, but also
timing correctness.

2.2 Methodological aspects

Common methodologies emphasize development to be structured in several phases. We do not

share this view. rather than sticking to different phases. we emphasize on the different views ou
the system.
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Of course. embedding the multiple-view approach within classical phase-oriented develop-
ment models is possible. and even rather straight-forward. Depending on the characteristics of
the development organization and the estimated size of the resulting product. a particular phase

model can be selected. However. in those projects performed by ourselves. we have heen using
an evolutionary approach.

3 Performance analysis and Implementation

One of the most important views on the system under development, is the view in which per-
formance analysis and schedulability check are central. Performance analysis is a quantitative
form of analysis on software design, in order to model the behaviour of the system when external
workloads are applied to it.

Schedulability analysis is a qualitative form of analysis. in which it is investigated whether
or not particular schedules are indeed deasible within the target environment.

3.1 Performance models

Three analysis strategies guide the formulation of a performance model [83], [39], [84]. In early
stages of the development process, the purpose of software performance engineering is to identify
development plans that lead to software, meeting its performance objectives and, when multiple
alternatives exist, that might provide data for the selection of the most desirable alterative.
At this stage, designers focus on high-level decisions rather than implementation details. It is
suggested that we use models that can be constructed quickly and that enable rapid evaluation
of alternatives.

Performance studies in early stages of development seldom have precise input data, In early
stages, both a best-and-worst-case analysis are needed to identify potential risks. If best-case
predictions show that objectives will not be met, developers must seek feasible alternatives before
processing. If the worst-case predictions produces satisfactory performance predictions, it seems
that the models applied so far are indeed feasible, so that development can continue with its
next phase.

Usually, the results are somewhere in between, in which case software performance engineer-
ing methods need to be applied to identify and focus on critical components to obtain more
precise data and to monitor and manage critical-component performance as the system evolves.
In these cases we need explicit performance models.

A performance model is an abstraction of the real system, developed for the purpose of
gaining greater insight into the performance of the system. whether the system actually exists
or not. This abstraction may be in the form of a mathematical model or a simulation model.

In order to construct and evaluate performance models. we need several types of data (83], [84),
[39):

Performance requirements: Specific, quantitive performance requirements for the system
must be defined.
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Behavior patterns and intensity: This requires identification of the distinct types of events
that occur as well as their intensity. Intensity is defined either interms of the arrival
rate of each type of event or the number of concurrent users (or external entities) that
interact with the system and the frequency of their requests (events). Specification for
both steady-state and worst-case behavior are needed.

Software descriptions: The operations that provide responses to the events must be de-
scribed. The level of detail increases as the software evolves.

Execution Environment: The execution environment is described by specifying the hardware
devices and (significant) software service routines required for execution and the service
rate for each of them. Any other work that may introduce resource contention delay must
also be included in the execution environment.

Resource usage estimates: Resource requirements for operations, in terms of processor de-
mwands, 1/0, and (later) memory requirements must be quantified. These provide the
estimated number of sevice requests per device or sevice routine and the amount of service
needed for each operation.

Based on precedence graphs [6], [40], queueing networks [10], [39], [48], and simulation
techniques are used to evaluate performance of parallel programs.
The steps of performance analysis are as follows:

1. evaluate execution time, communication time and activation time of all elementary func-
tions, related to a hypothetical multiprocessor on basis of the behavioural diagrams for
those functions.

2. transform the function diagram into precedence graphs.

3. evaluate this transformation. If performance requirements are met, continue. If some per-
formance requirements are not yet met, change the type of processor, change the number
of processor or redo the functional analysis for a further decomposition of the function.

4. evaluate various strategies of allocation and scheduling to obtain the good performance of
system,

3.2 Elementary execution time prediction

Methods for predicting the execution and communication time for real-time systems aim at
finding best and worst execution times of elementary functions. In particular. the approach of
Shaw [66), [79], [81], aid in predicting such execution times. The method of Shaw is based on
the following steps:

1. decompose a statement into primitive basic components (atomic blocks), as defined by the
(language dependent) timing schema for the statement.
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2. predict the implementation size for each atomic block. i.e. the code prediction.

3. determine the execution times of the atomic blocks from the times of machine instructions
produced by the implementation.

4. Compute the execution times of statements. using the times of the atomic blocks and
timing schema for the statement.

3.3 Transforming functional diagrams to precedence graphs

The transformation from a functional diagram to a precedence graph (software partition[43))
deals with the process of defining tasks from given functional diagrams. The transformation
maps a given set of logical modules, reflecting the user’s point of view, onto a set of software
tasks, reflecting the implementor's view of the system.

The criteria for deciding whether a function should be a separate task or p;muped with other
function into one task are following [75]):

¢ dependency 1/0
* user interface dependency
e periodic execution

« time critical function item computational requirements

functional cohesion
« sequential cohesion

In figure 1, functions F1 and F2 are sequential, we combine them into one task taskl, as well

functions F4 and F5 are combine into task2, we obtain a precedence graph as showin Figure
1(b).

3.4 Verification of schedulability

When the functional diagrams are transformed into a set of tasks, the acceptability of this trans-
formation needs to be decided. This evaluation is called Schedulability Analysis or schedulability
check or verfication of schedulability.

A task or a task set is said to be schedulable if it meets all its deadlines. Guaranteed schedu-
lability analysis attempts to determine whether a task or task set will be schedulable under
a given condition. It emphasizes the predictability of the timing behavior of system. Usally,
schedulability analysis concerns with determing if the timing requirements of a set tasks under
a given set of well-understood scheduling algorithms.

Liu and Layvland [90] showed that Rate Monotonic and Earliest Deadline scheduling are op-
timal static and dynamic priority scheduling algorithms for scheduling periodic tasks on a single
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processor system.

In multiprocessor svstems, various scheduling algorithms have been proposed. however, none
can be used in general case. A major problem is that most of the multiprocessor scheduling
problems that have been studied so far rely on too many assumptions which do not hold in
reality.

The Schedulablity check uses an earliest-deadline-first strategy to compute a feasible solution
in which time constraint and a given precedence constraints are enforced. First, we check to
see whether each processor is idle or not. If some processor is idle, then we first select among
all eligible tasks (its predecessors have been completed) the task that has the shortest deadline
for execution. If more than one task has the shortest deadline, we select the task that has the
largest computation time. If still more than one task applies. we select an arbitrary one, If there
are tasks for which time constraints can not be met, no feasible solution can be found. either
the software partitioning should be redone (decompose a large tasks into a set of small) or high
performance hardware should be used (increase the number of microprocessors and the speed of

microprocessors). If the timing constraints of all tasks can be met, a feasible schedule has been
found.

3.5 Implementation

After the distribution of the system over hardware and software, the tasks should be allocated
and sheduled on parallel processors to achieve folowing goals:

1. to meet the behavioural requirements from the behavioural view;
2. to meet the timeliness constraints;

3. to meet precedence constraints between tasks;

4. to minimize communication cost between processors;

5. to balance utilization of each of the processors.

The main problems in the implementation from specification are how to manage the tasks
on a multiprocessor and how do we transform the relations between functions of a functional
specification into the relations between processors or into relations between tasks on a processor.

Task management encompasses several clearly distinguishable phases:

1. task assignment - the inital placement of tasks on processors;
2. task scheduling - local CPU scheduling of the tasks on a same processor:

3. task migration (load sharing) - dynamic reassignment of tasks to processors in response
to changing loads on the processors.
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(lommon heuristics result in suboptimumal solutions of task assignment, often useful in
applications where an optimal solution is not obtainable. We suggest the application of the
task assignment model of Chu and Lan [42]. In their algorithm, the load of each processor is
built up from two components. intermodule communication (IMC) and accumulative ezecution
time (AET) of each module. The task allocation function can be based on minimizing the load
on the most heavily loaded processor ("bottleneck™). The parameter of precedence relation

{PR) specifies the execution sequence of the modules. This algorithm for allocation involves the
following steps:

1. compute IMC and AET:

2. compute the IMC index and the PR index;

3. combine modules with large IMC into groups to reduce total system load;
4. assign module groups to processors.

There has been much research into task scheduling on a single and multiprocessor system.
Optimal schedules in most of these models require algorithms which are NP-hard. We use a
suboptimal method which consists of the following steps:

1. determine the level [; for each task of precedence graph (the level [; of task i is defined to
be the longest path from exit node to task i)

2. construct the priority list in the descending oeder of li and the number of immediately
successive tasks.

3. execute list scheduling on the basis of the priority list.

Load sharing can be considered part of the larger distributed scheduling problem. Desirable
properties of a load sharing strategy include:

¢ optimal overall system performance-total processing capacity maximized while retaining
acceptable delays;

« fairness of service-uniformly acceptable performance provided to tasks regardless of the
processor on which the task arrives;

« failure tolerance-robustness of performance maintained in the presence of partial failures
in the system.

Load sharing must cause the tasks to be shared among the processors so that concurrent
processing is enabled and bottlenecks are avoided whenever possible. A good load sharing
algorithme will tend not to allow any server to be idle while there are tasks awaiting in the
svstem. It will also not discriminate against a task based on the particular processor by which
that task arrives.

We propose the application of the algorithm of Ni [44] for achieving Load Balancing. The
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algorithm is based on the identification of three distinguishable states for characterization of the
processor load.

o a light-load state indicates that the processor can accept some migrant tasks:

s a heavy-load state indicates that it may be helpful to have some of the tasks to be migrated
to other processors:

« a normal-load state indicates that no migration effort is needed for that processor.

The major bottleneck in implementing a communication protocol is again to meet the timing
constraints of message-level and ensure the predictability requirements of real-time systems.

The relation "state variable* (see also section II) between functions is realized by memory.
Main problem is to design entry and exit protocoles that satisfy the following properties:

+ mutual exclusion:
» absence of deadlock;

 absence of unnecessary delay

Semaphores [5), [9], [48) are used for the implementation of critical sections, due to their sim-
plicity in use.

However, task blocking time must be considered. Blocking occurs when a request is made for
a resource which has mutual exclusion requirements and is already in use. The most common
situation occurs when two tasks attempt to access shared data. To maintain consistency, the
access must be serialized. If the higher priority task gains access first, then the priority order is
manitained. However, if the highter priority task arrives after the lower priority task gains access
to the shared data, the priority inversion taskes place. Priority inversion is said to occur when
a higher priority task must wait for the processing of a lower priority task. If priority inversion
is not controlled, it become impossible to determine whether tasks can meet their deadlines.
To maintain a high degree of schedulablity of the system. communication protocol that would
minimize the amount of the blocking are essential. We suggest to use A priority inheritance
approach of R.Rajkumar [91] to solve this problem.

The relations "synchronization by event* and "transfer of information by ports " (see also
section II) are realized by interrupt or boolean variables or semaphores or monitor or message
passing [5), (9], [48].

When message passing is used. channels are typically the only objects process share. every
variable is local to and accessible by only one process. This implies that variables are never sub-
ject to concurrent access, and therefore no special mechanism for mutual exclusion is required.

The programming can be done by the aid of the behavioural diagrams. The problem of trans-
lation of a behavioural diagram into parallel program involves: translation of states. translation
of actions and translation of transitions expressed in this behavioural diagram. The methods of
translation depend on the target parallel language to use. We do not discuss this issue here in
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detail.

4 A case study: CCSDS Telemetry

4.1 Introduction

('CSDS [34]), [35) Advanced Orbiting Systems will include manned and man-tended space sta-
tions. unmanned space plateforms. free flving spacecrafts and advanced space transportation
systems operating at a very wide range of user data rates in an environment of extensive on-
board and ground computer networking.

Telemetry data accounts for a large fraction of the total volume of data that must be han-
dled for typical space missions. Payload instruments generate data continuously, at rates which
may vary although most instruments generate data at a rate of 1Mbits/s and only a relative few
generate data at higher rates. Although data compression is occasionally incorporated to reduce
communications requirements, most telemetry data are transmitted to ground "raw”. Because
of the high rates and volumes of data involved, their fast and efficient handling is essential. An
important concept of packet telemetry is segmentation. Segmentation is a mechanism whereby
the spacecraft data handling system breaks long packets into shorter pieces, with additional
data for reconstructing the long packets.

In order to meet the requirements for on board telemetry systems, we developed a system
which can generate the transfer frame telemetry that complies to CCSDS Recommendation.
The system is built using a transputer network.

4.2 The environment of the system

There are several satellites in the environment, one having several data sources which produce
data to be transmitted to the telemtry system. The timing constraint is 2 milliseconds.

We begin by identifying the objects in the environment. as illustrated in fig. 2. Decomposi-
tion is finished once several objects in the environment are obtained, decomposition is completed
at the level of data sources. Second, the operations required for each data source. must be iden-
tified. (The operation of the data source is merely to produce data and to output this data.)
Next. we specify the time constraints on the operations, here one millisecond. Continuing our
obhject-oriented development, we might write the specification of the data source as:

Data source ij is
do

produce data

vhen data ready
output data
Timing constraint of output data on system
implementation is

While data ready
demand to execute and finish the generation of transfer frame
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Figure 2: The environment of the system

with period =10 millesecond, deadline= one millesacond.
end data source

4.3 Functional requirements of the system

The system must be able to furnish the transfer frame by packets such that its output complies
to CCSDS Recommendations.

The primary functional requirements for the system, are as follows:

« creation of source packets. A source packet encapsulates a block of observation and aux-
iliary application data which is to be transmitted from a data source in space to a source
analysis facility on the ground.

o multiplexing of the packets on a virtual channel. A single physical channel may be shared

by different types of users by creating multiple apparently parallel "virtual* par.lu a virtual
channel, through the channel.

o Transfer trame generation. A transfer frame contains a header and trailer with space link

protocol control information, and a fixed length data field with higher layer service data
units.

« addition of CRC or R-S code [35], [35], and insertion of the synchronisation and serialisation
messages for the generation of the Physical Channel Access Protocol Data Unit.

In figure 3. we specify the primary functions of the system using an extension of SADT. In
this functional diagram, data ready, packet ready... are synchronisation events, frame length.

packet length ... are state variables, source data, source packet... represent the transfer of
information per port.
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Figure 3: The functional requirements of the system
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4.4 The behaviour of the system

The integration of statecharts and Real-Time Logic provides a suitable vehicle for the analysis
of the behaviour of the system.
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Figure 4: The behaviour of function generation of transfer frame

In fig. 4 a statechart is used for describing the behaviour of the system. At the first level,
there are four states: inactive, ready, blocked, and running.
Initially, the function GTF (Generation of Telemetry Frames) is inactive. When it receives the
event start, it enters the state ready. In the state ready, the function GTF enters state running
when the processor is idle. In that state it generates the transfer frame. If in state ready, the
buffer is full, it enters the state blocked. When in state blocked, it enters the state ready when
the buffer is not full. The function GTF completes its execution on receiving the event end, by
entering the state inactive,

The state running is an abstraction for six sub-states: creation of packets, creation of empty
packets, multiplezing, generation of parallel frames, creation of empty frames and serilization.
Firstly, when source data is ready, GTF is in state creation of packet. When source packet is
produced in an interval tl, the event packet ready occurs and the GTF enters the state multi-
plezing. If in that interval t1. no source packet is produced. a time out occurs and state creation
of empty packet will be entered. Similarly, in state multiplezing, when a multiplexed data unit
(mpdu) is produced in the interval t2, the event mpdu occurs and state generation of parallel
Jrames is entered, If mpdu is not produced in that interval t2, a time out occurs and state
creation of empty frame is entered. When the frame is ready and the buffer is not full, the
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function GTF enters the state serialization. In contrast. when the frame is *buffer’, GTF enters
the state blocked to wait for the occurrence of the event no-full buffer.

(lonstraints upon events time-outl. time-out? and no full buffer are specified using Real Time
Logic.

e time-outl= Vi @(packet ready, i+1) > @(packet ready, i)+0.1)

o time-out2= ¥i @(mpdu ready, i+1) 2 @(mpdu ready, i)+0.1)

« no full buffer= ¥i @(no full buffer, i+1) < @(full buffer, i)+0.01)

4.5 Performance analysis of the system

For the construction of a performance view, we begin with transforming the functional
diagram as shown in figure 3 into precedence graphs. Two types of precedence graphe are
possible. as shown in figure 5. In the first type all tasks are combined into a single task in
order to minimize the amount of task communication, In the other type four tasks are used in
a pipeline architecture.

o)y -
ol e

W p——

Figure 5: precedence graphe

For the evaluation of the two types of precedence graphs, we use queuing networks. For a
transputer system (our target system), the system is modeled as the queue M/M/1. The results
are shown in the Table 1. In this table, A = data arrival rate (number/s), D= data arrival rate
in Mbits (Mbits/s).

= mean service rate ( 10% bits). T= average response time (10~* s)

As shown in this table, the average response time is already 1 millisecond when D = 9M bits.
Using a single transputer system does not lead to a solution that meets the performance require-
ment of the application.
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With a single task such that the data is allocated on a four transputer system. with statical
configuration. the performance (the mean response times, and the utilization rate of the proces-
sor) is good, compared to the performance with a one transputer system.
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When the precedence graph of the system is of the second type, each of the four tasks forming
a pipeline. can be allocated on a single transputer. The results of performance simulation for
this architecture are shown in table 4. The results show that with this choice of architecture the
mean time response decreases, and the throughout increases, compared to the results presented
in table 2, The results of table 2 and table 4 show little difference in performance between the
two approaches. It must be noted, however, that the communication overheads are relatively
small. However. when the tasks execute on different processors. transfer of information will
cause overhead. Furthermore. having tasks waiting for communication with an otherwise idle
processor, will degrade the performance of the system. Therefore, in the final implementation.
we selected a single task on precedence graph of this application.

Based on the one task solution. the choice for an algorithm for dynamic allocation of data
for the transputers, becomes interesting. The results in table 3, compared with the ones the
ones in table 2 and table 4. show that the chosen dynamic allocation algorithm outperforms
the static allocation algorithm using the same level of information. This phenomenon can be
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explained by noting realizing that the dynamic allocation algorithm does not allow a processor
to become idle as long as data is waiting in the system.
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4.6 The material view and the implementation

A lab-grade prototype of the system was constructed using transputers. In order to meet the
reliability requirement, recall that the CCSDS onboard system runs in a very hostil environment,
we use nine T800 transputers. The executive software is written in OCCAM [21], [32].

The architecture of the svstem is given in figure 6, there are nine TR00 transputers, one

T222 transputer and an interconnection network. The root transputer is included in a PC .
and is used as central controller of transputer networ. The other T800s are connected by the
interconnection network. The T222 is used to control the connection of the network.
In the implementation, we use dynamic allocation of data, which is consistent with the perfor-
mance view. The remaining T800's are organized in a way that one of the T800 processors is
the management processor (root), where the load information of all the processors is gathered.
When one of the other processors becomes idle or nearly idle, the root processor transfers tasks
to it.

A connection between the root transputer and another processor is established through a
simple protocol in which a message is send to the T222, After receiving this message, the T222
takes the appropriate actions. establishing a connection within 17 micro seconds.

Estimating the processor load is obviously a problem. our (simplified) assumption has been that
there are n data on each processor. The root transputer calculates its load by the following
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= l_Q;

Figure 6: The architecture of hardware

formule:
load = (the length of datal/the packet length + ...+ the length of data n/packet length)

The control algorithm on the root transputer is given in figure 7.

PROC manage( CHAN OF ANY daia, proce, pwich. @, rwidiout, load)

variables definition
SEQ
WHILE NOT sodansaume
ALT
dataldems  -oquam if here ae avival dats

SEQ
load 7 load_sam
o (e d U as bonded caanapuier
IF

rommanor ¢ ke koack d
Swnchow | 1 -output the pumber of gampuer 1o creae e COROEDOR

elock 7 nme
ALT
wwnch Tk cwanng 2 sk meskage
proo | dem e dala 10 processer |

elock 7 AFTER wme PLUS 17 mucrosscoods
10 proces brdw e (el sod recomtrct the ook

Figure 7: Controller algorithm

5 CONCLUSION

We have proposed a design methodology for modeling and development of multiprocessor
real-time svstems. The methodology is based on the identification of different views on the sys-
tem to be build. and a decomposition of the system development accordingly. In our methodol-
ogy, we have separated the environment and system clearly. environmentl modeling and analysis
is one of the important elements in our methodology. In this environmental modeling. we pro-
posed oriented object approaches.
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For the support of the analysis of the functional aspects of the system (the functional view is
our second view on systems), we propose some extensions to SADT. Three specific kinds of line
are used to express three types of communication and synchronisation between functions.

The behavioural aspect is particular to real-time systems. therefore. we distinguish a separate
behavioural view. We integrated the use of Statecharts and Real-Time Logic as a vehicle for
hehavioural analysis. Statecharts for the hierachial behaviourl analysis and Real Time Logic for
the specification of timing constraints on the system.

In the design of real-time systems, the performance view is very important. It is during the
construction of this view that a functional diagram is tranformed into a set of tasks and dif-
ferent partitioning schemes are evaluated to select an optimal partitioning with respect to the
application and its operating environmment. Different allocation and scheduling algorithws are
evaluated to select algorithms for optimal or sub-optimal performance.

We have proposed methods to implement functional diagrams and behavioural diagrams on
multiprocessors, bridging the gap between the software specification and its implementation.
The example described in the previous section illustrates the use our methodology in the de-
sign of a real-time parallel system. The development of this application demonstrated that
the proposed methodology is complete. It shows that the results of a thorough performance
evaluation are useful for software partitioning and for the allocation of processes and data on a
multiprocessor system. Furthermore, with performance evaluation the problem of garanteeing
the deadlines of the various real-time tasks are addressed. Finally, the controlled utilization of
a multiprocessor system improves the system’s performance dramatically.

However, many research problems remain, we will briefly address some of these.

1. What (improved) modeling techniques can be used to model the user requirements and to
formally validate these requirements;

2. What kinds of verification techniques are suitable for programs in this domain; Testing
real-time software presents special problems, due to the practical impossibility to re-create
particular state sequences that may occur as a reaction on external interrupts. Further-
more, even if such test were possible. the interpretation of the output results may be
difficult. Analyticl techniques are therefore essential to verify the correctness of real-time
software. Much research needs to be done in this aspect.

3. It is not possible to guarantee the reliabilty of a program by only validation and testing.
If extremely reliable programs are required, some form of software fault-tolerance must be
used. Much work remains to be done in this aspect.

4. For many real-time systems. it is not feasible neither for economic nor for safety reasons to
stop or take off-line an entire system in order to change some parts of it. Hence, dynamic
reconfiguration, needs to be supported. Much work remains to be done in this area.

o

. Determining an optimal allocation and scheduling is known to be NP-hard and is hence


http://www.cvisiontech.com

impractical. The problem is further complicated when. in addition to computation times
and deadlines of tasks. resource requirements have to be accounted for. Much work remains
also in this branch.

6. As computer systems become larger and more complicated. analytic modeling will become
more difficult and simulation will play an increasing important role in performance eval-
nation. A key challenge is to be able to devise computationally efficient techniques to
simulate models of increasing complex svstems.
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