
A Visual Object-Oriented Meta-CASE Environment

Alvaro Ortlgosa• • Marcelo Campo• • Roberto Tom Price·

Universidade Federal do Rio Grande do Sul • Instituto de Informática

Caixa Postal: 15064, Porto Alegre, Brasil

• Unlvenidad Nacional dei Centro de la Província de Buenos Aires
Facultad de Clenclas Exactas • Instituto de Sistemas Tandil

San Martin 57, (7000) Tandll, Argentina
email: {ortigosa,mcampo,tomprlce}@inf.ufrp.br

Abstract

Th~ Cll"ent need of highly lntegroted ond customlzob/~ softwor~ deve/opment ~nviron~Unts

nqwlres o "m1to" opproach. An object-{)rltnttd opprooch thot supports visual specljicotlon of

longuoges ond rtlotlonships betwttn too/s is pnstnt~d. Thls Meto-CASE opprooch, bosed on on

objeCt-{)rltnttd editor fromnvork, lncludu o/1 th~ ftoturts ~ncounttnd ln ~tu/ler longuoge

orltnttd tditOf' gtn~rotors ond ln th~ cu~nt dotobast ond hyptrtnt opproaches to tnvirontUnt

lnttgrollon.

1. Introduction

A CASE environment is composed by tools to create and transform documents of
different types. An imponant class of tools are grapbical editors tbat suppon tbe creation and
manipulation of different document types, defmed by tbe metbod implemented by tbe
environment. The editors can be specially build for eacb metbod notation or can be generated
by a meta-editor, wbicb receives tbe specification of tbe language syntax and semantics and
generates a spec:ific editor for tbat language. A meta-editor is an imponant component of tbe
so called Meta-CASE environments.

These environments suppon tbe specification of tbe development metbod tbrougb tbe
use of some formalism to describe tbe structure of tbe different types of documents and tbeir
relationsbips. A document type will be manipulated by a specific editor tbat bas knowledge of
tbe syntactic structure and static semantics of that document type (e.g., DFD). The
environment often suppons consistency arnong the different documents produced in tbe
development process tbrougb a common data dictionary and tools that know tbe metbod
semantics [Brown 92].

• This worlt is panially supponed by FAPERGS and CNPq through the AMADEUS project at the
Instituto de lnform,tica • UFRGS, Porto Alegre, Brasil.

297 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

This work presents an approach to Meta-CASE development that combines a high levei
visual notation to describe the docurnent structures with visual composition of object-oriented
frameworks~ The approach is based on the idea that the application of a development method
produces a set of interrelated documents which can be implemented as a hyperdocument
(Cybulsky 92]. The specification of the generic structure of this hyperdocument with an
object-oriented semantic data model allows to visually model the development method as the
authoring process of the hyperdocument.

The model unifies in a simple graphical formalism the specification of the document
internal structure, as a set of interrelated objects, as well as inter-document relationshlps. A
specific environment is viewed as an objtct-orltrtttd layptrdocumtrtt martagtmtrtt systtm,
that has knowledge of the semantics of the development method. With this view, a Meta­
CASE object-oriented framework provides the generic abstractions needed to produce a
specific development environment. The approach suppons the specification of a method as a
visual object composition process.

This anicle is organized as follows. First lhe conceptual framework on which lhe work
is based is defmed. Next a prototype of a too! implementing lhe approach is described and a
brief example of an environment generation for lhe OOSE melhod [Jacobson 92] is shown.

2. The Conceptual Framework for Meta-CASE Development

System development using any melhod produces a ser of interrelated documents, each
one describing different aspects of lhe reality being modeled. The domain application entities
are described in their structural, behavioural or functional aspects, using different techniques
or languages specially designed to highlight some of these aspects (e.g., ERD, Statechans,
DFD). Thus the some erttity is represented in different documents using specific syntactic
objects defined by the notations (e.g., files and entities, or attributes and states). For instance,
in the OOSE method, lhe same entities that are defined as Objects in the Requirements and
Analysis Models, are viewed as Modules in the Design Model.

Therefore, if a document describes panially a set of entities, and each entity may be
described in different documents in diverse ways, each document may be considered as
showing views of the application domain endties.

ln a development environment, lhe information about these entities will be stored in
some kind of persistent data repository. lndependendy of the storage implementation
(centralised common repository, distributed database, etc), lhe existence of an underlying
conceptual environment database is assumed. So, if a document shows views of the domain
entities, these documents correspond to views of this database. That is, the database wiJJ
contain one object that represents some domain entity, and each document will show only the
attributes and relationships with other entities of the domain, that are relevant to the aspects
that lhis document reflects.

Each document type will have associated manipulation tools. These tools will be used to
create and manipulate the documents, according to lhe structure of lhat document type. The
tools are mainly editors, specially during lhe fii'St development phases (i.e., analysis, design),
but transformational and analytical tools will also handle the documents. ln the context
defined above, the process of document editing can be seen as a process of updating the
database, so, the editors wiJJ be used as an Interface for direct manipulation or the

298
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

database. The database determines the correct structure of a document type and the editor
must provide a user-<:onvenient way to manipulate this structure.

Under these considerations, in order to specify an editor for a document type it is
enough to describe the object model of the documents and the visual appearance of each
component.

This approach, the use the object model as a partia! definition of the editors, allows to
specify with the same notation the generic structure of the hyperdocument produced by the
application of a development method. ln this way, by describing the hyperdocument structure
it is possible to define the method, as is next explained.

The specification of the structure of each document is made using an object-oriented
data modcl based in OMT [Rumbaugh 91]. The document is described as an aggregation of
objects, which are the syntactic components of the notation defined by the document type.

Each syntactic component is described by an object class (e.g., process, state, class,
module, flow), encapsulating its attributes (names and typeS) and its behaviour. ln order to
define the structure of a class of documents, it is necessary to specify what object classes will
compose the documents. The definition of the abstract structure is completed with
aggregation and grouping relationships. The associations that may or must exist between the
objects must be specified too.

Fig. 1 shows an example of a partia! document structure definition. The document type
defined represents the Domain Model used in the OOSE method. The document is defined as
an aggregation of instances of the DomainObject, Ktwws and lnherits classes. The class
DomainObject bas defmed an attribute NtJ~M as being a string.

Relationship-entities provide the suppon to specify syntactic components whose
existence depends on the existence of other components. For example, relationships between
classes in a OMT diagram or flows in a DFD, can be represented by this type of entity. ln the
document type defined in fig. I, the Ktwws and lnMrits classes represent relationship-entities
that wiU relate instances of the DomainOb}ect class. lnstances of such classes wiU exist only
when exist the domain objects that they have to relate.

There are severa! types of predefmed associations that allow to visually specífy
additional information for the meta-editor. An example is the association, called view-of,
between objects and its (possibly multiple) visual representations. Every object and
relationship class may have one or severa! related graphical objects. These graphical objects
encapsulate the context dependent information used to show the components to the user. ln
fig. I exists one relationship of this ldnd between a DomainObject anda Dom0b)View. This
relationship specifies that each instance of DomainObject may be associated with zero or
more visual presentations, while a visual presentation will correspond to one domain object.

Associations can be defined between entities of the sarne document or between entities
deftned in different documents, representing the hyperdocument structure. ln the example of
the fig.l, a DomainObject may be related with a UseCase, a component of a UseCases
document type, by an involvedln relationship. As this lànd of relationship will generate
hyperlinks, the method determines the structure of the resultant hyperdocument.

}
299

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

r ---
~--_j
~.,. ___ I B
AllolrldO.. c-:rcs.a..

,A......._ -- Aooocioti•

r - --
~_J

'- - I

~· 1+

r~~­
~ <;!!oct _ _j

1... I

8
~ ... a..
~Iatily)

• Muly(Z<19•an) • Awqali<a

Fig 1. Partia! defurltion of a Domain Model document sttucture

The functionality of the relationships provides the lcnowledge about the restrictions on
the existence and conectivity of related components. A 0:1 functionality expresses that the
relationship is optional. A 1 :+ functionality specifies that a determined component wiU be
related to at least one object of the other type. ln the example of the fig.l, a DomainObject
must have at least one UseCase associated. This consttain reflects that in the method being
specified it has no sense to defrne a domain object that is not involved in any use case. ln
addition to the relationship functionality, infonnation about the creation order of the related
objects is provided. ln the fig.l, the • in the involvedln association defines that the creation
order of the domain object and the use case is meaningless. However, in other cases this order
is imponant. For example, when a new process specification is given, the associated process
must already exist Fig.2 shows the partia! specification of these objects.

300
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

This specification describes that a Process may be associated with (described by) a
Process Specijication (0: 1 functionality), but each Process Specijication must have a
conesponding Process(1:1 functionality), and this Process must be created fust ("+" symbol).

Process Process
lsDescribedBv + Specification

Name:string

Fig.2. Panial specificarion of two re1ated entities

Using the infonnation provided by the re1ationship functionality the meta-environment
can infcr the ordcr in which different document types must be created to maintain the
database always in a consistent swe.

2.1. Automatic Consistency Management

The existence of relationships between the documents and, mainly, the presentation of
the same entity in different documents, makes necessary to maintain consistency between
these documents. There are two consistency types that must be considcred: one is the
consistency between objects that represent the sarne domain entity. A change in lhe object
state in one document must be reponed to the other documents (or document editors) so that
they can reflect the new state. The othcr consistency type is derived from the relationships
between different objects that the development method uses.

Considering the documents as views of the conceptual environment database, some
cases of potential inconsistency can be automatically resolved by the environment. When the
user changes the contents of a document, these changes are made directly in the environment
database, and ali the documents will automatically reflect the new state of this database.

For example, if some object is deleted from a model, the corresponding objects in other
documents wiU have to disappear too, and the environment can manage this situatiç>n without
any especiallised too!.

Thls functionality implies that the database must have information about how a domain
entity is presented in different documents, that is, must know the correspondence between
components defined in different description techniques. A special type of association, called
semJJntic equivalence association, is used to specify that severa! component types represent
the sarne enrity. A classical example is lhe equivalence between files of a DFD and entities in
the corresponding ER model.

A complete description model must provide all lhe component correspondences using
this type of associations.

2.2. Environment Generation as Visual Composition of Object-Oriented
Frameworks

An object-oriented framework [Deutseh 89] is a skeleton of the implementarion of a
system or application, in a specific problem domain. A framework represents an architecture

301
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

for reuse, where the components are represented by abstract classes. The applications are
produced by specialising these classes 10 provide the specific behaviour to the methods that
they define but don't implement. The framework is a generic design, tha1 divides the problem
in a set of component classes and defi.ning their general behaviour and their communication
pro1ocols.

With a framework for graphical editors. like Unidraw [Linton 90) or HotDraw [Beck
91), it is possible to produce editors by specializing a set of classes that deftnes the generic
behaviour of the editor components. The framework provides a generic editor architecnue
that resolves complex aspects as graphical visualization mechanisms or direct manipulation of
the graphical componen1s. However, 10 produce an editor that suppons a determincd
language. the user mus1 program the classes that implement lhe structures that represent the
language and the rules that detennines a valid documenl.

With the approach described in the previous section, graphical structure editors can be
easily generated. The use of an object-oriented model allows to combine the advantages of a
high levei specification of the document structw'e with the mechanisms of the object-oriented
frameworks to suppon design reuse (Johnson 91). An editor framework provides the generic
abstractions used by any editor (i.e.. document. graphical components, commands, user
interface) and the specification process is reduced to visually describe how subclasses of the
generic classes defined by the framework are strucrured.

An editor generator can use the knowledge provided by the relationships defined in the
model and the knowledge of the framework sttucnue to generate classes that implement each
component type. Using the information provided by the structural relationships (aggregation
and grouping) the generator can generate classes that implement the sttucnue deftned and
perform the semantic checks through a message protocol defmed by the framework. Any
component class defined in the model will agree with the protocol defined by a framework
class, say Enriry, inheriting its behaviour. This class implements all the methods that are
needed to edit and manipulate the structure of objects. The private behaviour of each
component. can be specified using a special textual language or the base language of the
framework.

The user interface functionality of the editors. can be specified using a sinúlar notation
that is used for strucnue specification. ln any editor frarnework the user interface components
are encapsulated by classes. ones implementing the visual presentation mechanisms and
others implementing input event handling. The classes that implement visual presentation are
connected to the objects that they are presenting ln the screen to show the presentation
corresponding to the internal state of the object. To accomplish this task, both classes must
provide standard methods to state change notifications and to pass values for visualization.
The presentations will be directly manipulated by the user, so. the classes implementing the
manipulations (e.g .• mouse select, dragging. etc.) must agree in a standard protocol with the
presentations to implement the event handling on any presentation class. The sarne
considerations holds for lhe user interface classes and classes 1hat implements specific
commands of the editor, for exarnple object deleting or link traversal.

lf two or severa! classes agree in a known protocol between them, it is possible to
describe visually how instances of each class are interconnected 10 compose the application,
using a graph-based notation. Therefore, using the idea of visual object composition the
document structure and the editor architecnue can be described using a sinúlar notation.

302
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Viewing the specification process as visual object composition, it is possible to
generalize the environment spccification to include other aspccts involved in a software
development environment. A Meta-CASE framework that defines the standard protocol
through thc different components collaborates to implement the functions of the environment.
Once an enough number of components has been developed, the visual composition strategy
can be uscd to specify the composition of a particular environment.

Thc visual composition can be supponed by an editor for the linking of object classes
and instanccs. This editor can be generated as an spccialised vcrsion of the editor frameworlc
implementing a visuallanguage for dcscribing object composition, therefore implementing a
Visual Scripting Meta-Tool.

3. An Experimental Prototype

At the current stage of the project. a prototype to test the ideas presented above has been
developcd. Our main objective was to design an environment that allows the user to visually
spccify the hypcrdocument saucture, lhe visual presentation of each document component
type, and the user-interface of the document editors. These three aspects are supponed by
graphical editors bascd on an object-oriented frameworlc for graphical editors.

This frameworlc supports the common functionality of the generated editors, as
sauctural editing model, bascd on p/aceholder substitutions to edit object attributes, and
hypcnext functionality as described in [Onigosa 94].

ln order to generate a new editor, three steps must be carried out. First, the document
saucture must be deflned. This is made using an editor that allows the definition of the
saucture using the formalism described in §2, wilh some additional components to make
easier the user wlc. Special icons were added to represent objects of special types, lilce
documents or graphical objects. The use of one of these special icons implicitly specifies that
the object irtherits from the corresponding abstract class.

Fig.3 shows a snapshot of the definition of the cxample already presented. There, some
new symbols are uscd: the symbol with name DomainModel represents lhe document being
defined The symbol with name UseCa.se represents an object that belongs to another
document type, an UseCa.ses document, in lhis example. From the "involvedln" association is
derived a hypertext link between the objects of DomainObject and UseCa.se types. Each link
typc is implemented by a class (involvedln, in this case), and specific functionality can be
obtained subclassing a generic link class.

The editor generated from this description will allow 10 edit objects of the
DomainObject type, and link them by relationships (graphical links) of type Knows or
lnherited.

303 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Fig 3: Definition of a Domain Model editor/document for OOSE

Fig. 4 shows an example of the process of linlc creation. Editing a document of type
UseCases, the user selected the Uses relation from the menu, and then selected the OperalOr
user as origin of the linlc. At this point, the editor indicates the valid ends of the link.
according with the document type definition. Here, there are two objects that can be linked to
Operator, Return-ltem and Chonge-I~m.

! ..

Fig. 4. Snapshot of an editor ln Hnlc creation operation.

304
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

ln any editor, the user will be able to create generic hypenext links (called user links)
between any two edited objects, and links between objects and annotations (an110tation links).
ln the editor generated from the defmition of fig. 3, in addition he/she will be able to create
links of type involved, from a DomainObject to an object of type UseCase, component of a
UseCases document.

~ .- .

~.;e
-

e ee

Fig 5: Generated editors for UseCase and Domain Model document types,
related by hypenext links

Fig. S shows an example of hyperlink creation. ln a UseCases document, the user
selected the use case HGenerate-Report" as the origin of a hyperlink. Among the possible
altematives (annotations, involves, user link), the user has chosen the involves type. This link
type was defined to have as origin an object of type UseCase, and as a tatget, all object of
type DomainObject. So, the environment shows to the user the existent objects that can be
target of an involves link, and asks him/her for a selection.

ln this way, the developer is assisted and guided through the relationship creation.
Funhermore, the environment can guarantee that the associations created by the user are
consistent with the underlying development method.

The second step needed in order to generate an editor is to describe each graphical
object associated with the document componems. This description is made using a special
editor that allows the user to draw the wished object appearance. This editor is a
specialisation of the editor framework, with classes that suppon the interactive drawing of the
graphical appearance of each syntactic component of the documenttype being defined.

The third step is the specification of the editor user interface. This specification covers
two aspects: the user interface composition and the manipulation functionality that will be
provided by the editor. The specification of both aspects is made using an editor that suppons
the visual composition of interface objects [Campo 94]. The visuallanguage was designed to

305 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

describe how lhe user interface of an editor being generated is composed by instances of
classes defmed in the library of components of the framework.

Fig. 6 shows a snapshot of lhe editor and associated editors showing code and
documentation of lhe frameworlc. This version was generated using lhe meta-editor to specify
a hyperdocument lhat binds lhe user interface components of lhe framework to the code lhat
implements these components.

Fig 6: Visual Composition of lhe User Interface

4. Conclusions and further research

A sofrware development environment specification model that combines lhe advantages
of visual specification wilh lhe specialisation facilities provided by an object-oriented
framework for lhe creation of editors was presented.

Düferent views of the software objects being created and handled by lhe environment
are shown as different documents. As lhe objects are interoonnected by severa! types of
relationships, lhe collection of documents of lhe environment forms a hyperdocument. The
user interacts with lhe documents (i.e., lhe views of the software objects) with editors that
really are direct manipulation interfaces to lhe software object database.

The experimental prototype has shown lhe easiness of building of a new environment,
as weU as the simplicity of the addition of new functionality through the specialisation of
framework classes.

The formalism is powerful and flexible, resulting in simple specifications that are easy
to understand, but it has some limitations, such as lack of too!, user and activity concepts.
Funher research must tackle the problems of fully incorporating these concepts (now dealt

306 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

with only implicitly) into the notation. An explicit knowledge of the activity concept is
necessary in order to provide a complete control over the development process. ln adcütion,
validation procedures, management repons and other method independent controls must be
allowed to be defined.

The prototype also must be extended in severa! development environment cümensions,
whicb we are now looking at, like automatic transformation mechanisms, metrics collection,
quality aucüting, improved visual mechanisms, suppon for groupware, object cüstribution and
improved software re-use mechanisms.

5. Acknowledgments

The authors would like to thank Esteban Pastor for bis help in the development of the
graphical portion of the environment prototype.

6. References

[Beclt 91) K. Beclt, HotDraw: A Framework for Semantic Graphic Editors, Position
Paper for the Architecture Handboolt Workshop, OOPSLA'91.

[Brown 92) A. Brown, Feiler P, Wallnau K., Understanding Integration in a Software
Development Environment, CMU/SEI Tech. Rep. 91-TR-31. also appeared
in Procs. of the 2nd IEEE lntnl. Conf. on Systems lntegration, pp 22-31,
Monistown, NJ, June 1992.

[Campo 94] M. Campo, Visual Instantlatlon of Object-Oriented Frameworks, TI N°
387, UFRGS, Instituto de Informática, CPGCC, February 1994. (in

[Chen 92)

Ponuguese).

M. Chen-R. Norman, A Framework for Intqrated CASE, IEEE Software,
March 1992.

[Cybulslty 92] R. Cybulsky, A hipertext-based metacase environment, IEEE Software,
March 1992.

[Deutsch 89] P. Deutsch, Frameworks and Reuse in the Smalltalk·80 System, in Software
Reusability, Vol. II, C. Pearlis and T. Biggerstaf Eds., ACM Press, 1989.

[Jacobson 92) I. Jacobson, M. Christeron and G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Adcüson-Wesley, ACM Press,
1992.

[Johnson 91) R. Johnson - V. Russo, Reusing Object-Oriented Designs, Univ. llinois at
Urbana Champaign, Tech. Rep. UnJCDCS91-1696, 1991.

[Linton 90) R Linton. - J.Vlissides, Unidraw: A Framework for Building Domain­
Specific Graphical Editors, ACM Trans. on Information Systems, Vo1 8,
N.3, July 1990.

[Ortigosa 94) A. Ortigosa, lncorporating Hypertext in the Software Development
Environments, TI N° 396, UFRGS, Instituto de Informática, CPGCC,
February 1994. (in Ponuguese)

307 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

(Penedo 93) L. Penedo, Process Based Software Engineering Envlronments, Tutoria!
Notes, Bruilian Symposium on Software Engineering, Rio de Janeiro, October
1993.

(Rumbaugh 91) J. Rumbaugh, et. ai, Object-Orlented Modelllng and Deslgn, Prentice
Hall, 1991.

308
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396
	z0397
	z0398
	z0399
	z0400
	z0401
	z0402
	z0403
	z0404
	z0405
	z0406
	z0407
	z0408
	z0409
	z0410
	z0411
	z0412
	z0413
	z0414
	z0415
	z0416
	z0417
	z0418
	z0419
	z0420
	z0421
	z0422
	z0423
	z0424
	z0425
	z0426
	z0427
	z0428
	z0429
	z0430
	z0431
	z0432
	z0433
	z0434
	z0435
	z0436
	z0437
	z0438
	z0439
	z0440
	z0441
	z0442
	z0443
	z0444
	z0445
	z0446
	z0447
	z0448
	z0449
	z0450
	z0451
	z0452
	z0453
	z0454
	z0455
	z0456
	z0457
	z0458
	z0459
	z0460
	z0461
	z0462
	z0463
	z0464
	z0465
	z0466
	z0467
	z0468
	z0469
	z0470
	z0471
	z0472
	z0473
	z0474
	z0475
	z0476
	z0477
	z0478
	z0479
	z0480
	z0481
	z0482
	z0483
	z0484
	z0485
	z0486
	z0487
	z0488
	z0489
	z0490
	z0491
	z0492
	z0493
	z0494
	z0495
	z0496
	z0497
	z0498
	z0499
	z0500
	z0501
	z0502
	z0503
	z0505

