
SOFTWARE PROCESS ANO ASSISTANCE MODELLING :
THE CASE OF THE UPSSA TOOL

T. Khammaci

lnstitut de Rechercbe en lnformatique de Nantes (IRIN)
3, Rue du Maréchal Joffre

44041 Nantes Cedex 01
France

Tel : (33) 40-30-60.56
Fax : (33) 40-30-60-53

e-mail : kbammaciOiut-nantes.univ-nantes.fr

Abatract : Recent works on the software process suggest that the software life cycle should
be made through an enactable software process model. This model defines constraints to be
respected by a software process during project development and initiatives to be taken by
the environment. This paper presenta UPSSA : a too/ based on a software process model
which is an abstraction of objecta, tools, and policies. Thus, it encompasses an object
model to describe project databases, an operator model to describe at abstract leveis the
tools' effects, and characteristics for e:rpressing the policies. Design and implementation
are also cora~idered to ezhibit how a software process model described in our terms can be
used for assisting intelligently the software developer by controlling the software process.

Key-words : Software Engineering, Software Process Modelling, Assistance Modelling,
Object Model, Operator Model, Characteristics.

1 Introduction.

Currently, considerable attention is devoted in the field of software process modelling.
Tbe major efforts are described in (15) (8) (7) . Before presenting the concepts for software
process and assistance, let us introduce definitions of some key terms used by the soft­
ware process community that allow one to etablish a conceptual framework for process
modelling.

A model is ao abstract representation of reality that excludes much of the world's
infinite detail [7] . This idea of lhe model means that detail which does not influence
tbe relevant behavior of the model is eliminated. A software process consists of the set
of activities performed during software development, including their scbeduling and the
object manipulated (5). This idea of a software process means that tbere is one software
process for eacb software system developed. A software process model is an abstract
description of an actual or proposed process that represents selected process elements
that are considered important to the purpose of the model and can be enacted by a
human or a machine [7). A language suitable for describing software process models is
called a software process modeling language (5).

The software process rriodel describes long-term activities which are complex and evo­
lutive. lt describes not only tbe quality of tbe software products. the usual tool and the
policies to follow, but also how to help their users; this is why tbey are called modela for
assisted software process. ln this framework, we dassify the assistance into five kinds:

40S PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

controlling, taking initiatives, helping and guidance, explaining and obse.rving. (1) Con­
trolling: depending on the current sta.te of the development, a.n a.ctivity ca.n or cannot
be performed and when a user invokes an opera.tion to perform an activity, then the
environment controls whether the a.ctivity is a.llowed or not. (2) Taking initiatives: the
environment ma.y decide on its own to perform some operations without human interac­
tions. (3) Helping and to guidance: a user ca.n expect the environment to help and to
guide him in bis work by offering some fa.cilities. (4) Explaining: explanation helps the
user in understanding the software process at particular insta.nts; for exa.mple, when the
environment takes an initiative, it should explain why it decided to take it. (5) Observing:
the software process model must give a. user means to describe what, when and how to
observe measurement and historical information about the software development process.

This pa.per is orga.nized as follows. Section 2 outlines related work in software pro­
cess a.nd assistance modelling. Section 3 defines objectives and requirements for soft­
ware process a.nd assista.nce modelling. ln section 4, we present the UPSSA (Using
Pre-postconditions for Simulating Software Assistant) software process model. Using an
activity exa.mple of software development, section 5 shows how we structure and formal­
ize the knowledge necessary to interpret the UPSSA software process model. Section 6
outlines the architecture of the UPSSA tool we ha.ve developed to vali date our proposa.ls
with regard to software process and assista.nce modelling. Fina.lly, section 7 concludes
with some perspectives.

2 Related work

Considerable work has been undertaken in the field of software and assista.nce modelling.
Some of the first pa.pers explicitly addressing software processes as a subject of interest
are (16) (20). Since then, severa! workshops (15) (8) and conferences [9) [21) ha.ve been
devoted to software processes.

Curtis (7) has distinguished five a.pproa.ches for representing software process informa­
tion: (1) the progra.mming models, (2) the functiona.l modela, (3) the plan-based models,
(4) the Petri-net modela a.nd (5) the quantitative models. The key idea. of the programming
models a.pproach (20) is a complete a.Jgorithm description of a software process by means
of a formal la.nguage. This description is considered as a specification of how software
process is to be managed in the software development environment by users a.nd tools.
Several on-going projects ha.ve been infiuenced by this idea., resulting in the construc­
tion of some experimented process software engineering environments as, for exa.mple,
ARCADIA-APPL/ A [26). This process software environment has extended the ADA lan­
guage with new capabilities for supporting software processes. The main drawback with
this approach is that no algorithm of a particular software process can be completely
predescribed in adva.nce. ln the functional models approach, which is illustrated by the
Hierarchical and Functiona.l Software Process (14) , a software process is represented as
a collection of process elements with input and output attributes. Specifica.Jiy, a. pro­
cess is defined as a set of mathematica.l functions depicting relationships among inputs
(such as specifications) and outputs (such as source codes). Furthermore, each of these
functions is hierarchically decomposable into process subelements, where the input and
output attributes of a parent process element must be satisfied by it's children attributes.
This decomposition is continued until it produces process steps that can be mapped to

406
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

externa! tool invocation or manual operations. The maio drawback with tbis approacb is
tbat it difficult to identify a priori tbe communica.tions points between concurrent pro·
cesses. The plan-based models approach [11] use planning paradigms tbat are emerged
from artificial intelligence to design the software process. Tbus, the GRAPPLE language
constructs process models from two components: a set of process steps and a set of con­
straints on how those steps can be selected, ordered and applied. The main drawback
with this approach is the integration of the multi pie sources of knowledge representation
and an analysis capability for deriving the properties of processes. ln the Petri-net models
approach [22), a software project is viewed as a structure of roles and their interactions.
This structure is represented and executed by Petri-net language. Thus, role interaction
nets aid the structured tasks that is those that can be planned from known dependen­
cies. The main drawback with this approach is that it is difficult to use the model of
coordination among role structures if an organization bas not been able to establish a
basic description of their process. Finally, the quantitative models approach [1) provides
a quantitative representation of many behavioral observations of software projects.

Among severa! kinds of process languages that the software process community bas
been using to model tbe software process into process centered software engineering en­
vironrnents, Belkhatir (2) proposes three languages tbat are the most representative : the
even-condition-action, the rule-bued and procedural languages. ln the even-condition­
action (trigger) language, software processes are modeled by a set of event-condition­
action rules wbicb are interpreted by a trigger mechanisms tigbtly connected with a soft·
ware database. ALF /MASP [3) is one of the few practical systems that has experimented
with this approach. Other examples are: ARCADIA/APPL-A (26), DARWIN/LAW (18),
TEMPO (2) . ln ALF /MASP, triggers are used to control communication among parallel
tuks by capturing changes on databue objecta. The tasks are modeled by pre- and post­
conditions enveloping foreign tools and managed by a specialized expert system shell
connected to PCTE+ (10). APPL/ A hu extended ADA language with programmable
trigger upon relations. The automation of the software process is done by these triggers.
ln DARWlN/LAW, an event happens wben a. message is sent from one object to anotber
one, and control is passed to Darwin. Then. DARWIN enforces the appropriate law (a
PROLOG rule set) whicb may intervene between message flow, possibly changing the
message before it is delivered and/or rerouting it to a different destination or cancelling
it. Unlike ARCADIA/APPLA and ALF/MASP, the TEMPO trigger can be attached to
both entities a.nd relationships to envelop metbods. ln tbe rule-based language tbe soft·
ware process can be described by using logical declarations allowing one to specify wbat
the user wants ratber than a detailled specification of how the results are to be obtained
(27). Using this bebavioral approach, various prototypes have been built, e.g., MARVEL
(13), TEMPO [2). MARVEL enacts tbe development process of a project by automati­
cally firing user-specified rules tbat eocapsulate development activities. Also, controlled
automation in MARVEL is provided through opportunistic processing employed backward
chaining and forward cbaining. TEMPO uses rules in order to envelop method execution
as well as to take initiatives when possible. ln tbe procedurallanguage approacb, for ex­
ample the APPL/ A la.nguage (26) allows processes to be modeled in an extension of ADA
tbat enables explicit representation of programmable, persistent relations. lt supports
multiple representational paradigms, e.g., procedural and declarative.

ln anotber way, work in tbe software process focuses on the use of database modeling in
the software life-cycle. Consequently, a number of research projects have been undertaken

407 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

[23) [17) [3). Thus, a first approach relies on an object base and a rule base. The object
bll$e is the repository of ali the information needed for the development of a software
project. The rules specify the precondition of an activity and its postcondition. They are
used as the basis for reasoning during the effective software development [13) [4). Another
approach provides predefined structures for the object and the knowledge bases (23] (17].

3 Software process and assistance modelling

3.1 Objectives

ln the following, we introduce some objectives expected from software process and assis­
tance modelling.

• Understanding the development process

• Reasoning to improve the development process, to verify it. and to verify what it
produces

• Controlling the development process and the activities

• Measuring the development for a better understanding

• Evalua.ting the process itself, the activities, and the persons from a. quantita.tive as
well as a qualitative viewpoint

• Managing the activities a.nd their various resources

• Integra.ting tbe different kinds of activity which are performed during the software
process, like a. development a.ctivity and a. project ma.nagement a.ctivity

• Guiding the development process as well as its definition

• Assisting the various a.ctivities

• Evolving of the model, the software products

3.2 Requirements

ln this section, we define some requirements and functionalities which must be fullfilled
by software process and assistance modelling.

• Life-cycle covering

• Description of objects. properties, and relationships at different levei of granularity

• Description of allowed transformation on objects

• View mechanisms

• Structural and organizational descriptions

408
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

• Task and constr&nt descriptions

• Type and levei of assistance specification

• Formality

• Readability and understandability

• Partia! or total re-usa.bility

• Modularity and evolutionary

4 Concepts of the UPSSA process model

A software process and assistance model is an abstra.ction o{ objects, tools and policies.
Therefore, we propose to model it with an object model for describing the va.riety of
objecta, with an operator model for describing the tools and with cha.racteristics for
expressing the policies.

4.1 The object model

The &m of the object model is to provide a description of the object structures by means
of object properties and relationships among objects a.t different leveis of granula.rity. As
already noted, software development involves various kinds of objects (24). These include
the design, specification. coding, and debugging of computer programa, as well as, the
crea.tion, m&ntenance, and reuse of modules and versions. Also. the software environ­
ment deals with objects involving the management and the control of an overall software
development project,e.g., cost calculations and scheduling dependencies. Thus, the object
model should enable the description of ali these objects. Further, tbis description should
be easily refined to satisfy the different users' needs.

So, we propose to use a model wbich is based on tbe entity-relationship data model
(6) extended with ISA-Rela.tionships. Objecta are classified a.ccording to their respectives
types. Using the entity-relationship concepts, ao object-type is described as ao entity-type.
A list of a.ttributes describe each entity-type. Ao attribute is viewed as a pair (attribute­
name:attribute-domain). Formally, an entity-type can be viewed as a record-type wbose
fields are tbe attributes o{ tbe entity-type and attribute is defined as a function which
maps the entity-type into the attribute-domain. ln this framework, the value of an object
is the values of its attributes plus the content of tbe object, if any. For example, one
can define an entity-type called Module with (module-na.me:string, creation-date:date,
modification-date:date) as its related attributes. Thus, the value of ao occurrence of
Module is its na.me, tbe dates when created and when modified.

Links among objects are described by means o{ relationsbips. Relationsbips are also
typed. A relationship-type is specified providing: the name of the relationsbip, the list of
the related entity-types, the cardinalities, that is the mi minai and maximal number a given
object may be linked to other ones witbin relatiooship and the attributes, if any, which
describe tbe relationship. For instante, a relationship called Authorship may hold between
tbe entity-types Module and Person. An attribute na.med date-writing may be attached to

409 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

the relationsbip. A (1,1) cardina.lity a.ssociated with Module indicates that every module
must have a single autbor. ln this framework, the va.lue of a relationship is defined by
a value for each related entity-type plus a va.lue of each attribute which describes the
relationship. A particular relationship is distinguished: the ISA-Relationship. This kind
of of relationship enbances the original data model and enables a more r sophisticated"
description of the object model [12). Moreover, it assumes the availability of inheritance
mechanisms to make the subtypes of a given type T inherit attributes of T. For instance, an
entity-type Source-Module may have Pa.scal-Source-module, C-Source-module and Ada­
Source-module a.s subtypes.

4.2 Tbe operator model

The object model describes the structures that should be produced or those on whicb
adivities should be performed. Ao abstraction of these activities is described by tbe
operator model. Even operators may be typed in the sense that an operator-type (e.g.
edit) defines a cla.ss of operators, while ao operator (e.g. edit using Emacs or edit using
ed) is considered a.s a member of a given cla.ss. Tbis operator-typing mechanism ea.ses the
addition of new tools to the environment.

An operator type is defined by its name, tbe precondition which must be fullfilled
before activating any operator of this type, tbe postcondition which is a.ssumed to be true
at the end of the operator's execution, and the signature, i.e., the object types needed a.s
inputs to activate any operator of the type (domain) and the object types produced by
tbese operators (range).

Example: Compile-module
Signature: s:source-module - o:object-module V e:error
Pre: edit(s) is true
Post: (object-of(s)=o xor comp-error(s)=e)

The definition of an operator enables the linking of a too! to an operator-type. An
additionnal feature of an operator indicates whether it may be processed by the system
alone, or if it needs any user's cooperation. The operator is then respectively considered
to be automatic or non automatic. This information is included in the description of the
operators. It belps the system in taking the initiative to a.ctivate an operator without a
user's stimulus.

4.3 Tbe characteristics

The characteristics of a software process model are a set of constraints that are satisfied
during the activation of this model. They may serve a.s integrity constraints that must
be satisfied. They can a.lso serve a.s a ba.sis for rea.soning mechanisms [4) activated by
tbe system when a characteristic vilolation is detected. Using the characteristic and the
preconditions and postconditions of the operator, the aim of the rea.soning is to finda way
to ma.ke the chara.cteristic true, i.e., to find a sequence of actions that should enable the
system to enforce tbe chara.cteristic. lf this ta.sk fails, the system should undo the actions
that lead to the characteristic violation. Thus. we say that the characteristics define the
stable state of the system.

410
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

I Example: compiled(x) ==> edited (x) I

5 Interpretation of the UPSSA process model

The object model, operator model and characteristics introduced above constitute the
basic knowledge of the UPSSA too!. We integraLe pararnetric knowledge with the basic
knowledge in order to interpret the UPSSA model. UPSSA reacts to the user's initiative
by first, controlling its appropriateness. This control is performed on the basis of the
control information included in the UPSSA process model and stored in the objects base.
Whenever a user command (i.e. , the execution of an operator) successfully passes through
the control phase, it is performed. lf it is not, plan generation is performed to fulfill the
operation preconditions.

Furthermore, planning generation and execution facilities can be activated by the
UPSSA whenever it notices a characteristic violation. Plan generation is performed thanks
to operator's pre and postconditions. If plan generation task fails, the consequences of
the user's command are undone.

Using an activity exarnple of software development, we show in the following, how we
structure and formalize the knowledge necessary to interpret the UPSSA software process
model.

5.1 An illustration on Ada compilation

As an activity of software development step, we take the exarnple of separated-compilation
in ADA language. Ali Ada program units generally have a similar two-part structure, con­
sisting in a specification and a body. The specification identifies the information visible
to the user (the interface), while the body contains the unit implementation details which
can be logically and textually hidden from tbe user. Ada enables submitting tbe text of
a prograrn in one or more compilations. Thus, the dependencies explicitly defined arnong
units require that tbey must be compiled in a certain order. Basically, the rule is that a
given unit must be compiled before it can be visible to another unit. ln particular, the
specification o{ a subprograrn, package or task must be compiled before tbe correspond­
ing body. So, orderings rules are constraints which must be satisfied during operators
activation and they define a partia! order wbich allows the etablishment of the possible
recompilations consecutive to the recompilation of a unit.

5.2 The basic and parametric knowledge

Modeling and representing the knowledge
Using the concepts o{ the UPSSA software process model, a part of tbe previous text

can be modeled as follows :

• Entity types : specification-unit, body-unit, subunit and library-unit.

• Relationship types : use, realize, is-included and isa.

• Operators types : compile-specification, compile-body, compile-subunit, modify-spe­
cification, modify-body and modify-subunit.

411 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

• Cbaracteristics : orderings constraints which must be satisfied during operators
activation.

Formalizing and describing the basic knowledge
To formalize the knowledge, we use a typed first order predicate calculus language

similar to the one defined in [25). The language symbols are extracted from the object
model and tbe operator model. More precisely, we assoei ate a symbol type for each entity
type; a symbol constant for eacb entity instance, a symbol n-ary predicate for each n-ary
relationship between the entities. By combining these symbols with logical connectors
and quantifiers, we build the language formulae for describing tbe knowledge set. Thus,
by considering the Ada compilation example we bave :

• For the entity types, we associate the type symbols SPECIFICATION-UNIT, BODY­
UNIT and SUB-UNIT. ln the sarne way, we associate typed constants for the in­
stances. For example, if obj1 is an instance of specification-unit entity type, we write
SPECIFICATION-UNIT:obil or simply SPECIFICATION-UNIT(objl)·

• For the relationsbip types, we assoc.iate tbe predicate symbols USE, REALIZE,
IS-INCLUDED and ISA. These relationsbips only express static aspect, tberefore
we introduce other binary relationships : is-compiled-specification-in, is-compiled­
body-in and is-compiled-subunit-in to express dynamic relations and the types
compiled-specification, compiled-body and compiled-subunit. Similarly, we intro­
duce the binary predicates IS-COMPILED-SPECIFICATION-IN, IS-COMPILED­
BODY-IN and IS-COMPILED-SUBUNIT-IN, tben tbe type symbols COMPILED­
SPECIFICATION, COMPILED-BODY and COMPILED-SUBUNIT as symbols of
tbe language description.

• For the operators, we associate the functional symbols compilel(Ol : SPECIFI­
CATION-UNIT), compile2(02 :BODY-UNIT), compile3(03 :SUB-UNIT), mo­
di/yl(04 :SPECIFICATION-UNIT), modi/y2(05 :BODY-UNIT) and modi­
fy3(06 :SUB-UNIT). Since an operator is described by a pre-postcondition, we
associate with each functional symbol two formulae of the language which repre­
sent operator pre-postconditions. We do not quantify universally the free variables,
formulae are built from : typed constants wbich indicate instance types, binary
predicates which indicate static and dynamic relationships, Logical connectors 1\
and =*• and the existential quantifier 3.

• Finally, the characteristics are described by means of formulae. lt should be noted
tbat, like the cbaracteristics, the pre-postconditions contribute to maintain a safety
state of tbe software under development. Tbis is why we enbance the pre-postcon­
ditions by tbe cbaracteristics in order to maintain this safety state.

Let us illustrate this formalization process on an operator. Figure 1 shows the de­
scription of the operator compilei which addresses a specification unit.

Tbe knowledge presented above is enhanced by another kind of knowledge which is
only used by the plan generation mechanism (cf. §5.2).

Strategies

There are severa! strategies for pruning the space states when generating a plan [19) .
As examples, let us mention the depth-first strategy, the breadth-first strategy, tbe hier­
archical refinement strategy and so on. Needless to give details on these strategies which
are widely described in the literature of this topic.

412
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

Operator compilel;
Signature SPECIFICATION-UNIT - COMPILED-SPECIFICATION:
Sorts X, Z: SPECIFICATION-UNIT;

T, Y: COMPILED-SPECIFICATION:
Pre USE(X, Z):? 3 T §u~b thilS-COMPILED-SPECIFICATION-IN (Z.T);
Post IS-COMPlLED-SPECIFICATION-IN (X, Y);

Commentl This opera.tor describes the compilation of a given specification unit.
Because the latter uses another specification unit. we express that this
unit must be compiled before the initial given specification unit .

Figure 1: Description of the operator compilei

Heurística

ln a.ddition to strategies, heuristics are commonly used to prune the space states. ln
fact, heurística serve to select the state to be explored and tbe operator to be used. ln
most cases, heurística are closely related to the considered application. Tbe next section
gives examples of heurística wbicb bave been used.

5.3 The plan generation mechanism

As mentioned earlier, maintaining tbe safety of a software under development can be a
major problem. Suppose tbat tbe software initially is in a safety state. The characteristics
can be violated during tbe development. ln tbis case, our goal is to find a sequence of
actions to fulfill the characteristica and restore the software at hand in a safety state. On
the other hand, an operator cannot be activatable if its preconditions do not hold. Once
again, our goal is to find a sequence of actions to fulfill the operator preconditions.

Let us turn now to the plan generation mechanism and consider :

• K, the set of the formulae which represent the knowledge about the objects and
their relations.

• OP = {op., ... , op,.}, the set of the available operators. We denote by preop;(•••>
(resp. postop;(or1)), the set of formulae that represent the preconditions (reSp. the
postconditions) of the operator op; having arg as a given &rgument.

For example, suppose tbat we have the objects su1, su1 et su3 of specification-unit
type; the object CS3 of compiled-specification type; the relations use(su1,su2), use(suhsu3)

and is-compiled-specification-in(su3,cs3). Let us consider the operators compile(su3) and
compile(su,) . By adopting the notations described in §3.2, we have the following formu­
lae :

l
apecification-unit(•u1), I
specification-uoit(au1),
apecification-u n it(• u~),

K = compiled-specification(c•~) .
use(su, , au1),
use(IUJ, IU3),
is-compiled-specification-in(1u3, ca3)

413 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

postcompilc(•~•> = { compiled-specification(cs3) 1\ is-compiled-specification-in(su3, C13) }.

{

speeification-unit(•ul) 1\ specification-unit(X) 1\ use(su1 , X) }
precornpllc(•~o) = ~

compiled-spedficalion(Y) 1\ is-eompiled-specificalion-in(X, Y)

postcompllc(•~• > = { eompiled-specification(X) 1\ is-eompiled-specification-in(su1, X) }

ln the following, we suppose that the ioterpretation (/<)(U) (where U is the actual
problem universe) admits a model, tbe so-called intented interpretation. lntuitively, this
means that the formulae set of K are consistent since K admits at last one model, in
particular the intentional model. Clea.rly, when the preconditions of op;(arg), a given
operator, are not aatisfied, the interpretation (K U pre0p,(•••J)(U) does not hold.

To be a.ble to a.pply the operator op;(arg), we are led to build at preliminary a finite
sequence of operators op;(a~r) C OP. By activiting those opera.tors, the intented result
is to augmeot K in such a. wa.y tbat (K U pre0,,(•••>)(U) holds. By using the a.rtificial
intelligence terminology (19), we refer to these finite sequences as plans.

From the theoretical point of view, we cao construct severa! sequences from OP.
So, without taking either the order of the opera.tors a.pplication nor the choice of the
argumenta instantiation, we b&ve 2" possibilities where n is the cardinal of the set OP.
This is a serious problem. However, it should be noted tba.t every sequence of actions
cannot be considered as valid plan. More precisely, we introduce the following definition.

Definition : Let S =< op;, (a,.,), .. . , op;,..(a~r ..) > a finite sequence of opera.tors in OP.
The sequence S constitute a valid plan 'P if and only if : Vi E [1, .. . , m), we have:

(1) (K U pre,.11 (••tl)(U) holds;
(2) ((K U po.st.,111 •• ,1) n K) # 0
Intuitively, the first condition teUs us that the preconditions of each operator in the

plan are respected. The aecond condition insures that any opera.tor in the plan is not
"unfruitful" or "sterile" i.e., the applica.tion of an operator necessarily augments the set
of factual knowledge.

Although it is possible to generate severa! valid plans for a. given operator, we are an
interest to only generate one pl&n. Thus, we use tbe deptb-first search strategy. Figure 2
gives the plan generation procedure for a given oper&tor op;(arg).

414
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

GUD.lTE(pre.,,1. ,,1, OPJ(Gt), K)
I X Step J.: The malial opcralor, opl(org), is rudv lo 6e appliedY
I • Ií [K U preop,(or11)(U) Then leturn(SUCCESS);
I :4 Slep e. : Tia c selecled opcralor is slerilâ
I • Ií (K U pre.,,1.,1J(U) 1\ poslop,(••l U K = K Then leturu(FJ.ILUilE);
I 1. Step 3.: Augmenl K, lhe sei o/ formulae.
I • K- K u post.,,1.,1
I 1. Step .j.: Define 1/ae candidate operalors lo 6e applied
I • Operator1 - {op,(am)/am E K 1\ (K U preopo(o-JJ(U)}
I 1. Step 5.: Bvildang 1/ae plon 6v dept4-jirsl seorc/a
I • R.epeat
I I 1. Step 5.1: 1/lhere u:isl candidate operalor1?
I I • IF Operolor1 =I Then leturu(FJ.ILUilE)
I I X Slep 5.t : Bocklraclcing slep, lo 1elect onolher operalor i/ needed
I I 1. Using lhe /tc•rislics -see lhe note klow-
1 I • Operalor- SELECT-OIE(Operotors)
I I X Slep 5.3 : Retroei lhe •elecled operalor from lhe candidate operalors
I I • Operolors - Operolors\Operalor
I I X Step 5 . ./ : Step /or111ard in lhe piora generohon.
I I • Résultal - GUDATE(pre.,,<•••l, Operotor , K U posto,crooor)
I • until Ruult ~ FJ.ILUU
I 1. Step 6 : Rehrn tia e corutructed piara
I • leturu (Operolor · Result)
End

Figure 2: Plall generation procedure
ln the fourth step only the operators whose preconditions are satisfied, can be con­

sidered as candidates. Also, at tbe second step, any "sterile" operator is rejected by tbe
procedure. Tbus, we bave tbe following proposition :

Proposition : Let op{arg) a given operator; 'P the generated plall; K' the augmented
set of formulae at tbe end of the execution of the GENERATE procedure. Tbe followings
hold:

- 'P is valid;
- (J(' U preop,(or1))(U)

Although, generating only valid plans restricts the choice to select an operator and thus
pruning the apace states, this remains somehow insuflicient. Thus, we use the function
SELECT-ONE at step 5.2. This function is based on heurística such as to find an order,
eventually parti ai, over the set of the candidate operators and to select tbe "best" operator
wbich must be considered.

Generally, heuristics strongly depend on the activity at hand and more precisely on
the kind of the considered operators. ln our case, where the operators concern Ada units
compilation, the ordering of the calldidate operators is made by successive refinements
using the following heuristics:

H1 First, classify operators that have the signature SPEClFlCATlON-UNIT COM-
PILED-SPEClFlCATlON, then those with the signature BODY-UNlT COM-
PILED-BODY and finally tbose witb the signature SUB-UNIT COMPILED­
SUBUNIT.

This heuristic allows global and partia) ordering. Tben, in each group of operators.
we apply the following heuristic.

415 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

H2 Let us consider the operators opit (ak,) and oph (ak,) which bave the sarne signature,
we dassify opj1 (ak,) firstly if :

- 3u such that (K U u(preo,;(•••I))(U),
- card(u(pre.,;(•••l) n po.st.,,(•• ,,) > card(u(pre.,,(org)) n po.st.,,(•• ,,)

where u is a substitution on the free variables in the initial operator. Intuitively,
this heuristic captures the following cri teria: in the case of two given operators, we
prefer to try, at the first time, the operator whose postconditions could contribute
more to reaching the initial goal; that is, to satisfy the preconditions of the initial
operator.

6 Architecture of the UPSSA tool

ln this section, we just describe an outline of the architecture of UPSSA tool which is
written in Le-lisp. The knowledge base contains three kinds of knowledge. The objecta ll.lld
the operators together with the pre-postconditions constitute the basic lcnowledge. The
parametric lcnowledge which contains the strategies and the heurística set. The main data
structure is a bierarchy of frames. Figure 3 gives an example of two frames representing
an operator ll.lld a heuristic.

ldetraae
I :Operator:Compile :SpecificationUnit (x)
(I :Precondition:SpecificationUnit x)
(I:Precondition :SpecificationUnit y)
(I:Precondition :Uae y)

(I :Add:Liat
((I:Pred:SpecificationUnit x)
(I :Pred:IaCoapiledSpecification y))

)
(I :Oelete:List ())

)

ldetraae

)

I :Heuriatic:Organize• (x y)
((I:Pred:SpecificationUnit x)
(I:Pred:BodyUnit y) x)
((I:Pred:SpecificationUnit y)
(I :Pred:BodyUnit x) y)
((I:Pred:BodyUnit x)
(I:Pred:SubUnit y) x)

((I :Pred:SpecificationUnit x)
(I:Pred:SubUnit y) x)

t·igure 3: An example of a frame representmg an operator and a heunstic.

Finally the system lcnowledge indudes tbe information about the global state of the
system itself such a set of trees representing the generated plan.

The general architecture of the tool is portrayed in Figure 4. Like most knowledge­
based system, it is organized around a knowledge base whicb is composed of the three
kinds of knowledge listed above and tools that are the inference mechanism and lhe man­
machine interface. Three modules form the in/erence mechanism. The generator module
which is in charge of the generation of plans. The second module, called interpreter, is
in charge of the interpretation of the end-user commands. This module invalidates the
operator effect when the knowledge base become unsafe. Finally the third module, called
interface, enables the access to the knowledge base and the communication with the man­
machine interface tool. This last tool is composed of two modules. The managing module
is in charge of the interaction with the end-user (the developer) . The updating module
enables tbe accessing and the updating of tbe knowledge base and also it trll.llsmits the
developer queries to the inference mechanism.

416
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

!!.aSlC
Knowtecqe

Ob)CCtS
Operõtors
Ch.u a c~

KNOWLEOGE BASE

Parametr1 c
Knowledqe

St rateq1es
HeurlStlCS

System
Knowledqe

Tr ees
State of
Ob)eCtS

Figure 4: Architecture of the UPSSA too!

7 Conclusion

ln this paper we bave argued tbe need for software process and assistance modelling
as ao integra.ted pa.rt of a. software engineering environment. Tbis environment, ca.lled
process-driven environment, provides a.utoma.ted support for software work based on a
process model that controls some of the functionna.lity of the environment. The expected
benefits of software process and assistance modelling are improvements in productivity
and improvements in quality o{ the products. We discussed the objectives, requirements,
and concepts for software process modelling, i.e., for capturing, describing, and using
the variety of knowledge needed to build ao advanced software engintering environment
logistics framework fitted with assistance capabilities.

Beyond experimenta.tions of the UPSSA tool to other activities, severa! extensions of
this work can be mentioned. For exarnple, in the formalisation of tbe knowledge (e.g.,
types, conatants and operators), we have adopted a systematic way; tbus, a (partia.!)
mechanization of this forma.lization step is possible. Another example, let us consider
the pre-postconditions expressed by the typed first order predicate calculus language.
Within this formal framework and using formal techniques, it could be possible to prove
some properties as the consistency. Finally, the enhancement task of the operator pre­
postconditions by the characteristics is currently made manua.lly. Once again, it could be
possible to make use of transformationa.l technics to (partially) mechanize these enhance·
ment task.

Further, considering the variety of things to be described,like object structures, avail­
able tools, various relationships among objects, and policies induced by the tools or by a
software development metbod, conventional database technology seems to be inadequate
for software engineering needs and particularly for software process and assistance mod­
elling ln this framework, a "multiparadigm" model which incorpora.tes botb philosophies

417 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

of sema.ntic data model and object-oriented systems seems a better support to software
environment needs.

References

(1] T.K. Abdel-Hamid and S.E. Madnick. Software Projects Dynamics: An lntegrated
Approach. Prentice-Hall, Englewood Cliffs, N.J., 1991.

[2] N. Belkhatir. TEMPO: a software process model based on 0 .0. paradigm and ob­
jects viewpoints. ln Proceedings of the Third Maghrebian Conference on Software
Engenieering and Artificial lntelligence, R.abat, Maroc, April 1994.

(3] K. Benali, N. Boudjlida, F. Charoy, J.C. Derniame, C. Godart, P. Griffiths, V. Gruhn,
P. Jarnart, A. Legait, D.E. Oldfield, a.nd F. Oquendo. Presentation of the ALF
project. ln Proceedings of the lnternational Conference on System Development En­
vironments and Factories, Berlin, RFA, May 1989.

(4] N. Boudjlidaa.nd T. Khammaci. Knowledge-Based Software Assistant : A Knowledge
Representation Model a.nd its lmplementation. ln Proceedings of the Fifth Annual
Knowledge-Based Software Assistant Conference (KBSA) , pages 317-330, Syracuse,
New York, USA, September 1990. Published as lntelligent Systems Review (Re­
visited Version), Vol 2, No 4, 1990.

(5) A. Brockers and V. Gruhn. Computer-Aided Verification of Software Process Model
Properties. ln Proceedings of the Fifth lnternational Conference, CAiSE'9S, pages
521-546, Paris, France, June 1993. Published as LNCS no 685.

(6] P.P. Chen. The Entity-Relationship Model: Toward an Unified View of Data. ACM
Transactions on Database Systems, 1{1):9-36, March 1976.

(7) B. Curtis, M.I. Kellner, and J. Over. Process modeling. Communications of lhe
ACM, 35{9):75-90, September 1992.

(8] J.C. Derniame. Proceedings of the Second European Workshop on Software Process
Modelling. J.C. Derniame editor, Trondheim, Norway, September 1992.

(9] M. Dowson. Proceedings of the First lnternational Software Process Conference. M.
Dowson editor, Redondo Beach, CA, USA, October 1991.

[10] EC2. Proceedings of the PCTE'9S Conference. lan Campbell, September 1993.

(11] K.E. Huff and V.R. Lesser. A Plan-based Intelligent Assistant That Supports
the Software Development Process. ln Proceedings the ACM SIGSOFT/ SIGPLAN
Software Engineering Symposium on Practical Software Development Environments.
pages 97- 106, Boston. MA, USA. November 1988.

[12] R. Hull and R. King. Sema.ntic Database Modeling: Survey, Applications, and Re­
search issues. A CM Computing Surveys, 19(3):201- 260, September 1987.

[13] G.E. Kaiser, P.H. Feller, and S.S. Popovitch. Intelligent Assistance for Software
Development and Maintenance. IEEE Soft, 5(3):40- 49, 1988.

418
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

(14) T . Katayama. A Hierarchical and Functional Software Process Description and its
Enaction. ln Proceedings of the Eleventh Intemational Conference on Software En­
gineering, pages 343-352, 1989.

[15) T . Katayama. Proceedings of the Si1:th Jntemational Software Process Workshop. T.
Katayama editor, Hakodate, Japan, October 1990.

(16) M.M. Lehman and W.M. Turski. Essential properties of IPSEs. ACM SIGSOFT,
Software Engineering Notes, 12(1), January 1987.

(17) B. Meyer. The Software Knowledge Base. ln Proceedings of the Eighth lntemational
Conference on Software Engineering, London, UK, August 1985.

(18] N. H. Minsky. La.w-governed systems. Software Engineering Journal, 6(5):285-302,
1991.

(19] N.J . Nilsson. Principies of Artificial lntelligence. Tioga. Publishing Co., Palo Alto,
CA, USA, 1980.

(20) L. Osterweil. Software Processes are Software Too. ln Proceedings of the Ninth
Intemational Conference on Software Engineering, pages 2- 13, Monterey, CA, USA,
March 1987.

(21) L. Osterweil. Proceedings of the Second lntemational Conference on the Software
Process. L. Osterweil editor, Berlin, Germany, February 1993.

(22] M.A. Ould and C. Roberts. Modeling iteration in the software processes. ln Pro­
ceedings of the Fourth lntemational Software Process Workshop, Moreonhamstead,
Devon, UK, May 1988.

(23) M.H. Penedo, E. Ploederede.r, and I. Thomas. Object Management lssues for Soft­
ware Engineering Environments - Workshop Report -. ln Proceedings of the Third
ACM SIGSOFT/ SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 226- 234, Boston, MA , USA, November 1988.

(24) M.H. Penedo and E.D. Stuckle. PMDB - A Project Master Database for Software
Engineering Environments. ln Proceedings of the Eighth lntemational Conference on
Software Engineering, pages 150-157, London, UK, August 1985.

(25) R. Reiter. Towa.rd a Logical Reconstruction of Relational Theory. ln M.L. Brodie,
J. Mylopoulos, and Y. Schmidt, editors, On Conceptual Modeling, pages 191-238.
North-Holland Publishing, 1984.

(26) S. Sutton. D. Heimbigner, and L Osterweil. Language constructs for managing change
in process ceotered environments. ln Proceedings of the Fourth SIGSOFT Symposium
on Software Development Environments, pages 35-44. lrvine. CA, USA. December
1990. ACM Software Engineeriog Notes, 15(6):206·217, December 1990.

(27] L.G. Williams. A beha.vioral approach to software process modeling. ln Proceed­
ings of the Fourth lntemational Software Process Workhop, pages 108-111, More­
tonhampstead, Devon, UK, May 1988.

419 PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396
	z0397
	z0398
	z0399
	z0400
	z0401
	z0402
	z0403
	z0404
	z0405
	z0406
	z0407
	z0408
	z0409
	z0410
	z0411
	z0412
	z0413
	z0414
	z0415
	z0416
	z0417
	z0418
	z0419
	z0420
	z0421
	z0422
	z0423
	z0424
	z0425
	z0426
	z0427
	z0428
	z0429
	z0430
	z0431
	z0432
	z0433
	z0434
	z0435
	z0436
	z0437
	z0438
	z0439
	z0440
	z0441
	z0442
	z0443
	z0444
	z0445
	z0446
	z0447
	z0448
	z0449
	z0450
	z0451
	z0452
	z0453
	z0454
	z0455
	z0456
	z0457
	z0458
	z0459
	z0460
	z0461
	z0462
	z0463
	z0464
	z0465
	z0466
	z0467
	z0468
	z0469
	z0470
	z0471
	z0472
	z0473
	z0474
	z0475
	z0476
	z0477
	z0478
	z0479
	z0480
	z0481
	z0482
	z0483
	z0484
	z0485
	z0486
	z0487
	z0488
	z0489
	z0490
	z0491
	z0492
	z0493
	z0494
	z0495
	z0496
	z0497
	z0498
	z0499
	z0500
	z0501
	z0502
	z0503
	z0505

