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Abatract : Recent works on the software process suggest that the software life cycle should 
be made through an enactable software process model. This model defines constraints to be 
respected by a software process during project development and initiatives to be taken by 
the environment. This paper presenta UPSSA : a too/ based on a software process model 
which is an abstraction of objecta, tools, and policies. Thus, it encompasses an object 
model to describe project databases, an operator model to describe at abstract leveis the 
tools' effects, and characteristics for e:rpressing the policies. Design and implementation 
are also cora~idered to ezhibit how a software process model described in our terms can be 
used for assisting intelligently the software developer by controlling the software process. 
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1 Introduction. 

Currently, considerable attention is devoted in the field of software process modelling. 
Tbe major efforts are described in (15) (8) (7) . Before presenting the concepts for software 
process and assistance, let us introduce definitions of some key terms used by the soft­
ware process community that allow one to etablish a conceptual framework for process 
modelling. 

A model is ao abstract representation of reality that excludes much of the world's 
infinite detail [7] . This idea of lhe model means that detail which does not influence 
tbe relevant behavior of the model is eliminated. A software process consists of the set 
of activities performed during software development, including their scbeduling and the 
object manipulated (5). This idea of a software process means that tbere is one software 
process for eacb software system developed. A software process model is an abstract 
description of an actual or proposed process that represents selected process elements 
that are considered important to the purpose of the model and can be enacted by a 
human or a machine [7). A language suitable for describing software process models is 
called a software process modeling language (5). 

The software process rriodel describes long-term activities which are complex and evo­
lutive. lt describes not only tbe quality of tbe software products. the usual tool and the 
policies to follow, but also how to help their users; this is why tbey are called modela for 
assisted software process. ln this framework, we dassify the assistance into five kinds: 
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controlling, taking initiatives, helping and guidance, explaining and obse.rving. (1) Con­
trolling: depending on the current sta.te of the development, a.n a.ctivity ca.n or cannot 
be performed and when a user invokes an opera.tion to perform an activity, then the 
environment controls whether the a.ctivity is a.llowed or not. (2) Taking initiatives: the 
environment ma.y decide on its own to perform some operations without human interac­
tions. (3) Helping and to guidance: a user ca.n expect the environment to help and to 
guide him in bis work by offering some fa.cilities. (4) Explaining: explanation helps the 
user in understanding the software process at particular insta.nts; for exa.mple, when the 
environment takes an initiative, it should explain why it decided to take it. (5) Observing: 
the software process model must give a. user means to describe what, when and how to 
observe measurement and historical information about the software development process. 

This pa.per is orga.nized as follows. Section 2 outlines related work in software pro­
cess a.nd assistance modelling. Section 3 defines objectives and requirements for soft­
ware process a.nd assista.nce modelling. ln section 4, we present the UPSSA (Using 
Pre-postconditions for Simulating Software Assistant) software process model. Using an 
activity exa.mple of software development, section 5 shows how we structure and formal­
ize the knowledge necessary to interpret the UPSSA software process model. Section 6 
outlines the architecture of the UPSSA tool we ha.ve developed to vali date our proposa.ls 
with regard to software process and assista.nce modelling. Fina.lly, section 7 concludes 
with some perspectives. 

2 Related work 

Considerable work has been undertaken in the field of software and assista.nce modelling. 
Some of the first pa.pers explicitly addressing software processes as a subject of interest 
are (16) (20). Since then, severa! workshops (15) (8) and conferences [9) [21) ha.ve been 
devoted to software processes. 

Curtis (7) has distinguished five a.pproa.ches for representing software process informa­
tion: (1) the progra.mming models, (2) the functiona.l modela, (3) the plan-based models, 
(4) the Petri-net modela a.nd (5) the quantitative models. The key idea. of the programming 
models a.pproach (20) is a complete a.Jgorithm description of a software process by means 
of a formal la.nguage. This description is considered as a specification of how software 
process is to be managed in the software development environment by users a.nd tools. 
Several on-going projects ha.ve been infiuenced by this idea., resulting in the construc­
tion of some experimented process software engineering environments as, for exa.mple, 
ARCADIA-APPL/ A [26). This process software environment has extended the ADA lan­
guage with new capabilities for supporting software processes. The main drawback with 
this approach is that no algorithm of a particular software process can be completely 
predescribed in adva.nce. ln the functional models approach, which is illustrated by the 
Hierarchical and Functiona.l Software Process (14) , a software process is represented as 
a collection of process elements with input and output attributes. Specifica.Jiy, a. pro­
cess is defined as a set of mathematica.l functions depicting relationships among inputs 
(such as specifications) and outputs (such as source codes). Furthermore, each of these 
functions is hierarchically decomposable into process subelements, where the input and 
output attributes of a parent process element must be satisfied by it's children attributes. 
This decomposition is continued until it produces process steps that can be mapped to 
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externa! tool invocation or manual operations. The maio drawback with tbis approacb is 
tbat it difficult to identify a priori tbe communica.tions points between concurrent pro· 
cesses. The plan-based models approach [11] use planning paradigms tbat are emerged 
from artificial intelligence to design the software process. Tbus, the GRAPPLE language 
constructs process models from two components: a set of process steps and a set of con­
straints on how those steps can be selected, ordered and applied. The main drawback 
with this approach is the integration of the multi pie sources of knowledge representation 
and an analysis capability for deriving the properties of processes. ln the Petri-net models 
approach [22), a software project is viewed as a structure of roles and their interactions. 
This structure is represented and executed by Petri-net language. Thus, role interaction 
nets aid the structured tasks that is those that can be planned from known dependen­
cies. The main drawback with this approach is that it is difficult to use the model of 
coordination among role structures if an organization bas not been able to establish a 
basic description of their process. Finally, the quantitative models approach [1) provides 
a quantitative representation of many behavioral observations of software projects. 

Among severa! kinds of process languages that the software process community bas 
been using to model tbe software process into process centered software engineering en­
vironrnents, Belkhatir (2) proposes three languages tbat are the most representative : the 
even-condition-action, the rule-bued and procedural languages. ln the even-condition­
action (trigger) language, software processes are modeled by a set of event-condition­
action rules wbicb are interpreted by a trigger mechanisms tigbtly connected with a soft· 
ware database. ALF /MASP [3) is one of the few practical systems that has experimented 
with this approach. Other examples are: ARCADIA/APPL-A (26), DARWIN/LAW (18), 
TEMPO (2) . ln ALF /MASP, triggers are used to control communication among parallel 
tuks by capturing changes on databue objecta. The tasks are modeled by pre- and post­
conditions enveloping foreign tools and managed by a specialized expert system shell 
connected to PCTE+ (10). APPL/ A hu extended ADA language with programmable 
trigger upon relations. The automation of the software process is done by these triggers. 
ln DARWlN/LAW, an event happens wben a. message is sent from one object to anotber 
one, and control is passed to Darwin. Then. DARWIN enforces the appropriate law (a 
PROLOG rule set) whicb may intervene between message flow, possibly changing the 
message before it is delivered and/or rerouting it to a different destination or cancelling 
it. Unlike ARCADIA/APPLA and ALF/MASP, the TEMPO trigger can be attached to 
both entities a.nd relationships to envelop metbods. ln tbe rule-based language tbe soft· 
ware process can be described by using logical declarations allowing one to specify wbat 
the user wants ratber than a detailled specification of how the results are to be obtained 
(27). Using this bebavioral approach, various prototypes have been built, e.g., MARVEL 
(13), TEMPO [2). MARVEL enacts tbe development process of a project by automati­
cally firing user-specified rules tbat eocapsulate development activities. Also, controlled 
automation in MARVEL is provided through opportunistic processing employed backward 
chaining and forward cbaining. TEMPO uses rules in order to envelop method execution 
as well as to take initiatives when possible. ln tbe procedurallanguage approacb, for ex­
ample the APPL/ A la.nguage (26) allows processes to be modeled in an extension of ADA 
tbat enables explicit representation of programmable, persistent relations. lt supports 
multiple representational paradigms, e.g., procedural and declarative. 

ln anotber way, work in tbe software process focuses on the use of database modeling in 
the software life-cycle. Consequently, a number of research projects have been undertaken 
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[23) [17) [3). Thus, a first approach relies on an object base and a rule base. The object 
bll$e is the repository of ali the information needed for the development of a software 
project. The rules specify the precondition of an activity and its postcondition. They are 
used as the basis for reasoning during the effective software development [13) [4). Another 
approach provides predefined structures for the object and the knowledge bases (23] (17]. 

3 Software process and assistance modelling 

3.1 Objectives 

ln the following, we introduce some objectives expected from software process and assis­
tance modelling. 

• Understanding the development process 

• Reasoning to improve the development process, to verify it. and to verify what it 
produces 

• Controlling the development process and the activities 

• Measuring the development for a better understanding 

• Evalua.ting the process itself, the activities, and the persons from a. quantita.tive as 
well as a qualitative viewpoint 

• Managing the activities a.nd their various resources 

• Integra.ting tbe different kinds of activity which are performed during the software 
process, like a. development a.ctivity and a. project ma.nagement a.ctivity 

• Guiding the development process as well as its definition 

• Assisting the various a.ctivities 

• Evolving of the model, the software products 

3.2 Requirements 

ln this section, we define some requirements and functionalities which must be fullfilled 
by software process and assistance modelling. 

• Life-cycle covering 

• Description of objects. properties, and relationships at different levei of granularity 

• Description of allowed transformation on objects 

• View mechanisms 

• Structural and organizational descriptions 
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• Task and constr&nt descriptions 

• Type and levei of assistance specification 

• Formality 

• Readability and understandability 

• Partia! or total re-usa.bility 

• Modularity and evolutionary 

4 Concepts of the UPSSA process model 

A software process and assistance model is an abstra.ction o{ objects, tools and policies. 
Therefore, we propose to model it with an object model for describing the va.riety of 
objecta, with an operator model for describing the tools and with cha.racteristics for 
expressing the policies. 

4.1 The object model 

The &m of the object model is to provide a description of the object structures by means 
of object properties and relationships among objects a.t different leveis of granula.rity. As 
already noted, software development involves various kinds of objects (24). These include 
the design, specification. coding, and debugging of computer programa, as well as, the 
crea.tion, m&ntenance, and reuse of modules and versions. Also. the software environ­
ment deals with objects involving the management and the control of an overall software 
development project,e.g., cost calculations and scheduling dependencies. Thus, the object 
model should enable the description of ali these objects. Further, tbis description should 
be easily refined to satisfy the different users' needs. 

So, we propose to use a model wbich is based on tbe entity-relationship data model 
(6) extended with ISA-Rela.tionships. Objecta are classified a.ccording to their respectives 
types. Using the entity-relationship concepts, ao object-type is described as ao entity-type. 
A list of a.ttributes describe each entity-type. Ao attribute is viewed as a pair (attribute­
name:attribute-domain). Formally, an entity-type can be viewed as a record-type wbose 
fields are tbe attributes o{ tbe entity-type and attribute is defined as a function which 
maps the entity-type into the attribute-domain. ln this framework, the value of an object 
is the values of its attributes plus the content of tbe object, if any. For example, one 
can define an entity-type called Module with (module-na.me:string, creation-date:date, 
modification-date:date) as its related attributes. Thus, the value of ao occurrence of 
Module is its na.me, tbe dates when created and when modified. 

Links among objects are described by means o{ relationsbips. Relationsbips are also 
typed. A relationship-type is specified providing: the name of the relationsbip, the list of 
the related entity-types, the cardinalities, that is the mi minai and maximal number a given 
object may be linked to other ones witbin relatiooship and the attributes, if any, which 
describe tbe relationship. For instante, a relationship called Authorship may hold between 
tbe entity-types Module and Person. An attribute na.med date-writing may be attached to 
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the relationsbip. A (1,1) cardina.lity a.ssociated with Module indicates that every module 
must have a single autbor. ln this framework, the va.lue of a relationship is defined by 
a value for each related entity-type plus a va.lue of each attribute which describes the 
relationship. A particular relationship is distinguished: the ISA-Relationship. This kind 
of of relationship enbances the original data model and enables a more r sophisticated" 
description of the object model [12). Moreover, it assumes the availability of inheritance 
mechanisms to make the subtypes of a given type T inherit attributes of T. For instance, an 
entity-type Source-Module may have Pa.scal-Source-module, C-Source-module and Ada­
Source-module a.s subtypes. 

4.2 Tbe operator model 

The object model describes the structures that should be produced or those on whicb 
adivities should be performed. Ao abstraction of these activities is described by tbe 
operator model. Even operators may be typed in the sense that an operator-type (e.g. 
edit) defines a cla.ss of operators, while ao operator (e.g. edit using Emacs or edit using 
ed) is considered a.s a member of a given cla.ss. Tbis operator-typing mechanism ea.ses the 
addition of new tools to the environment. 

An operator type is defined by its name, tbe precondition which must be fullfilled 
before activating any operator of this type, tbe postcondition which is a.ssumed to be true 
at the end of the operator's execution, and the signature, i.e., the object types needed a.s 
inputs to activate any operator of the type (domain) and the object types produced by 
tbese operators (range). 

Example: Compile-module 
Signature: s:source-module - o:object-module V e:error 
Pre: edit(s) is true 
Post: (object-of(s)=o xor comp-error(s)=e) 

The definition of an operator enables the linking of a too! to an operator-type. An 
additionnal feature of an operator indicates whether it may be processed by the system 
alone, or if it needs any user's cooperation. The operator is then respectively considered 
to be automatic or non automatic. This information is included in the description of the 
operators. It belps the system in taking the initiative to a.ctivate an operator without a 
user's stimulus. 

4.3 Tbe characteristics 

The characteristics of a software process model are a set of constraints that are satisfied 
during the activation of this model. They may serve a.s integrity constraints that must 
be satisfied. They can a.lso serve a.s a ba.sis for rea.soning mechanisms [4) activated by 
tbe system when a characteristic vilolation is detected. Using the characteristic and the 
preconditions and postconditions of the operator, the aim of the rea.soning is to finda way 
to ma.ke the chara.cteristic true, i.e., to find a sequence of actions that should enable the 
system to enforce tbe chara.cteristic. lf this ta.sk fails, the system should undo the actions 
that lead to the characteristic violation. Thus. we say that the characteristics define the 
stable state of the system. 
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I Example: compiled(x) ==> edited (x) I 

5 Interpretation of the UPSSA process model 

The object model, operator model and characteristics introduced above constitute the 
basic knowledge of the UPSSA too!. We integraLe pararnetric knowledge with the basic 
knowledge in order to interpret the UPSSA model. UPSSA reacts to the user's initiative 
by first, controlling its appropriateness. This control is performed on the basis of the 
control information included in the UPSSA process model and stored in the objects base. 
Whenever a user command (i.e. , the execution of an operator) successfully passes through 
the control phase, it is performed. lf it is not, plan generation is performed to fulfill the 
operation preconditions. 

Furthermore, planning generation and execution facilities can be activated by the 
UPSSA whenever it notices a characteristic violation. Plan generation is performed thanks 
to operator's pre and postconditions. If plan generation task fails, the consequences of 
the user's command are undone. 

Using an activity exarnple of software development, we show in the following, how we 
structure and formalize the knowledge necessary to interpret the UPSSA software process 
model. 

5.1 An illustration on Ada compilation 

As an activity of software development step, we take the exarnple of separated-compilation 
in ADA language. Ali Ada program units generally have a similar two-part structure, con­
sisting in a specification and a body. The specification identifies the information visible 
to the user (the interface), while the body contains the unit implementation details which 
can be logically and textually hidden from tbe user. Ada enables submitting tbe text of 
a prograrn in one or more compilations. Thus, the dependencies explicitly defined arnong 
units require that tbey must be compiled in a certain order. Basically, the rule is that a 
given unit must be compiled before it can be visible to another unit. ln particular, the 
specification o{ a subprograrn, package or task must be compiled before tbe correspond­
ing body. So, orderings rules are constraints which must be satisfied during operators 
activation and they define a partia! order wbich allows the etablishment of the possible 
recompilations consecutive to the recompilation of a unit. 

5.2 The basic and parametric knowledge 

Modeling and representing the knowledge 
Using the concepts o{ the UPSSA software process model, a part of tbe previous text 

can be modeled as follows : 

• Entity types : specification-unit, body-unit, subunit and library-unit. 

• Relationship types : use, realize, is-included and isa. 

• Operators types : compile-specification, compile-body, compile-subunit, modify-spe­
cification, modify-body and modify-subunit. 
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• Cbaracteristics : orderings constraints which must be satisfied during operators 
activation. 

Formalizing and describing the basic knowledge 
To formalize the knowledge, we use a typed first order predicate calculus language 

similar to the one defined in [25). The language symbols are extracted from the object 
model and tbe operator model. More precisely, we assoei ate a symbol type for each entity 
type; a symbol constant for eacb entity instance, a symbol n-ary predicate for each n-ary 
relationship between the entities. By combining these symbols with logical connectors 
and quantifiers, we build the language formulae for describing tbe knowledge set. Thus, 
by considering the Ada compilation example we bave : 

• For the entity types, we associate the type symbols SPECIFICATION-UNIT, BODY­
UNIT and SUB-UNIT. ln the sarne way, we associate typed constants for the in­
stances. For example, if obj1 is an instance of specification-unit entity type, we write 
SPECIFICATION-UNIT:obil or simply SPECIFICATION-UNIT(objl)· 

• For the relationsbip types, we assoc.iate tbe predicate symbols USE, REALIZE, 
IS-INCLUDED and ISA. These relationsbips only express static aspect, tberefore 
we introduce other binary relationships : is-compiled-specification-in, is-compiled­
body-in and is-compiled-subunit-in to express dynamic relations and the types 
compiled-specification, compiled-body and compiled-subunit. Similarly, we intro­
duce the binary predicates IS-COMPILED-SPECIFICATION-IN, IS-COMPILED­
BODY-IN and IS-COMPILED-SUBUNIT-IN, tben tbe type symbols COMPILED­
SPECIFICATION, COMPILED-BODY and COMPILED-SUBUNIT as symbols of 
tbe language description. 

• For the operators, we associate the functional symbols compilel(Ol : SPECIFI­
CATION-UNIT), compile2(02 :BODY-UNIT), compile3(03 :SUB-UNIT), mo­
di/yl(04 :SPECIFICATION-UNIT), modi/y2(05 :BODY-UNIT) and modi­
fy3(06 :SUB-UNIT). Since an operator is described by a pre-postcondition, we 
associate with each functional symbol two formulae of the language which repre­
sent operator pre-postconditions. We do not quantify universally the free variables, 
formulae are built from : typed constants wbich indicate instance types, binary 
predicates which indicate static and dynamic relationships, Logical connectors 1\ 
and =*• and the existential quantifier 3. 

• Finally, the characteristics are described by means of formulae. lt should be noted 
tbat, like the cbaracteristics, the pre-postconditions contribute to maintain a safety 
state of tbe software under development. Tbis is why we enbance the pre-postcon­
ditions by tbe cbaracteristics in order to maintain this safety state. 

Let us illustrate this formalization process on an operator. Figure 1 shows the de­
scription of the operator compilei which addresses a specification unit. 

Tbe knowledge presented above is enhanced by another kind of knowledge which is 
only used by the plan generation mechanism (cf. §5.2). 

Strategies 

There are severa! strategies for pruning the space states when generating a plan [19) . 
As examples, let us mention the depth-first strategy, the breadth-first strategy, tbe hier­
archical refinement strategy and so on. Needless to give details on these strategies which 
are widely described in the literature of this topic. 
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Operator compilel; 
Signature SPECIFICATION-UNIT - COMPILED-SPECIFICATION: 
Sorts X, Z: SPECIFICATION-UNIT; 

T, Y: COMPILED-SPECIFICATION: 
Pre USE(X, Z):? 3 T §u~b thilS-COMPILED-SPECIFICATION-IN (Z.T); 
Post IS-COMPlLED-SPECIFICATION-IN (X, Y); 

Commentl This opera.tor describes the compilation of a given specification unit. 
Because the latter uses another specification unit. we express that this 
unit must be compiled before the initial given specification unit . 

Figure 1: Description of the operator compilei 

Heurística 

ln a.ddition to strategies, heuristics are commonly used to prune the space states. ln 
fact, heurística serve to select the state to be explored and tbe operator to be used. ln 
most cases, heurística are closely related to the considered application. Tbe next section 
gives examples of heurística wbicb bave been used. 

5.3 The plan generation mechanism 

As mentioned earlier, maintaining tbe safety of a software under development can be a 
major problem. Suppose tbat tbe software initially is in a safety state. The characteristics 
can be violated during tbe development. ln tbis case, our goal is to find a sequence of 
actions to fulfill the characteristica and restore the software at hand in a safety state. On 
the other hand, an operator cannot be activatable if its preconditions do not hold. Once 
again, our goal is to find a sequence of actions to fulfill the operator preconditions. 

Let us turn now to the plan generation mechanism and consider : 

• K, the set of the formulae which represent the knowledge about the objects and 
their relations. 

• OP = {op., ... , op,.}, the set of the available operators. We denote by preop;(•••> 
(resp. postop;(or1)), the set of formulae that represent the preconditions (reSp. the 
postconditions) of the operator op; having arg as a given &rgument. 

For example, suppose tbat we have the objects su1, su1 et su3 of specification-unit 
type; the object CS3 of compiled-specification type; the relations use(su1,su2), use(suhsu3 ) 

and is-compiled-specification-in(su3,cs3). Let us consider the operators compile(su3 ) and 
compile(su,) . By adopting the notations described in §3.2, we have the following formu­
lae : 

l
apecification-unit(•u1), I 
specification-uoit( au1), 
apecification-u n it( • u~), 

K = compiled-specification(c•~) . 
use(su, , au1), 
use(IUJ, IU3), 
is-compiled-specification-in(1u3, ca3) 
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postcompilc(•~•> = { compiled-specification(cs3) 1\ is-compiled-specification-in(su3, C13) }. 

{ 

speeification-unit(•ul) 1\ specification-unit(X) 1\ use(su1 , X) } 
precornpllc(•~o ) = ~ 

compiled-spedficalion(Y) 1\ is-eompiled-specificalion-in(X, Y) 

postcompllc(•~• > = { eompiled-specification(X) 1\ is-eompiled-specification-in(su1, X) } 

ln the following, we suppose that the ioterpretation (/<)(U) (where U is the actual 
problem universe) admits a model, tbe so-called intented interpretation. lntuitively, this 
means that the formulae set of K are consistent since K admits at last one model, in 
particular the intentional model. Clea.rly, when the preconditions of op;(arg), a given 
operator, are not aatisfied, the interpretation (K U pre0p,(•••J)(U) does not hold. 

To be a.ble to a.pply the operator op;(arg), we are led to build at preliminary a finite 
sequence of operators op;(a~r) C OP. By activiting those opera.tors, the intented result 
is to augmeot K in such a. wa.y tbat (K U pre0,,(•••>)(U) holds. By using the a.rtificial 
intelligence terminology (19), we refer to these finite sequences as plans. 

From the theoretical point of view, we cao construct severa! sequences from OP. 
So, without taking either the order of the opera.tors a.pplication nor the choice of the 
argumenta instantiation, we b&ve 2" possibilities where n is the cardinal of the set OP. 
This is a serious problem. However, it should be noted tba.t every sequence of actions 
cannot be considered as valid plan. More precisely, we introduce the following definition. 

Definition : Let S =< op;, (a,.,), .. . , op;,..(a~r .. ) > a finite sequence of opera.tors in OP. 
The sequence S constitute a valid plan 'P if and only if : Vi E [1, .. . , m), we have: 

(1) (K U pre,.11 (••tl)(U) holds; 
(2) ((K U po.st.,111 •• ,1) n K) # 0 
Intuitively, the first condition teUs us that the preconditions of each operator in the 

plan are respected. The aecond condition insures that any opera.tor in the plan is not 
"unfruitful" or "sterile" i.e., the applica.tion of an operator necessarily augments the set 
of factual knowledge. 

Although it is possible to generate severa! valid plans for a. given operator, we are an 
interest to only generate one pl&n. Thus, we use tbe deptb-first search strategy. Figure 2 
gives the plan generation procedure for a given oper&tor op;(arg). 
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GUD.lTE(pre.,,1. ,,1, OPJ(Gt), K) 
I X Step J.: The malial opcralor, opl(org), is rudv lo 6e appliedY 
I • Ií [K U preop,(or11)(U) Then leturn(SUCCESS); 
I :4 Slep e. : Tia c selecled opcralor is slerilâ 
I • Ií (K U pre.,,1.,1J(U) 1\ poslop,(••l U K = K Then leturu(FJ.ILUilE); 
I 1. Step 3.: Augmenl K, lhe sei o/ formulae. 
I • K- K u post.,,1.,1 
I 1. Step .j.: Define 1/ae candidate operalors lo 6e applied 
I • Operator1 - {op,(am)/am E K 1\ (K U preopo(o-JJ(U)} 
I 1. Step 5.: Bvildang 1/ae plon 6v dept4-jirsl seorc/a 
I • R.epeat 
I I 1. Step 5.1: 1/lhere u:isl candidate operalor1? 
I I • IF Operolor1 =I Then leturu(FJ.ILUilE) 
I I X Slep 5.t : Bocklraclcing slep, lo 1elect onolher operalor i/ needed 
I I 1. Using lhe /tc•rislics -see lhe note klow-
1 I • Operalor- SELECT-OIE(Operotors) 
I I X Slep 5.3 : Retroei lhe •elecled operalor from lhe candidate operalors 
I I • Operolors - Operolors\Operalor 
I I X Step 5 . ./ : Step /or111ard in lhe piora generohon. 
I I • Résultal - GUDATE(pre.,,<•••l, Operotor , K U posto,crooor) 
I • until Ruult ~ FJ.ILUU 
I 1. Step 6 : Rehrn tia e corutructed piara 
I • leturu (Operolor · Result) 
End 

Figure 2: Plall generation procedure 
ln the fourth step only the operators whose preconditions are satisfied, can be con­

sidered as candidates. Also, at tbe second step, any "sterile" operator is rejected by tbe 
procedure. Tbus, we bave tbe following proposition : 

Proposition : Let op{arg) a given operator; 'P the generated plall; K' the augmented 
set of formulae at tbe end of the execution of the GENERATE procedure. Tbe followings 
hold: 

- 'P is valid; 
- (J(' U preop,(or1 ))(U) 

Although, generating only valid plans restricts the choice to select an operator and thus 
pruning the apace states, this remains somehow insuflicient. Thus, we use the function 
SELECT-ONE at step 5.2. This function is based on heurística such as to find an order, 
eventually parti ai, over the set of the candidate operators and to select tbe "best" operator 
wbich must be considered. 

Generally, heuristics strongly depend on the activity at hand and more precisely on 
the kind of the considered operators. ln our case, where the operators concern Ada units 
compilation, the ordering of the calldidate operators is made by successive refinements 
using the following heuristics: 

H1 First, classify operators that have the signature SPEClFlCATlON-UNIT .... COM-
PILED-SPEClFlCATlON, then those with the signature BODY-UNlT .... COM-
PILED-BODY and finally tbose witb the signature SUB-UNIT .... COMPILED­
SUBUNIT. 

This heuristic allows global and partia) ordering. Tben, in each group of operators. 
we apply the following heuristic. 
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H2 Let us consider the operators opit ( ak,) and oph ( ak,) which bave the sarne signature, 
we dassify opj1 (ak,) firstly if : 

- 3u such that (K U u(preo,;(•••I))(U), 
- card(u(pre.,;(•••l) n po.st.,,( •• ,,) > card(u(pre.,,(org)) n po.st.,,( •• ,,) 

where u is a substitution on the free variables in the initial operator. Intuitively, 
this heuristic captures the following cri teria: in the case of two given operators, we 
prefer to try, at the first time, the operator whose postconditions could contribute 
more to reaching the initial goal; that is, to satisfy the preconditions of the initial 
operator. 

6 Architecture of the UPSSA tool 

ln this section, we just describe an outline of the architecture of UPSSA tool which is 
written in Le-lisp. The knowledge base contains three kinds of knowledge. The objecta ll.lld 
the operators together with the pre-postconditions constitute the basic lcnowledge. The 
parametric lcnowledge which contains the strategies and the heurística set. The main data 
structure is a bierarchy of frames. Figure 3 gives an example of two frames representing 
an operator ll.lld a heuristic. 

ldetraae 
I :Operator:Compile :SpecificationUnit (x) 
(I :Precondition:SpecificationUnit x) 
(I:Precondition :SpecificationUnit y) 
(I:Precondition :Uae y) 

(I :Add:Liat 
((I:Pred:SpecificationUnit x) 
(I :Pred:IaCoapiledSpecification y)) 

) 
(I :Oelete:List () ) 

) 

ldetraae 

) 

I :Heuriatic:Organize• (x y) 
((I:Pred:SpecificationUnit x) 
(I:Pred:BodyUnit y) x) 
((I:Pred:SpecificationUnit y) 
(I :Pred:BodyUnit x) y) 
((I:Pred:BodyUnit x) 
(I:Pred:SubUnit y) x) 

((I :Pred:SpecificationUnit x) 
(I:Pred:SubUnit y) x) 

t·igure 3: An example of a frame representmg an operator and a heunstic. 

Finally the system lcnowledge indudes tbe information about the global state of the 
system itself such a set of trees representing the generated plan. 

The general architecture of the tool is portrayed in Figure 4. Like most knowledge­
based system, it is organized around a knowledge base whicb is composed of the three 
kinds of knowledge listed above and tools that are the inference mechanism and lhe man­
machine interface. Three modules form the in/erence mechanism. The generator module 
which is in charge of the generation of plans. The second module, called interpreter, is 
in charge of the interpretation of the end-user commands. This module invalidates the 
operator effect when the knowledge base become unsafe. Finally the third module, called 
interface, enables the access to the knowledge base and the communication with the man­
machine interface tool. This last tool is composed of two modules. The managing module 
is in charge of the interaction with the end-user (the developer) . The updating module 
enables tbe accessing and the updating of tbe knowledge base and also it trll.llsmits the 
developer queries to the inference mechanism. 
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Figure 4: Architecture of the UPSSA too! 

7 Conclusion 

ln this paper we bave argued tbe need for software process and assistance modelling 
as ao integra.ted pa.rt of a. software engineering environment. Tbis environment, ca.lled 
process-driven environment, provides a.utoma.ted support for software work based on a 
process model that controls some of the functionna.lity of the environment. The expected 
benefits of software process and assistance modelling are improvements in productivity 
and improvements in quality o{ the products. We discussed the objectives, requirements, 
and concepts for software process modelling, i.e., for capturing, describing, and using 
the variety of knowledge needed to build ao advanced software engintering environment 
logistics framework fitted with assistance capabilities. 

Beyond experimenta.tions of the UPSSA tool to other activities, severa! extensions of 
this work can be mentioned. For exarnple, in the formalisation of tbe knowledge (e.g., 
types, conatants and operators), we have adopted a systematic way; tbus, a (partia.!) 
mechanization of this forma.lization step is possible. Another example, let us consider 
the pre-postconditions expressed by the typed first order predicate calculus language. 
Within this formal framework and using formal techniques, it could be possible to prove 
some properties as the consistency. Finally, the enhancement task of the operator pre­
postconditions by the characteristics is currently made manua.lly. Once again, it could be 
possible to make use of transformationa.l technics to (partially) mechanize these enhance· 
ment task. 

Further, considering the variety of things to be described,like object structures, avail­
able tools, various relationships among objects, and policies induced by the tools or by a 
software development metbod, conventional database technology seems to be inadequate 
for software engineering needs and particularly for software process and assistance mod­
elling ln this framework, a "multiparadigm" model which incorpora.tes botb philosophies 
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of sema.ntic data model and object-oriented systems seems a better support to software 
environment needs. 
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