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Abstract

Soltware development is always under the pressure of time and budget constraints before
release, A good testing strategy should not only be effective and economical but also incre-
mental. Although mutation testing has been empirically found to be effective in detecting
faults, it remains unused for reasons of economics. A major obstacle to the use of mutation
testing is its high computational cost. In this paper we report results from experiments de-
signed to investigate six different constrained mutation mechanisms. Our data indicate that
these alternatives not only reduce the cost of mutation significantly in terms of the number of
test cases required and the number of mutants to be examined, but also maintain very good
fault detection effectiveness. Effects of incremental mutation testing examining different sets
of mutants are also discussed. Furthermore, our experiments are unique in that constrained
mutation was performed directly on C programs. This eliminates the possible bias experi-
enced by earlier mutation studies because of the programming language translation between
the Fortran, Pascal, and C.
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1 Introduction

Software testing involves a cycle of generating test cases, observing program behavior, deter-
mining a failure, debugging the program, and removing faults. This process is always under the
pressure of time and budget constraints. Not only must software be released to meet the market
demand, but it also has to be properly tested to assure its quality. For a given software P, the
following questions have to be answered: How is a test set T for P generated 7 Mow good is T
in detecting faults in P7 Should testing on P be stopped after applying T 7 and How can T be
improved 7
A good testing strategy should not only be effective and economical but also incremental.
In other words. it should have a strong capability to detect faults, not be too expensive to use,
and it should provide a flexible mechanism to “work around” under different constraints. If the
relative cost-benefit of satisfving criteria Cy and C; is known, then one may begin by using a
criterion with a lower ratio of cost to benefit. Project economics permitting, after the criterion
with the best cost-benefit has been satisfied. one may decide to use other criteria.
Although mutation testing has been empirically found to be very effective amoung the many
testing techniques studied in the past decade in detecting faults [5, 10. 21}. it remains unused for
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economic reasons. The major obstacle to the use of mutation testing is its high compntational
cost. Since a significant portion of this cost is incurred in generating, compiling and executing
mutants against one or more test cases. this cost can be lowered significantly by reducing the
number of mutants considered while testing a program. In addition to reducing the compu-
tational cost. this approach also leads to fewer mutants to be manually examined by testers
to determine equivalence. This improvement appears to be more significant when the software
under test hecomes more and more complicated. One way to reduce the number of mutants is
to use constrained mutation [15, 22]. In constrained mutation the mutant generation process
is constrained by fixing the mutant types to be generated. Only mutants of selected types are
generated and examined. All other mutants are ignored.

On the other hand, different algorithms were proposed to reduce the time to execute all mu-
tants on a parallel [12] or a sequential [18] machine. These algorithms either suffer a conversion
hetween different operating environments or extra memory requirement to store the program
state, which limits their usability. In either of the above cases, the number of mutants generated
remains the same; it is the time to execute the mutants that is targeted for reduction. Though
any reduction in testing time is welcome. it does not reduce the number of mutants that need
to be identified as equivalent. Therefore, neither of them provides any improvement in reducing
luman effort in identifying equivalent mutants. In summary, these algorithms do not reduce
the number of mutants to be examined or identified as equivalent; they only reduce the mutant
execution time, whereas all three of them are reduced in our approach.

In this paper. we examine six different constrained mutation criteria. Details of these criteria
are discussed in Section 2.3. For these criteria, we ask the following questions: What are their
costs and and lhow effective is their fault detection 7 What is the additional cost-benefit of using
another constrained mutation with more mutants to examine after a constrained mutation with
fewer mutants to examine has been satisfied 7 Cost is measured in terms of the number of test
cases required to satisfy a criterion and the number of mutants that need to be examined. Fault
detection effectiveness is measured in terms of the percentage of adequate test sets with respect
to a given criterion which detects at least one fault in the software under test. One unique
characteristic of our experiments is that the constrained mutation was performed directly on C
programs. This eliminates the possible bias experienced by earlier mutation studies because of
the programming language translation between the Fortran, Pascal, and C.

The remainder of this paper is organized as follows. Section 2 provides an overview of muta-
tion based adequacy criteria. Section 3 explains how we compared the cost and fault detection
effectiveness of various test adequacy criteria. The experimental methodology is described in
Section 4. Data collected from experiments and its analysis appear in Section 5. Our conclusions
appear in Section 6.

2 An overview of mutation based testing

Details of mutation based testing can be found in [10, 14]. Below we present only the information
required for an understanding of the remaining sections. Let P denote a program under test. D
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is the set of all possible test cases in the input domain of P. A test case { is a sequence of inputs
that is input to P during one execution of P. T is a set of one or more test cases on which P is
executed during testing.

Let m be a syntacticallv correct program obtained by making a syntactic change in P; m is
known as a mutant of P. Let r be a rule according to which P is changed; r is also known as a
mulant operator. There could potentially be an infinite number of mutant operators. llowever,
to keep mutation testing within reasonable bounds, the set of mutaut operators is kept small
and consists of simple mutant operators (6. 8. Consider, for example. a mutant operator that
generates two mutants of P by replacing a use of z by z + 1 and = — 1. When applied to a
program containing the assignment statement z := z + y, this mutant operator will generate
two mutants of P, one obtained by replacing this assignment by z := = + 1 + y and the other
by replacing this assignment by z:=z ~ 1+ y.

The application of a set of mutant operators R to P results in a set of mutants my,mj, ....my,
n > 0. Mutant m; is considered equivalent to P if for all t € D, P(t) = m;(t). When executed
against a test case t, mutant m; is considered distinguished from P if P(t) # m;(t). Unless
distinguished. a non-equivalent mutant is considered live. One can obtain a variety ol mutation
based criteria by varying R. A test set T may be evaluated against the mutation criterion by
executing each mutant against elements of T. The ratio of the number of mutants distinguished
to the number of non-equivalent mutants is the mutation score of T for P. T is considered
adequate with respect to a mutation criterion if the mutation score is the unity.

2.1 Random sampling mechanism

Several ways have been proposed to reduce the number of mutants to consider while testing a
program. Acree [1], Sayward and Budd [4] examined the idea of using only a small randomly
selected subset of all possible mutants generated in Mothra [6, 9]). Both of their experiments
showed that a test set that is adequate with respect to randomly selected 10% of all mutants in
Mothra is over 99% adequate with respect to these mutants. However, selecting mutants ran-
domly ignores the fault detection capability of individual mutant types. Budd's fault detection
experiments found that mutants generated with respect to one mutaut operator may be more
effective in detecting certain types of faults than mutants generated with respect to another op-
erator. This suggests that while mutants are selected for examination. they should be weighted
differently depending on their respective fault detection capability.

2.2 Comparisons of two selection mechanisms used in constrained mutation

A variant of Budd’s and Acree's idea was proposed and termed constrained mutation [13]. In
constrained mutation only mutants of selected types are generated and examined. All other
wutants are ignored. Oue advantage of this approach is that it does not require the generation
of all mutants prior to sampling. Based on this mechanism. Wong and Mathur [15. 21, 22]
conducted experiments to investigate the cost-benefit of the abs/ror constrained mutation'.

"The abs mutant operator generates by replacing each use of = by abs(r), —abs(z), and pushir)
wherever possible. The ror mutant operator generates inutants by replacing each relational operator by other
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Their data show that use of abs/ror mutation. compared to mutation®, leads to at least an 80%
reduction in the number of mutants to be examined and a 40% to 58% reduction in the number
of test cases needed for adequacy. Such gain is accompanied by a loss of less than 5% in the
ability to distinguish non-equivalent mutants and cover feasible all-uses.

This idea of the constrained mutation discussed above. renamed as selective mutation. was
also investigated by Offutt [17). In his experiments. mutant operators such as the one which
generates mutants by replacing one scalar variable by another scalar variable were excluded
because these operators are responsible for a large percentage of a program’s mutants. The
major difference between Wong and Mathur’s constrained mutation and Offutt’s mechanism is
that they select mutant operators based on their significance in fault detection, whereas Offutt
excludes mutant operators based on their number of mutants. Offutt’s results show that at most
a 60% reduction in the number of mutants to be examined leads to a 99% mutation score. No
data on the loss of all-uses coverage were reported by him.

2.3 Mutant operators selected in our experiments

One significant issue that arises while using constrained mutation is how to select an effective
small set of mutant operators. A good selection should not only reduce the execution cost
dramatically but also maintain very good fault detection effectiveness. Among the seventy-one
mutant operators used in PROTEUM [8), eleven of them were selected in our experiments. The
rationale for selecting these mutant operators is enumerated below. Examples of these mutants
appear in the appendix.

¢ vdtr and viwd mutants:

To distinguish vdtr mutants, a positive, a negative, and a zero value are necessary for the
mutated expression when execution reaches that point. This requirement forces a tester
to select test cases from different parts of the input domain. Similarly. distinguishing vtwd
mutants forces a tester to select test cases from nearby parts of the input domain of each

scalar reference. Test cases so generated may possibly make the programn fail if faults exist.
Note that Acree (1] also investigated a similar mutant operator like vdtr.

-

orrn olln, olng, and ocng mutants:

When these mutant operators are applied to a program, mutants are generated at all points
where a relational or a logical operator can be replaced by its alternatives or its negation.
respectively. Distinguishing these mutants forces a tester to construct test cases which
examine points on or near a predicate border. Such a process has been shown [3. 4. 7)

to be effective in exposing certain types of faults such as the domain faults defined by
Howden [11].

relational operators. In addition. it also replaces each condition consisting of at least one relational operator by
the boolean constants trus and false.
*The mutation criterion referred here is defined with respect to the set of 22 mutant operators nsed in Mothra.
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¢ orin, olrn. olan. and oaln mutants:

Wiien these mutant operators are applied to a program. mutants are generated at all points
where a logical operator can be replaced by a relational or an arithmetic operator and vice
versa. Distinguishing these mutants helps a tester to review the logic of the program under
test.

 strp mutants:

Distinguishing these mutants forces a tester to construct test cases which cover every
executable statement in the program under test.

2.4 Uniqueness of experiments reported here

One major problem which occurred in the previous mutation studies was that the mutation
tool Mothra only accepts Fortran programs. It was not unusual for experimenters to spend
substantial effort and care in translating programs from a language such as C or Pascal to
Fortran before any mutation experiments could be performed. Such translation might pose a
danger of making some mutants unique to the Fortran 77 version. for they cannot be generated
from the corresponding C or Pascal version of the same program. The reason for conducting
such translation is that none of the current available data flow testing tools accepts Fortran
programs. Although it has been shown that the effect of using different languages is negligible
on the conclusions derived in the above studies [16], it is certainly desirable to avoid any language
translation in the experiments. We consider our experiments reported here unique in that all
constrained mutation was performed directly on C programs using PROTEUNM (8], a C mutation
tool implemented based on [2]. This has the advantage of eliminating any possible bias described
above. 3

3 Comparison methodology

We compared the cost and effectiveness of adequate test sets with respect to various constrained
mutation criteria. Effectiveness refers to the fault detection capability of a criterion. Cost refers
to the work necessary to satisfy it. The cost of mutation testing can be measured in several ways.
We selected two cost metrics. One is the number of test cases required to satisfy a criterion.
As construction of each test case requires effort from a test case developer. this appears to be
a reasonable cost metric. The second metric is the number of mutants to be examined. As
mutants are to be executed on one or more test cases, a reduction in the number of mutants
leads to a reduction in the time to execute them. It is also likely to result in a reduction in the
time spent by a tester in examining mutants for possible equivalence.

Given a program P. a specification 5. and a test set T adequate with respect to a criterion
(', T is said to be able to expose faults in P if there exists a test case { € T which makes
P behave differently from 5. As long as T detects at least one fault in P, T is counted as a
fault-revealing test set. Equation (1), defined below, is used to compute the percentage of ('
fault-revealing adequate test sets.
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Table 1: Constrained mutations examined in our experiments

Mutants examined

=

HUT-A || olln. olng, orrn

MUT-B || olln, olng, orrn, ocng, orin, olrn, olan, oaln
HUT-C || vdir, viwd

sl
MUT-E TE oiuz, orrn, vdlr, viwd
WUT-F || olln. olng, orrn, vdir, viwd, sirp

number of C adequate test sets which expose at least one fault
number of C’ adequate test sets generated

» 100% (1)

4 Experimental methodology

We used a (' mutation testing tool. PROTEUM. in our experiments. Given a program and a test
set, PROTEUM generates a set of mutants, executes them against test cases in the test set, and
computes the mutation score. A suite of five programs described below was selected. A source
listing of each of these programs and their faults can be found in [20].

# FIND: This program takes two inputs. an array a and an index f, and permutes the
elements of a so that elements to the right of position f are greater than or equal to a[f]
and elements to the left of position f are less than or equal to a[f].

e POSITION: This program takes two inputs, an array a and a value mar, and sums the
elements of a until the sum meets or exceeds maz. If such an element exists, its position
is returned, otherwise a zero is returned.

® SORT: This program takes an array and sorts it in descending order.
¢ STAT: This program takes an array a and computes its sum, minimum. and maximum.

o STRMATCH: This program takes a text and a pattern of zero or more characters. If the
pattern appears in the text then the position of the first occurrence of the pattern in the
text is returned. otherwise a zero is returned.

Six different constrained mutations are examined based on the mutants discussed in Sec-
tion 2.3. These mutations were labeled as indicated in Table 1 for reference. Three adequate
test sets with respect to each constrained mutation criterion were randomly generated for each
experiment listed in Table 2. Figure 1 shows the sequence of steps used in such generation.
Multiple adequate test sets are necessary because for a given adequacy criterion there may exist
an infinite number of test sets that satisfy it: selecting only one of these may possibly lead to
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false conclusions. Such a possibility can be reduced by generating multiple test sets with respect
to each criterion. All test cases were randomly selected. based on the uniform distribution unless
otherwise specified®. from the input domain described in Table 2. Such random generation is
intended to eliminate any bias possibly introduced il human testers are used. This may hap-
pen. for example, when the testers are familiar with the programs used in the experiments and
therefore generate test cases that favor one type of mutant over another. During the generation
of various mutation adequate test sets, a test case was discarded if it could not distinguish at
least one non-equivalent mutant. This requirement is intended to make a fair comparison among
different criteria. In the absence of this requirement the fault detection effectiveness of a test set
could be increased simply by including additional test cases. Note that our generation method
only guarantees that each consequent test case is not redundant in terms of distinguishing mu-
tants. It does not re-examine whether the previous test cases are still necessary. Once a test
case is included in a test set, it will not be excluded due to the inclusion of any new test cases.

5 Experimental results and analysis

Table 3 lists the number of mutants examined in each constrained mutation. Tables 4 and 5

contain the average size of adequate test sets and the percentage of fault-revealing adequate test
sets with respect to each constrained mutation.

Cost comparison
From our experimental data and the summary in Tables 3 and 4, we make the following obser-

valious:

¢ In terms of increasing order of the number of mutants to be examined the ranking is
MUT-D, MUT-A, MUT-B, MUT-C, MUT-E, MUT-F.*

« For all ten experiments, criterion MUT-D requires the fewest number of test cases.

* In nine of ten experiments. criterion MUT-A requires the second fewest number of test
cases.”

¢ Criteria MUT-C, MUT-E and MUT-F require about the same number of test cases which
are, in general with some exceptions, more than criterion MUT-B.

Effectiveness comparison

From our experimental data and the summary in Table 5. we make the following observations:

*In EXPT-STRM1, STRM2. and STRM3, the probability of selecting o, b, and # is 5:5: 1.

*The only ption occurs in program SORT which has MUT-A, MUT-D. MUT-B. MUT-C, MUT-E. MUT-F.
in order.

“I'he only e i in experiment STRM3,

Ly

a4
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Table 2: Experiment sets

Experiment || Program luput dowain!

FIND FIND e =5 < array size < 10

e —10 < array element < 100
 if array size > 0

then | € index < array size
else =3 < index < 2

POS1 POSITION ||  array size=5
® =5 < array element < 10
emax € {z|z=5o0r 35 < z < 55)

POS2 POSITION || o array size=5
® array element € {0,1,2,3,4,5,6,-5,8)
o max € {-5,0,1,4,8]

SORTI SORT * —1 < array size < 10

o =10 < array element < 100
SORT2 "SORT * =1 < array size <3

* —2 < array element < 2
STAT1 STAT * array site=h

e =20 < array element < 20
[ STAT2 “STAT * array size=H

* =20 < array element < 8
STRNL STRNATCH || » 0 < text length < 16

* 0 € pattern length <6
o text element € {a,b, #)
® pattern element € {a,b, #)

STRN2 STRMATCH || » 0 < text length < 12
« 0 < pattern length < 4
o text element € {a,b, #)
® pattern element € {a,b, #}

TR STRRATER |+ 0 < e length < 11

» 0 < pattern length < 4

o text element € {a.b,#)

o patiern element € {a, b, #)

TAl inputs are integers.


http://www.cvisiontech.com

F

( TTI ]
[ Spectyanmputdomen |

i

Randormiy select & tost case
t trom the Input domain

2

Does 1 distinguish at least one of the

remaining non-squivalent mutants?
r it
| Discard ; O TwmTU(1) |

)

Figure 1: Procedure to generate various constrained mutation adequate test sets.

Table 3: Number of mutants examined

-F:ognm Constrained mutation .

b= [ WUT-A | WUT-B | RUT—C | - <E | WUT-F |
FIND 30 | 80 | 185 [ 99 [ 224 | 201
POSITION | 15 | 28 | 50 | 15 | 6 | 80
SORT 5 30 | 106 | I8 | 120 | 138 |

[ STAT 20 34 | 105 | 15 | 125 | 140
STRMATCH || 24 56 80 16 104 120
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Table 4: Average size of adequate test sets

=Bxperimem Constramed mutation

WUT-A | HOT- %-C NUT-D | NUT-E | NUT-F
FIND ga: 6.67 # v 16.53 l;ﬁ
POS1 3.3 | 500 | 6.93 | 2.00 | 9.00 | 7.00 |
P0S2 .33 | 400 | 7.93 | 1.00 | 7.67 | 1.
SORT1 || 4.00 | 4.00 | 10.33 | 1.33 | 0.67 ;
SORTZ 4.61 | 0.07 | 1000 | 1.3 | 9.33 | 10.00 |
"STAT1 2.00 | 2.67 | 12.33 | 1.00 | 13.00 | 11.00 |
STAT2 2.00 | 2.00 | 10.00 | 1.33 | 11.33 | 11.00
STRN1L 5.00 | 533 | 5.93 | 2.00 | 7.00 | 7.93
STRANZ 5.61 07 | 6.01 | 3.33 | B.67 | 8.00 |
STRN3 793 | 1 6.00 | 2.3 | 7.00 | 6.67

Table 5: Percentage of fault-revealing adequate test sets

Experiment Constrained mutation

[ WUT-A | HUT-B | NUT-C | NUT-D | NUT-E | NUT-F |
FIND T00 ] 100 | 100 0 100 | 100
[ POS1 100 | 100 | 100 | 93.33 | 100 | 100 |
SORT1 00 100 100 0 100 T00 |
SORT2 100 | 33.33 | 100 0 100 | 100 |
STAT1 86.61 | 00.67 | 100 | 66.67 | 60.67 | 100
STATZ 60,01 | 06.67 | 60.6: | 0 100 | 00.67
STRN1 33.33 | 66.61 | 100 | 066.67 | 100 | 100 |
STRN2 0 0 100 [1] 100 | 100 |
STRN3 100 | 100 | 100 | 100 | 100 | 100
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¢ lu five of ten experiments, criterion MUT-D cannot detect any program fault.

o For experiment STRH2, criteria MUT-A. MUT-B and MUT-D cannot detect any program
fault.

e In four of ten experiments. criteria MUT-A, MUT-B. MUT-C. MUT-E and MUT-F have
the same fault detection effectiveness while criterion MUT-D is significantly less effective,

Effect of input domain

Multiple input domains were used to study their possible effect on fault detection effective-
ness [19]. From our experimental data and the summary in Tables 2, 4 and 5, we find that to
some extent varying the input domains has an impact on the relative order of adequate test set
size and fault detection effectiveness of the six constrained mutation adequacy criteria discussed
here. Iowever. in general. such impact is insignificant in most situations.

6 Conclusions

We conducted experiments to compare the cost and fault detection effectiveness of six con-
strained mutation adequacy criteria. Data collected during experimentation have shown that
criterion MUT-D is the least expensive in terms of the number of mutants examined and the
number of test cases required. but it is also the least effective in exposing program faults. On the
other hand, criteria MUT-A and MUT-B are, in general, less expensive but still as effective as
criteria MUT-C, MUT-E, and MUT-F. Therefore, a good testing strategy is to adopt an incre-
mental approach by first constructing test sets adequate with respect to the more cost-effective
criteria such as MUT-A and MUT-B. Time and budget permitting, we may then improve test
sets to satisfly other less cost-effective criteria such as MUT-C, MUT-E, and MUT-F.

We are currently conducting similar experiments on larger size C programs. Results of these
studies will further strengthen the hypothesis that examining only a small carefully selected set
of mutants may be a useful starting point for evaluating and constructing test sets.
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Appendix: Mutant operators used in the experiments

Operator | Meaning

F.xamulul

OLLN logical operntor replacement (a>h) || (e <d) — (a>h) &L (c < d)
OLNG | Togieal negation (a>b)|[(r<d)—(a>h) || Ye<d)
Ha>b) |l (e <d)
Mo > b) | (e < d))
ORRN relational operator roplacomont |a > bh— a2 b
a<h
agh
n==h
, al = h
_ﬁ:nr_: h!irnl conlext wegation a>h— a>bh)
ORLN relntionnl operator for logical | @ > b — a L& b
operalor replicement allh
OLRN logieal operator for relational a>hlle<d—a>h
aperalor replicement azh
a<h
agh
ammh
ale=b
OLAN logical operator for arithmetic |a>b|le<d — a4 b
operator replscement = b
as b
afb
a%b
OALN arithmetic operator for logienl [ e+ 0 — a &b
opernior replacoment allb
VDTR | dowain trap s — TRAP.ON.POSITIV F(s)
TRAP.ON_NFEGATIVE(s)
TRAP.ON_ZFERO(x)
VTWD | twiddling sl — SUCC(w)
PRED(«)
| STRP statement nnalysis Foach statement is replaced by TRAP.ONSTAT() |

Ve — g wonnn Uhnt string = in P is replaced by string g to obtain n nmtant,
& represents o wenlar reference,
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