Constrained Mutation in C programs*

W. Eric Wong. José C'. Maldonado. Marcio E. Delamaro. and Aditya P. Mathur
{ewong®hns.com. {jemaldon, med}Gicmsc.sc.usp.br, apmdcs.purdue.edu})

Abstract

Soltware development is always under the pressure of time and budget constraints before
release, A good testing strategy should not only be effective and economical but also incre-
mental. Although mutation testing has been empirically found to be effective in detecting
faults, it remains unused for reasons of economics. A major obstacle to the use of mutation
testing is its high computational cost. In this paper we report results from experiments de-
signed to investigate six different constrained mutation mechanisms. Our data indicate that
these alternatives not only reduce the cost of mutation significantly in terms of the number of
test cases required and the number of mutants to be examined, but also maintain very good
fault detection effectiveness. Effects of incremental mutation testing examining different sets
of mutants are also discussed. Furthermore, our experiments are unique in that constrained
mutation was performed directly on C programs. This eliminates the possible bias experi-
enced by earlier mutation studies because of the programming language translation between
the Fortran, Pascal, and C.

Keywords: Mutation. constrained mutation, fault detection effectiveness

1 Introduction

Software testing involves a cycle of generating test cases, observing program behavior, deter-
mining a failure, debugging the program, and removing faults. This process is always under the
pressure of time and budget constraints. Not only must software be released to meet the market
demand, but it also has to be properly tested to assure its quality. For a given software P, the
following questions have to be answered: How is a test set T for P generated 7 Mow good is T
in detecting faults in P7 Should testing on P be stopped after applying T 7 and How can T be
improved 7
A good testing strategy should not only be effective and economical but also incremental.
In other words. it should have a strong capability to detect faults, not be too expensive to use,
and it should provide a flexible mechanism to “work around” under different constraints. If the
relative cost-benefit of satisfving criteria Cy and C; is known, then one may begin by using a
criterion with a lower ratio of cost to benefit. Project economics permitting, after the criterion
with the best cost-benefit has been satisfied. one may decide to use other criteria.
Although mutation testing has been empirically found to be very effective amoung the many
testing techniques studied in the past decade in detecting faults [5, 10. 21}. it remains unused for
* W. Eric Wong is with the Departinent of Software Technology. Hughes N k Sy Ger MD
20876. USA. José C. Maldonado and Marcio E. Delamaro are with Software Engineering Laboratory. Departinent

of Computer Science and Statistics. University of Sio Paulo. 13560-970. Sio Carlos, Brazil. Aditya P. Mathur is
with the Dep of Comp Science, Purdue University, W. Lafayette, IN 47907. USA.

http://www.cvisiontech.com

economic reasons. The major obstacle to the use of mutation testing is its high compntational
cost. Since a significant portion of this cost is incurred in generating, compiling and executing
mutants against one or more test cases. this cost can be lowered significantly by reducing the
number of mutants considered while testing a program. In addition to reducing the compu-
tational cost. this approach also leads to fewer mutants to be manually examined by testers
to determine equivalence. This improvement appears to be more significant when the software
under test hecomes more and more complicated. One way to reduce the number of mutants is
to use constrained mutation [15, 22]. In constrained mutation the mutant generation process
is constrained by fixing the mutant types to be generated. Only mutants of selected types are
generated and examined. All other mutants are ignored.

On the other hand, different algorithms were proposed to reduce the time to execute all mu-
tants on a parallel [12] or a sequential [18] machine. These algorithms either suffer a conversion
hetween different operating environments or extra memory requirement to store the program
state, which limits their usability. In either of the above cases, the number of mutants generated
remains the same; it is the time to execute the mutants that is targeted for reduction. Though
any reduction in testing time is welcome. it does not reduce the number of mutants that need
to be identified as equivalent. Therefore, neither of them provides any improvement in reducing
luman effort in identifying equivalent mutants. In summary, these algorithms do not reduce
the number of mutants to be examined or identified as equivalent; they only reduce the mutant
execution time, whereas all three of them are reduced in our approach.

In this paper. we examine six different constrained mutation criteria. Details of these criteria
are discussed in Section 2.3. For these criteria, we ask the following questions: What are their
costs and and lhow effective is their fault detection 7 What is the additional cost-benefit of using
another constrained mutation with more mutants to examine after a constrained mutation with
fewer mutants to examine has been satisfied 7 Cost is measured in terms of the number of test
cases required to satisfy a criterion and the number of mutants that need to be examined. Fault
detection effectiveness is measured in terms of the percentage of adequate test sets with respect
to a given criterion which detects at least one fault in the software under test. One unique
characteristic of our experiments is that the constrained mutation was performed directly on C
programs. This eliminates the possible bias experienced by earlier mutation studies because of
the programming language translation between the Fortran, Pascal, and C.

The remainder of this paper is organized as follows. Section 2 provides an overview of muta-
tion based adequacy criteria. Section 3 explains how we compared the cost and fault detection
effectiveness of various test adequacy criteria. The experimental methodology is described in
Section 4. Data collected from experiments and its analysis appear in Section 5. Our conclusions
appear in Section 6.

2 An overview of mutation based testing

Details of mutation based testing can be found in [10, 14]. Below we present only the information
required for an understanding of the remaining sections. Let P denote a program under test. D

http://www.cvisiontech.com

is the set of all possible test cases in the input domain of P. A test case { is a sequence of inputs
that is input to P during one execution of P. T is a set of one or more test cases on which P is
executed during testing.

Let m be a syntacticallv correct program obtained by making a syntactic change in P; m is
known as a mutant of P. Let r be a rule according to which P is changed; r is also known as a
mulant operator. There could potentially be an infinite number of mutant operators. llowever,
to keep mutation testing within reasonable bounds, the set of mutaut operators is kept small
and consists of simple mutant operators (6. 8. Consider, for example. a mutant operator that
generates two mutants of P by replacing a use of z by z + 1 and = — 1. When applied to a
program containing the assignment statement z := z + y, this mutant operator will generate
two mutants of P, one obtained by replacing this assignment by z := = + 1 + y and the other
by replacing this assignment by z:=z ~ 1+ y.

The application of a set of mutant operators R to P results in a set of mutants my,mj,my,
n > 0. Mutant m; is considered equivalent to P if for all t € D, P(t) = m;(t). When executed
against a test case t, mutant m; is considered distinguished from P if P(t) # m;(t). Unless
distinguished. a non-equivalent mutant is considered live. One can obtain a variety ol mutation
based criteria by varying R. A test set T may be evaluated against the mutation criterion by
executing each mutant against elements of T. The ratio of the number of mutants distinguished
to the number of non-equivalent mutants is the mutation score of T for P. T is considered
adequate with respect to a mutation criterion if the mutation score is the unity.

2.1 Random sampling mechanism

Several ways have been proposed to reduce the number of mutants to consider while testing a
program. Acree [1], Sayward and Budd [4] examined the idea of using only a small randomly
selected subset of all possible mutants generated in Mothra [6, 9]). Both of their experiments
showed that a test set that is adequate with respect to randomly selected 10% of all mutants in
Mothra is over 99% adequate with respect to these mutants. However, selecting mutants ran-
domly ignores the fault detection capability of individual mutant types. Budd's fault detection
experiments found that mutants generated with respect to one mutaut operator may be more
effective in detecting certain types of faults than mutants generated with respect to another op-
erator. This suggests that while mutants are selected for examination. they should be weighted
differently depending on their respective fault detection capability.

2.2 Comparisons of two selection mechanisms used in constrained mutation

A variant of Budd’s and Acree's idea was proposed and termed constrained mutation [13]. In
constrained mutation only mutants of selected types are generated and examined. All other
wutants are ignored. Oue advantage of this approach is that it does not require the generation
of all mutants prior to sampling. Based on this mechanism. Wong and Mathur [15. 21, 22]
conducted experiments to investigate the cost-benefit of the abs/ror constrained mutation'.

"The abs mutant operator generates by replacing each use of = by abs(r), —abs(z), and pushir)
wherever possible. The ror mutant operator generates inutants by replacing each relational operator by other

http://www.cvisiontech.com

Their data show that use of abs/ror mutation. compared to mutation®, leads to at least an 80%
reduction in the number of mutants to be examined and a 40% to 58% reduction in the number
of test cases needed for adequacy. Such gain is accompanied by a loss of less than 5% in the
ability to distinguish non-equivalent mutants and cover feasible all-uses.

This idea of the constrained mutation discussed above. renamed as selective mutation. was
also investigated by Offutt [17). In his experiments. mutant operators such as the one which
generates mutants by replacing one scalar variable by another scalar variable were excluded
because these operators are responsible for a large percentage of a program’s mutants. The
major difference between Wong and Mathur’s constrained mutation and Offutt’s mechanism is
that they select mutant operators based on their significance in fault detection, whereas Offutt
excludes mutant operators based on their number of mutants. Offutt’s results show that at most
a 60% reduction in the number of mutants to be examined leads to a 99% mutation score. No
data on the loss of all-uses coverage were reported by him.

2.3 Mutant operators selected in our experiments

One significant issue that arises while using constrained mutation is how to select an effective
small set of mutant operators. A good selection should not only reduce the execution cost
dramatically but also maintain very good fault detection effectiveness. Among the seventy-one
mutant operators used in PROTEUM [8), eleven of them were selected in our experiments. The
rationale for selecting these mutant operators is enumerated below. Examples of these mutants
appear in the appendix.

¢ vdtr and viwd mutants:

To distinguish vdtr mutants, a positive, a negative, and a zero value are necessary for the
mutated expression when execution reaches that point. This requirement forces a tester
to select test cases from different parts of the input domain. Similarly. distinguishing vtwd
mutants forces a tester to select test cases from nearby parts of the input domain of each

scalar reference. Test cases so generated may possibly make the programn fail if faults exist.
Note that Acree (1] also investigated a similar mutant operator like vdtr.

-

orrn olln, olng, and ocng mutants:

When these mutant operators are applied to a program, mutants are generated at all points
where a relational or a logical operator can be replaced by its alternatives or its negation.
respectively. Distinguishing these mutants forces a tester to construct test cases which
examine points on or near a predicate border. Such a process has been shown [3. 4. 7)

to be effective in exposing certain types of faults such as the domain faults defined by
Howden [11].

relational operators. In addition. it also replaces each condition consisting of at least one relational operator by
the boolean constants trus and false.
*The mutation criterion referred here is defined with respect to the set of 22 mutant operators nsed in Mothra.

442

http://www.cvisiontech.com

¢ orin, olrn. olan. and oaln mutants:

Wiien these mutant operators are applied to a program. mutants are generated at all points
where a logical operator can be replaced by a relational or an arithmetic operator and vice
versa. Distinguishing these mutants helps a tester to review the logic of the program under
test.

 strp mutants:

Distinguishing these mutants forces a tester to construct test cases which cover every
executable statement in the program under test.

2.4 Uniqueness of experiments reported here

One major problem which occurred in the previous mutation studies was that the mutation
tool Mothra only accepts Fortran programs. It was not unusual for experimenters to spend
substantial effort and care in translating programs from a language such as C or Pascal to
Fortran before any mutation experiments could be performed. Such translation might pose a
danger of making some mutants unique to the Fortran 77 version. for they cannot be generated
from the corresponding C or Pascal version of the same program. The reason for conducting
such translation is that none of the current available data flow testing tools accepts Fortran
programs. Although it has been shown that the effect of using different languages is negligible
on the conclusions derived in the above studies [16], it is certainly desirable to avoid any language
translation in the experiments. We consider our experiments reported here unique in that all
constrained mutation was performed directly on C programs using PROTEUNM (8], a C mutation
tool implemented based on [2]. This has the advantage of eliminating any possible bias described
above. 3

3 Comparison methodology

We compared the cost and effectiveness of adequate test sets with respect to various constrained
mutation criteria. Effectiveness refers to the fault detection capability of a criterion. Cost refers
to the work necessary to satisfy it. The cost of mutation testing can be measured in several ways.
We selected two cost metrics. One is the number of test cases required to satisfy a criterion.
As construction of each test case requires effort from a test case developer. this appears to be
a reasonable cost metric. The second metric is the number of mutants to be examined. As
mutants are to be executed on one or more test cases, a reduction in the number of mutants
leads to a reduction in the time to execute them. It is also likely to result in a reduction in the
time spent by a tester in examining mutants for possible equivalence.

Given a program P. a specification 5. and a test set T adequate with respect to a criterion
(', T is said to be able to expose faults in P if there exists a test case { € T which makes
P behave differently from 5. As long as T detects at least one fault in P, T is counted as a
fault-revealing test set. Equation (1), defined below, is used to compute the percentage of ('
fault-revealing adequate test sets.

443

http://www.cvisiontech.com

Table 1: Constrained mutations examined in our experiments

Mutants examined

=

HUT-A || olln. olng, orrn

MUT-B || olln, olng, orrn, ocng, orin, olrn, olan, oaln
HUT-C || vdir, viwd

sl
MUT-E TE oiuz, orrn, vdlr, viwd
WUT-F || olln. olng, orrn, vdir, viwd, sirp

number of C adequate test sets which expose at least one fault
number of C’ adequate test sets generated

» 100% (1)

4 Experimental methodology

We used a (' mutation testing tool. PROTEUM. in our experiments. Given a program and a test
set, PROTEUM generates a set of mutants, executes them against test cases in the test set, and
computes the mutation score. A suite of five programs described below was selected. A source
listing of each of these programs and their faults can be found in [20].

FIND: This program takes two inputs. an array a and an index f, and permutes the
elements of a so that elements to the right of position f are greater than or equal to a[f]
and elements to the left of position f are less than or equal to a[f].

e POSITION: This program takes two inputs, an array a and a value mar, and sums the
elements of a until the sum meets or exceeds maz. If such an element exists, its position
is returned, otherwise a zero is returned.

® SORT: This program takes an array and sorts it in descending order.
¢ STAT: This program takes an array a and computes its sum, minimum. and maximum.

o STRMATCH: This program takes a text and a pattern of zero or more characters. If the
pattern appears in the text then the position of the first occurrence of the pattern in the
text is returned. otherwise a zero is returned.

Six different constrained mutations are examined based on the mutants discussed in Sec-
tion 2.3. These mutations were labeled as indicated in Table 1 for reference. Three adequate
test sets with respect to each constrained mutation criterion were randomly generated for each
experiment listed in Table 2. Figure 1 shows the sequence of steps used in such generation.
Multiple adequate test sets are necessary because for a given adequacy criterion there may exist
an infinite number of test sets that satisfy it: selecting only one of these may possibly lead to

http://www.cvisiontech.com

false conclusions. Such a possibility can be reduced by generating multiple test sets with respect
to each criterion. All test cases were randomly selected. based on the uniform distribution unless
otherwise specified®. from the input domain described in Table 2. Such random generation is
intended to eliminate any bias possibly introduced il human testers are used. This may hap-
pen. for example, when the testers are familiar with the programs used in the experiments and
therefore generate test cases that favor one type of mutant over another. During the generation
of various mutation adequate test sets, a test case was discarded if it could not distinguish at
least one non-equivalent mutant. This requirement is intended to make a fair comparison among
different criteria. In the absence of this requirement the fault detection effectiveness of a test set
could be increased simply by including additional test cases. Note that our generation method
only guarantees that each consequent test case is not redundant in terms of distinguishing mu-
tants. It does not re-examine whether the previous test cases are still necessary. Once a test
case is included in a test set, it will not be excluded due to the inclusion of any new test cases.

5 Experimental results and analysis

Table 3 lists the number of mutants examined in each constrained mutation. Tables 4 and 5

contain the average size of adequate test sets and the percentage of fault-revealing adequate test
sets with respect to each constrained mutation.

Cost comparison
From our experimental data and the summary in Tables 3 and 4, we make the following obser-

valious:

¢ In terms of increasing order of the number of mutants to be examined the ranking is
MUT-D, MUT-A, MUT-B, MUT-C, MUT-E, MUT-F.*

« For all ten experiments, criterion MUT-D requires the fewest number of test cases.

* In nine of ten experiments. criterion MUT-A requires the second fewest number of test
cases.”

¢ Criteria MUT-C, MUT-E and MUT-F require about the same number of test cases which
are, in general with some exceptions, more than criterion MUT-B.

Effectiveness comparison

From our experimental data and the summary in Table 5. we make the following observations:

*In EXPT-STRM1, STRM2. and STRM3, the probability of selecting o, b, and # is 5:5: 1.

*The only ption occurs in program SORT which has MUT-A, MUT-D. MUT-B. MUT-C, MUT-E. MUT-F.
in order.

“I'he only e i in experiment STRM3,

Ly

a4

http://www.cvisiontech.com

Table 2: Experiment sets

Experiment || Program luput dowain!

FIND FIND e =5 < array size < 10

e —10 < array element < 100
 if array size > 0

then | € index < array size
else =3 < index < 2

POS1 POSITION || array size=5
® =5 < array element < 10
emax € {z|z=5o0r 35 < z < 55)

POS2 POSITION || o array size=5
® array element € {0,1,2,3,4,5,6,-5,8)
o max € {-5,0,1,4,8]

SORTI SORT * —1 < array size < 10

o =10 < array element < 100
SORT2 "SORT * =1 < array size <3

* —2 < array element < 2
STAT1 STAT * array site=h

e =20 < array element < 20
[STAT2 “STAT * array size=H

* =20 < array element < 8
STRNL STRNATCH || » 0 < text length < 16

* 0 € pattern length <6
o text element € {a,b, #)
® pattern element € {a,b, #)

STRN2 STRMATCH || » 0 < text length < 12
« 0 < pattern length < 4
o text element € {a,b, #)
® pattern element € {a,b, #}

TR STRRATER |+ 0 < e length < 11

» 0 < pattern length < 4

o text element € {a.b,#)

o patiern element € {a, b, #)

TAl inputs are integers.

http://www.cvisiontech.com

F

(TTI]
[Spectyanmputdomen |

i

Randormiy select & tost case
t trom the Input domain

2

Does 1 distinguish at least one of the

remaining non-squivalent mutants?
r it
| Discard ; O TwmTU(1) |

)

Figure 1: Procedure to generate various constrained mutation adequate test sets.

Table 3: Number of mutants examined

-F:ognm Constrained mutation .

b= [WUT-A | WUT-B | RUT—C | - <E | WUT-F |
FIND 30 | 80 | 185 [99 [224 | 201
POSITION | 15 | 28 | 50 | 15 | 6 | 80
SORT 5 30 | 106 | I8 | 120 | 138 |

[STAT 20 34 | 105 | 15 | 125 | 140
STRMATCH || 24 56 80 16 104 120

447

http://www.cvisiontech.com

Table 4: Average size of adequate test sets

=Bxperimem Constramed mutation

WUT-A | HOT- %-C NUT-D | NUT-E | NUT-F
FIND ga: 6.67 # v 16.53 l;ﬁ
POS1 3.3 | 500 | 6.93 | 2.00 | 9.00 | 7.00 |
P0S2 .33 | 400 | 7.93 | 1.00 | 7.67 | 1.
SORT1 || 4.00 | 4.00 | 10.33 | 1.33 | 0.67 ;
SORTZ 4.61 | 0.07 | 1000 | 1.3 | 9.33 | 10.00 |
"STAT1 2.00 | 2.67 | 12.33 | 1.00 | 13.00 | 11.00 |
STAT2 2.00 | 2.00 | 10.00 | 1.33 | 11.33 | 11.00
STRN1L 5.00 | 533 | 5.93 | 2.00 | 7.00 | 7.93
STRANZ 5.61 07 | 6.01 | 3.33 | B.67 | 8.00 |
STRN3 793 | 1 6.00 | 2.3 | 7.00 | 6.67

Table 5: Percentage of fault-revealing adequate test sets

Experiment Constrained mutation

[WUT-A | HUT-B | NUT-C | NUT-D | NUT-E | NUT-F |
FIND T00] 100 | 100 0 100 | 100
[POS1 100 | 100 | 100 | 93.33 | 100 | 100 |
SORT1 00 100 100 0 100 T00 |
SORT2 100 | 33.33 | 100 0 100 | 100 |
STAT1 86.61 | 00.67 | 100 | 66.67 | 60.67 | 100
STATZ 60,01 | 06.67 | 60.6: | 0 100 | 00.67
STRN1 33.33 | 66.61 | 100 | 066.67 | 100 | 100 |
STRN2 0 0 100 [1] 100 | 100 |
STRN3 100 | 100 | 100 | 100 | 100 | 100

http://www.cvisiontech.com

¢ lu five of ten experiments, criterion MUT-D cannot detect any program fault.

o For experiment STRH2, criteria MUT-A. MUT-B and MUT-D cannot detect any program
fault.

e In four of ten experiments. criteria MUT-A, MUT-B. MUT-C. MUT-E and MUT-F have
the same fault detection effectiveness while criterion MUT-D is significantly less effective,

Effect of input domain

Multiple input domains were used to study their possible effect on fault detection effective-
ness [19]. From our experimental data and the summary in Tables 2, 4 and 5, we find that to
some extent varying the input domains has an impact on the relative order of adequate test set
size and fault detection effectiveness of the six constrained mutation adequacy criteria discussed
here. Iowever. in general. such impact is insignificant in most situations.

6 Conclusions

We conducted experiments to compare the cost and fault detection effectiveness of six con-
strained mutation adequacy criteria. Data collected during experimentation have shown that
criterion MUT-D is the least expensive in terms of the number of mutants examined and the
number of test cases required. but it is also the least effective in exposing program faults. On the
other hand, criteria MUT-A and MUT-B are, in general, less expensive but still as effective as
criteria MUT-C, MUT-E, and MUT-F. Therefore, a good testing strategy is to adopt an incre-
mental approach by first constructing test sets adequate with respect to the more cost-effective
criteria such as MUT-A and MUT-B. Time and budget permitting, we may then improve test
sets to satisfly other less cost-effective criteria such as MUT-C, MUT-E, and MUT-F.

We are currently conducting similar experiments on larger size C programs. Results of these
studies will further strengthen the hypothesis that examining only a small carefully selected set
of mutants may be a useful starting point for evaluating and constructing test sets.

References

[1] A. T. Acree, “On mutation,” PhD thesis, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta. GA. August 1980.

(2] H. Agrawal. R. A. DeMillo. R. Hathaway. Wm. Hsu, W. Hsu, E. W. Krauser. R. J. Martin,
A. P. Mathur, and E. H. Spafford. “Design of mutant operators for the C programming lan-
guage.” Technical Report SERC-TR-41-P, Software Engineering Research Center. Purdue
University, W. Lafayette, IN, March 1989,

(3] R. S. Boyer. B. Elspas. and K. N. Levitt, “SELECT ~ a formal system for testing and
debugging programs by symbolic execution.” Sigplan Notices. 10(6):234-245. June 1975.

http://www.cvisiontech.com

[4] T. A. Budd. “Mutation Analysis of Program Test Data.” PhD thesis. Yale University. New
Haven. CT. May 1980.

(5] T. A. Budd. “Mutation analysis: Ideas. examples. problems and prospect,” in Computer
Program Testing. B. Chandrasekaran and S. Radicchi. Eds. Amsterdam. North Holland.
July 1981,

[6] B.). Choi. R. A. DeMillo, E. W. Krauser, A. P. Mathur. R. J. Martin. A. J. Offutt. H. Pan.
and E. . Spafford. “The Mothra toolset,” in Proceedings of the Twenty-Second Annual
Hawaii International Conference on System Sciences, HI, January 1989.

[7] L. A. Clarke. “A system to generate test data and symbolically execute programs.” IEEE
Trans. on Software Engineering, SE-2(3):215-222, September 1976.

(8] M. E. Delamaro, J. C. Maldonado. M. Jino, and M. Chaim. “PROTEUM: A testing
tool based on mutation analysis,” in Proceedings of the Seventh Brazilian Symposium on
Software Engineering, Rio de Janeiro. Brazil. October 1993.

[9) R. A. DeMillo. D. S. Guindi. K. N. King, W. M. McCracken. and A. J. Offutt, “An extended
overview of the Mothra software testing environment.” in Proceedings of the Second Work-
shop on Software Testing. Verification and Analysis, pp 142-151. Banff. Alberta. Canada,
July 1988.

[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for
the practicing programmer.,” I[EEE Computer. 11(4):34-41, April 1978.

[11] W. E. Howden. “Reliability of the path.analysis testing strategy,” IEEE Trans. on Software
Engineering. SE-2(3):208-214. September 1976.

[12] E. W. Krauser, A. P. Mathur, and V. J. Rego, “High performance software testing on
SIMD machines.” IEEE Trans. on Software Engineering, 17(5):403-423, May 1991.

[13] A. P. Mathur. “Performance, effectiveness, and reliability issues in software testing,” in
Proceedings of the Fifteenth Annual International Computer Software and Applications Con-
ference, pp 604-605, Tokyo, Japan, September 1991.

[14] A. P. Mathur, “Mutation testing,” Encyclopedia of Software Engineering, pp 707-713. 1994,

[15] A. P. Mathur and W. E. Wong, “Evaluation of the cost of alternate mutation testing
strategies,” in Proceedings of the Seventh Brazilian Symposium on Software Engineering,
pp 320-335. Rio de Janeiro, Brazil, October 1993.

[16]) A. P. Mathur and W. E. Wong, “An empirical comparison of data flow and mutation hased
test adequacy criteria.” The Journal of Software Testing. Verification. and Reliability,
4(1):9-31. March 1994.

450

http://www.cvisiontech.com

[17]) A. J. Offutt. G. Rothermel. and C. Zapf, “An experimental evaluation of selective mu-
tation.” in Proceedings of the [5th International Conference on Software Engineering,
pp 100-107. Baltimore. MD, May 1993.

[18] S. N. Weiss and V. N. Fleyshgakker. “Improved serial algorithms for mutation analysis.”
in Proceedings of International Symposium on Software Testing and Analysis, pp 149-158,
Cambridge, MA. June 1993.

[19] E. J. Weyuker and B. Jeng. “Analyzing partition testing strategies.” IEEL Trans. on
Software Engineering, 17(7):703-711. July 1991.

[20] W. E. Wong, “On Mutation and Data Fiow,” PhD thesis, Department of Computer Science,
Purdue University, W. Lafayette, IN. December 1993.

[21] W. E. Wong and A. P. Mathur, “Fault detection effectiveness of mutation and data flow
testing,” Software Quality Journal, 1995. (To appear)

[22] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An empirical
study,” The Journal of Systems and Software. 1995. (To appear)

451

http://www.cvisiontech.com

Appendix: Mutant operators used in the experiments

Operator | Meaning

F.xamulul

OLLN logical operntor replacement (a>h) || (e <d) — (a>h) &L (c < d)
OLNG | Togieal negation (a>b)|[(r<d)—(a>h) || Ye<d)
Ha>b) |l (e <d)
Mo > b) | (e < d))
ORRN relational operator roplacomont |a > bh— a2 b
a<h
agh
n==h
, al = h
ﬁ:nr: h!irnl conlext wegation a>h— a>bh)
ORLN relntionnl operator for logical | @ > b — a L& b
operalor replicement allh
OLRN logieal operator for relational a>hlle<d—a>h
aperalor replicement azh
a<h
agh
ammh
ale=b
OLAN logical operator for arithmetic |a>b|le<d — a4 b
operator replscement = b
as b
afb
a%b
OALN arithmetic operator for logienl [e+ 0 — a &b
opernior replacoment allb
VDTR | dowain trap s — TRAP.ON.POSITIV F(s)
TRAP.ON_NFEGATIVE(s)
TRAP.ON_ZFERO(x)
VTWD | twiddling sl — SUCC(w)
PRED(«)
| STRP statement nnalysis Foach statement is replaced by TRAP.ONSTAT() |

Ve — g wonnn Uhnt string = in P is replaced by string g to obtain n nmtant,
& represents o wenlar reference,

452

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376
	z0377
	z0378
	z0379
	z0380
	z0381
	z0382
	z0383
	z0384
	z0385
	z0386
	z0387
	z0388
	z0389
	z0390
	z0391
	z0392
	z0393
	z0394
	z0395
	z0396
	z0397
	z0398
	z0399
	z0400
	z0401
	z0402
	z0403
	z0404
	z0405
	z0406
	z0407
	z0408
	z0409
	z0410
	z0411
	z0412
	z0413
	z0414
	z0415
	z0416
	z0417
	z0418
	z0419
	z0420
	z0421
	z0422
	z0423
	z0424
	z0425
	z0426
	z0427
	z0428
	z0429
	z0430
	z0431
	z0432
	z0433
	z0434
	z0435
	z0436
	z0437
	z0438
	z0439
	z0440
	z0441
	z0442
	z0443
	z0444
	z0445
	z0446
	z0447
	z0448
	z0449
	z0450
	z0451
	z0452
	z0453
	z0454
	z0455
	z0456
	z0457
	z0458
	z0459
	z0460
	z0461
	z0462
	z0463
	z0464
	z0465
	z0466
	z0467
	z0468
	z0469
	z0470
	z0471
	z0472
	z0473
	z0474
	z0475
	z0476
	z0477
	z0478
	z0479
	z0480
	z0481
	z0482
	z0483
	z0484
	z0485
	z0486
	z0487
	z0488
	z0489
	z0490
	z0491
	z0492
	z0493
	z0494
	z0495
	z0496
	z0497
	z0498
	z0499
	z0500
	z0501
	z0502
	z0503
	z0505

