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Abstract

In the last few years, dutnand for abject srwented soltware systems has inereased
dramatically, and it is widely aecepled that present software engineering
methodologies are unable te cope with the needs of that demand. The abjeet
oriented paradigm has promised to revolutionize seltware development, as a
result, several methodelogies have recently arisen Lo support soltware
development based on an object orented approach This paper is concerned with
object ortented methodolog s for soltware systems and proposes a elassification
seheme for existing object oriented development wethodologies Additionalls, the
paper prosents gops whieh could be Glled with the deselopmemt o nes object
crtented et hodologes
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LINTRODUCTION

For many yenrs, it has been recognised thut the use of methodologies has an important role to play
in order to accomplish a well-engineered software system Methodologies provide a set of rules,
principles, guidelines and notational conventions which helps software engineers to understand,
organise and decompose software systems, and hence manage their complexity. Such
methodologies, therefore, fucilitate the development of complex undfor large soltware systems und
give the sollware engineers the fecling thut technology is un extension of their capabilities In the
past few years, many methodolggies huve been proposed Lo support the enginecring of soltware
systems. These methodologies have addressed different aspects of software development ranging
from requirements through testing. Many of these methodologies have often appeared in resp

to new ideas about how to handle software complexity.

A recent idea which has been receiving a great deal of attention from software engincers is the
object-oriented paradigm. Currently, this paradigm is thought to be an important aspect of
software development, so much so that it is now a major research area which is expected to bring
significant benefits in the design of software systems. The rupid development of this paradigm
during the past ten years cun be attributed to severul important reasons, which include: better
modelling of real-world applications; better structure lor soltware systems based an abstract duta
type concepts; and the possibility of sofltware reuse during the development of a sofllware system

Due to the rapid developments in the object-oriented arepa, it hos beeome very fushionable 1o
describe many kinds of soltware system using object oriented terminology, and the term itself hus
become a buzzword. In the scope of this puper, an object embodies an abstraction charucterised by
an entity in the real-world A class (or type) is a template description which specifies common
properties and behaviour for a group of similar objects and an object is an instance of a class The
properties and behaviour of objects, and hence their commonalities, ure described in terms of
attributes and operations An attribute is a named property of an object which holds a value and
maintains an abstract state for that ohject An operation identifies an action which may be applied
to an object. Objects from each class are manipulated by invoking the operations upon the
attributes ol thuse objects. The classes themselves can be organised into class hierarchies Such
class hierarchies allow similar elusses to be related together in such a way that commonulities of
one class ean be inherited (roused) rather than duplicated by elasses lower in the hiermehy, thus
simplifving the design and implementation of those lower lovel elusses Inheritance is o
mechanism which permits elasses to share attributes and operations based on relutionships of
specialisation and generalisition between them within g hicrarchy of elasses

Because of the perceived importanee of an ohjeet arientod approach, several methodologies have
recently emerged to support object ortented design Tdeally, an object ortented design methodolowey
should allow designers to produce software svstems mainly in terms of classes, inheritance and
ohjects Nevertheless, this point of view is not Cmphasised by some current methodologies as wil)
be seen later in this paper Despite all af the progress so fur in the object oriented paradizm, there
I1s a gap concerning object oriented destgn. That 1s, despite the acknowledged importance of
software design methodologies and the increasing popularity ol the object oriented paradigm,
there is no generally accepted object oriented design methodology which essentiully addresses
object oriented design and considers reusability as part of the soltware development life evele
“model Morcover, reusability should be emphasised as part of the methodology within an
ulternative software life evele model

The remainder of this paper 15 organised as follows: the seeond section states the main
requirements for an object wriented methodology A general classification for <oltware
development methodologies 1 discussed in seetion theee Section four presents the eurrent <tate of
the art in object oriented methodologies as well as a elssilication in teems of the approaches they
mixed with Final remarks on the proposed classification is outlined in <oction five The purpose of
the paper 18 to identify the magor simibinities and ditferences between the methodologies, and
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hence to compare and classily them To a large extent, the classilication and comparison
sy nthesise dilferent directions of thaughls, for instanee, the phase of the soltware life eyele for
which a methodology is suitable, whether it is lunguage dependent; und whether it mixes with
other approaches From this outlook, the paper points out gaps which could be filled by new
soltware development methodologies

2REQUIREMENTS FOR AN OBJECT-ORIENTED METHODOLOGY

An important idea hrought forwird by software engineering is the concept of software life eycle
models Such models have been proposed in order to systemalise the several stages which a
software system goes through (Hoyee, 1987, Hoehm, 1988, Henderson Sellers, 1990) The soltware
life eyele can be divided into different phases, although in practice some phases may overlap each
other. Software development involves a set of trunsformations starting from requirements and
ending aflter implementation Between these two points, a number of other abstract
representations are deseribed The aim is to divide a eomplex software system into more
manageable pieces, that is, each new abstract representation gives the designers more details
about a software system than the previous one and allows them to make additional refinements in
order to move towards the next abstract representation

The most well-known software life cycle models do not take into account the issue of how Lo reuse
existing software components when the design of a new software system is being undertaken The
main issue in software reuse is the creation of components which can be reused in soltware systems
other than the one for which they were originally eredted. Reusability is seen as o suitable
technique for improving software quality and reducing software development costs and time, and
it has therefore emerged as an important issue in software engineering In the past, reusability
was primarily concerned with using subroutines from a library during the implementation phase
of the software life cyele. Nowadays, however, a great deal of research has been earried out in order
to accomplish reusability during the design and analysis phases as well (Capretz and Lee, 1992)
The idea of reusability within an object oriented approach is attractive beenuse it i not just a
matter of reusing only the code of a subroutine but also encompasses the reuse of any commuonalitly
expressed in class hierurchies The inheritance mechanisin encourages reusability within an
object.oriented approach (ruther than reinvention) by permitting a elass to be used in a modified
form by deriving a sub-class from it Gohnson, 1988 Micallel, 1988, Gossain, 19940)

Proferably, there should be specific methodologies suitable to abject oriented <oftwire
development because there are specific object ortented coneepls involved  The unsuitability of
must of the curtent methodologies for dealing with complexity inherent of soltware development
suggests the use of different techmgues followed by an informal change of approach, from a
functional decomposition to an objeet orented. during software development. For instance, the
designer starts unaly=is following a tunctional decomposition pui.m_ of view and alterwarnds, during
the implementation phise, changes to an object oviented point of view This change in approach
lpads the thought process to follow an object oriented approach i the middle of soltware
development instead of starting software development hased on elusses, objects and inheritance
from Lthe outset

One great advantage of a<ing the obpeet oriented paradigm is the conceptual continuily across all
phases of the soltware development life evele The coneeptual structure of a sollware system not
only remains the same from system analy <is down through implementation, but alse remains the
same during the refinement of adesign Pheretfore, when the object oeiented paradigm is used, the
design phase is linked more elosely to the sy stem anals sis and the implementation phases beeause
designers have to deal with similar absteaet coneepts Gaach as elasses and objeets) throughout
soltware development  Howeser, the abject ariented paradigm still needs an organised und
diseiplined view of soltware deselopment, and to be extended to cover more phases of the sollware
life cyele model

W
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Additionally, software system designers hardly ever solve n new problem from seratch Instend,
they try to identily similurities between the new application and previous applivadions and their
solutions. By making suitable transformations from previous experience, designers attempt to
solve the new problem. Experts explicitly construet high level abstractions of a software svstem
whereas novices think ahout low level entities and their behaviour within a software system. The
experts tend to think in more abstract and high level terms following a top down approach
whereas the novices usually start thinking about low level abstridctions of a software system and
soltware development is thus predominaotly bottom np Therefore, it ean be ecatmend that the
knowledge designers have aboyt an upplication domuin increases the chanee of reusing solutions
from previous experience (Capretz and Lee, 1992) However, many object oriented methodologics
do not take this human feature into account .

This paper is interested in identily gups in order o find an approach which yields a single coherent
object-oriented design methodology, rather than separate methods to solve speeific parts of a
design. Such a methodology must pay attention to objeet oriented coneepts already discussed, for
instance, classes, objects and inheritance The proper use of these concepts can lead to a truly
general objectoriented design methodology as indepindent as possible of any programming
language. Moreover, reusability should be emphasised as part of the methodology within an
alternative software life cyele madel

J3CLASSIFICATION OF METHODOLOGIES

Many methodologies have been proposed over the lust few years. Such methodologies provide some
discipline in handling the problem of sollware complexity because they usually offer a set of rules
and guidelines to help software engincers understand, organise, decompase and represent software
systems. Such methodologies may be clussified into three approaches. Firstly, some methodologies
deal with functions; they emphasise refinement through functional decomposition Typically,
software development follows a top-down Fashion by sucvessively refining functions, for example,
Structured Design (Yourdon, 1979), PO (Stay, 1976) and Stepwise Refinement (Wirth, 1971)

In a seeond upproach, there are methodologies which recommend that soltware svstems should be
developed with emphasis on duta rather than functions. That 5, the system architecture is hased
on the structure of the duta 1o be processed by a soltware system The software systemn should be
structured mainly through the identilfication of duta components and their meaning. This sort of
style can be noted in the carly Jackson Steuctured Programming wethodology Clack son, 1975),
SLAN 4 (Beichter, 1930 and the Entity Relationship Model (Chen, 1976) The Entity
Relationship Model tERM1 15 the most commaon approach to data modelling ERM 15 0 graphical
technique which is vasy to understand, yet powerful enough 1o model real world applications, and
entity relationship diagrams are veadily transhived intooa databose implementation

A third fashion consists ol methodoluies which aim to develop software svstems from both
functional and datc pomts of view but sepacdely Examples of such methodologies are SADT
(Ross, 1977), Stractured Analvais and Sy otem Specilication (DeXMareo, 1979 and Stractured
System Analysis (ane, 19790 SADT provides ditferent Kinds of diagrams to represent fanetions
und data As far as Structured System Analysis and Structured Analysis are concerned, designers
can represent and refine functions theoueh data Tow disgeams and use o data dictionary 1o
deseribe data These methodalogies arganise o pecilication and design around Bivoarchies of
functions Structured analysis begins by dentifving one or more high level Tunctions which
describe the overall purpose of a <oftware system Then, each bigh level funetion is decomposed
into smaller, less complex lunetions

There are also some software deselopment enviromments swhivh have automiated <ome of those
methodologios The chiel purposes of these covronments are ta inerease pesductivity and enhanee
the quality of the developed sottware sy em PSLPSA (Techioew, 19770 amd E1POS (Lauber,
19820 are good examples ol sich environments
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A combination of approaches which follow a structured analysis, structured design and structured
programming is collectively known as the structured development approach Structured
development iteratively divides complex functions into subfunctions. When the resulting
subfunctions are simple enough, decomposition stops. This process of decomposition is known as
the functional decomposition approuch. Structured development also includes a variety of
notations for representing software systems. During the specification and analysis phases, data
flow diagrams, entity-relationship diagrams and a data dictionary are used to logically describe a
solware system In the design phase, details are udded to the specificntion model nnd the datu Now
dingrams are converted into structure chart diagrams ready to be implemented in a procedural
language

Structured analysis has been suggested as an attractive starting point for ohject-oriented design
primarily because it is well-known, many designers ure trained in its techniques, and many tools
support its notations. However, structured analysis is not the ideal front-end to object-oriented
design, mainly because it cun perpetuate a functional decomposition view of the application.
Applying a functional decomposition approach first and un object-oriented approach later on the
same software system is likely to lead to trouble because functional decomposition can not be
properly mapped into object oriented decomposition. A better trend in analysis is to use an object-
oriented analysis method in which there are attempts to identify and model the essential classes
and objects of a software system

The ohjeet oriented paradigm orgunises sofltwure systems into clusses und establishos
relationships between them Objects model real world entities and combine both attributes and
operation Eadh object is an instance of a class which is the building block of a system architecture.
A positive benefit of following an object oriented approach is traceability between soltware
abstractions and reality because organising a software system around classes maps real-world
entities into software components, particularly classes and objects Thus, any methodology which
deals with the object oriented paradigm should have means of representing clusses, nbjects and
inheritance Ideally, object oriented design and implementation should be part of a4 sofltware
development process in which an objeet oriented philosophy was used throughout soltware
development, as shown in Figure 1 o this Ggure, the dashed arrows represent an unnatural
mapping between concepts of dilferent approsches as opposed Lo bold arrows which indicate a
smanth transition from one phoise to another

Similar tssues are disenssed by Loy (1990) whe has <hown that simply attempting to combine an
nhjeet oriented approach with o stractured development approach gives rise to some problems It
jeopardises traceability feom requirenients to nnplementation because, inearly phases,
swstem s deserthed in terms of Tunetions and Tter on the deseription is chaneed i torms of objeet
ariented conecpts (see Fizure 1) Furthermore, straetured dl-\l"luprllv!ll methodalogies do not
lucalise information around obyect s but on the data Tow between functions, and a soltware svstem
s compused of data Now and funetions In contrast, the objeet geiented paradigm organises
soltware system aroutd classes and objects which east in the dedgner's view of the veal world

soltwanre

apphication. A discussion of why new methodologies are still regquired s presented in the List
section of this paper

{ CLASSIFICATION OF EXISTING OBJECT-ORIENTED METHODOLOGIES

Recently, there has boen o profusion of se callled abpeet oniented methodologies Tor amalysis and
design influenced by o variety of different backgronnds (Caprete, 19910 Nevertheless, it can he
nuticed that there are two magor ditections concerning object oriented methodologies

al adaptation this s concerncd with the mixing of an object oriented approach to well
known struetured des elopment methodologies

b) assimilation this vmphasises the wae of an object orieated approach for developing
soltwaare systems, bt Gollow g the Canditional swaterGall sottware Tile evele mode!
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4.1 Aduptation

Adaptation proposes o framesork for mixing an obpeet arented approach with existing
methodologies. It has been suguested by Henderson Sellers and Constantine 11991) that a
combination of structured development and an object ariented approach helps tackle the problem
of software development. Designers use their experience and intuition to derive o specification
from an informal description inorder to get a high level abstraction for a software svstem, based on
functivnal decomposition. The adaptation of structurcd development to an object oriented
approach preserves the specilication and analvsis phases using data low dingrams and proposes
heuristics to convert these diagrams into an objeet medel insnch way that subsequent phases enn
then fallow an object oriented approach  However, adaptation approaches are teving to evolve
ubject oriented methodologies from existing ones and as a result bringing their limitations with
them

Nevertheless, some adyantages of this adaprive approach are

o g complementaey (though unnaturad) coupling between stractured development and an
abject vriented approach

o structured development methodologies are widely known and vsed, and support top down
functional decormposition, the most commaon fashion tor soltware deselopment;

A stmoother migeatom Teom an old, proacticed and well konown approanch to o new one
including « a=ses, abjeets and inheritanee,
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e o gradual change of tools and envirnnments toan ohjeet oriented approach

Currently, the most widely used colbwoare engineering ot hodoliggies aee those Tor stroetared
development. Those methodologios are popular beeause they are applicable to many types ol
application domains On account of this populiity, structured deselopment has been mised up
with an object oriented approach These designers who come from a traditional soltware
engineering background, such as functional deemmpusition and datn modelling techniques, will
probahly find the methodologios of Shlaer and Mellor (19880, and Coad and Yonedon 11990)
FLanneliar beeamse theeae et hodologie s are elear by adaptation of traditional <teaetured
development methodologies aod data modelling technigues

These methodologies have oversimplified the chjeet ariented pariadigm by misusing the concepts of
classes and objects during the analysis phase as objects only  Basically, they concentrate on
modelling real-world entities as ohyjects, and it can be considered as an extension of the Entity.
Relationship Model (Chen, 19761, suggesting that they are incremental improvements over
existing approaches to data modelling Morcover, they have not discussed the impact of their
methodology on other phases of the soltsware Life eyele, These methodologies may be used during a
period of transition from structured development to an object oriented approach as a compromise,
However, they cannot permit the full advantages of an object oriented approach to be gained

Jackson (1983) has propused a methadology called the Jackson System Development LIS JSD
has some features which appeac on the sarfice 1o e sgmilor to object oriented desipn The main
tusk 15 to model the upplication and G identily eateties twhich could be viewed as objects), aetions
(ie operations) and their interactions. However, JS1D is not fully suitable for object oriented
design because there is very little to support the object oriented paradigm. For instance, there is no
consideration of inheritance and encapsnlation .

Other less known proposals where ohject ariented concepts are by products of stractured
development could also be considered Some of these methods are merely extensions of structired
development methodologtes Masiero and Germano (1988) and Hull 2 af (19891 put together an
object-oriented approach with Jackson (1983) methodology, and the product of a design is
implemented in Ada Batlin (1989 and Bulman (1989 mix up an object oriented approach with
Structured Svstem Anulvsis (Gane, 1979 and the Entity Relationship Maodel tor an object-oriented
requirements specification model (Chen, 19760 Lastly, Alubisa (1938) and Ward 11039) combine
the ohyect oriented sty le with Straetired Analysis (DeMareo, 19790 Strueture Desien (Yourdon,
1979 and the Entity Relutionship Model

The history of object ortented technology dates Trom the 19708, but up to the mid 19305, much ol
the work in the objeet orented arena focused on obyeet oniented progeamming However, the
application of un object oriented approach to soltware design hivs sceurred since that "ime, mainly
for those familiar with Simula 67 From the beginnimg of the 19805, some attempts o develop
sullwinre systems using an objeet oviemted approach bave emerged  The Tirst significant step
towards an object orented design methodology, started within the Ada community. Many ideas
about abject oriented design came out with the work of Abbott (1983 and Booch (198340, (1983b)
Booch rationalised Abhott's method, and referred to it as Object-Orented Design (Booch, 1983b)
Both Abbott and Booch have recommended that a design should start with an informal deseription
ol the real world wpplication ard from this deseription designers could identify elasses and obpeets
from nouns, and operations from verbs Fhe work of Booch is signiticant becanse it was ane of the
varhest object oriented design methodologies to be deseribed ain the literature Booch 15 also one of
the most influential advocates of obyeet vriented design within the Ada community

Realising the drawbacks of the technigue hased onidentification of ¢lasses and ohjeets from
marrative deseriptions, Liter Booch methodologies have not advocated the use of a4 naerative
deseription Instead, Boach (19860 has combined object vriented design with existing
methodologies and called it Ohpeet (heonted Development Booch soggested that existinge
et hodologies soch as SREM CAIGod, 19770, Stractared Sy <tem Analvsis dGane, 1979 or Jackson
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Structured Development (Jackson, 1983) could be used during the requirements and specification
phases as a step before object-oriented design Subsequently, Booch (1991) has proposed o new
ohject oriented development methodology which includes a variety of models that address
functional and dynamie aspects of sollware systems

As fur as Booch's influences are concerned, they can be summarised a follows: what haeome to be
known us object-oriented design in the context of Ada was first proposed hy Booeh (19830, later
extended by Booch (1986) and ufter refined by Seidewitz (1980), Heitz (1989) and Jilote (1959
Berard (1986) and Sincovee and Wierner (1987) ulso present principles and methods biasied by
Hooch (1983a) with implementation also totally dviven towards Ada These design methodologies
concentrate on Identifying objects und uperutlons, and are ohject oriented in the sense that they
view a soltware system as a collection of ohjeets. Most of these methodologies are based on an
informal description or representation of the software requircments, from which object attributes
and operations can be identified Moreover, all of these methodologies upply hierarchical
decomposition, a trend to decompose n software system by breaking it into its camponent - through
a series of top-down refinements towards an implementation in Ada

Wasserman ef al (1990) have proposed QOSD, w graphical representation for Object Oriented
Structured Design. QOSD provides a standard design notation by supporting concepts of both
structured and object oriented design since the main ideas behind OOSD come from Structured
Design (Yourdon, 1979) and Booch (1986) notation for Ada packages. Therelore, OOSD allvws
designers to gradually shift from structured developmentdo an objeet oriented approach Towever,
QOSD focuses mainly on o gruphical representation withvul addressing the method by which a
design could be created and gives no explicit technique for diagramming software system
decomposition, needed for large software systems. Furthermore, it does not set up giuidelines to
identify classes and operations, 50 it is supposed that designers should follow steps recommended
by other methodologies It is expected that designers will use their own methods together with
00SD, which simply provides a notation for object oriented design, not 4 siep by-step
methodology.

Rumbaugh et al (1991) have developed the Object Modelling Techmgue (OMT) which focuses on
object madelling as a sollware development technigque Basically, OMT proposes three models for
soltware development the object model, the dynamic model and the functional model In addition,
OMT proposes three stages which should be carvied out to produce a design the analysis stage, the
design stage and the object design stage Same considerations on OMT can be made at this point
The first stage of OMT is equivalent to QORA (Caad  1990), in that it basieally models the
application in terms of classos and special relitionships between them: However, it 1s confusing
that the ohject model actually deals with elasses Later during the system design and abject design
stages, OM1 incorporates structured development bosod anoa lanetional decomposition approach
ollowing the traditional waterfall software life eyvele model

1.2 Assimilation

Assimilation 1s a trend that puts the object oriented paradigm within the traditional waterfall
software life evele model [n recent vears <everal object oriented methodologies have appeared but
they cover only partinlly that software lile eyele model Several authors have teied to it the object-
orieated paradigm into this frnmework Booch 11990, Wirfs Brock e al (19904, Pun and Winder
(1989), and Lorensen (19860 can be consdered as good examples So far, these methodalogies are
not well-known and not generally acevpted, but their main ideas encompass object oriented
concepts because they are hased on ot least elasses, shjeets and inheritance. These methadologies
still need to be used in practical contexts to develop large seale soltware systems in order to be
evaluated and improved

Wirls Brock et al (1990 have focussed on the identification of responsehilines and confracts to
butld a responsibidity driven design. Responsibilitios area way to apportion work wimong a group of
uhjects which comprise u renl world application A contiael 14 a0 set of related reaponsibilities

by
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defined by a class, and describes the ways in which a given client object can interact with a server
objeet. This methodology emphasises the actions thit must be necomplished and which objeets will
perform thuse actions. The responsibilities of an object are the services it provides for all ohjects
which communicate with it. Both objects must fulfil a contract: the client object by making the
requests that the contract specilies, and the server object by responding appropriately to these
requests. Objects fulfil their responsibilities either by performing the necessary computation
themselves or by collaborating with other objects

Some observations should be mude an respansibility driven design. The methodology is based on
the identification of clusses by looking at nouns in a natural linguage description of the system
specification. This technique has the same problemy us the first versions of Abbott and Booch
methodologies. Additionally, the methodology bases inheritance only on fesponsibilities, and
ignores inheritance of attributes. Moreover, the concept of operation is separated from the notion of
class Responsibility driven design divides a large woltware system into subsystem only after
identifying some classes and their responsibllities. However, the partitioning of a soltware system
into subsystems should be considered at the beginning of soltware development as a technique to
decompose large sofllware systems.

Additionally, the methodology also suggests the use of cluss cards to deseribe classes and
subsystems The technique of recording design on curds was introduced by Beck and Cunningham
(1989) who have propoesed the Class, Responsibility, and Collaboration (CRC) cards They have
found that index cards are a simple technique for teaching object-oriented thinking to newcomers
of the object oriented puradigin. Fach card containg the nume of a eluss, a description of the
responsibilities associated with thal class and its collaborators. This technique may work well
with simple software systems but its use in the design of large and complex software systems is
doubtful because as the number of classes and subsystems grows sharply, the number and
arrangements of class cards may become cumbersome

The state of-the-art of object vriented methodologies is evolving rapidly  As object oriented
methodologies mature, they are likely to borrow ideas from one another There are more restrictive
and less known object oriented methodologies Pun and Winder (1989) have proposed a
methodology targeted at object oriented design and programming. Lorensen (1986) has deseribed
the rudiments of object oriented software development by explaining that it is fundamentally
different from traditional structured develapment, such as those based on datn Now diagrams and
a functional decomposition approach Lorensen has desecibed an alternative methodolopy 1o
object-oriented design which has evolved from soltware development using Smalltalk, which
directly supports elasses and inheritance.

Jaeobson (1987) has elaimed to have a full abjeet orented deselopment methodology called the
UbjectOry which combines a technigque to develop Linge soltwan e Systems, ealled the bloek design
Clacobson, 19361, with Conceptual Modelling (Borgida, 19850 and object oriented concepts
Javobson has stated that it is quite natural to umite these three approaches sinee they rely on
similar ideas aiming at, among other things, the poosduction of reusable oftware components
Conceptual modelling emphasises linding concepls relesant to model n real world application, and
it is appropriate for representing the entities of the application and the relationships between
these entities. ObjectOry concerns the design of some large seale sofltware systems which have
heen developed today using technigues such us Siructured System Analysis (Gane, 1979

Cunningham and Beck (1988) have proposed diagrams for representing Smalltalk programs. The
disgrams emphasise the veprosentation of the messiage passing which takes place between nhjects
[he diagrams as proposed are only sutable to small programs beeause the power of representation
is weak Classes are listed with the most specialised class at the top leading some designers to
complain that it is not intuitive to plice sub clusses above super classes. Another limitation
concerns the restrictiveness of the gooophical elements in the dingrams which are more suitable for
representing Smalltalk programs and are more likely to be used during the implementition phase
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\s far as C++ is concerned, Ackroyd and Daum (1991) have suggested a basie graphical notation
for classes, objects, methods and inheritance. The graphical notation also ndds numerous
specialised representution for polymorphism, overloading, delegation, static variables and many
other properties which can provide gruphical representation for objeet oriented programs
Nevertheless, the proposed notation is tied closely to Ce+ features, particularly those for private,
protected and public classes. Furthermore, it is not apparent how to use the notation for other
programming languages nor how Lo use it as a language independent graphical notation for object-
oriented design. Additionnlly, the dingroms could depict an extensive reprecentation of
implementution detuils which mukes them hard to use und comprehend for Lurge programs

5 CONCLUSIONS

This paper faces the ohject-oriented paradigm from a methodology standpoint, rather than from an
implementation standpoint. The survey prompted by the perceived inadequacy of existing obieet-
oriented methodologies for designing objeet oriented software systems, and has sought to establish
a viable and comprehensive object oriented design methodology which obtains the benefits of the
object-oriented paradigm, such as encapsulation and inheritance. From the point of view of
programming lunguages, the road to an object ariented approach is an evolutionary step, whereas
from the point of view of soltware development methodologies, the difTerences which exist between
traditional structured development methodologies (hased on functional decomposition) and those
based on an object-oriented approuch suggest that a revolution is taking place

The paper has briefly reviewed muny object oriented methodologies and outlined their oversights
and weaknesses There 15 some dissatisfaction with current methodologies which seem to place too
much emphasis on designing for the task in hand and not enough on designing reusable
components nor designing with reusable components Based on this survey, it is evident that
further research on object oriented methodologies is required in order to overcome the deficiencies
and limitation of existing software development methodologies

Maost of the early abject oriented methodologies which have appeared either focus on an
implementation in Ada (which does not provide inheritance) or disregard abstraction in terms of
clusses, und instead locus on object instantiotion. Other methodologies with the intention ol
combining existing structured methodalogies together with object oriented concepts have led to
the misuse of objects only as data without regarding the eperations on that data; the operations are
treated separately as functions Another problem with such combinations s the mapping of
concepts from one approoch to anather Phe adoption of new coneepts, Che change of voeabulary ean

confuse designers about which one should be used in which phase of the sottware Lile o

Although a number of objeet orented design methodologies are beeoming avialiable and gaining
increasing use in order to answer a broad range of softwdre engimeering questions, such
methodologies are still at o relatively carly <tage of growth It is elear that even more
expertmentation is reqiived tparticularly in developing very lirge sollware syvitems using an
nbject oriented approach) before this paradizm can elaim to be oo mature subject. Additionally | new
experiments will provide several case studies to evaluate the various eliums made about the ubjeet
oriented paradigm, which can only be fully tested when applied W developing substantial systems

Therefore, it can be concluded that <o far there has been no generally accepted objeet ortented
design methodology Only limited olyeet ariented methodologies hiave been found  As a result i
should be the intention of further rese tian abgect oriented design methodology which
allows designers to apply powerful object oriented principles to the design of a wide range of
applications from the beginning of soltware development To put it in other words, revolution is
what is neeided to tackle the problems of <oftw ire development New methodologies which exploit
the benelits of the objeet oriented paradigm within g substitute software lite eyele model have 1o be
pursued Capretz (1991 deseribes a Methodology for Object Oviented Design (MOOD) which takes
domain analysis and reusability inte account ws an impartant aspect of a4 new soltware
development life exele model however, this effort is certainls not enough

(14
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“he object oriented paradigm is such a powerful set of concepts that eventually it will get
eompletely absorbed into the sofltware development culture, in the same way that structured
development methodologies and to some extent abstract data types concepts have been This is
evident in the abundance of rescarch looking at various aspects of the paradigm Consequently,
the 1990s are likely to be a period of gradual acceptance of the object-oriented paradigm which will
become the main approach o developing software systems in this decade The future of object-
oriented software engineering might well be to accept a hybrid trend with other approaches and
mupping of concepts hetween <uch approaches However, the authors believe that the object
oriented paradigm should tand hopefully will') pervade the entire soltware life cycle
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