A Classification of Object-Oriented

Development Methodologies

L. F.Capretzand I’. A, l.ee

Computing Laboratory
University of Newcastle upon Tyne
Newcastle upon Tyne - NE1 TRUY - United Kingdom

Abstract

In the last few years, dutnand for abject srwented soltware systems has inereased
dramatically, and it is widely aecepled that present software engineering
methodologies are unable te cope with the needs of that demand. The abjeet
oriented paradigm has promised to revolutionize seltware development, as a
result, several methodelogies have recently arisen Lo support soltware
development based on an object orented approach This paper is concerned with
object ortented methodolog s for soltware systems and proposes a elassification
seheme for existing object oriented development wethodologies Additionalls, the
paper prosents gops whieh could be Glled with the deselopmemt o nes object
crtented et hodologes

129

http://www.cvisiontech.com

LINTRODUCTION

For many yenrs, it has been recognised thut the use of methodologies has an important role to play
in order to accomplish a well-engineered software system Methodologies provide a set of rules,
principles, guidelines and notational conventions which helps software engineers to understand,
organise and decompose software systems, and hence manage their complexity. Such
methodologies, therefore, fucilitate the development of complex undfor large soltware systems und
give the sollware engineers the fecling thut technology is un extension of their capabilities In the
past few years, many methodolggies huve been proposed Lo support the enginecring of soltware
systems. These methodologies have addressed different aspects of software development ranging
from requirements through testing. Many of these methodologies have often appeared in resp

to new ideas about how to handle software complexity.

A recent idea which has been receiving a great deal of attention from software engincers is the
object-oriented paradigm. Currently, this paradigm is thought to be an important aspect of
software development, so much so that it is now a major research area which is expected to bring
significant benefits in the design of software systems. The rupid development of this paradigm
during the past ten years cun be attributed to severul important reasons, which include: better
modelling of real-world applications; better structure lor soltware systems based an abstract duta
type concepts; and the possibility of sofltware reuse during the development of a sofllware system

Due to the rapid developments in the object-oriented arepa, it hos beeome very fushionable 1o
describe many kinds of soltware system using object oriented terminology, and the term itself hus
become a buzzword. In the scope of this puper, an object embodies an abstraction charucterised by
an entity in the real-world A class (or type) is a template description which specifies common
properties and behaviour for a group of similar objects and an object is an instance of a class The
properties and behaviour of objects, and hence their commonalities, ure described in terms of
attributes and operations An attribute is a named property of an object which holds a value and
maintains an abstract state for that ohject An operation identifies an action which may be applied
to an object. Objects from each class are manipulated by invoking the operations upon the
attributes ol thuse objects. The classes themselves can be organised into class hierarchies Such
class hierarchies allow similar elusses to be related together in such a way that commonulities of
one class ean be inherited (roused) rather than duplicated by elasses lower in the hiermehy, thus
simplifving the design and implementation of those lower lovel elusses Inheritance is o
mechanism which permits elasses to share attributes and operations based on relutionships of
specialisation and generalisition between them within g hicrarchy of elasses

Because of the perceived importanee of an ohjeet arientod approach, several methodologies have
recently emerged to support object ortented design Tdeally, an object ortented design methodolowey
should allow designers to produce software svstems mainly in terms of classes, inheritance and
ohjects Nevertheless, this point of view is not Cmphasised by some current methodologies as wil)
be seen later in this paper Despite all af the progress so fur in the object oriented paradizm, there
I1s a gap concerning object oriented destgn. That 1s, despite the acknowledged importance of
software design methodologies and the increasing popularity ol the object oriented paradigm,
there is no generally accepted object oriented design methodology which essentiully addresses
object oriented design and considers reusability as part of the soltware development life evele
“model Morcover, reusability should be emphasised as part of the methodology within an
ulternative software life evele model

The remainder of this paper 15 organised as follows: the seeond section states the main
requirements for an object wriented methodology A general classification for <oltware
development methodologies 1 discussed in seetion theee Section four presents the eurrent <tate of
the art in object oriented methodologies as well as a elssilication in teems of the approaches they
mixed with Final remarks on the proposed classification is outlined in <oction five The purpose of
the paper 18 to identify the magor simibinities and ditferences between the methodologies, and

1

http://www.cvisiontech.com

hence to compare and classily them To a large extent, the classilication and comparison
sy nthesise dilferent directions of thaughls, for instanee, the phase of the soltware life eyele for
which a methodology is suitable, whether it is lunguage dependent; und whether it mixes with
other approaches From this outlook, the paper points out gaps which could be filled by new
soltware development methodologies

2REQUIREMENTS FOR AN OBJECT-ORIENTED METHODOLOGY

An important idea hrought forwird by software engineering is the concept of software life eycle
models Such models have been proposed in order to systemalise the several stages which a
software system goes through (Hoyee, 1987, Hoehm, 1988, Henderson Sellers, 1990) The soltware
life eyele can be divided into different phases, although in practice some phases may overlap each
other. Software development involves a set of trunsformations starting from requirements and
ending aflter implementation Between these two points, a number of other abstract
representations are deseribed The aim is to divide a eomplex software system into more
manageable pieces, that is, each new abstract representation gives the designers more details
about a software system than the previous one and allows them to make additional refinements in
order to move towards the next abstract representation

The most well-known software life cycle models do not take into account the issue of how Lo reuse
existing software components when the design of a new software system is being undertaken The
main issue in software reuse is the creation of components which can be reused in soltware systems
other than the one for which they were originally eredted. Reusability is seen as o suitable
technique for improving software quality and reducing software development costs and time, and
it has therefore emerged as an important issue in software engineering In the past, reusability
was primarily concerned with using subroutines from a library during the implementation phase
of the software life cyele. Nowadays, however, a great deal of research has been earried out in order
to accomplish reusability during the design and analysis phases as well (Capretz and Lee, 1992)
The idea of reusability within an object oriented approach is attractive beenuse it i not just a
matter of reusing only the code of a subroutine but also encompasses the reuse of any commuonalitly
expressed in class hierurchies The inheritance mechanisin encourages reusability within an
object.oriented approach (ruther than reinvention) by permitting a elass to be used in a modified
form by deriving a sub-class from it Gohnson, 1988 Micallel, 1988, Gossain, 19940)

Proferably, there should be specific methodologies suitable to abject oriented <oftwire
development because there are specific object ortented coneepls involved The unsuitability of
must of the curtent methodologies for dealing with complexity inherent of soltware development
suggests the use of different techmgues followed by an informal change of approach, from a
functional decomposition to an objeet orented. during software development. For instance, the
designer starts unaly=is following a tunctional decomposition pui.m_ of view and alterwarnds, during
the implementation phise, changes to an object oviented point of view This change in approach
lpads the thought process to follow an object oriented approach i the middle of soltware
development instead of starting software development hased on elusses, objects and inheritance
from Lthe outset

One great advantage of a<ing the obpeet oriented paradigm is the conceptual continuily across all
phases of the soltware development life evele The coneeptual structure of a sollware system not
only remains the same from system analy <is down through implementation, but alse remains the
same during the refinement of adesign Pheretfore, when the object oeiented paradigm is used, the
design phase is linked more elosely to the sy stem anals sis and the implementation phases beeause
designers have to deal with similar absteaet coneepts Gaach as elasses and objeets) throughout
soltware development Howeser, the abject ariented paradigm still needs an organised und
diseiplined view of soltware deselopment, and to be extended to cover more phases of the sollware
life cyele model

W

http://www.cvisiontech.com

Additionally, software system designers hardly ever solve n new problem from seratch Instend,
they try to identily similurities between the new application and previous applivadions and their
solutions. By making suitable transformations from previous experience, designers attempt to
solve the new problem. Experts explicitly construet high level abstractions of a software svstem
whereas novices think ahout low level entities and their behaviour within a software system. The
experts tend to think in more abstract and high level terms following a top down approach
whereas the novices usually start thinking about low level abstridctions of a software system and
soltware development is thus predominaotly bottom np Therefore, it ean be ecatmend that the
knowledge designers have aboyt an upplication domuin increases the chanee of reusing solutions
from previous experience (Capretz and Lee, 1992) However, many object oriented methodologics
do not take this human feature into account .

This paper is interested in identily gups in order o find an approach which yields a single coherent
object-oriented design methodology, rather than separate methods to solve speeific parts of a
design. Such a methodology must pay attention to objeet oriented coneepts already discussed, for
instance, classes, objects and inheritance The proper use of these concepts can lead to a truly
general objectoriented design methodology as indepindent as possible of any programming
language. Moreover, reusability should be emphasised as part of the methodology within an
alternative software life cyele madel

J3CLASSIFICATION OF METHODOLOGIES

Many methodologies have been proposed over the lust few years. Such methodologies provide some
discipline in handling the problem of sollware complexity because they usually offer a set of rules
and guidelines to help software engincers understand, organise, decompase and represent software
systems. Such methodologies may be clussified into three approaches. Firstly, some methodologies
deal with functions; they emphasise refinement through functional decomposition Typically,
software development follows a top-down Fashion by sucvessively refining functions, for example,
Structured Design (Yourdon, 1979), PO (Stay, 1976) and Stepwise Refinement (Wirth, 1971)

In a seeond upproach, there are methodologies which recommend that soltware svstems should be
developed with emphasis on duta rather than functions. That 5, the system architecture is hased
on the structure of the duta 1o be processed by a soltware system The software systemn should be
structured mainly through the identilfication of duta components and their meaning. This sort of
style can be noted in the carly Jackson Steuctured Programming wethodology Clack son, 1975),
SLAN 4 (Beichter, 1930 and the Entity Relationship Model (Chen, 1976) The Entity
Relationship Model tERM1 15 the most commaon approach to data modelling ERM 15 0 graphical
technique which is vasy to understand, yet powerful enough 1o model real world applications, and
entity relationship diagrams are veadily transhived intooa databose implementation

A third fashion consists ol methodoluies which aim to develop software svstems from both
functional and datc pomts of view but sepacdely Examples of such methodologies are SADT
(Ross, 1977), Stractured Analvais and Sy otem Specilication (DeXMareo, 1979 and Stractured
System Analysis (ane, 19790 SADT provides ditferent Kinds of diagrams to represent fanetions
und data As far as Structured System Analysis and Structured Analysis are concerned, designers
can represent and refine functions theoueh data Tow disgeams and use o data dictionary 1o
deseribe data These methodalogies arganise o pecilication and design around Bivoarchies of
functions Structured analysis begins by dentifving one or more high level Tunctions which
describe the overall purpose of a <oftware system Then, each bigh level funetion is decomposed
into smaller, less complex lunetions

There are also some software deselopment enviromments swhivh have automiated <ome of those
methodologios The chiel purposes of these covronments are ta inerease pesductivity and enhanee
the quality of the developed sottware sy em PSLPSA (Techioew, 19770 amd E1POS (Lauber,
19820 are good examples ol sich environments

http://www.cvisiontech.com

A combination of approaches which follow a structured analysis, structured design and structured
programming is collectively known as the structured development approach Structured
development iteratively divides complex functions into subfunctions. When the resulting
subfunctions are simple enough, decomposition stops. This process of decomposition is known as
the functional decomposition approuch. Structured development also includes a variety of
notations for representing software systems. During the specification and analysis phases, data
flow diagrams, entity-relationship diagrams and a data dictionary are used to logically describe a
solware system In the design phase, details are udded to the specificntion model nnd the datu Now
dingrams are converted into structure chart diagrams ready to be implemented in a procedural
language

Structured analysis has been suggested as an attractive starting point for ohject-oriented design
primarily because it is well-known, many designers ure trained in its techniques, and many tools
support its notations. However, structured analysis is not the ideal front-end to object-oriented
design, mainly because it cun perpetuate a functional decomposition view of the application.
Applying a functional decomposition approach first and un object-oriented approach later on the
same software system is likely to lead to trouble because functional decomposition can not be
properly mapped into object oriented decomposition. A better trend in analysis is to use an object-
oriented analysis method in which there are attempts to identify and model the essential classes
and objects of a software system

The ohjeet oriented paradigm orgunises sofltwure systems into clusses und establishos
relationships between them Objects model real world entities and combine both attributes and
operation Eadh object is an instance of a class which is the building block of a system architecture.
A positive benefit of following an object oriented approach is traceability between soltware
abstractions and reality because organising a software system around classes maps real-world
entities into software components, particularly classes and objects Thus, any methodology which
deals with the object oriented paradigm should have means of representing clusses, nbjects and
inheritance Ideally, object oriented design and implementation should be part of a4 sofltware
development process in which an objeet oriented philosophy was used throughout soltware
development, as shown in Figure 1 o this Ggure, the dashed arrows represent an unnatural
mapping between concepts of dilferent approsches as opposed Lo bold arrows which indicate a
smanth transition from one phoise to another

Similar tssues are disenssed by Loy (1990) whe has <hown that simply attempting to combine an
nhjeet oriented approach with o stractured development approach gives rise to some problems It
jeopardises traceability feom requirenients to nnplementation because, inearly phases,
swstem s deserthed in terms of Tunetions and Tter on the deseription is chaneed i torms of objeet
ariented conecpts (see Fizure 1) Furthermore, straetured dl-\l"luprllv!ll methodalogies do not
lucalise information around obyect s but on the data Tow between functions, and a soltware svstem
s compused of data Now and funetions In contrast, the objeet geiented paradigm organises
soltware system aroutd classes and objects which east in the dedgner's view of the veal world

soltwanre

apphication. A discussion of why new methodologies are still regquired s presented in the List
section of this paper

{ CLASSIFICATION OF EXISTING OBJECT-ORIENTED METHODOLOGIES

Recently, there has boen o profusion of se callled abpeet oniented methodologies Tor amalysis and
design influenced by o variety of different backgronnds (Caprete, 19910 Nevertheless, it can he
nuticed that there are two magor ditections concerning object oriented methodologies

al adaptation this s concerncd with the mixing of an object oriented approach to well
known struetured des elopment methodologies

b) assimilation this vmphasises the wae of an object orieated approach for developing
soltwaare systems, bt Gollow g the Canditional swaterGall sottware Tile evele mode!

http://www.cvisiontech.com

ANALYSIS Slruclu_rcd Objeet Oriented
Analysis Analysis
data flow + Frmmsmme
"'"m'?") T elass dingrams
relationship
diagrams i T
— — Lo
1 . e (SR
= Object Orientid
DESIGN Struetured "
y Design
Design | A o
T cligss "llhjl‘l"l
structure P
charts P B oy =
— -~ t
el
-
IMPLEMENTATION Structured hject Orientid
Programming Programming
| L [ty
data encapsulation
struclure + tattributes
funetions aperalions)

Figure 1 Some Combimt ions of Approaschees
5 "

4.1 Aduptation

Adaptation proposes o framesork for mixing an obpeet arented approach with existing
methodologies. It has been suguested by Henderson Sellers and Constantine 11991) that a
combination of structured development and an object ariented approach helps tackle the problem
of software development. Designers use their experience and intuition to derive o specification
from an informal description inorder to get a high level abstraction for a software svstem, based on
functivnal decomposition. The adaptation of structurcd development to an object oriented
approach preserves the specilication and analvsis phases using data low dingrams and proposes
heuristics to convert these diagrams into an objeet medel insnch way that subsequent phases enn
then fallow an object oriented approach However, adaptation approaches are teving to evolve
ubject oriented methodologies from existing ones and as a result bringing their limitations with
them

Nevertheless, some adyantages of this adaprive approach are

o g complementaey (though unnaturad) coupling between stractured development and an
abject vriented approach

o structured development methodologies are widely known and vsed, and support top down
functional decormposition, the most commaon fashion tor soltware deselopment;

A stmoother migeatom Teom an old, proacticed and well konown approanch to o new one
including « a=ses, abjeets and inheritanee,

http://www.cvisiontech.com

e o gradual change of tools and envirnnments toan ohjeet oriented approach

Currently, the most widely used colbwoare engineering ot hodoliggies aee those Tor stroetared
development. Those methodologios are popular beeause they are applicable to many types ol
application domains On account of this populiity, structured deselopment has been mised up
with an object oriented approach These designers who come from a traditional soltware
engineering background, such as functional deemmpusition and datn modelling techniques, will
probahly find the methodologios of Shlaer and Mellor (19880, and Coad and Yonedon 11990)
FLanneliar beeamse theeae et hodologie s are elear by adaptation of traditional <teaetured
development methodologies aod data modelling technigues

These methodologies have oversimplified the chjeet ariented pariadigm by misusing the concepts of
classes and objects during the analysis phase as objects only Basically, they concentrate on
modelling real-world entities as ohyjects, and it can be considered as an extension of the Entity.
Relationship Model (Chen, 19761, suggesting that they are incremental improvements over
existing approaches to data modelling Morcover, they have not discussed the impact of their
methodology on other phases of the soltsware Life eyele, These methodologies may be used during a
period of transition from structured development to an object oriented approach as a compromise,
However, they cannot permit the full advantages of an object oriented approach to be gained

Jackson (1983) has propused a methadology called the Jackson System Development LIS JSD
has some features which appeac on the sarfice 1o e sgmilor to object oriented desipn The main
tusk 15 to model the upplication and G identily eateties twhich could be viewed as objects), aetions
(ie operations) and their interactions. However, JS1D is not fully suitable for object oriented
design because there is very little to support the object oriented paradigm. For instance, there is no
consideration of inheritance and encapsnlation .

Other less known proposals where ohject ariented concepts are by products of stractured
development could also be considered Some of these methods are merely extensions of structired
development methodologtes Masiero and Germano (1988) and Hull 2 af (19891 put together an
object-oriented approach with Jackson (1983) methodology, and the product of a design is
implemented in Ada Batlin (1989 and Bulman (1989 mix up an object oriented approach with
Structured Svstem Anulvsis (Gane, 1979 and the Entity Relationship Maodel tor an object-oriented
requirements specification model (Chen, 19760 Lastly, Alubisa (1938) and Ward 11039) combine
the ohyect oriented sty le with Straetired Analysis (DeMareo, 19790 Strueture Desien (Yourdon,
1979 and the Entity Relutionship Model

The history of object ortented technology dates Trom the 19708, but up to the mid 19305, much ol
the work in the objeet orented arena focused on obyeet oniented progeamming However, the
application of un object oriented approach to soltware design hivs sceurred since that "ime, mainly
for those familiar with Simula 67 From the beginnimg of the 19805, some attempts o develop
sullwinre systems using an objeet oviemted approach bave emerged The Tirst significant step
towards an object orented design methodology, started within the Ada community. Many ideas
about abject oriented design came out with the work of Abbott (1983 and Booch (198340, (1983b)
Booch rationalised Abhott's method, and referred to it as Object-Orented Design (Booch, 1983b)
Both Abbott and Booch have recommended that a design should start with an informal deseription
ol the real world wpplication ard from this deseription designers could identify elasses and obpeets
from nouns, and operations from verbs Fhe work of Booch is signiticant becanse it was ane of the
varhest object oriented design methodologies to be deseribed ain the literature Booch 15 also one of
the most influential advocates of obyeet vriented design within the Ada community

Realising the drawbacks of the technigue hased onidentification of ¢lasses and ohjeets from
marrative deseriptions, Liter Booch methodologies have not advocated the use of a4 naerative
deseription Instead, Boach (19860 has combined object vriented design with existing
methodologies and called it Ohpeet (heonted Development Booch soggested that existinge
et hodologies soch as SREM CAIGod, 19770, Stractared Sy <tem Analvsis dGane, 1979 or Jackson

http://www.cvisiontech.com

Structured Development (Jackson, 1983) could be used during the requirements and specification
phases as a step before object-oriented design Subsequently, Booch (1991) has proposed o new
ohject oriented development methodology which includes a variety of models that address
functional and dynamie aspects of sollware systems

As fur as Booch's influences are concerned, they can be summarised a follows: what haeome to be
known us object-oriented design in the context of Ada was first proposed hy Booeh (19830, later
extended by Booch (1986) and ufter refined by Seidewitz (1980), Heitz (1989) and Jilote (1959
Berard (1986) and Sincovee and Wierner (1987) ulso present principles and methods biasied by
Hooch (1983a) with implementation also totally dviven towards Ada These design methodologies
concentrate on Identifying objects und uperutlons, and are ohject oriented in the sense that they
view a soltware system as a collection of ohjeets. Most of these methodologies are based on an
informal description or representation of the software requircments, from which object attributes
and operations can be identified Moreover, all of these methodologies upply hierarchical
decomposition, a trend to decompose n software system by breaking it into its camponent - through
a series of top-down refinements towards an implementation in Ada

Wasserman ef al (1990) have proposed QOSD, w graphical representation for Object Oriented
Structured Design. QOSD provides a standard design notation by supporting concepts of both
structured and object oriented design since the main ideas behind OOSD come from Structured
Design (Yourdon, 1979) and Booch (1986) notation for Ada packages. Therelore, OOSD allvws
designers to gradually shift from structured developmentdo an objeet oriented approach Towever,
QOSD focuses mainly on o gruphical representation withvul addressing the method by which a
design could be created and gives no explicit technique for diagramming software system
decomposition, needed for large software systems. Furthermore, it does not set up giuidelines to
identify classes and operations, 50 it is supposed that designers should follow steps recommended
by other methodologies It is expected that designers will use their own methods together with
00SD, which simply provides a notation for object oriented design, not 4 siep by-step
methodology.

Rumbaugh et al (1991) have developed the Object Modelling Techmgue (OMT) which focuses on
object madelling as a sollware development technigque Basically, OMT proposes three models for
soltware development the object model, the dynamic model and the functional model In addition,
OMT proposes three stages which should be carvied out to produce a design the analysis stage, the
design stage and the object design stage Same considerations on OMT can be made at this point
The first stage of OMT is equivalent to QORA (Caad 1990), in that it basieally models the
application in terms of classos and special relitionships between them: However, it 1s confusing
that the ohject model actually deals with elasses Later during the system design and abject design
stages, OM1 incorporates structured development bosod anoa lanetional decomposition approach
ollowing the traditional waterfall software life eyvele model

1.2 Assimilation

Assimilation 1s a trend that puts the object oriented paradigm within the traditional waterfall
software life evele model [n recent vears <everal object oriented methodologies have appeared but
they cover only partinlly that software lile eyele model Several authors have teied to it the object-
orieated paradigm into this frnmework Booch 11990, Wirfs Brock e al (19904, Pun and Winder
(1989), and Lorensen (19860 can be consdered as good examples So far, these methodalogies are
not well-known and not generally acevpted, but their main ideas encompass object oriented
concepts because they are hased on ot least elasses, shjeets and inheritance. These methadologies
still need to be used in practical contexts to develop large seale soltware systems in order to be
evaluated and improved

Wirls Brock et al (1990 have focussed on the identification of responsehilines and confracts to
butld a responsibidity driven design. Responsibilitios area way to apportion work wimong a group of
uhjects which comprise u renl world application A contiael 14 a0 set of related reaponsibilities

by

http://www.cvisiontech.com

defined by a class, and describes the ways in which a given client object can interact with a server
objeet. This methodology emphasises the actions thit must be necomplished and which objeets will
perform thuse actions. The responsibilities of an object are the services it provides for all ohjects
which communicate with it. Both objects must fulfil a contract: the client object by making the
requests that the contract specilies, and the server object by responding appropriately to these
requests. Objects fulfil their responsibilities either by performing the necessary computation
themselves or by collaborating with other objects

Some observations should be mude an respansibility driven design. The methodology is based on
the identification of clusses by looking at nouns in a natural linguage description of the system
specification. This technique has the same problemy us the first versions of Abbott and Booch
methodologies. Additionally, the methodology bases inheritance only on fesponsibilities, and
ignores inheritance of attributes. Moreover, the concept of operation is separated from the notion of
class Responsibility driven design divides a large woltware system into subsystem only after
identifying some classes and their responsibllities. However, the partitioning of a soltware system
into subsystems should be considered at the beginning of soltware development as a technique to
decompose large sofllware systems.

Additionally, the methodology also suggests the use of cluss cards to deseribe classes and
subsystems The technique of recording design on curds was introduced by Beck and Cunningham
(1989) who have propoesed the Class, Responsibility, and Collaboration (CRC) cards They have
found that index cards are a simple technique for teaching object-oriented thinking to newcomers
of the object oriented puradigin. Fach card containg the nume of a eluss, a description of the
responsibilities associated with thal class and its collaborators. This technique may work well
with simple software systems but its use in the design of large and complex software systems is
doubtful because as the number of classes and subsystems grows sharply, the number and
arrangements of class cards may become cumbersome

The state of-the-art of object vriented methodologies is evolving rapidly As object oriented
methodologies mature, they are likely to borrow ideas from one another There are more restrictive
and less known object oriented methodologies Pun and Winder (1989) have proposed a
methodology targeted at object oriented design and programming. Lorensen (1986) has deseribed
the rudiments of object oriented software development by explaining that it is fundamentally
different from traditional structured develapment, such as those based on datn Now diagrams and
a functional decomposition approach Lorensen has desecibed an alternative methodolopy 1o
object-oriented design which has evolved from soltware development using Smalltalk, which
directly supports elasses and inheritance.

Jaeobson (1987) has elaimed to have a full abjeet orented deselopment methodology called the
UbjectOry which combines a technigque to develop Linge soltwan e Systems, ealled the bloek design
Clacobson, 19361, with Conceptual Modelling (Borgida, 19850 and object oriented concepts
Javobson has stated that it is quite natural to umite these three approaches sinee they rely on
similar ideas aiming at, among other things, the poosduction of reusable oftware components
Conceptual modelling emphasises linding concepls relesant to model n real world application, and
it is appropriate for representing the entities of the application and the relationships between
these entities. ObjectOry concerns the design of some large seale sofltware systems which have
heen developed today using technigues such us Siructured System Analysis (Gane, 1979

Cunningham and Beck (1988) have proposed diagrams for representing Smalltalk programs. The
disgrams emphasise the veprosentation of the messiage passing which takes place between nhjects
[he diagrams as proposed are only sutable to small programs beeause the power of representation
is weak Classes are listed with the most specialised class at the top leading some designers to
complain that it is not intuitive to plice sub clusses above super classes. Another limitation
concerns the restrictiveness of the gooophical elements in the dingrams which are more suitable for
representing Smalltalk programs and are more likely to be used during the implementition phase

http://www.cvisiontech.com

\s far as C++ is concerned, Ackroyd and Daum (1991) have suggested a basie graphical notation
for classes, objects, methods and inheritance. The graphical notation also ndds numerous
specialised representution for polymorphism, overloading, delegation, static variables and many
other properties which can provide gruphical representation for objeet oriented programs
Nevertheless, the proposed notation is tied closely to Ce+ features, particularly those for private,
protected and public classes. Furthermore, it is not apparent how to use the notation for other
programming languages nor how Lo use it as a language independent graphical notation for object-
oriented design. Additionnlly, the dingroms could depict an extensive reprecentation of
implementution detuils which mukes them hard to use und comprehend for Lurge programs

5 CONCLUSIONS

This paper faces the ohject-oriented paradigm from a methodology standpoint, rather than from an
implementation standpoint. The survey prompted by the perceived inadequacy of existing obieet-
oriented methodologies for designing objeet oriented software systems, and has sought to establish
a viable and comprehensive object oriented design methodology which obtains the benefits of the
object-oriented paradigm, such as encapsulation and inheritance. From the point of view of
programming lunguages, the road to an object ariented approach is an evolutionary step, whereas
from the point of view of soltware development methodologies, the difTerences which exist between
traditional structured development methodologies (hased on functional decomposition) and those
based on an object-oriented approuch suggest that a revolution is taking place

The paper has briefly reviewed muny object oriented methodologies and outlined their oversights
and weaknesses There 15 some dissatisfaction with current methodologies which seem to place too
much emphasis on designing for the task in hand and not enough on designing reusable
components nor designing with reusable components Based on this survey, it is evident that
further research on object oriented methodologies is required in order to overcome the deficiencies
and limitation of existing software development methodologies

Maost of the early abject oriented methodologies which have appeared either focus on an
implementation in Ada (which does not provide inheritance) or disregard abstraction in terms of
clusses, und instead locus on object instantiotion. Other methodologies with the intention ol
combining existing structured methodalogies together with object oriented concepts have led to
the misuse of objects only as data without regarding the eperations on that data; the operations are
treated separately as functions Another problem with such combinations s the mapping of
concepts from one approoch to anather Phe adoption of new coneepts, Che change of voeabulary ean

confuse designers about which one should be used in which phase of the sottware Lile o

Although a number of objeet orented design methodologies are beeoming avialiable and gaining
increasing use in order to answer a broad range of softwdre engimeering questions, such
methodologies are still at o relatively carly <tage of growth It is elear that even more
expertmentation is reqiived tparticularly in developing very lirge sollware syvitems using an
nbject oriented approach) before this paradizm can elaim to be oo mature subject. Additionally | new
experiments will provide several case studies to evaluate the various eliums made about the ubjeet
oriented paradigm, which can only be fully tested when applied W developing substantial systems

Therefore, it can be concluded that <o far there has been no generally accepted objeet ortented
design methodology Only limited olyeet ariented methodologies hiave been found As a result i
should be the intention of further rese tian abgect oriented design methodology which
allows designers to apply powerful object oriented principles to the design of a wide range of
applications from the beginning of soltware development To put it in other words, revolution is
what is neeided to tackle the problems of <oftw ire development New methodologies which exploit
the benelits of the objeet oriented paradigm within g substitute software lite eyele model have 1o be
pursued Capretz (1991 deseribes a Methodology for Object Oviented Design (MOOD) which takes
domain analysis and reusability inte account ws an impartant aspect of a4 new soltware
development life exele model however, this effort is certainls not enough

(14

http://www.cvisiontech.com

“he object oriented paradigm is such a powerful set of concepts that eventually it will get
eompletely absorbed into the sofltware development culture, in the same way that structured
development methodologies and to some extent abstract data types concepts have been This is
evident in the abundance of rescarch looking at various aspects of the paradigm Consequently,
the 1990s are likely to be a period of gradual acceptance of the object-oriented paradigm which will
become the main approach o developing software systems in this decade The future of object-
oriented software engineering might well be to accept a hybrid trend with other approaches and
mupping of concepts hetween <uch approaches However, the authors believe that the object
oriented paradigm should tand hopefully will') pervade the entire soltware life cycle

REFERENCES

Abbott R. J. (1983) "Programming Design by [nformal English Description®, Communications of
the ACM., 26(11), November 1983, pp 882 894

Ackroyd M. and Daum D (1991) "Graphical Notation for Object-Oriented Design and
Programming”, Journal of Object-Oriented Programmung, 3(5), January 1991, pp 1828

Alabiso B (1988) "Transformation of Data Flow Analysis Model to Object-Oriented Design®,
Meyvrowitz N. (ed)) Proceedings of the Conference on Object Oriented Programming: Systems,
Languages and Applications - QOPSLA RS, San Diego, California, September 1988, ACM
SIGPLAN Notices, 2311), November 1988, pp 335 357

Alford M. W. (1977) "A Requirements Engineering Methodology for Real Time Processing
Requirements”, I[EEE Transactions on Software Engineering, SE-3(1), January 1977, pp. 60-69.

Bailin §. C. (1989) "An Object- Oriented Requirements Specification Method”, Communications of
the ACM, 32(5), May 1989, pp 608 623

Beck K and Cunnincham W (1989) "A Laboratory for Teaching Object Oriented Thinking”,
Mevrowitz N ted) Procecdings of the Conference on Objeet - Ortented Programmeng Sysfems,
Languages amd Applivations - OOPSLASNS, New Orleans, Lousiana, ACM SIGPLAN Notices,
240101, Uetober 1989, pp 1 6

Bewchter W, Herzog O and Petzsh T C198 0 "SEAN 4 A Soltware Specilication and Design
Lamguage”, HEEE T ransactions on Soffware Engineveong, SE-UY), March 1984, pp. 155 162

Berard E 01936) An Obyect-Qriented Desggn Handbook, ENB Softwore Engineering Ine
Rockville, Maryland

Bochm B W (1988) "A Spiral Model of Software Development and Fonhancement”, Computer,
21i5), May 1988, pp 61 72

Booch G 019850 Sottware Engoneeriea wath Adla, BenjamindCommines, Menlo Park, California

Booch (3 1198300 “thyeet Oriented Desipn®, Froeeman P oamd Wasserman AL teds) Dutoriad on
Software Design Techrigues, Fourth Fdition, IBEE, Silver Sprimg, Mavyland, pp 420 436

Booch G (19861 "Object Opriented Deselopment™ TEEE Transactions on Software Engineveing, SE-
1202), February 1986, pp 211 221

Wowarh G TR0 (g £ A Ve gented Dhosagn wwith Appfvanime:, Beonpomind T anamings, edwood City,
California

Borgida A (1985 "Features of Languages lor the Development of Information System at the
Conceptual Level”, TEEER Softuare 2011 Janaary 1985, pp 60 72

Bulman DM 01989 “An Obgect Baced Development Madel™, Computer Language. 818), August
1959 pp 49 59

http://www.cvisiontech.com

Capretz L. F (1991 Object-Oriented Design Methodologies for Software Systems, Phl) Thesis,
Computing Laboratory, University of Neweastle apon Tyne, U K (Technical Report No 370)

Ci.lpl'(?ll- LF and Lee P A Reusability and Life Cycle Pssues Within an Obyect -Oriented Design
Methoduology, Ege R, Singh M. and Meyer B teds) Proceedings of TOOLS USA Y2 { Technology of
Object-Ortented Languages and Systems), University of California, Santa Barbara (CA), USA,
Prentice Hall, Englewood Cliffs (NJ), USA, pp. 1139-150, August 1992

Chen PP (1976) "The Entity Relutionship Model Toward a Unified View of Data®™, ACM
Transactions on Database Systems, 101), March 1976, pp. 9 16

Coad P. and Yourdon E. (1990) Object-Oriented- Analysis, Prentice Hall, Englewood Cliffs, New
Jersey

Cunningham W and Beck K (1986) "A Diagram for Object Oriented Programs”, Meyrowitz N
{ed.) Proceedings of the Conference on Obyect-Oriented Programmung: Systems, Languages and
Applications - OOPSLA 86, Portland, Oregon, September 1986, ACM SIGPLAN Notices, 21(11),
November 1986, pp. 361-367.

DeMareo T (1979) Structured Analysis and System Specification, Prentice-Hall, Englewood Cliffs,
New Jersey.

Gane C. and Sarson T (1979) Structured System Analysis: Tools and Techniques, Prentice-Hall,
Englewood Clilfs, New Jersey.

Gossain S and Anderson B. (1990) "An Iterative Design Model for Reusable Object Oriented
Software”, Meyrowitz N. (ed) Proceeding of the Conference on Object-Oriented Programming
Systems, Languages and Applications and the European Conference on Object-Oriented
Programming - OOPSLA 90, Ottawa, ACM SIGPLAN Notices, 250100, October 1990, pp 12.27

Heitz M (1989 HOOD Reference Mannal, Issue 30, European Space Agency, Noordwijk, The
Netherlands, September 1989

Henderson-Sellers B oand Bdwards 00 M 019900 “The Obyeet Oriented Systems Life Cyele®.
Communteations of the ACM B30 Septemiber 1890, pp 142 159

Henderson Sellers Boand Constantine oL 00990 "Obgect O iented Develapment and Fuanctional
Decomposition™, Jowrnal of Obgeat O rented Peograermang, 60 Lanuwary 190, pp 1117

Hull M. E C |, Zovew Alinbadi A and Gutheie 1A 19890 "Object Oriented Design, Jdack:on
System Deselopment LISIN Specification and Conearvencs ™. Soffware Engineceong Jovenal, W20,
Murch 1989, pp. 79 86

Jucksan MO (1975) Prancipdes of Program Desisn, Avademie Press, Now York, New Yok

Jackson M A (198D Soatem Developement, Preant o Tall, London

Jaeobson [O1O86) "Lanvuagge Support for Changesle Large Real Time Svatem”, Mesrowits N
ted) Procecdings of the Conference on Oheot Oriented Programeang Systems, Langrages and

Applications - OOPSLANG, PortLad, Ovegon, September 1986, ACM SIGPLAN Nonos, 21011,
November 1986, pp 377 184

dacohson L O1ORT) "Object Orented Development in an Industeiad Eoviconment™, Mesronilz N
ted) Proceedings of the Conterenee on Ohgect COrentod Prongramenny Systems, Languages amd
Applications - QOPSLANT, Orlande, Florida, October 1987, ACMH STGULAN Notiees, 22012),
December 1987, pp 184 191

Jalote P98 "Funetional Refinement and Nested Objects Goe Object Oviented Desipn®, TEEE
Transactions on Software Engomevemg, SE-1500, Mareh 1989, pp 264 270

L4n

http://www.cvisiontech.com

Jihnson B OE and Foole B OPER) "Desiprmg Rewsable Classes”, Jowenad of Ohgect -Oriented
Programmaong, W2 Junetluly 1988, pp 2215

Lauber 1R 0 019820 " Dexelipment Sapport Systoms" Comprgter, 1361, May 1982 pp 36 16

Lorensen W (1986) Obpeet Ovionted Desyin, CRD Software Engineering Guidelines, General
Electrie Co , Corporate Resvarch and Development Center

Loy PO 01990 "A Caomparicon of Chject Ovicnted and Steaetared Development Method <",
Softrwnesr Eograverang Notes, W80 Loy PERL pp 18 18

Masiero P and Germano F S 1R (1988) "ISD as an Object Oriented Design Method”, Software
Engineering Notes, 13031, July 1988, pp. 22 23

Micallef.] (1988) "Encapsulation, Reusability and Extensibility in Object Oriented Programming
Languages"”, Journal of Myect Oriented Programmang 1), April 1988 pp 12 36

Pun W W Y and Winder R L (19891 "A Design Methad for Object Oriented Programming™, Cook,
S ted) Proceedings of the European Conference on Obyect Orwented Programming - FCOOPRY,
Nottingham, United Kingdowm, July 1989, Cambeidge University Press, Cambrudge, pp 225 240
Ross T R and Schoman K E. (19771 "Structured Analvsis for Requirements Delinitions”, [EEE
I'ransactions on Software Engineering, SE-301), January 1977 pp 615

Royce W W (1987) "Munaging the Development of Large Software Systems”, Proceedings of the
Ninth International Conference on Software Eagennerig, Monterey, California, March 1987 1EEE
Computer Society Press, Washington, D C | pp 328 338

Rumbaugh J , Blaha M |, Prewerlani W | Eddy Foand Laorensen W (1991) Ohbpect Oriented
Modeling and Design, Prentice Hall, Englewood CHITs. New Jersey

Seidewitz F (1989 "Cenceral Objeet Orviented Software Deselopment Background and
Experience”, Phe Jowrnal of Sestonrsand Softeers, 900, Fobraary TU89 pp 95 108

Shluer § and Mellor § 1 (1988) Ohpevt Chrwented Systems Anolyvsiv: Modeling the World en Do,
Prentice-Hall, Englewood Clls, New Jersey

Sincovee R F and Wierner B S (19871 "Modalar Soltware Construction and Objeet Opiented
Design Using Ada”, Peterson G0 K ted) Tutoeod. (et Orended Compating, TEEE Coamputer
Soviety Press, Washington, DO pp 90046

Stay.d F 01976) "HIPO and Integrated Program Design” IBM Svaeem Journal 15020 Apeal 19765,
pp 143-154

Tewhroew 1) and Hersev B A (18970 "PSLPSA A Computer Awded Technigue tor Structured
Documentation and Analvses of Tntornutum Processinge Svstems”, [EEE ransactions on Software
Engravering, SE-300 Lanuars 1977, pp 41 48

Ward 1I* (1989) "How to Integrate Object Orientation with Stractured Analvsis and Design®”, [EEE
Software, 6(2), March 1989, pp 74 32

Wasserman A 1, Pircher A and Muller R 009901 *Fhe Object Oriented Structured Design
Notation for Software Design Representation”, Compater, 2330, March 1990, pp 50-63

Wirfs Brock R, Wilkerson B and Wiener L0199 Desornang Ohgect-Ortented Software, Prentice
Hull, Englewood Clills, New Jersey

Wirth N 01970 "Progeam Deselopment by Stepawise Retinemwent™, Communicattons of the ACM,
Htd, April 1971, pp 221 227

Yourdon Eand Constantine L Lo o8agm Stewceweed Deagn, Prentice Hall, Eoglewood CltTs, N

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196
	z0197
	z0198
	z0199
	z0200
	z0201
	z0202
	z0203
	z0204
	z0205
	z0206
	z0207
	z0208
	z0209
	z0210
	z0211
	z0212
	z0213
	z0214
	z0215
	z0216
	z0217
	z0218
	z0219
	z0220
	z0221
	z0222
	z0223
	z0224
	z0225
	z0226
	z0227
	z0228
	z0229
	z0230
	z0231
	z0232
	z0233
	z0234
	z0235
	z0236
	z0237
	z0238
	z0239
	z0240
	z0241
	z0242
	z0243
	z0244
	z0245
	z0246
	z0247
	z0248
	z0249
	z0250
	z0251
	z0252
	z0253
	z0254
	z0255
	z0256
	z0257
	z0258
	z0259
	z0260
	z0261
	z0262
	z0263
	z0264
	z0265
	z0266
	z0267
	z0268
	z0269
	z0270
	z0271
	z0272
	z0273
	z0274
	z0275
	z0276
	z0277
	z0278
	z0279
	z0280
	z0281
	z0282
	z0283
	z0284
	z0285
	z0286
	z0287
	z0288
	z0289
	z0290
	z0291
	z0292
	z0293
	z0294
	z0295
	z0296
	z0297
	z0298
	z0299
	z0300
	z0301
	z0302
	z0303
	z0304
	z0305
	z0306
	z0307
	z0308
	z0309
	z0310
	z0311
	z0312
	z0313
	z0314
	z0315
	z0316
	z0317
	z0318
	z0319
	z0320
	z0321
	z0322
	z0323
	z0324
	z0325
	z0326
	z0327
	z0328
	z0329
	z0330
	z0331
	z0332
	z0333
	z0334
	z0335
	z0336
	z0337
	z0338
	z0339
	z0340
	z0341
	z0342
	z0343
	z0344
	z0345
	z0346
	z0347
	z0348
	z0349
	z0350
	z0351
	z0352
	z0353
	z0354
	z0355
	z0356
	z0357
	z0358
	z0359
	z0360
	z0361
	z0362
	z0363
	z0364
	z0365
	z0366
	z0367
	z0368
	z0369
	z0370
	z0371
	z0372
	z0373
	z0374
	z0375
	z0376

