109

Deriving Applicalive Programs from Formal Specifications

Silvio Lemos Meira

Departamento de Informatica

Centro de Ciéncias Fxaias e da Nslureza
Universidade Federsl de Pemambucu
50739, Fecile PE, Brasil.

AB CT

We introduce a notation io wrile funclional {declarstive, appiicaiive) programs and consider ways
in which o derive applicstive implementalions of formal specificalions writlen using the Z
formalism.

In this paper we consider Z as the utmosl level of shstraction, snd A, the functions! language, as
the most cperalional formalism aveilshle o the programmer. Our gosl is to consider the
properties of a formal programming environment in which lo derive furctional proograms from
mathemslicsl specificalions of their propedies, as a (iirst step) of buiiding relisble pieces of
software. We also consider the intricacies of sutomating (psrts of) the process.

RESUMO

Apresentamos e nolagso psra escrever programas declsrativos, e consideramos como
derivar programas aplicaiivos a parlir de especificagoes formais escriiss em Z. Aqui, Z € o
nivel mais ahstralo, e A, uma linguagem funcional de alta ordem, o meis cencreto. O chjetivo @
considersr as propriedades de um ambienie formal de desenvolvimenio de sofiwere, oude g

desenvolvimento de programas funcionais seria 0 primeire passo na construgan de software
confiavel.

1. MTRODUCTION
1.8 Essentisl Terminn!ogy

The Z here relers lo the Z specificstion languane [Hayes 861, - and A is our own in-house
applicalive language baing designed spd implemented sl UFPE. Both lormalisms sre described
elzewhere [Meira 87b, Meira 87e).

Some of the lerminnlogy n this paper comes from [Bjormer 87}, snd much af it is clas..med 85
“common knowiedge”. We use the terms in the mesnings ascribed in the alorementioned
sddicle, withoul sny sitempt lo adoptinem as stendsrds.

1.1 The Softiware Cycle and Models of the Sofwsre Development Proce

The soltware deveiopment process is part of the soliwere cycle. The pheses uesled 2s
"development” here sre specification, design and implementstion. We will consider some of the
difierent approaches leken in modalling the process of sofiwsre development “in the large".
There are a few modeis, e most commonly used heing derived from the welerfall{Conen 36]
and muadified versions of it. Recent developments such as RAISE[Bjormer 87] {sn scronyin for
Rigorous Approach to Induslrisl Boitware Develnpment), ere based in a sub-cycle of thal model,
encompassing the threa sleps of the "weslerisli”, which are czailed the “software deveiap.nam
cycle”, on the ides of “praject grephs”[Biomer B{] and in denoclafions] semantic methods{dones

86, Blomer 87] lu specily, design and desi with some implementation matters of the mw(;;-e in
question.

http://www.cvisiontech.com

As we have ssid before, our main inlerest is in formal methods for developing sotwere, and in
order 1o do thal, we need firstlo have 8 model in which to work with the obijects of that class. That
means thal we msy have to accept a "world” model of the softwsre development process, or we
may nol. We believe thal some oi the more esoleric models of sofiware development have been
used s:;lar for ahsolute lacking of better models, tools and theories that would support a simpler
approach.

Of caurse, if the "customer” thal goes info a software house in need of a progrsm could write fully
tormal specificsiions of his software, say, in VDM[Jones 86), thsl would be good news for sl
concerned, including himself. As it happens, it is not likely that this is the way things will happen,
and we are bound io face an informal, unstructured descriplion of what is needed. We are nol
going into this matier here, but 8 very important problem to deal with, when developing softwsre,
is getling to know what the user requirements sre, exaclly. This will be dealt with in section 1.2,
and more exiensively in 8 companion paper[Meira 87a].

In whal follows we propose a three-step model for the softwsre development cycle, which we call
8Pi°"¢ {for specilicalion, designiprololyping, snd implementation). The method is being
used 1o dasign non-reactive sysiems, and it is based in 2 mathemalica! formalism for specification
of problem/prograem properiies, a purely epplicalive programming lsnguage as both prototyping
and implementation language, and a method of transiorming formsl specifications into functional
programs, which can be viewed, in a firsl siage, as sn execulable specificaflion. Foliowing
Bjorner's work al DDC, Denmark. the setling for this aclivily is the idea of Software
Development Graphs([Bjorner 87], which is expleined al length elsewhere[Meira 87].

1.2 Informal Specificalions

Informel specificetions, unfortunately. are whal most programmers are uset 1o see a5 the source
code which they must compile into working and correct programs. In a resl lile project, one hes
to deal viith the problem of scquiring the nght informal specification, which is not triviel, due o the
gap that must bridged by programmer snd user to-undersisnd each olher.

Afler one has the (righl) informel specilication, there is the problem of formalizing it somehow.
The choice of methods and formalisms is wide (VOM, PAlSley[Zave 84). obj{Goguen 82] and me
loo{Henderson 86] ere bul a few exampies). The melhod o be chosen has to have the righd
level of absiraction, which is something not very essily defined. Also, it must be possibie 1o
{rensiale (this can be seen as some form of compiiation) the inilial (inlormal) specification into s
tormal counterpsrt in such a way that the intuitive meaning ol the lormer is al least apparent in the
lalter. o T

Thatis 1o say thal one expects sn aversge reader, with 2 mathemalical background, 1o be able to
read the more abslract levels of the formal specificalion.

1.3 Formal Specificstions

Formal specifications are a need in software development as drewings and formulse in
engineering. No one in their right mind would fly in an airplane thal they knew had been built
using the {echniques that we use o build computer programs most of the time. As we are now
using compulter programs fo fly sirplanes, it is ahout time we start to think shoul using design and
consiruclion methods {or our programs which are sl least as relisble as the ones used in {non
compuler aided) engineering.

Here we sre to face fierce opposilion in our way {o enforce iormal sofiware development. Most
people’s silitude to the subject is thal wa can do it withou! mathemalics. This is like saying that
Marco Polo wend to China using nothing bul infuilon and senses. Thalis periecily fine for his ime,
butl bet he could not lake a superanker anywhere, nowadays, with the same apparalus he used
then. Thalis indeed our problem in sofiware engineering loday.

110

http://www.cvisiontech.com

111

We ought to be using the approprisie tools to solve the problems we have...
1.4 Protolyping and Programming

We should estshiish the formsi relslionship belween the three aciviies (specification,
design/prototyping snd progromming) that we assume are software development. 1 is widely
accepied that the develaper proiils from a proiolype instead of going ali the way and writing a {ull
implementsiion. In SPI°"¢, the sim is lo derive funclions!, execulsble specificslions fie.
prololypes) from formel specificalions verittenin Z. A smell example of this is given in Section 3.

2.2

Why Z instead of obj, VOM or whstever? A (partial) answer lo thetis thet Z is simpler, open, and it
is not 2 standsrd, which means we can experiment with it sngd {may be) have our Z, a8 #tis the
csse of some grouns svound the world. Z is a model based formalism like VOM, but the sim is
not proci-heoretical as in the loller. The geners! idesl is 1o hove modular mathematics o
communicate the specificslion, the design and e implementation, sl several levels, 1o the
various groups involved in the construclion of a large piece of software.

2.1 The Mathemslical/Compulatinnal Noiotion

A sinall problem here is to choose a notation tor the mathematical symbols and disgrams in Z, es
one would cerlainly want to have & parser and type checker thel could lrest speciiicelions veritlen
in the tormslism. This would be s first 3lep in the direction of having Yransformation syslems that
could tuke Z as inpul and Gnasi probably wilh user cooperstion) produce runnable proarams thal
conform 1o the specticalion. i ihe long run, this i the aim of this project. Our group's first sllempt
lo define such notslion is discussed in [Meira 87e]. Due lo spece constreinls, we are going o
use a nolstion akin lo et one here without any iurther explanation.

2.2 &n Example

The example we have chosen lo specily is a porluguese version of Unix's spell (Orlo[Meio Nelo
871) teing developed sl UFPE.

The {very) skelchy informs! specificaiion goes a3 iollows:

0} given a sorted tictionary of (partuguese) words, we wanl a progrem that can
1) insert neye words inthe diclionory,
2) check whether a given word ocours in the diclionary,;

3} given an inpul text formatied by 8 word processor, filler the wp's cummfinm and give
8s resull o soried list of the inpul's words which do not oceur in the dictionary.

The specificalion goss thus
SCREMA Basies;

DEFINE
Letter = 1'4°..°2",'a"..'2'}; (* a3ll letters, accented ones as well ¥)
Mord = List Lecter; (% word is a list -or seqg- of letters %)
File = List Yord; (¥ File is -just- a lizt of words #)
DECLARE
Dict 1 File;
PREDICATE
erdzred Diot y & (% the dictionary is ordered, ang %)
e File (mi_set ict) = Diet (# words occur just once %)
EHD Racies,

The "modules” of tormsd speciiicstions in Z are called "SCHEMA”. The schems above declsres
afew types, such 85 word srd file, and a veriebie, the diclionary {Dic). The predicsle states that

http://www.cvisiontech.com

112

the diclionary is ordered, and siso thet words occur just once. The auxiliary funclions (eg.
nk_set) used in the predicale are assumed defined elsewhere, ssy in a "system” module.

The schema above sisles the invariant of the specilicalion, which is imported by all other
schemas. Readers familiar with wsus/ Z will notice thel we give a very liberal interpretation of the
formalism here, which puls some exira siress on the specification of funclions {one could call it

fizZ - a tunclional interpretation of ZI). Only one varisiie will be talked shoul representing the
dictionary.

SCHEMA Insert;
INCLUDE Basics, Basics‘; (® the ' primes all of Basics *)
DECLARE)
insert @ ¥Word -) File -) File;
PREDICATE
FORALL x : Word .
{ Dict’ = insert x Dict &
Dict® = Dict $¢ x) (% 5% neans include or substitute #)
(% right into left %®)
END Insert.

SCHEMA Find;
IRCLUDE Basics;
DECLARE
find : Yord -) File -) Boolean;
PREDICATE
FORALL x 3 Yord .
(IF x IN (mk_set Dict) THEM find x Dict = TRUE
ELSE find x Dict = FALSE &
Diet' = Dict)
EWD Find.

SCHEMA Filter;
INCLUDE Basics, Basics';

CONST

VYocuds = [".3u", “.pp", ".bf", ".ti%)
DECLARE

filter : File -) File;
PREDICATE

FORALL # ¢ File.
{ Filter F = nk_file (nk_set F - Upcwds)
Dict' = Dict)
END Filter.

Here nole that the specificelion for filter just says thal it removes sl word processor commands
from the inputtext. No mention is made 1o the order of the oulpu! texi relative o the inpul

SCHEMA Spell; ,
INCLUDE Basics, Basies'; \
DECLARE \

spell : File -) File;
PREDICATE -

FORALL £ : File.

{ spell F = sort (mk_file (mk_set {Filter f) - Dict))

Dict' = Diect)

END Spell.

It should be said thel Z's usus! schemas deal with varizbles, which are part of a state, the object of
the formal specification. Our reading is functional, so we tend to say much more shoul the
funciions, in this case, thal will use the only varisbie, the dictionary.

3.A

3.0 Why a New Applicalive L anguage?

There is a number ol applicative languages in the run elready. Ris arisk in a sense, to design yet
a new one, snd it might also be a fruiiess exercise o do so.

http://www.cvisiontech.com

‘We have decided to design and.': impiement 8 new ianguage for 8 number of reasons. st

because some lestures that we'd like 1o cee in ONE language sre spread over several. These
include comprehensions (Miranda end Orweli}, non- and conirolled siriciness{Mirands),
polymorphic streng typing (Mirands, ML end Hope), funclional unification (Hope), modules snd
separate compilalinn{l ML and Mirsnds), sigebraic end absiract daia types (Mirsnds and ML) and
inheritance (Pebble and FOOPS), and more exclic capebiliies such a3 Darlington and While's
maodal "resirictions o evaiuation” {currently implemenied in Hope).

W we had lo choose s new language, it would have been Mirsnda [Turner 861, bul that was not
possibie because of implementation rights and problems in porting it to Brazilisn versions of

ATT's Unix opersting system. Also, we could not get a copy ol Wadler's [Wadier 86] Orwell
sysieim for more or less the seme reason,

Apsri from having 2 4o 8l ilsnguage design, we siso wanted to hiava 2 testbed in which to sont out
owr ideas in developing functiona! “execulable specitications” (or prololypes) from formal
specificolions, i.e., ine language might have influence of Z in its basis. Another possibie simis fo
ry some clever impiementation idess by Rase! Ling fLins 85), from his work in categoricol
combinasiors.

Al last, 1o our best knowledge, there is no previous experience in he implementation of purely
functicnal isnguages with the leshires described above in this counlry. The exercise proposed
herein will alco hidiil some of the isck of experience in this subject which is of gresier
imporiance by ihe day.

inviial ioliowes, we give an iniormal dascrplion of 4, which is 1o be thoughd a5 3 very preliminary

partia! descriplion of ils festures. The lanyuage's formal syntsclic, pragmatic and semoantic
descriplions viill follow[Meira 87h].

3.1 The Dala Objecis

in &, types ere sels of vaiues, like in FunfCardelli 85]. We do not enter inio the subject here, but ft

is necessary 1o say tis minimum in order to account for fists, tuptes snd ather struchured types,

polymorphism, iype peramelerizotion end inlerence. s nlanned tha! A will have an Mi-like Yype

systens

The bazic daia types in A will be booil, int resl anid r‘hdr which are the lsngusyga types

corresponding 1o truth velues, integers, reals and {:hu" clers, respectively. Examples ol & cl;‘i‘l are
TRUE, FALSE, -1, 1287, 1.8, 3.1415326, a5 LA

One basic structure is the list, created by the tyue construcior fist, and one can have lizls of any
tvpe af G‘*.:Ll {of course mchuding lists). Lists are hamogenaous dala shuciures. in paticular, a
shring is a fist (‘hh.‘ abbrevialed that way for convenience. Examples of lists are

£1,2:3 whn,h has type fst int
[111, l;,ﬁl [4,5,61] §ist distinh)
Rttt atatsinte all licl echar, the same az string

Thereis an 3‘.::::::'“ five :.-p.munlatmn for the lastiist, as'“diana",

To startwith, we are not going to bolher cbout arrays in A, Arrays can be represented as Bists, bar

access Ume, wiich is constant for single access on arrsys, and linesr on fisls. A might have
(applicaive, asin [Meia 65)) arrays in the luture. There is no promise.

The way of grouning olijecis o: uiferent ypas in a structurs iz to put them logether in o tuple, like
Il; *good"™, 1.01
whoze lype is
tuple fint, slring, reall.
The argument to the constructor tuple is a list of types. tuple is a constructor of product types
and lwples could be delined, of course, in terms of the usual domain operalors

|’?\J LALTIRE L ¥ l?!l. g A -0 l\"cte ’Jil“."l K"'e :1 fl

uce A's luples as Pascal's records, cowe do toi bother with the record mechanism here

113

http://www.cvisiontech.com

3.2 Abstract Dala Types

Much of the power of loday’s programming languages is in the provisicns they make for data
absiraclions. ltis, of course, much easier io tsik about ihe true properiies of 2 iree, than ahout the
details of its implementstion in assembler. Like Mirands, A provides two sorts of shstractions: the
first are the algebraic dsla ypes, where the programmer builds slgebrss 1o describe her data

types, which are visible, at constructor level, from the outside. Trees, for once, can be described
88

ALGEBRA tree;

tree x = _nil | _node x (tree x) (tree x)
tree.,

Nole that the previous equalion describes paramelerized frees (tree ») which can be used fo
represent trees of any data object The underscored names are used ({by definition) as
constructors of the data type, hence also valid in patiern matching objects of that type. The type
described above is a free algebra, ie, there are no restrictions to the behaviour of the
construclors. We could define an ordered binary tree algebraic type using laws to enforce a
desired behaviour of the constructors, such asin

ALGEERA otree ¥
ﬂéree x = _onil | _onode x (otree x) {otree x) | _insert x (tree x);

_insert a _nil =) _onode a _nil _nil;

_insert a (_onode b 1 r) =) _onode b (_insert a ld r, 2 {= b

_insert a {_onade b 1 r) =) _onode b r {(_insert ar), a > b
EHD otree.

e wa

Here, if you use the _insert canstruclor, the lree is ordered onils own! Normal trees can be buitt
using the ordinary _node constructor. Nole thal although one can build trees using the _insert
consirucior, sil insiances o it are reviriiten, by the isws, into instances of _node.

Abslract types, on their turn, have hidden implementation psris, and are used sccording to lhe
"experted” definition. A balsnced tree type could be defined as an abstype by

ABSTYPE bkaltree x;

VISIELE
nil : baltree x;
enpty ¢ baltree x -) bool;
insert : % -) baltree x -} baltree x;
delete : x -) baltree x -) haltres. x;
find : x -) baltree x -) bool;
HIDDEN
TYPE
8 ‘[I;altree ¥ = trea x; (% balanced trees are algebraic tress ¥)
D3
DEFINE nil;
nil = _nil;

END pil;

DEFINE enpty;
enpty X = X = _nil;

EHD enpty;

* DEFINE insert : a =) baltree a -) baltree a;
insert X t = balance (put = t);

DEFINE insert;
(% et coetera %)

END baltree,

114

http://www.cvisiontech.com

3.3 Functions, Cumpig_ hensicns and Seclions

Functions are defined in A by wriling their deiining equalions, just as we have done in the HIDDEN
partof the absiract data type ahove. ldeaily, there would be no order in the definitions, as the
guards in the equetions should be mutuaily exclusive. To simplify wriling. we assume thai the
equations are compiled from top to bottom. All function definitions are curried, higher order
and maybe polymorphic. A embodies the concepis of seclions {psrlially parsmeterized
operators as in Crwell) and comprehensions (ZF-expressions in Miranda), snd has a cali-by-
need semantics throughout. ftis planned {but there is na guarantee) that it will have unification as
in exiended HoepelDariinglon 86]. We now show a few standard definitions in A {3 whole set of
definilions is availsiile from Stedtib):

HODULE Standard;
i%

fin A MODULE is made up by IMPORT and ERPORT lists, followed by

defFinitions of types (JVPE, RLGEBRA znd ABSIVYPE) and Functions (DEFINE).

Each function is imtroduced by a DEFIHE...EHD sair. Givina the tvpe

of the functien in the DEFINE line is optional, as the cowmpiler will -

)dedu:e its type. Senicolons are terminaters
*
EXPORT filter, map, reduce, sort;
DEFINE map : $x =) v) =} list x =) list y;r

wap Fx=1[0Ffa;ad xl

{% read as " list of F applied to 2, For 21l a taken from » " ¥)
EHD wapi
DEFINE #ilter;

filterce x=[l a:a{~-x:cal;

(¥ no need to declare types, as they can be deduced by the compiler %)
EHD filter; .
DEFINE reduce;

rveduce op id [] = id:

reduce op Ad (a:x) = op a {reduce op id n); : R

reduca; .

DEFINE sort; (% this imnlements bubhle sort,,, %)

sort = fix swap:
ED sort;
DEFIHE f1x; (% wisible only in this module,” i¥ is not exported #)

Fix £ x =%, % =Ffax; ’
= fix £ fayg

VHERE fan = F x; 4% this is local to Fix, not visible outside %)
ERD fix:
DEFINE swap;

suap X =¥ L g T

suap {aibi) = g 3 Suap Eb:x;, 2 §= g

= b 1 swap (atx), a ¥

END swap;
ERD Standard.
3.4 Madules

As it can be deduced by the informal presentalion chove. A's module mechanizm is very much
fike that of Modula2[Wirth §3). Furthermore, algebras and absivpes are defined inside modulas,
as itis the case for everylhing else in the language. For he purpose of this paper, we Cah asstime
that this is indeed the case. A mare detailed explanafion is given in [Meira 870]

.5 A Simole imolementaiion of A

True to the main aim of this project we are slarfing it by creafing a formal descripiion of A. The
method being used is to wrile & “program® which implemente the deantstions! semantics of the
fanguage, asin [Allizon 83], Due fo the featurss propnsedtor 4, a compiler iz o must. Althe time
of wriling, we only have an inferpreter for KHO[Croft 841, under YMS on the YAX o which the A
detiniions have to be hand bransisted in ordar (o be execited,

115

http://www.cvisiontech.com

4 FromZinA

The sieriing point here is ihel we can easily ranstorm the requirements stated in Z into funclion
definitions in A which salicly the slated requirements,

Looking st a Z scheme, what we see is 5 number of iype definitions, verisble dedlarations and
predicates that must be salisfied. On the core of the predicales, we find funclions {yet lo he
defined), which, given the truth of the pre-condilions, their application will result in the ruth of the
post-conditions. The job 1o be done when programming is to define the tunctions which sre true
io the speciiications.

A iz 8 very high tevel language. The denctslionsl characlar of the lsngusge mekac il ascier o
malch specification blocs with language modules and lunclion definitions.

For example, given the specificalion of sorling as

SCHEMA Sort;
INCLUDE Basics;

DECLARE
sort : File -) File;
PREDICATE
FORALL £ : File .
{ sort £ IN parsutations f &
ordered (sort £))
EHD Sort.

Assuming the usual specifications for permutations and ordered the foliowing module
implemenis the specilication above, modulo the correctness of the definilions of permutation and
ordered, given that sort is correct by construction: '

HODULE Sort;
FROM Stdlib IHPORT head; =
%I;’;{.ERI File, sort, Yord; :

File = list Uord;
Yord = striny;
END;

DEFINE sort : File -) File;
sort x = head [x {- pernutations x; erdered x 1;

EED sort;

DEFIHE orderaed:
erdered [1 = TRUE;
ordared [al = TRUE;

ordered (a:bin) = a {(= b & ordered (b:x);
(% Hote that the definition is polvmorphic, of tvpe list a -) baol,
Used above, the generzl type is instantiated to File =Y bool x)

ElD ordered;

DEFINE pernutations;
perrutations (1 = ({1}
permutations x = [a:

EHD permutations;

END Sort,

;; ; a - x; p {- pernutations {x - [al) 1;

The reader has cerlsinly noliced thal the definilion of sorl is not very efficient. This was not the
aim of our first definition. The process of ransforming specifications info definiions goes exaclly
the way we have tried lo show above. First one defines the dsla types that will be used in the
definitions, and they will be isomorphic to the types used in the specificalions. Next one wriles
whal could be properly called execulshle specificalions, i.e., definitions in which one has only
concerned onesell with correciness in view of the specificelion.

116

http://www.cvisiontech.com

1 A Programming Exercise: Orloin A

The definiions below have heen derived from the formal specificaiion in seclicn 2.2. We fesi
they need not much of an explsnstion here, given thal the “derivelion” in queslion is
straighiforveerd.

HODULE Oito;

FROM Stdl:ib IMPORT or, read;

FROM Sort IMPORT Word, file, sort;

EXPORT find, insert, spell;

DEFINE #und : Word =) File =) bool
find » Fil = or [x = a3; a (- %

END find]
DEFINE insert : Yord -» File -) File;
insert 2 {1} = [al;

insert a (b:y)

a:l_::_y, al=bh
bitinsert a y, a2) b
END insert; .
DEFINE spell : File -) File;

spell = (- dict) . mkset . sort . (- wpewds)

e m.

UHERE
dict = read Uord “dictionary”;
(% the type of read is a -) string -) list a,. -

the operational somantics of the function is obviovs %)
wpcnds = [%.au®, ®,pp", “.bF%, ".ti"l

END spell;

DEFINE wkset : File =) File;
pkset (] ={1;
nkset [al ta],

ket (araix)
mkset (a:b)
END nkset;
EHD Orto, -

wkset {a:x);
arnlset (hix);

rkset does not reslly makes sels. I lskes an ordered list snd produces one where each element
occurs slmosionee. A sording funclion could iske care of hat as well.

-5, Conclusions

itis expectad thet one canintdeed produce some of the deliversbles adverlized here, in 2 rm
that can be ussd by m'i.!"t'y oot el leastwe can put some hard guestions shout the tet.hnmogy

uf prooramming in ihe isrge and see haw @ particuisr psir of paradioms, 7 and A in this casn, is
suited to answer them

In view ol whai we know 8 priori, we do not expect grest progress, inilislly. in the srea of
awtomated genaration of programs from ermrim attons, anil thaiis nmosr aim hiere We expiect 1o
produce stme genedc loole thel can verliy whether 8 program, denved fom & foros
specification, is tuz o & We are well praparad to seoept thal aven this is not o simpte ting to
o, and we sre not going o try it first. Hend trenformslion of specilications w dehnilions must be
triad firs, 1o discover tha "nalural” approach. There might ol be something that is, sithe some
lime, neivral 2and simple.

However, we {2&i thal there are a number of things thal can and must he done, here and now.

are h"}"t o e W

The sofiware technicians ana &n r.m"' ro Hist we heve 8t o fh nowaddsy VS, nwne
working in skyscrapers which they heve no plen of, wlur”. they do U iR,
building. ar the msiniensnce, and 1}:3)! Go not knove whet they are supposed i qsei out of their
work. Az aresult, most bugs foend in “modem” systems end up being “festures”, Ior lacking of 2

Proper specicstion oithe syslem and praper design o its implemenisiion.

(154 f‘ f‘}{ ll EROMER

.....

117

http://www.cvisiontech.com

118

We would like to conlend that there is no way in which o specily, informally, 8 huge huilding and
getitrightin the end, and the same is valid for large picces of sofiwere.

As there ere drewings, equelions, cross-sections end the like for buildings, there must be
equalions, specificalions and drawings for software. R is not for being shstract that software is less
complex than buildings or mechanicsl arlifacts. if anything, it is more complex.

The "execulion” of the program of work hinled here, spplied 1o some real sysiems that
programmers would do in practice (such as the Hyperlext project described in [Meirs 87d]),
would most cerainly generate a wealih of knowiedge in he fields of software engineering it desls
with (lsnguage design end implemenizlion, formelisins snd melhodologies for sofiwsre
specificalion, design and implementation, and more), snd itis a long lerm programme of work. it
will nol be fuliilled with one or two papers, it is more likely 1o take yesrs of work to grasp the resl

complexily of the sysiems we ore deemed o des! with. Furthermore, there is not a solution, but
many.

Allast, bulnot alleas! resders sre warned thsl this paper skims the surlace of work in progress.
1tis nol the case thal everylhing will change in the Ruture, bul we have nol enlered stesdy stale yel.

6. Acknowledgements

This work owes much 10 the seminsrs of the Funclional Programming group at UFFE (Augusto
Sempsio, Cormen Selszar, Maris Lieue Sombra, Nelson Asfora end Hoberlo Soulo Msior).

Special thaiks go 1o Augusio Sompasio, or forcing me 1o explain some of "my"” Z o him, which
has clesred lhe presentalion of Seclion 2.

7. Peicrences

[Alison 83 ;
Frogremming Denolelions! Semaniics. Compuler J., 1983,

[Bjomer 87}
On the Use of Forms! Melhods in Sotlvare Developmend. 9ih. inll. Conf. on Soltw. Eng,,
Monlerey, CA, Apr. 1857,

[Cardelli 85]
Cin Lindersisnding Types, Dels Abslrsction snd Folymorphism. Comp. Survv. 17 [4), Dec.
1985. .
[Cohen 87]

Cohen, B., Harviood, W. T, Jackson, M. L The Spedificetion of Complex .S}s;lfems.
Addison-Wesley, Wokingham, {UK), 1986,

[Croft84]
Croft, 8. dmplemenislion of Funclians! Langusges. MSc Thesis, Hiutherlord College,
Universily of Kenl &t Canlerbury, 1985,

[Darling'on B6]

Darlinglon, J, Field, A. J., Pull, H.. The Liniicetion of Fundlionsl] snd Logic Lenguages. \C-
CS Internal Reporl, lmperial College, London, {UK), 1986.

[Goguen 82]
Goguen, J., Mesequer, J. A Rapid Prolobping in e OB Execulable Speoificsiion
Lengusye SR, TR CSL-137, Aug. 1982,

[Hayes §7]
Hayes, 1. (ed.): Specificaiion Case Studies. Prentice Hall Intl (UK), 1987.

[Henderson 85)

Hendersan, P., Minkowilz, C.. The me oo melhod of softwere design. |CL Tech. J., May
1586,

http://www.cvisiontech.com

119

[Jones 88]

Jones, C. B.: Systemslic Scfvare Development Using VOM, Prentice Hall intl (UK), 1986.
ins
" leijns, R D Calegoricel Multi-Combingiors. Computing Lab Report 41, University of Kent
&t Cenlerbury, 1586. .
[Meira 85] e
Meira, S.: On The Elicisncy of Appiiceive Aigariinns. PhD Thesis, Puthertord College,
University of Kent al Canterbury, 1985,
[Meira 872]
Meirp, 8.. Grafos de Dorenvoliimenio de Solvesre. 7 e 8 Esperilicecso ta Aroo-fris. In
portuguese. To eppear. -
[Meira 87h]
Meire, 8. 4 Lingusyen de Progremscso Funcichel In portuguese. To sppear.
[Meira 87c)
Meirs, S.: From Z lo A: Deriving Applicsiive Frograms lrom Forms! Specificalions.
‘Outling of the SPI°™¢ project To appear.
{Meirs 67d]
Meira, 5.: Hiperizxdo. Projelo de Pesquiss Submetido a0 PNF‘q Personal
Communicslion.
[Melrs B7el
Meiro, 8., Sampsio, A, Salazar, C, Sombrs, M. and Soulg Msior, R 7 ¥Nolecas
Compulscionsl & Esgac;frasm;s ln podugaese. To appesr.
[Melo Nelo 87)

Meio Nelo, C. tvla Lim Revisor Orlpgrstico. Proe. Semish 1857, SBC, Salvador, 1987,
[Turnzr 86]

Turner, D. A Mirands: 5 non shicl i rh.fmna! lengusye with polymorphic bpes Proc.
Semish 1986, SBC, Recile, 1886.

[Wailier 86]
Wadler, P.. dnlnfroducion lo GRWELL PRG Internsl Report, Oxdord University, (UK),
1986.

Wik 83]

Wirth, N.: Frograminsing in Moduls-2 Springer-Verlag. Heidelbery 1953

[Zove 34]

Zove, [0 The Qpersiioms! versus the Conveniionsl Approsnh to Sofivesre Developmant
CACM, Fei. 1584

http://www.cvisiontech.com

	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107
	z0108
	z0109
	z0110
	z0111
	z0112
	z0113
	z0114
	z0115
	z0116
	z0117
	z0118
	z0119
	z0120
	z0121
	z0122
	z0123
	z0124
	z0125
	z0126
	z0127
	z0128
	z0129
	z0130
	z0131
	z0132
	z0133
	z0134
	z0135
	z0136
	z0137
	z0138
	z0139
	z0140
	z0141
	z0142
	z0143
	z0144
	z0145
	z0146
	z0147
	z0148
	z0149
	z0150
	z0151
	z0152
	z0153
	z0154
	z0155
	z0156
	z0157
	z0158
	z0159
	z0160
	z0161
	z0162
	z0163
	z0164
	z0165
	z0166
	z0167
	z0168
	z0169
	z0170
	z0171
	z0172
	z0173
	z0174
	z0175
	z0176
	z0177
	z0178
	z0179
	z0180
	z0181
	z0182
	z0183
	z0184
	z0185
	z0186
	z0187
	z0188
	z0189
	z0190
	z0191
	z0192
	z0193
	z0194
	z0195
	z0196

