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ABSTRACT

This paper reports experience and describes the tools used in parallelizing large
application programs of two kinds : Monte—Carlo simulation and linear p ng
optimization. These techniques are used in a large number of applications in power
system operations and planning, and in various fields of engineering and science.

arallelism is analysed on the subroutine level and the programmer will be
responsible for adapting the existing application code to the parallel environment.
The tools comprise a multi—processor computing system with parallel processing
software facilities, a concurrent processing simulator for helping on problem partition
and debugging, and a data—base containing information on the application's variables
and subroutines. The goal is to reduce execution times taking into account the
solution structure. Three case studies illustrate the application of the above tools and
the development methodology. Results obtained show a very high efficiency in the
use of the concurrent processors.

RESUMO

Este artigo descreve a experiéncia e as ferramentas usadas na paralelizagido de grandes
programas de aplicagio de dois tipos : simulagio de Monte—Carlo e otimiza¢io em
programacio linear. Estas técnicas sio empregadas em um grande nimero de
aplicagbes de planejamento e operacdo de sistemas elétricos e em véarios campos da
engenharia e ciéncia em geral. O paralelismo é analisado no nfvel de subrotina e o
programador serd responsavel por adaptar o cOdigo existente ao ambiente paralelo.
As ferramentas compreendem um sistema mull.l;gorromsador com facilid: para
pro§ramaoao de aplicagdes paralelas, um simul para ajudar na particho do
problema e sua depuragio, e um banco de dados contendo informagdes sobre as
varidveis ¢ subrotinas aplicagio. O objetivo é reduzir os tempos de execugio
levando em conta a estrutura da solugio. Trés casos—estudo ilustram o emprego das
ferramentas acima e a metodologia de desenvolvimento. Os resultados obtidos
mostram uma alta eficiéncia no wuso de processadores concorrentes.
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I=INTRODUCTION
The advantage of parallelism over a sequential roach in accelerating the
solution of a num scientific and engineering pro is now a widespread

concept. Techniques on how to design p fically to parallel machines are
alre?i,bei proposed [1,2]. On the other ﬁ:d. :ithough much effort has been spent
tow finding a completely transparent way of taking Iarje sequential applications
and parallelizing them [3k up to now there is no general solution. Measures of
potential parallelism on a high level statement basis in large applications [4] indicate
that they would benefit from this technique as soon as the hardware and soltware that
can exploit them are available.

In the meantime, programmers who wish and need their applications to benefit
from existing hardware software will be responsible for parallelizing them [5).
Their main concern will be the conversion of tested ﬂiw.ions running on a
sequential machine to a parallel environment, in a fast, reliable and efficient way.

The particular applications we deal with concern very large simulations used in
power system planning and ations [6,7,9]. Today, these simulations try to
circumvent the computational limitations of conventional m:;llpnm by considering
reduced electric systems or analysing a limited number cases, for instance.
Minimum cost Ea.unin alternatives and security analysis are examples of
applications which woul dimtlr benefit from extending this scope. Besides, the
Eﬁﬂ;"d"w used for these problems is general, and has application in many other

Given an application that is suitable for parallelization —in the sense that it
allows a partition in "coarse grains" which are themselves parallelizable —, the
applications' programmer faces the following question : which tools shall be used to

p to convert the application to a parallel environment? Programmers are not able
to explore parallelism on a statement basis, but will be interested in getting the
benefit of a parallel computer at a procedure level.

This paper describes experience acquired doing this work and the tools which
were developed to help in this task. sting algorithms were img!ementad in a
16—cpu system, and benchmarked against their serial counterparts. The paper does
not have the intention of being eomgletely general, but rather to provide very simple
and successfully tested tools for the development of parallel programs.

The following hypothesis are being made throughout the text :

o parallelism will be treated on the procedure level

u aﬁplicatjons are in principle suitable to parallelization

e the programmer will be responsible for the parallelization ( what means
that his/her expertise will be needed )

e FORTRAN is the programming language

o a parallel machine with part of its addressing space shared by all
processors is available.

The last item is not mandatory and has been included because it may lead Lo simpler
code in actual programming.
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The next section of the paper describes the code structure in the applications
used as test cases. Section III describes the tools used and the results obtained in real
cases. The tools comprise a data—base of routines and variables, a parallel processing
simulat?{] and a multi—processor system. The summary and conclusions are given in
section IV,

1= STRUCTURE OF THE PROBLEMS

The applications used as test cases are of two types : Monte—Carlo simulation
and linear optimizations problems.

Monte—Carlo simulation is a widespread tool used in applications ranging from
physics to economics to power system security analysis. This :mel.,hoﬁl models
uncontrolled variables as random and studies the statistical behaviour of the system
under various inputs. On the other hand, large linear optimization problems with
hundreds of thousands constraints arise in power system planning [7]. hese problems
may be decomposed by the Benders algorithm [8] leading to size problems
which are themselves amenable to parallelization.

In both kinds of applications there is one very big loop which is parallelizable.
Nevertheless, it is not possible to write in the code some construct like
"PARALLEL LOOP" and hope the existing compilers will do all the work efficiently.
At this point the programmer expertise seems essential to decide on a number of
practical issues that do arise.

I1.1 — Monte-Carlo simulation
In a procedural approach, a Monte—Carlo simulation program may be

characterized as a simple tree hav‘i;s three main branches : an initialization code, a
simulation loop and a termination code (Figure 1).

INITIALIZATION

MAIN PROGRAM SIMULATION LOOP]

TERMINATION

Figure 1 — Structure of Monte—~Carlo simulation

The initialization code calculates the conditions for every simulation in the
simulation loop. During the loop the variables which accumulate the results are
updated. These variables are then output in the termination code, after the final
calculations. For each run of the simulation loop there is a variable or a set of
variables, called "seeds", which are random variables. The simulation loop goes on
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until a maximum number of iterations is run or some convergence criterium is met.
Each r.:ecution of the loop code is independent of results from any other loop
execution.

Let us define the following sets of variables (which belong to COMMON blocks,
i.e., are shared by more than one procedure) for this problem structure :

a. Constant group (KG) : all variables which are calculated (written) in the
initialization part and read inside the loop.

b.  Reduced safe group (RSG) : KG U { random seeds }.

c. Safe d%rous]h (SGI-)!S: éo find the SG one needs to take the following steps —
a—- =
gé- add to SG all variables that are assigned values exclusively from variables in
¢ — repeat b until no more variables are added.

If a graph, with nodes representing the variables and the arcs dependences
between variables (with one arc from a node to another if a variable is used in
updating another), the problem of calculating SG can be formulated as finding all
nodes belonging to paths starting from sources in RSG.

In the parallel implementation every processor will execute exactly the same
code and only variables that need to be shared between processors will be placed in
common memory. It can be affirmed that :

1 — If the simulations in the loop are independent then
G = { all variables appearing in the loop }
Note : this can be used as a debugging tool.

Proof : Suppose there is a variable X which appears in the loop and does not beionﬁ to
SG. X is written in the loop, because if it was only read then it would belong to KG.
Besides, X = {(X,SG), since X cannot be only {(SG) — because it would belong to SG
by definition — and it cannot be the output of a random function — X = {(). So the
value of X is dependent from the value of X from a previous execution of the loop,
and so the loop would not be independent, which is a contradiction.

2 — RSG will contain only local variables to each one the processors.

3 -1l a variable is written inside the simulation loop and is read ( and occasionally
written afterwards ) in the termination part of the program, then this variable should
be declared global an its access protected by the use of semaphores.

Proof : let X be a variable in Lthis case. If X is read after the simulation loop then it
contains a result that is available only after the whole simulation is over, since one
does not know when it will be updated. So, keeping it local to each processor would
lead Lo erroneous results, since the contributions R-om other processors (which are also
executing simulations) would not be taken in account.
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This last result shows the importance of Emgra.mmer'a intervention : given that
a variable is ﬁlohal, decisions on which and when variables should be locked depend
on the particular implementation of the code, which may vary widely.

The analysis of loop independence may be influenced by the existence of boolean
conditions K?d, i.e., if~then—else constructs. Some of the assignment statements
ﬁfr_m:ggied ore may be subject to these constraints. The following can be

ir .

4 — Execution of either the THEN or ELSE clauses must not change SG. If it does,
the independence of the simulation loop will be a function of the value of C.

In the latter case, if all variables involved in calculating C belong to KG, then it
can be known a priori whether for a particular run the loop will be independent or
not.

Figure 2 shows a simple programming example, where the loop in subroutine C
is fully parallelizable. 4 - e P

PROGRAM A

DATA PAR /1.0/
COMMON /COM/ m(100),n
CALL B

CALL C(PAR)

END

SUBROUTINE B SUBROUTINE C(PAR)

READ(5,*) m DO 10 I=1,100

RETU 10 n=n+m()*PAR
RETURN

Figure 2 — Programming example

From the example above one notes that the loop control variable I has not been
addressed in the previous set definitions, since it stands right in the frontier of what
can be parallelized. Variable I must be declared global and copied to a local variable
ILOCAL that will replace its occurrences during the loop. In order to calculate SG,
variable I can be considered to belong to KG. In the example, variables m and PAR
would be local to each one of the processors, while variables n and I would be made
global and their updates protected by the use of semaphores.

11.2 — Optimization problems

Large optimization problems may be decom according to the Benders
algorithm into smaller size ones. These new problems may be viewed as having a
master /slave structure (Figure 3). For example, the objective of security constrained
dispatch with post-—contiggent:fv corrective rescheduling is to determine a minimum
cost operation point which will not lead to overloads, if any contingency out of a
given list occurs, taking post—contingency corrective actions into account. The
security-constrained dispatch corresponds to a very large optimization problem, which
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is solved by Benders decomposition [7]. By this approach the problem is decomposed
in one "base case" optimal dispa.tch master") and NC separate "post contingency"
dispatch subproblems ("slaves"), each of these with a smaller dimension than the
original problem. The "base case" and "post-contingency" subproblems are solved
iteratively until the global optimum solution is reached. 8 problem can be
interpreted as a two—stage decision process :

o first, one calculates the optimal dispatch operating point Xy:

t
z = min ¢ X,

8.t. [a.ol x, < by (1)
where x  is the set of state and control variables in a base case system configuration,
and (1) represents the load—flow equations plus operating constraints.

* second, given x , one calculates a new operating point x; (system state after
the i—th contingency, i€[1,NC]), such that

la) x; < by )

Il L | Il < ﬁi (3)
thre (3), the coupling constraints, represent the post—contingency rescheduling
mits.

This decomposition algorithm was used as a basis for the parallel prooessinﬁ
implementation : each processor is loaded either with the "base case" or with one o
the NC "post-contingency" subproblems, as shown in figure 3.

The master sends information about its state M to the slave, which sends it back
information S to eventually calculate a new state M'. The iterative process goes on
until a given convergence criterium ¢ = f(M) is met. The slave part is in fact a big
loop which can be analysed u‘s:ingl the same criteria as before and, of course, fully
parallelized (Figure 3). Differently from the previous case, it is now necessary to
determine M and §;, i.e., the information passed between the master and slave parts

of the application.
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Figure 3 — Optmization problem structure and its parallel partition
It can be affirmed that :

5-M= Mw n Sr , l.e., the variables written in the master and read by the slave
processor.

6-S,=85, N M, ie, the variables written in the slave and read in the master
Processor.

In practice these statements may not be clear from the syntax of the program.
For instance, Si may be stored in one vector changing only the index or this area may

be used by the master as a draft area after reading the information. The order in
which the read/write operations are performed is also an important issue and must be
considered when determining M, so that it will not be considered larger than it really
needs to be. This question has not been tackled because, in general, the order in
which operations are performed depends on the program execution and cannot be
determined only by analysing its syntax. Programmer's intervention at this point
seems again essential.

LI -TOOLS AND RESULTS OBTAINED

Three tools were used Lo develop parallel versions of sequential programs on a
procedure level :

» a data—base describing dependences between routines and variables

# a parallel processor simulator

e a mulli—processor system with part of its address space shared by all
processors.

The data—base was conceived to FORTRAN programs and takes in account
both mechanisms in this language of passing variables between routines : arguments
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declared on the subroutine statement or common blocks. The data—base is
automatically generated from compiler listings. As a side—effect, this data—base is
also being used as a documentation and development tool.

The following relations — with their arguments explained — have been defined to
describe the routines and variables dependences in a Fortran program. By "routine"
one means the Fortran program units : subroutine, function and main program.

¢ ROUTDESC : routine description
— ROUTINE
= UNIT_TYPE : type of Fortran program unit
— COMMENT : any kind of extra information desired

¢ ROUTCALL : listing of all routines called by some routine
— ROUTINE : routine name
— CALLS : program units referenced by ROUTINE

¢ ROUTARGU : routines which bear arguments
— ROUTINE
= ARG_NAME : dummy argument name
— NUMBER_ARG : relative position in argument list
—STATUS : whether the argument is read/written

e CALLARGV : all callia rﬁm}m to routines which bear arguments
= CALLED_BY : program unit calling ROUTINE
~ ARGUMENT : actual argument used by CALLED_BY
— NUMBER_ARG : relative position of argument in the
original argument list

¢ ROUTCOMM : all routines which use common blocks
-~ ROUTINE
— COMMON : common name

¢ ROUTVARI : all routines and the variables they refer to
— ROUTINE
- VAR _NAME
—STATUS : whether the variable is read /written in routine

¢ COMMVARI : variables in common blocks
- COMMON
— VAR_NAME

¢ VARIABLE : common block variables in the program
— VAR_NAME : variable name
= VAR_TYPE : variable type
— VAR _DIMENS : variable dimension
~ COMMENT

The data—base is used as a powerful aid to the programmer in the task of
partitioning the application, but it cannot be used as the only tool to analyze the
code. For instance, using the same name of variable for completely different purposes
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! in two prgm sections is a semantic fact that cannot be discovered by a syntax
| ﬁﬂy:fr&ed , programmer's intervention in the program's parallelization task cannot
excluded.

A parallel processing simulator, running on a sequential machine, is useful in
helping the transport into the parallel environment. In the absence of a parallel
debugger it is a solution that can provide a smooth transition from the original
sequential environment into the parallel environment. The simulator developed,
running on a VAX/VMS environment, is based on a control mechanisin and a timing
mechanism. The control mechanism allows each one of the simulated processors to
execute in a round-robin fashion for a time interval specified by the timing
mechanism. These mechanisms combined give the programmer control of the
execution environment on a step—by-step or processor—by—processor basis. Any
number of processors can be run on the simulator which also incorporates facilities
like send/receive primitives, lock/unlock primitives, etc. It is also useful as a
debugﬁing tool, since it allows observing deadlock and violation of critical sections, for
example.

The multi—processor system being used, called the Preferential Processor (PP),
consists of 16 processor boards, iIAPX 286/287 based, with 128k of common memory.
This prototype machine is the result of a joint effort from CPqD/Telebras for the
hardware {10}), and CEPEL, for the software ([11]). The 286/287 set will be
upgraded to 3865X/387 particularly to improve floating point performance. PP

resents to the user the very familiar PC~type interface, since each cpu runs DOS.
‘he user has available services for communication/synchronization which are the
same as those offered in the simulator.

Two programs applying the Monte—Carlo methodology were used as test—cases :
a moderate size transmission reliability evaluation program [6] and a big multi—year
power system planning and operation program [9]. The first one allowed a fast and
error—free transition from the sequential to the parallel version. The speed—up's
obtained on the PP may be resumed saying that for 16 processors the speed—up
obtained was higher than 15. This impressing speed—up can be easily justified by the
fact that practically the only information exchanged between processors are
contributions to means and standard deviations, what is done after a long series of
calculations [6].

The second application is the result of a joint effort from various power utility
companies from the Northwest of the U.S.. It makes heavy use of files, even during
the simulation loop. For sequential output files updated during the loop the solution
taken was to make each processor write to its own private [ile ﬁindexed by the loop
control variable) and let one cpu take care of organizing the file as in the original
sequential version. This program is currently running on the simulator and the
results on simulator runs are shown in Figure 4. To run on the Preferential Processor
the program will be re-structured so that memory restrictions might be
circumvented.
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Figure 4 — System Analysis Model speed—up (simulator)

The t:rl.imnl dispatch with security constraints was considered to illustrate the
second kind of application. The Fa.rallel version of the security-constrained dispatch
was tested with a configuration of the Brazilian electric system, with 504 buses, 880
circuits and 72 controllable generators with 20% corrective capacity. The objective
function was the minimum deviation from the optimal operating point obtained
without security constraints. The preventive dispatch was calculated for a list of 718
contingencies, corresponding to a linear programmin%pmblem with about one million
constraints. With the decomposition algorithm, this problem is divided into one
"master" problem and 718 "post—contingency" subproblems, each with about 1400
constraints. Its results are depicted in Figure 5. The lower efficiency can be
explained by a tighter coupling between the master/slave parts of the program than
that exhibited by Monte—Carlo simulation. What is being done now is to devise new
mechanisms of cooperation between master and slave processors so that convergence
will be accelerated and, in consequence, efficiency will be higher.

E,, | o asimilator I6eal

: P

1 2 9 4 6 8 7 8 0 101 1213 WE
nurher of processors

Figure 5 — Large linear optimization problem speed—up
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1V — CONCLUSIONS

The paper described the experience in parallelizing large sethem.ial applications
of two classes : stochastic simulation and linear optimization problems. These t
of problems arise in many power system applications as well as in many fields of
ing and science. The tools developed permitted a fast and reliable transition
from the original sequential applications to their parallel versions on the
multi—processor. This approach has prooved to be cost—effective and is now being
employed to convert other programs which also allow "mﬁn" parallelism. An
expert system might be useful to easen the decisi ing process by the
programmer, for instance, in order to decide which variables are global, or to generate
the code modifications in a user—friendly way.
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