10 BRASILEIRO DE ENGENHARIA DE SOFTWARE

X1V SIMPOS

A Language for Stating Component Quality*

Xavier Burgués, Xavier Franch
Universitat Politécnica de Catalunya (UPC),
¢/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)
{diafebus, franch) @lsi.upc.es

Abstract

u ‘We present in this paper a language for stating component quality in the
- framework of the ISO/IEC quality standards. The language consists of three
~ different parts. In the first one, software quality characteristics and attributes are
~ defined, probably in a hierarchical manner. As part of this definition, abstract
quality models can be formulated and further refined into more specialised ones.
- In the second part, values are assigned to component quality basic attributes. In
. the third one, quality requirements can be stated over components, both context-
free (universal quality properties) and context-dependent (quality properties for a
given framework -software domain, company, project, etc.). Software
 components may be then selected by testing whether their behaviour with respect
» to the quality characteristic satisfy some quality requirements that model the
context of selection. This gives some potential benefits in the software selection

framework. We show how the language can be used through some examples.

‘Software Quality and Metrics, Non-Functional Requirements, Software Components

1. Introduction

tware quality models are used to determine to what extent software components (whatever
the type of component is: object-oriented (00) classes, Commercial Off-The-Shelf (COTS)
Packages, ERP (Enterprise Resources Planning) products, etc.) satisfy the requirements of a
given context of use. This kind of acceptance test is crucial for assuring correct integration of
i ﬁm into applications and companies, and so a great deal of research has been done in the

,&Pﬂt of this research, some software-centered quality standards have been proposed [1, 2,
3* e Although each of them has its own specifities, some guidelines are common: a
:'hwork for the whole quality assessment process exist, software quality characteristics are
hﬂ"ﬁﬁﬁ‘:l and defined in a hierarchical manner, etc. We have studied one of these approaches,
the set of ISO/IEC standards to software quality, in detail.

'ﬂl: Standards collect usual quality-consumers needs expressed in terms of some high-level
of software, such as efficiency, reliability and others. However, a problem arises
aen the Meaning of these attributes has to be defined and used accurately; usually, informal
“"m’ LS are used, and so the software quality model can be misunderstood. Therefore,

= evaluations can result, eventually yielding to rejections of correct components or
: € of deficient ones.

This work ig Partially supported by the spanish national research programme CICYT, ref. TIC97-1158,
UFRGS
69 Instituto de Informatica
L Riblioteca

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

We present here an approach aimed at lessen the risk of such misuses of quality models, It is
centered on the definition of a language called NoFun (acronym for "NOn-FUNctiona
meaning that software quality mostly refers to non-functional issues of software). The
language consists of three different parts. In the first one, software quality characteristics
attributes are defined, probably in a hierarchical manner, As part of this definition, abs
quality models can be formulated and further refined into more specialised ones, In
second part, values are assigned to component quality basic attributes. In the third om,é.
quality requirements can be stated over components, both context-free (universal quality
properties) and context-dependent (quality properties for a given framework -software
domain, company, project, etc.).

2. The ISO/IEC Standards for Software Quality

A set of ISO/IEC standards are related to software quality, being standards number 9126
(which is in process of substitution by 9126-1, 9126-2 and 9126-3), 14598-1 and 14598-4 the
more relevant ones [1]. The main idea behind these standards is the definition of a quality
model and its use as a framework for software evaluation. A quality model is defined b;n
means of general characteristics of software, which are further refined into subcharacteristics
in a multilevel hierarchy; at the bottom of the hierarchy there are measurable sofiware
attributes. Quality requirements may be defined as restrictions over the quality model.

The ISO/IEC 9126 standard fixs which are the characteristics at the top of the hierarchy:
functionality, reliability, usability, efficiency, maintainability and portability. Furthermore, an
informative annex of this standard provides an illustrative quality model that refines the
characteristics as shows fig 1.

Characteristic | Subcharacteristics Short definition
accuracy provision of right or agreed results or effects
compliance adherence to application related standards or conventions
functionality interoperability | ability to interact with specified systems
security prevention to (accidental or deliberate) unauthorised access to data
suitability presence and appropriateness of a set of functions for specified tasks
fault tolerance | ability to maintain a specified level of performance in case of faults |
reliability maturity frequency of failure by faults in the software -
recoverability capability of reestablish level of performance after faults
learnability users' effort for leaming software application
usability operability users' effort for operation and operation control
understandability | users' effort for recognizing the logical concept and its applicabili
) resource behaviour | amount of resources used and the duration of such use
efficiency time behaviour | response and processing times and throughput rates
analysability identification of deficiencies, failure causes, parts to be modified, ete. |
changeability effort needed for modification, fault removal or environmental change
maintainability stability risk of unexpected effect of madifications
testability effort needed for validating the modified software
adaptability oportunity for adaptation to different environments
conformance adherence to conventions and standards related to portability
portability installability effort needed to install the software in a specified environment
replaceability opportunity and effort of using software in the place of other software |

Fig. 1: ISO/IEC 9126 proposal of quality attributes refinement.

70

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

. -.puticnlar points of the standard could be matter of discussion. For instance, some
Some (e.g., type and time of delivery —FTP, e-mail, CD, etc.- and economical cost —freeware,
isst payment) are not dealt with during software evaluation; they are postponed by the
pes to a managerial decision phase started after the evaluation itself. Anyway, we think
(hat it is advisable to adhere to the standards to have a clear and widespread framework.

In order to evaluate these attributes, a metric must be selected and rating levels have to be

ofined dividing the scale of mesurement into ranges corresponding to degrees of satisfaction
with respect to the attribute. 'l:‘he rating levels must be defined for each specific evaluation
\depending on the quality requirements. Finally, a set of assessment criteria combining the
W of attributes are necessary to obtain the rating of the intermediate and top

characteristics and, finally, the quality of the product.

Usually, this procedure is done in an informal, more or less structured way. However, we feel
it is very well suited to be performed in a more formal manner, with the help of a language
able to record this kind of definitions. This is the purpose of the NoFun language. In fact, the
language presented here is the evolution of a previous version [4], focused on expressing non-
functionality characteristics of 0.0. classes. The new version of NoFun takes advantage over
the old one not only by fitting better to the ISO/IEC standard (taking therefore functionality
into account), but also by allowing the characterisation of a more general concept of
component, as we will try to illustrate in the examples, and improving the expressive power

of the language.

3. NoFun: A General View

To achieve the goal of formalisation, we basically provide three different kind of capabilities.
First, there are many kind of modules to get the different kind of concepts defined in the

Standard. Second, values for these attributes may be given and bound to particular software

components, the ones under evaluation. Third, additional constructs for representing quality
requirements and assessment criteria are included,

Concerning the first category, there are three main of modules: characteristic,

€ristic, and attribute modules. Modules may import others, and also nesting is

i _Ng-slmg of modules allow to state auxiliary definitions. Following the standard,

Characteristic modules may not be defined one in terms of another. No such restrictions

4ppear on the other types of modules, and so hierarchies of subcharacteristics and attributes
may (and will) arise.

11:;:1’1’“ part of fig. 2 shows an example of distribution of a quality model into modules.
S+ are two characteristics defined in terms of four subcharacteristics. Following the

p appendix, sharing of subcharacteristics between characteristics do not take place
.ﬂ.ﬁlwgh _UR language does not explicitly check this situation). Subcharacteristics do indeed
mm.!maw1‘.1"""‘1"311)’: they may depend on zero, one or more other subcharacteristics and
. 5 2 subcharacteristic may influence on more than one subcharacteristic. Last,
marc defined at the bottom of the model; although also attribute hierarchies may be

fed, they are not as usual as in the case of subcharacteristics. Attributes depending on

7%

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

others are named derived attributes, as opposited of basic ones, whose values must.

explicitly computed.

subch::;/ \\-‘- ------------ ~Z _

expressed attributes
in terms of
— Req
products o
evaluate
y e | e
: | v
yes / no behaviour B, B, B,
A
A J \J \ 4
software
components Comp, Comp; Compy

Fig. 2: Layout of a quality model in the ISO/TEC framework represented with NoFun.

Quality characteristics, subcharacteristics and attributes (hereafter, quality entities) are declared of a p
type. In addition to predefined types (called domains), mechanisms o introduce new ones are introduced.
types are introduced on top of domains; also new domains may be defined, encapsulated in yet another

module. Type constructs are rich enough to allow modelising the usual quality entities. There are sets, function$

tuples and sequences; their use is shown later in the examples.

Assignment of basic attribute values are encapsulated in new modules (behaviour modules
bound to the corresponding software components being evaluated. Behaviour modules a

72

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

sons of software components in the sense that they contain all the rellevant

w - mation for quality evaluation.

Last, quality requirements may be defined restricting the values of the quality entities.
e t criteria can be seen as a set of quality requirements, and so we do not distinguish
4 1 them. Quality requirements are stated using operators over the quality entities, and
they may be categorised depending on their importance. Requirements refer normally to
characteristics and subcharacteristics, and rarely to attributes, due to their lower-level nature.

The rest of fig. 2 adds behaviour and requirement modules. The three software components
under evaluation include a behaviour module measuring the basic attributes. Values of the
attributes propagate up to the other quality entities (following the arrows in reverse direction).
The requirement module containing assessment criteria for the evaluation refers in this case to
one characteristic and two subcharacteristics. Here the result is simplified to be just success or
failure, but we will sec later that things are a bit more sophisticated, because of the

categorisation of requirements.

In addition to these elements, an orthogonal concept is the one of refinement. Refinement
allows to define quality models in an incremental manner, by specialisation of more general
ones. This kind of inheritance-like relationship yields to a structured representation of quality;
‘models can be formulated first in a general way, later refined in particular domains (OO
classes, ERP products, bespoke software, etc.), and further specialised for companys,

projects, etc,

The rest of the paper develops these elements in more detail.

4. Description of Domains

Domains play a central role in the definition of quality attributes, They are used to fix the
type ol" these attributes, either directly or as part of a complex type definition (those using
; » 8ets and so on). NoFun has the usual predefined domains, that allow to use integer,

real, bﬂo}ean and string types in attribute definitions, but other types can be defined by
‘Enumeration of values,

Amlough we allow anonymous ones, domains are normally declared in domain modules, as

~"OWR in fig. 3. There appear two typical examples of domains. The first one enumerates

ome values of a (part of) a domain, i.c. the areas of a company where software has to be

- The second one defines a scale of measurement. As it always happens in NoFun, an

; description of module contents is not only encouraged but required. Note that the

Second domain is declared as ordered. Values of ordered domains can be compared with less-
and greater-than relationships when stating assessment criteria,

73

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

domain module COMPANY_AREAS
domain CompanyAreas
explanation Areas or functions of a company
defined as Commercial, Logistics, Manufacturing, HumanResources,
Accounting, Finances, Quality, Technical, Management Support
end COMPANY_AREAS

domain module UPPER_ADEQUACY_SCALE
domain ordered UpperAdequacyScale
explanation Provides a 5-value scale which penalises excessive coverage of features
defined as NonExistent, Low, Excessive, Medium, High
end UPPER_ADEQUACY_SCALE

Fig. 3: Definition of domains.

5. Definition of Quality Attributes

Quality attributes are used in the ISO/IEC approach to measure basic software capabilitil

We define them in artribute modules, which can contain many related attributes defined w

the following information:

= Explanation of their purpose (mandatory). Explanation can be stated globally for some se
of related attributes, or individually. .

= Declaration of their type. Simple attributes will be declared of predefined types or u
domain. More elaborated declarations can be made using some type constructors:
functions, sequences and tuples. Involved domains must be imported in the module.

= Definition of their value. Just for derived attributes, i. e., those ones whose value def
on others' (which can be basic attributes —i.e., those ones whose value is com
explicitly- or derived, yielding to attribute definition hierarchies). Some
constructs can be used to build the definition.

Fig. 4 shows the definition of some attributes concerning component delivery. We
date and manufacturing company (others attributes such as price could be also considere
The month and the year of delivery are declared as integer attributes with some value
rictions (in the case of year, just lower bound is provided). Then, the date itself is dec
a tuple of two integers, defined as the values of the former attributes. Concerning the s
represented with a string, a special value is identified standing for the company itself.

attribute module DELIVERING_ISSUES
explanation First, date of delivery of components
attribute Month declared as Integer [1..12]
attribute Year declared as Integer [1970..]
attribute Date derived
declared as Tuple(Integer, Integer)
defined as (Month, Year)
explanation Then, name of company delivering the product. "Own" states for
software produced in the company
attribute supplier declared as string special Own
end DELIVERING_ISSUES

Fig. 4: Definition of quality attributes for dealing with component delivery issues

74

X1V SIMPUSLO BRASILEIRU UE ENGENHARIA UE SUF | WAKE

5 focus on the definition of two more ellaborated attributes for the ERP domains. The
first one measures the degree of coverage of company areas by ERP products. It is declared as
a function such that for every company area, a value from the given scale is assigned. It is

to import the domains defined in section 3, which become the domain and range of
the function. A default value is also provided. In top of this attribute, a new one is declared to
pe the set of the company areas well-covered by specific ERP products. The elements of the

set are declared then to be taken from the domain of company areas, and the attribute is

computed in terms of the value of the previous function (i.e., it is derived).

[attribute module ERP_ORIENTATION
imports COMPANY_AREAS, UPPER_ADEQUACY_SCALE
attribute AreaCoverage
explanation Degree of coverage of company areas by an ERP product
declared as
function
from CompanyAreas to UpperAdequacyScale
default NonExistent
attribute MainTarget derived
explanation Company areas well-covered by an ERP product
declared as
set
elements CompanyAreas
defined as
set of a in CompanyAreas such that AreaCoverage(a) = High
end ERP_ORIENTATION

Fig. 5: Definition of quality attributes for dealing with ERP products orientation

6. Definition of Subcharacteristic and Characteristic Modules

{.m, we introduce subcharacteristic and characteristic modules, to capture all the concepts
introduced in the ISO/IEC standard, Basically, (sub)characteristic modules just glue together
qnaht)(attributes and subcharacteristic, either by directly putting them together in the module
or by importing them; in the second case, subcharacteristic modules can be nested, but not
characteristic ones, according to the standard definition.

Fig. 6, top, defines a subcharacteristic module for accuracy (as defined in fig. 1) related to

?t-:jl’mducts, including many of the domains and attributes presented in previous sections.

. s case all the quality domains and attributes are introduced inside the module itself. Fig.

» bottom, outlines a definition of the functionality quality characteristic just by importing the

necessary subcharacteristics. In both cases, definition just puts together the imported entities

P)‘ means of a tuple. Note that the type declaration is not explicitly included; it may be
from the definition.

75

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

subcharacteristic module ERP_ACCURACY
domain module COMPANY_AREAS
domain CompanyAreas
.. lasin fig. 3
end COMPANY_AREAS

domain module UPPER_ADEQUACY_SCALE

domain ordered UpperAdequacyScale
../ asinfig. 3

end UPPER_ADEQUACY_SCALE
... I other domains

attribute module ERP_ORIENTATION
imports COMPANY_AREAS, UPPER_ADEQUACY_SCALE
attribute AreaCoverage
.. Mlasinfig. §
attribute MainTarget derived
. /lasinfig. 5
end ERP_ORIENTATION
... I/ other attributes

subcharactacteristic ERPAccuracy derived

explanation Accuracy [SO/IEC subcharacteristic bound to the ERP domain
defined as

Tuple(MainTarget, ...)
end ERP_ACCURACY

characteristic module ERP_FUNCTIONALITY

imports ERP_ACCURACY, ERP_COMPLIANCE, ERP_INTEROPERABILITY,
ERP_SECURITY, ERP_SUITABILITY

charactacteristic ERPFunctionality derived
explanation Functionality ISO/IEC characteristic bound to the ERP domain
defined as Tuple(ERPAccuracy, ERPCompliance, ERPInteroperability,
ERPSecurity, ERPSuitability)

end ERP_FUNCTIONALITY

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

143 ived attributes may vary depending on the context. For instance, one
Also, d"r“";?dggﬁ?;:if main target :Uu?:i);g aI;:as covered with a medium value. In this
{ 'm]uthz given definition will become invalid. In both cases, the solution would be
situation, new but similar attributes reflecting this changes, exploding then the number of
mﬂgand making our approach difficult to use.

is di Ity, we have introduced the related concepts of abstract definitions

B omomgn?ul;:rlnf?ji: t:nl.l derived attributes can be introduced as abstract, meaning t!lat

md' r;eﬁtf:;r:ifm 'is not provided in the declaration but elsewhere. Refinement allows to provide

g:adnﬁ::ition of abstract domains and attributes, and also to redefine lhl.tl‘l.l. They are

sulated in new packages which must be bound to the ones containing antmct
mﬁms. Every appearance of an abstract item is labelled with the abstract key word',

the example of fig. 6 making the domain definitions abstract (top figure).
'IF'E‘m? wl'id :rtlr:'?(slt a panicuII)ar refinement for a concrete kind of company (middle figure; note
that tile binding is explicitly stated in the header) which makes explicit the areas but not the
definition of the attribute, obtaining thus a partial refinement. We mma{k that the domain and
attributes fully-defined in the abstract package must not be defined again; as a gene_ral Im]e of
thumb, we do not repeat any previously given information, illlhlflllgl"l the opposite is also
allowed for understandability purposes. Last, we show the customization of the package for
two particular companies; they give two different definitions of the attribute. Also note that
the second refinement redefines the domain adding a new area.

We would like to stress the high degree of structurability that the refinement construct
introduces in our approach. In our example, it is reflected by the fact Lhall the ERP
functionality characteristic defined in fig. 6, bottom, does not depend on the pamcu!a{ form
that the subcharacteristics and attributes takes. In fact, we can say that we have a kind of
polymorphic or generic definition of the characteristic, such that every pa:tr_ticular refinement
of its subcharacteristics and attributes implicitly produces a different definition.

8. Description of Software Components Quality

In order 1o be used in the evaluation framework provided by the ISO/IEC standard, software
components must be measured with respect to the basic attributes that are rellevant to them.

Fig. 6: Definition of characteristics and subcharacteristics related to ERP products.

7. The Notion of Refinement

Although the constructs defined so far are well-suited for dealing with quality in a rather
comfortable and reliable way, they suffer from a lack of adaptability in some senses. Let's
consider the company areas domain. In fact, we haye taken a strong decision when
introducing the domain, fixing the concrete areas that the company is supposed to have.
However, it is obvious that the division in areas will depend of the size of the company, its

working domain and others. This definition thus can be useless in many cases,

76

Many metrics have a straighforward measure because they can be computed directly from ll}t
information available of the component; this is the case of the attributes defined in
DELIVERING_ISSUES. But often evaluation is a hard task, requiring well-defined and
f-'\fentually complex methodologies; this is the case of the AreaCoverage attribute: accurate
assignment of values in the rating levels used in its definitions is crucial fqr Fhe whole sc.:hcrr!c
10 succeed. This s the classical problem of quality evaluation, and obtaining results in this
field falls outside the scope of this paper.

Once the evaluation of the attributes for a software component is obtained sol_'nchow. it just
Suffices with encapsulating them in a behaviour module as a sequence of assignments. The
€rucial point here js having a stable definition of the product. In other words, the set of

, 3
u: could be said thay refinement is the equivalent to the OO concept of inheritance, although we prefer not to

% Name because we are limiting the use of this construct to the context of refinement.

77

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

attributes rellevant to the component should be as fixed as possible; otherwise, the compj
should be examined over and over, every time new attributes are defined which must be ta]
into account. Then, the rule of thumb in this context is clear: before producing cox pOr
quality evaluations, an exhaustive description of the domain of the component (e.g., real-
component, OO class, ERP product, etc.) must be done.

abstract subcharacteristic module GENERAL_ERP_ACCURACY
abstract domain module COMPANY_AREAS
domain CompanyAreas
explanation ... //definition not included, because it is abstract
end COMPANY_AREAS
domain module UPPER_ADEQUACY_SCALE
domain ordered UpperAdequacyScale
explanation ...
defined as NonExistent, Low, Excessive, Medium, High
end UPPER_ADEQUACY_SCALE

attribute module ERP_ORIENTATION
imports COMPANY_AREAS, UPPER_ADEQUACY _SCALE
attribute AreaCoverage
explanation Degree of coverage of company areas by an ERP product
declared as
function from CompanyAreas to UpperAdequacyScale default NonExistent
abstract attribute MainTarget derived
explanation Company areas well-covered by an ERP product
declared as set elements CompanyAreas
end ERP_ORIENTATION
end GENERAL_ERP_ACCURACY

subcharacteristic module LOWSIZE_COMPANY_ERP_ACCURACY
refines GENERAL_ERP_ACCURACY
domain module COMPANY_AREAS
domain CompanyAreas
defined as Commercial, Manufacturing, Accounting, Finances
end COMPANY_AREAS
end LOWSIZE_COMPANY_ERP_ACCURACY

subchar. module ACME_ERP_ACCURACY subchar. module SPA3_ERP_ACCURACY

refines LOWSIZE_COMPANY_ refines LOWSIZE_COMPANY _
ERP_ACCURACY ERP_ACCURACY
domain module COMPANY_AREAS
domain CompanyAreas defined as

Commercial, Manufacturing,
Accounting, Finances, Technical
end COMPANY_AREAS

attribute module ERP_ORIENTATION attribute module ERP_ORIENTATION
attribute MainTarget derived attribute MainTarget derived
defined as defined as R
set of a in CompanyAreas such that set of a in CompanyArcas such that
AreaCoverage(a) >= Medium ArcaCoverage(a) = High
end ERP_ORIENTATION end ERP_ORIENTATION
end ACME_ERP_ACCURACY & end SPA3_ERP_ACCURACY

Fig. 7: Definition of abstract packages and their refinement.

78

xiv SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Related to this problem, we are cum:mly_ c?nsidering the possibility of havir_1g differept
pmecﬁves of a software component. This is to say, a component could be involved in
models, each one with its own set of attributes; probably those sets would

; t qualit gl
lmm rm:umpJ intersections. But this is still future work...

9, Statement of Quality Requirements

Quality requirements are defined by the ISO/IEC standard as restrictions over the quz_ll_ity
model. As such, they take the form of expressions in the language involving quality entities
of the model. They are encapsulated in requirement modules, which contain a preljmjnz}ry
explanation of the intent of the requirement, and the list of individual related quality
requirements. For each quality requirement, the following information is stated:

= Name,

s Informal explanation of the requirement.

« Enumeration of the quality entities which the requirement is defined upon. If all the
reguirements refer to the same module, a single declaration on the header suffices.

= Its definition, using operators bound to type constructs: universal and existencial
quantifiers, set membership, etc.

= Tts categorisation, which depends on the importance of the requirement during the
evaluation process. We have identified four types of requirement categories: essential,

important, advisable and marginal.

Quality requirements appear mainly in two contexts. First, as small units for establishing
propertiecs on quality entities. Properties may be more or less general depending on the
abstraction of the model they are bound to. Fig. 8 shows two examples of such quality
requirements. The first one is bound to a general quality model, and so it states a kind of
universal property on the AreaCoverage attribute: an ERP must be addressed at least to one
company area. The second requirement is more specific, referred to DELIVERING_ISSUES
(see fig. 4) and bound to a particular company (as stated in the header): software made by the
ACME company must not be dated before April 1998, which is the date the company started
1o use OO methodologies. Note the different categorisation of requirements: whilst the first
one is labelled as essential, the second one is just classified as advisable: older products are
still acceptable.

UFRGS _
Instituto de informatica

Biblioteca
79 :

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

requirement module ORIENTATION_PROPS on ERP_ORIENTATION
explanation Universal properties of ERP-orientation attributes
definition
univ-prop-orient-1: essential
explanation ERP products must address at least (o one company area
defined as
exists a in CompanyAreas such that AreaCoverage(a) > NonExistent
end ORIENTATION_PROPS

requirement module DATE_RESTRICTION on DELIVERING_ISSUES for ACME
explanation States a requirement on the date of creation of ACME delivered software
definition
ACME-delivery-date: advisable
explanation Software made by the ACME company must not be dated before April

1998, which is the date the company started to use 00 methodologies
defined as

Supplier = Own implies
(Date.Year > 1998) or (Date. Year = 1998 and Date Month >= 4)
end DATE_RESTRICTION

Fig. 8: Two examples of individual quality requirements.

Quality requirements also appear in the context of assessment criteria. From the ISO/AEG

standard point of view, assessment criteria is just a set of quality requirements stated
the evaluation process. In this case, one or more requirements module (typically, one fo
characteristic or subcharacteristic) are necessary, each one containing a related set ¢
requirements.

durin

Fig. 9 offers an example of this situation. Five requirements concemning ERP products
collected in a single module. It must be said that these requirements have arosen in a
experience of selection of an ERP solution for a spanish company [5]. The first
requirements can be modelled using the quality entities presented so far; the other three
other subcharacteristics and attributes not introduced in the paper. The informal requi
reflect the information obtained from the company:; the formalisation step helps sometimes |
solve ambiguities, as it happens in the reg-func-2 requirement (the mapping from the infor
to the formal requirements demands an exact meaning for "emphasize"). Classification
done according to the priorities expressed by the company.

An important feature appears in reg-func-4: non-trivial requirements can be decomposed into
others. This provides a comfortable way to structure the requirements keeping track of th

original statement that generated them. The new requirements must have a priority less

equal than the old one and at least one of the new requircments must have the same priority

than the old one.

Although it is out of the scope of the paper, it is worth mentioning that quality require

can be used not only to check validity of software solutions, but also to select software

components that fit well to those requirements. In this case, the language NoFun is used in
context of component selection. Some additional comments to these issue appear in
conclusions.

80

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

(—/—' ; ent module FUNCTIONALITY_REQ on ERP_FUNCTIONALITY for ACME

/f name and location of the document that establishes the requirements

definition
req-func-1: essential
explanation The selected ERP should cover all the company areas
concerns ERP_ORIENTATION
defined as
for all a in CompanyAreas it holds that AreaCoverage(a) > NonExistent
reg-func-2: important . I
explanation The selected ERP should emphasize commercial, logistic and
management areas
concerns ERP_ORIENTATION
defined as { Commercial, Logistic, Management } in MainTarget
req-func-3: marginal
explanation The company could adapt its structure to the new software if necessary
concerns ERP_ADAPTABILITY
defined as Adaptability. CompanyAdaptability >= None
req-func-4: advisable
explanation The selected ERP should be as open as possible, both for adding new
functionality and for interconnecting with other software
concerns ERP_OPENESS
decomposed as
req-func-4-a; important
explanation The selected ERP must satisfy a minimum degree of openess
defined as Openess.bespoke >= Strong and Openess.COTS >= Strong
req-func-4-b: marginal
explanation The selected ERP must maximize its degree of openess
defined as max(Openess.bespoke) and max(Openess.COTS)
req-func-5: essential
explanation The ERP should support Y2K, euro, ISO9000 and multicurrency
concerns ERP_SPECIFIC_SUPPORT
defined as {Y2K, [SO9000, Euro, MultiCurrency) in ERPSpecificSupport
| end FUNCTIONALITY_REQ

Fig. 9: Two examples of individual quality requirements.

10. Conclusions

We have presented in this paper NoFun, a language for supporting the ISO/IEC quality

S s reported in [1). The language consists of three parts: definition of the domain of
; €; definition of the quality elements; and establishment of assessment criteria. The
language contains structuring mechanisms, type definition elements and other constructs that

El¥e an appropriate support for defining non-trivial quality models.

We consider that the salient features of

A our approach are:

NoFun provides a basis for establishing quality models in a formal way, instead of using

! language. We think that NoFun is a step towards filling the gap of formal
f'hﬁﬂlhou of quality characteristics and metrics; as mentioned below, to our knowledge
Justa few approaches exist in this sense.

addition to this, we have formulated our approach in the context of a main standard on
Software quality. As a result, our language provides a common framework that can be

81

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

used for people working in the field, sharing common results and building repositories
with definition of characteristics, domains, evaluation of products, etc.
* The existence of a language with a well-defined semantics allows building support tools:
that can save human effort increasing also accuracy on the results. We currently ha
prototype for doing software evaluation, based on the description of the domains, the
assessment criteria and the evaluation of products, all of this described with NoFun.

= With respect to the expressive power, the language presented here has proved to be usefil
for defining a large kind of quality characteristics, criteria, etc. In particular, the
ways of defining quality (sub)characteristics and attributes, assessment criteria :
specially the notion of refinement compare favorably to other related approaches we
aware of.

* Although we have focused on the ISO/IEC standard, the language can be used in othes
contexts related with quality. In addition to deal with other quality standards [2, 3]
can use the language as an Interface Description Language (IDL) for many contexts
as for specification of non-functional issues [6], for enlarging existent IDLs such as
one for CORBA (7], and so on.

The language presented here is the evolution of the previous NoFun IDL [4]. Although
of the lowest-level constructs are similar, changes arise mainly concerning structur
mechanisms, the refinement notion and the way of establishing requirements. There are
mainly three reasons behind this evolution b
* Previous NoFun was specifically addressed to deal with small components, intended
contain definition of abstract data types implemented with usual data structures |
Therefore, the domain of application was component libraries such as LEDA [9], STE
[10] and Booch [11] ones. There were many restrictive consequences of this situation; or
instance, the notion of efficiency was specifically asimptotical efficiency, measured witl
the big-Oh notation, which is no longer useful in information systems of ERP products.

* NoFun stands for "NOn-FUNctional", in the sense that just non-functional issues
taken into account. Functionaly aspects were supposed to be covered with usual forn
specifications languages, such as Larch [12], Z [13] and other similar ones, It is not
case for the current NoFun version (we are searching for a new language acronym...).

* Previous NoFun was not really bound to any quality standard. Although ISO/IEC could
have been modelled with it (except for the functionality quality characteristic), the
would have been a little confusing. For instance, it offered just a structuring mechan
for the so-called attributes, which has been split into three in the new NoFun.

There exist in the software community many approaches for dealing with software quality,
although as far as we know, none of these approaches has been used in the particul
framework of defining quality models. Instead, these proposals have been stated in t
context of languages and notations for dealing with non-functional aspects of software. But 1
fact, also our language can be used this way (actually it has been the case up to now [4]), and
so it makes sense to establish comparisons with them.

The most widespread approach is the one of the Toronto group, the NFR framework [14, 15}
NFR deal with non-functional requirements at the process level, that is, they use non-
functional requirements to guide the software design process. As part of their proposal,
record design decisions with a design-oriented notation, which makes explicit the functi
and non-functional goals of the system and their relationships, which can be of many kinds

82

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

(ic. contradictory, collaboration, etc.). Since the focus of our language has to be more
; , we think that both approaches are really complementary.
tbapl"d“""‘mthe process, we
es in at the product-level focus mainly on limited parts of the quality
Ottt 'P‘P:_?cfhor do not allow to represent all kind of attributes, characteristics and
i ts. A great deal of the approaches are restricted to state just efficiency information
of software components: asymptotic efficiency [16], efficiency of querics in relational
struetures [17], tight efficiency [18] and real-time efficiency [19]. A classical proposal in this
field is the faccted approach of [20], which proposes a component classification scheme
based on many dimensions. In all of these languages and systems, quality evaluation is
restricted to check if components satisfy some restrictions about time efficiency, or to select
or even generate components satisfying these restrictions. No way of defining arbitrary
attributes or (sub)characteristics, neither sophisticated (but usual) non-functional
e ts are provided. The notion of refinement does not appear in any of these
ths. And requirements such the one in fig. 9 cannot be stated at all.

A few words about experimental results. An experiment on defining a quality model for the
selection of ERP products, based on a previous real case [5], has been developed
successfully; some excerpts have been showed in the paper. Other previous, more academic
work in the component-based software development also exist [21]. In this paper, we focus
on tradicional non-functional attributes such as performance, reliability, etc. Currently,
another case study is being developed in cooperation with a major spanish software
manufacturing company, consisting on the classification of graphical forms, used to access
data bases from automatically-generated applications. Up to now, forms were generated in an
ad-hoc manner, making understandability and maintenance very difficult. NoFun is being
used for defining user profiles (technical users, managerial users, secretary staff, etc.), each of
them with different requirements on the generated forms. We are currently addressing the
evolution of the form generation part of the tool to include NoFun. last, first steps on using
g]appmach for the general problem of COTS packages acquisition [22] have been stated

On the other hand, we are currently facing the problem of defining concrete metrics for

‘evaluation quality attributes, which is an important part of the ISO/IEC standard. As a first an

‘portant case study, we are developing a methodology to measure functionality based on the
lition of use cases (expressed in UML) centered on the processes taken over the
application being measured. The importance of this line of research is obvious, since

ic methodologies will allow to assign values to attributes in a quite objective way.
11. References

(0 ISO/IEC Standards 9126 (Information Technology — Software Product Evaluation — Quality

Pro ctE!ﬁcs and Guidelines for their use, 1991) and 14598 (Information Technology — Software
(2]

valuation: Part 1, General Overview; Part 4, Process for Acquirers; 1999).
IEEE Computer Society. IEEE Standard for a Software Quality Metrics Methodolo 3
| gy. IEEE
Std. 1061-1997 Ny York, 1992.
3 &
!:n{ Rome Air Development Center (RADC). Software Quality Specification Guidebook RADC-
=85-37, vol. II, 1985,

83

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

[4] X. Franch. Systematic Formulation of Non-Functional Characteristics of

Proceedings of International Conference on Requirements Engineering (ICRE) (Colorado
USA). IEEE Computer Society, 1998.

[5] Sistach F., Pastor J.A. "Methodological Acquisition of ERP Solutions with SHERPA", F
World Class IT Service Management Guide, tenHagenStam, March 2000. F

[6] X. Franch. "Including Non-Functional Issues in Anna/Ada Programs for Autom;
Implementation Selection”. In Procs. International Conference on Reliable Software Techn .
Ada Europe'97, London (UK), June 1997, LNCS 1251, pp. 88-99,

7 T.J. Mowbray, R. Zahavi. The Essential CORBA. John Wiley & Sons, 1995.

8] X. Franch, P. Botella, X. Burgués, I M. Rib6. "ComProLab: A Component Prog
Laboratory”. In Procs. 9th Software Engineering and Knowledge Engineering Conference ¢
Madrid (Spain), June 1997, pp. 397-406.

91 K. Mehlhom, S. Niher. The LEDA Platform of Combinatorial and Geometric
Cambridge University Press, 1999,

[10] D.R.Musser; A.Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1996,

[11] G. Booch, D.G. Weller, S. Wright. The Booch Library for Ada95 (1999). Availabl
hrtp:ﬂwww.pogner.dcmon.co.ukfcompunenlsfbc.

[12] JM. Spivey. The Z Notation, Prentice-Hall, 1993.

[13] LV. Guttag, 1.J. Homing. Larch: Languages and Tools for Formal Specification, Texts
Monographs in Computer Science, Springer-Verlag, 1994,

[14] . Mylopoulos, L. Chung, B.A. Nixon, "Representing and Using Nonfunctional R
A Process-Oriented Approach”, IEEE Transactions on Software Engineering, 18(6), 1992.

[15] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in So
Engineering. Kluwer Academic Publishers, ISBN 0-7923-8666-3. October 1999, 472 PP

(16] P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program Transformation System". In P
6th CAISE, Utrecht (Holanda), LNCS 81 1, 1994,

[17] D. Cohen, N. Goldman, K. Narayanaswamy. "Adding Performance Information to A
Interfaces”. In Proceedings of the Interface Definition Languages Workshop, ACM SIGPLAN
29(8), 1994.

[18] M. Sitaraman. "On Tight Performance Specification of Object-Oriented Compon
Proceedings Third International Conference on Software Reuse (ICSR), IEEE Computer
Press, 1994,

[19] R.H. Pierce et al. "Capturing and verifying performance requirements for hard
systems”. In Proceedings Intemational Conference on Software Reliable Technologies,
(England), LNCS 1251, Springer-Verlag, 1997,

[20] Prieto-Diaz, R.: Classifying Software for Reusability. IEEE Software 4, 1. IEEE Con
Society, 1987.

[21] Authors. "Browsing a Component Library using Non-Functional Information”. In |
International Conference on Reliable Software Technologies - Ada Europe’99, Santander (Spa
June 1999, LNCS 1622, pp. 332-343,

[22] N. Maiden, C. Ncube. Acquiring COTS Software Selection Requirements, IEEE Software
March 1998,

[23) X, Franch, J.A. Pastor. "On the Formalisation of ERP Systems Procurement”. In Prot
Continuing Collaborations for Successful COTS Development ICSE Workshop, Limerick (Ire
June 2000.

84

